id
stringlengths 6
117
| description
stringlengths 29
13k
| code
stringlengths 9
465k
| language
class label 4
classes | test_samples
sequence | source
class label 5
classes |
---|---|---|---|---|---|
1144_B. Parity Alternated Deletions_900 | Polycarp has an array a consisting of n integers.
He wants to play a game with this array. The game consists of several moves. On the first move he chooses any element and deletes it (after the first move the array contains n-1 elements). For each of the next moves he chooses any element with the only restriction: its parity should differ from the parity of the element deleted on the previous move. In other words, he alternates parities (even-odd-even-odd-... or odd-even-odd-even-...) of the removed elements. Polycarp stops if he can't make a move.
Formally:
* If it is the first move, he chooses any element and deletes it;
* If it is the second or any next move:
* if the last deleted element was odd, Polycarp chooses any even element and deletes it;
* if the last deleted element was even, Polycarp chooses any odd element and deletes it.
* If after some move Polycarp cannot make a move, the game ends.
Polycarp's goal is to minimize the sum of non-deleted elements of the array after end of the game. If Polycarp can delete the whole array, then the sum of non-deleted elements is zero.
Help Polycarp find this value.
Input
The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements of a.
The second line of the input contains n integers a_1, a_2, ..., a_n (0 ≤ a_i ≤ 10^6), where a_i is the i-th element of a.
Output
Print one integer — the minimum possible sum of non-deleted elements of the array after end of the game.
Examples
Input
5
1 5 7 8 2
Output
0
Input
6
5 1 2 4 6 3
Output
0
Input
2
1000000 1000000
Output
1000000 | n=int(input())
arr=list(map(int,input().split()))
arr.sort()
even=[]
odd=[]
e=0
o=0
for i in arr:
if (i%2)==0:
even=even+[i]
e=e+1
else:
odd=odd+[i]
o=o+1
if (e>o) and (e-o)>1:
print(sum(even[:(e-o-1)]))
elif (o>e) and (o-e)>1:
print(sum(odd[:(o-e-1)]))
else:
print(0)
| 3Python3
| {
"input": [
"2\n1000000 1000000\n",
"6\n5 1 2 4 6 3\n",
"5\n1 5 7 8 2\n",
"5\n1 1 1 1 1\n",
"5\n2 1 1 1 1\n",
"5\n2 1 1 1 2\n",
"6\n5 1 3 4 8 3\n",
"5\n1 5 7 1 2\n",
"6\n5 1 3 4 5 3\n",
"2\n1000010 1001000\n",
"2\n1000110 1001000\n",
"2\n1000110 1000000\n",
"2\n0000110 1000000\n",
"2\n1000110 0100000\n",
"2\n1010110 0100010\n",
"2\n1000011 0101011\n",
"2\n1100010 1111100\n",
"2\n1100010 0111000\n",
"2\n1110010 0111010\n",
"2\n1110010 0101010\n",
"2\n0011110 0001110\n",
"2\n0011110 0001100\n",
"2\n0001110 0001000\n",
"2\n0000111 0001001\n",
"2\n0110100 1011000\n",
"2\n1110100 1011000\n",
"2\n1011000 1001100\n",
"2\n1011000 1000100\n",
"2\n1000100 0011100\n",
"2\n1000110 0111100\n",
"2\n1000110 0010100\n",
"2\n1000111 0010101\n",
"2\n1000000 1000001\n",
"6\n5 1 2 4 8 3\n",
"5\n1 5 7 2 2\n",
"5\n2 1 1 1 4\n",
"2\n1000000 0000001\n",
"5\n2 2 1 1 1\n",
"2\n1000000 0001001\n",
"5\n2 2 0 1 1\n",
"2\n1000010 0001001\n",
"5\n2 2 0 1 2\n",
"2\n1000010 1001001\n",
"5\n2 0 0 1 2\n",
"2\n1000110 1100000\n",
"2\n1010110 0100000\n",
"2\n1000110 0100010\n",
"2\n1000111 0100010\n",
"2\n1000111 0101010\n",
"2\n1000011 0101010\n",
"2\n1000011 1101010\n",
"2\n1000011 1111010\n",
"2\n1000011 1111110\n",
"2\n1000111 1111110\n",
"2\n1000011 1111100\n",
"2\n1000010 1111100\n",
"2\n1100010 1111000\n",
"2\n1110010 0111000\n",
"2\n0110010 0101010\n",
"2\n0110010 0101011\n",
"2\n0110010 0001011\n",
"2\n0110010 0001111\n",
"2\n0100010 0001111\n",
"2\n0100110 0001111\n",
"2\n0101110 0001111\n",
"2\n0001110 0001111\n",
"2\n0011110 0001111\n",
"2\n0001110 0001100\n",
"2\n0000110 0001000\n",
"2\n0000110 0001001\n",
"2\n0000111 0001101\n",
"2\n0000111 0001100\n",
"2\n0000111 0001110\n",
"2\n1000111 0001110\n",
"2\n1001111 0001110\n",
"2\n1001111 0001010\n",
"2\n1001111 0001000\n",
"2\n1001110 0001000\n",
"2\n1011110 0001000\n",
"2\n1011111 0001000\n",
"2\n1011111 0000000\n",
"2\n1011111 1001000\n",
"2\n1010111 1001000\n",
"2\n0010111 1001000\n",
"2\n0010101 1001000\n",
"2\n0110101 1001000\n",
"2\n0110101 1011000\n",
"2\n1111100 1011000\n",
"2\n1011100 1011000\n",
"2\n1011000 1011000\n",
"2\n1011000 1011100\n",
"2\n1001000 1000100\n",
"2\n1001000 1000110\n",
"2\n1001000 0000110\n",
"2\n1001000 0001110\n",
"2\n1000000 0001110\n",
"2\n1000000 0001100\n",
"2\n1000100 0001100\n",
"2\n1000110 0011100\n",
"2\n1000110 0010101\n",
"2\n0000111 0010101\n",
"2\n0000111 0010100\n",
"2\n0100111 0010100\n",
"2\n0100111 0010000\n",
"2\n0100011 0010000\n"
],
"output": [
"1000000\n",
"0\n",
"0\n",
"4\n",
"2\n",
"0\n",
"1\n",
"2\n",
"7\n",
"1000010\n",
"1000110\n",
"1000000\n",
"110\n",
"100000\n",
"100010\n",
"101011\n",
"1100010\n",
"111000\n",
"111010\n",
"101010\n",
"1110\n",
"1100\n",
"1000\n",
"111\n",
"110100\n",
"1011000\n",
"1001100\n",
"1000100\n",
"11100\n",
"111100\n",
"10100\n",
"10101\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"2\n",
"0\n",
"0\n",
"1000110\n",
"100000\n",
"100010\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1000010\n",
"1100010\n",
"111000\n",
"101010\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1100\n",
"110\n",
"0\n",
"111\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1000\n",
"1000\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1011000\n",
"1011000\n",
"1011000\n",
"1011000\n",
"1000100\n",
"1000110\n",
"110\n",
"1110\n",
"1110\n",
"1100\n",
"1100\n",
"11100\n",
"0\n",
"111\n",
"0\n",
"0\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
|
1144_B. Parity Alternated Deletions_901 | Polycarp has an array a consisting of n integers.
He wants to play a game with this array. The game consists of several moves. On the first move he chooses any element and deletes it (after the first move the array contains n-1 elements). For each of the next moves he chooses any element with the only restriction: its parity should differ from the parity of the element deleted on the previous move. In other words, he alternates parities (even-odd-even-odd-... or odd-even-odd-even-...) of the removed elements. Polycarp stops if he can't make a move.
Formally:
* If it is the first move, he chooses any element and deletes it;
* If it is the second or any next move:
* if the last deleted element was odd, Polycarp chooses any even element and deletes it;
* if the last deleted element was even, Polycarp chooses any odd element and deletes it.
* If after some move Polycarp cannot make a move, the game ends.
Polycarp's goal is to minimize the sum of non-deleted elements of the array after end of the game. If Polycarp can delete the whole array, then the sum of non-deleted elements is zero.
Help Polycarp find this value.
Input
The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements of a.
The second line of the input contains n integers a_1, a_2, ..., a_n (0 ≤ a_i ≤ 10^6), where a_i is the i-th element of a.
Output
Print one integer — the minimum possible sum of non-deleted elements of the array after end of the game.
Examples
Input
5
1 5 7 8 2
Output
0
Input
6
5 1 2 4 6 3
Output
0
Input
2
1000000 1000000
Output
1000000 |
import java.util.ArrayList;
import java.util.Scanner;
import java.util.Collections;
import java.util.Comparator;
public class Solution {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
sc.nextLine();
int a[] = new int[n];
int odd = 0;
ArrayList<Integer> od = new ArrayList<Integer>();
ArrayList<Integer> ev = new ArrayList<Integer>();
int even = 0;
int max = 0;
int maxi = 0;
long sum = 0;
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
if (a[i] % 2 == 0) {
even++;
ev.add(a[i]);
} else {
odd++;
od.add(a[i]);
}
if (a[i] > max) {
max = a[i];
maxi = i;
}
sum = sum + a[i];
}
int fodd = odd;
int feven = even;
Comparator r = Collections.reverseOrder();
Collections.sort(ev, r);
Collections.sort(od, r);
// System.out.println(ev);
// System.out.println(od);
if (odd - even == 1 || odd - even == 0) {
System.out.println("0");
} else if (even == 0 || odd == 0) {
System.out.println(sum - max);
} else {
int o = 0;
int e = 0;
long deleted = 0;
int turn = 1;
// if (od.get(0) > ev.get(0)) {
//
// System.out.println(od.get(0) + " deleted first odd id ");
// deleted += od.get(0);
// o++;
// odd--;
// turn = 2;
//
// } else {
// System.out.println(ev.get(0) + " deleted firt evenid ");
// deleted += ev.get(e);
// e++;
// even--;
// turn = 1;
//
// }
while (odd > 0 && even > 0) {
if (turn == 1) {
// System.out.println(od.get(0) + " deleted first odd id ");
deleted += od.get(o);
o++;
odd--;
turn = 2;
} else if (turn == 2) {
// System.out.println(ev.get(0) + " deleted firt evenid ");
deleted += ev.get(e);
e++;
even--;
turn = 1;
}
}
if (odd == 0) {
deleted += ev.get(e);
} else if (even == 0) {
deleted += od.get(o);
}
//-------------------------------------------------------------------------------------------
turn = 2;
o = 0;
e = 0;
odd = fodd;
even = feven;
long deleted2 = 0;
while (odd > 0 && even > 0) {
if (turn == 1) {
// System.out.println(od.get(0) + " deleted first odd id ");
deleted2 += od.get(o);
o++;
odd--;
turn = 2;
} else if (turn == 2) {
// System.out.println(ev.get(0) + " deleted firt evenid ");
deleted2 += ev.get(e);
e++;
even--;
turn = 1;
}
}
if (odd == 0) {
deleted2 += ev.get(e);
} else if (even == 0) {
deleted2 += od.get(o);
}
if (deleted2 > deleted) {
System.out.println(sum - deleted2);
} else {
System.out.println(sum - deleted);
}
}
}
}
| 4JAVA
| {
"input": [
"2\n1000000 1000000\n",
"6\n5 1 2 4 6 3\n",
"5\n1 5 7 8 2\n",
"5\n1 1 1 1 1\n",
"5\n2 1 1 1 1\n",
"5\n2 1 1 1 2\n",
"6\n5 1 3 4 8 3\n",
"5\n1 5 7 1 2\n",
"6\n5 1 3 4 5 3\n",
"2\n1000010 1001000\n",
"2\n1000110 1001000\n",
"2\n1000110 1000000\n",
"2\n0000110 1000000\n",
"2\n1000110 0100000\n",
"2\n1010110 0100010\n",
"2\n1000011 0101011\n",
"2\n1100010 1111100\n",
"2\n1100010 0111000\n",
"2\n1110010 0111010\n",
"2\n1110010 0101010\n",
"2\n0011110 0001110\n",
"2\n0011110 0001100\n",
"2\n0001110 0001000\n",
"2\n0000111 0001001\n",
"2\n0110100 1011000\n",
"2\n1110100 1011000\n",
"2\n1011000 1001100\n",
"2\n1011000 1000100\n",
"2\n1000100 0011100\n",
"2\n1000110 0111100\n",
"2\n1000110 0010100\n",
"2\n1000111 0010101\n",
"2\n1000000 1000001\n",
"6\n5 1 2 4 8 3\n",
"5\n1 5 7 2 2\n",
"5\n2 1 1 1 4\n",
"2\n1000000 0000001\n",
"5\n2 2 1 1 1\n",
"2\n1000000 0001001\n",
"5\n2 2 0 1 1\n",
"2\n1000010 0001001\n",
"5\n2 2 0 1 2\n",
"2\n1000010 1001001\n",
"5\n2 0 0 1 2\n",
"2\n1000110 1100000\n",
"2\n1010110 0100000\n",
"2\n1000110 0100010\n",
"2\n1000111 0100010\n",
"2\n1000111 0101010\n",
"2\n1000011 0101010\n",
"2\n1000011 1101010\n",
"2\n1000011 1111010\n",
"2\n1000011 1111110\n",
"2\n1000111 1111110\n",
"2\n1000011 1111100\n",
"2\n1000010 1111100\n",
"2\n1100010 1111000\n",
"2\n1110010 0111000\n",
"2\n0110010 0101010\n",
"2\n0110010 0101011\n",
"2\n0110010 0001011\n",
"2\n0110010 0001111\n",
"2\n0100010 0001111\n",
"2\n0100110 0001111\n",
"2\n0101110 0001111\n",
"2\n0001110 0001111\n",
"2\n0011110 0001111\n",
"2\n0001110 0001100\n",
"2\n0000110 0001000\n",
"2\n0000110 0001001\n",
"2\n0000111 0001101\n",
"2\n0000111 0001100\n",
"2\n0000111 0001110\n",
"2\n1000111 0001110\n",
"2\n1001111 0001110\n",
"2\n1001111 0001010\n",
"2\n1001111 0001000\n",
"2\n1001110 0001000\n",
"2\n1011110 0001000\n",
"2\n1011111 0001000\n",
"2\n1011111 0000000\n",
"2\n1011111 1001000\n",
"2\n1010111 1001000\n",
"2\n0010111 1001000\n",
"2\n0010101 1001000\n",
"2\n0110101 1001000\n",
"2\n0110101 1011000\n",
"2\n1111100 1011000\n",
"2\n1011100 1011000\n",
"2\n1011000 1011000\n",
"2\n1011000 1011100\n",
"2\n1001000 1000100\n",
"2\n1001000 1000110\n",
"2\n1001000 0000110\n",
"2\n1001000 0001110\n",
"2\n1000000 0001110\n",
"2\n1000000 0001100\n",
"2\n1000100 0001100\n",
"2\n1000110 0011100\n",
"2\n1000110 0010101\n",
"2\n0000111 0010101\n",
"2\n0000111 0010100\n",
"2\n0100111 0010100\n",
"2\n0100111 0010000\n",
"2\n0100011 0010000\n"
],
"output": [
"1000000\n",
"0\n",
"0\n",
"4\n",
"2\n",
"0\n",
"1\n",
"2\n",
"7\n",
"1000010\n",
"1000110\n",
"1000000\n",
"110\n",
"100000\n",
"100010\n",
"101011\n",
"1100010\n",
"111000\n",
"111010\n",
"101010\n",
"1110\n",
"1100\n",
"1000\n",
"111\n",
"110100\n",
"1011000\n",
"1001100\n",
"1000100\n",
"11100\n",
"111100\n",
"10100\n",
"10101\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"2\n",
"0\n",
"0\n",
"1000110\n",
"100000\n",
"100010\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1000010\n",
"1100010\n",
"111000\n",
"101010\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1100\n",
"110\n",
"0\n",
"111\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1000\n",
"1000\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1011000\n",
"1011000\n",
"1011000\n",
"1011000\n",
"1000100\n",
"1000110\n",
"110\n",
"1110\n",
"1110\n",
"1100\n",
"1100\n",
"11100\n",
"0\n",
"111\n",
"0\n",
"0\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
|
1165_A. Remainder_902 | You are given a huge decimal number consisting of n digits. It is guaranteed that this number has no leading zeros. Each digit of this number is either 0 or 1.
You may perform several (possibly zero) operations with this number. During each operation you are allowed to change any digit of your number; you may change 0 to 1 or 1 to 0. It is possible that after some operation you can obtain a number with leading zeroes, but it does not matter for this problem.
You are also given two integers 0 ≤ y < x < n. Your task is to calculate the minimum number of operations you should perform to obtain the number that has remainder 10^y modulo 10^x. In other words, the obtained number should have remainder 10^y when divided by 10^x.
Input
The first line of the input contains three integers n, x, y (0 ≤ y < x < n ≤ 2 ⋅ 10^5) — the length of the number and the integers x and y, respectively.
The second line of the input contains one decimal number consisting of n digits, each digit of this number is either 0 or 1. It is guaranteed that the first digit of the number is 1.
Output
Print one integer — the minimum number of operations you should perform to obtain the number having remainder 10^y modulo 10^x. In other words, the obtained number should have remainder 10^y when divided by 10^x.
Examples
Input
11 5 2
11010100101
Output
1
Input
11 5 1
11010100101
Output
3
Note
In the first example the number will be 11010100100 after performing one operation. It has remainder 100 modulo 100000.
In the second example the number will be 11010100010 after performing three operations. It has remainder 10 modulo 100000. | wei, b, c=raw_input().split()
a=raw_input().split()
h=a[0]
wei = int(wei)
b = int(b)
c = int(c)
t2 = h[-c-1]
e=0
for i in range(-b , 0):
if i == -c-1:
if t2 == '0':
e=e+1
else:
if h[i]=='1':
e=e+1
print(e)
| 1Python2
| {
"input": [
"11 5 2\n11010100101\n",
"11 5 1\n11010100101\n",
"6 4 2\n100010\n",
"4 2 1\n1000\n",
"8 5 2\n10000100\n",
"11 5 2\n11010000101\n",
"64 40 14\n1010011100101100101011000001000011110111011011000111011011000100\n",
"7 5 3\n1011000\n",
"8 5 1\n10000000\n",
"5 2 1\n11010\n",
"11 5 2\n11110000100\n",
"4 1 0\n1000\n",
"5 2 1\n10010\n",
"96 25 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101011\n",
"3 1 0\n100\n",
"8 6 5\n10100000\n",
"11 5 0\n11010100100\n",
"11 5 2\n10000000000\n",
"46 16 10\n1001011011100010100000101001001010001110111101\n",
"6 3 1\n100010\n",
"102 5 2\n111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"8 5 2\n10011110\n",
"20 11 9\n11110000010011101010\n",
"10 1 0\n1010000100\n",
"8 3 1\n10000000\n",
"8 5 2\n10000010\n",
"5 3 2\n10111\n",
"5 3 2\n10010\n",
"10 7 3\n1101111111\n",
"5 1 0\n10000\n",
"4 2 0\n1001\n",
"10 5 3\n1000000000\n",
"7 5 2\n1000000\n",
"12 5 2\n100000000100\n",
"7 5 4\n1010100\n",
"4 2 0\n1000\n",
"5 3 2\n10100\n",
"5 4 0\n11001\n",
"11 5 2\n11010000001\n",
"10 5 3\n1111001111\n",
"213 5 3\n111001111110111001101011111100010010011001000001111010110110011000100000101010111110010001111110001010011001101000000011111110101001101100100100110100000111111100010100011010010001011100111011000001110000111000101\n",
"39 15 0\n101101100000000000110001011011111010011\n",
"40 7 0\n1101010110000100101110101100100101001000\n",
"74 43 12\n10001011100000010110110111000101110100000000001100100100110110111101001011\n",
"7 1 0\n1111001\n",
"11 5 0\n11010011001\n",
"11 5 2\n11110000101\n",
"5 2 1\n10000\n",
"5 3 0\n10001\n",
"10 1 0\n1000000000\n",
"7 5 2\n1000100\n",
"12 4 3\n110011100111\n",
"5 3 1\n10001\n",
"4 2 1\n1011\n",
"9 3 2\n100010101\n",
"5 3 0\n10000\n",
"5 3 0\n10111\n",
"81 24 18\n111010110101010001111101100001101000000100111111111001100101011110001000001000110\n",
"7 5 2\n1010100\n",
"78 7 5\n101001001101100101110111111110010011101100010100100001111011110110111100011101\n",
"5 2 0\n10000\n",
"11 5 1\n11010000101\n",
"7 5 2\n1000101\n",
"2 1 0\n10\n",
"7 4 2\n1000100\n",
"13 10 0\n1000001101100\n",
"51 44 21\n111011011001100110101011100110010010011111111101000\n",
"50 14 6\n10110010000100111011111111000010001011100010100110\n",
"4 1 0\n1101\n",
"10 5 3\n1111000100\n",
"52 43 29\n1111010100110101101000010110101110011101110111101001\n",
"6 3 0\n110011\n",
"5 1 0\n11101\n",
"6 1 0\n100000\n",
"5 2 0\n11011\n",
"6 2 1\n111000\n",
"74 45 35\n10110111111000011110111110000101000110000000100010101010001110010111100101\n",
"5 3 2\n10000\n",
"16 2 0\n1101011000011000\n",
"100 89 33\n1011000100000110011111000100001000000000010110100111101110111011010001010110110011010110101101111101\n",
"11 5 1\n11111000010\n",
"6 3 2\n100000\n",
"7 3 0\n1100101\n",
"6 4 2\n100100\n",
"103 5 2\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"11 1 0\n11010100101\n",
"28 25 19\n1000011111100000111101010101\n",
"60 17 15\n111101011111000010000001011000000001010011001000011100110100\n",
"107 5 3\n11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"46 15 12\n1000111101111100001010001100000001000101010100\n",
"6 3 1\n110110\n",
"10 5 2\n1101000100\n",
"11 5 4\n10101010101\n",
"49 15 14\n1011110111101100110101010110110100001100011011010\n",
"5 1 0\n10101\n",
"5 3 1\n10111\n",
"5 3 2\n10011\n",
"15 6 1\n100000000100100\n",
"5 1 0\n10001\n",
"6 4 2\n100110\n",
"4 2 1\n1001\n",
"64 40 7\n1010011100101100101011000001000011110111011011000111011011000100\n",
"11 10 2\n11110000100\n",
"96 25 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"46 16 1\n1001011011100010100000101001001010001110111101\n",
"10 7 0\n1101111111\n",
"74 43 12\n10001011100000010010110111000101110100000000001100100100110110111101001011\n",
"11 5 1\n11010011001\n",
"7 5 2\n1100100\n",
"78 7 1\n101001001101100101110111111110010011101100010100100001111011110110111100011101\n",
"51 44 1\n111011011001100110101011100110010010011111111101000\n",
"52 43 29\n1111010100110101101000110110101110011101110111101001\n",
"74 57 35\n10110111111000011110111110000101000110000000100010101010001110010111100101\n",
"28 25 19\n1000011111100010111101010101\n",
"49 29 14\n1011110111101100110101010110110100001100011011010\n",
"46 16 2\n1001011011100010100000101001001010001110111101\n",
"74 57 35\n10110111111000011110111110000101000110000000101010101010001110010111100101\n",
"46 16 2\n1001011011100010100000101001001010001110011101\n",
"74 57 35\n10110111111000011110111110000101100110000000101010101010001110010111100101\n",
"8 5 1\n10000100\n",
"7 5 3\n1011010\n",
"8 6 1\n10000000\n",
"5 2 0\n11010\n",
"5 2 0\n10010\n",
"3 2 0\n100\n",
"11 7 2\n10000000000\n",
"8 5 2\n10000000\n",
"8 6 2\n10000010\n",
"5 1 0\n00000\n",
"10 5 3\n1010000000\n",
"7 5 4\n1000000\n",
"5 3 0\n10100\n",
"5 4 0\n11011\n",
"11 7 2\n11010000001\n",
"213 5 0\n111001111110111001101011111100010010011001000001111010110110011000100000101010111110010001111110001010011001101000000011111110101001101100100100110100000111111100010100011010010001011100111011000001110000111000101\n",
"7 1 0\n1111000\n",
"5 3 1\n10000\n",
"10 1 0\n1100000000\n",
"5 3 1\n00000\n",
"5 2 0\n11000\n",
"5 3 0\n10011\n",
"7 5 1\n1000100\n",
"7 4 2\n1000101\n",
"6 1 0\n110011\n",
"5 3 2\n00100\n",
"16 2 0\n1101011001011000\n",
"11 5 1\n11111000011\n",
"60 18 15\n111101011111000010000001011000000001010011001000011100110100\n",
"46 15 14\n1000111101111100001010001100000001000101010100\n",
"6 3 1\n110100\n",
"10 5 2\n1111000100\n",
"11 5 4\n10101010111\n",
"15 6 1\n100000100100100\n",
"11 5 4\n11010100101\n",
"6 4 1\n100110\n",
"8 6 2\n10000100\n",
"64 40 0\n1010011100101100101011000001000011110111011011000111011011000100\n",
"8 6 1\n00000000\n",
"5 1 0\n11010\n",
"5 2 0\n10110\n",
"96 10 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"9 7 2\n10000000000\n",
"8 6 3\n10000010\n",
"5 4 0\n10000\n",
"10 6 3\n1010000000\n",
"7 5 4\n0000000\n",
"5 3 0\n00100\n",
"11 5 1\n11010011000\n",
"5 4 1\n00000\n",
"5 2 0\n11001\n",
"5 3 0\n10101\n",
"7 5 0\n1000100\n",
"52 43 3\n1111010100110101101000110110101110011101110111101001\n",
"6 3 1\n100100\n",
"15 6 0\n100000100100100\n",
"8 6 2\n10000110\n",
"96 10 1\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"9 4 2\n10000000000\n",
"8 6 4\n10000010\n",
"11 5 1\n11110011000\n",
"5 4 1\n00010\n",
"7 5 0\n1000110\n",
"52 43 3\n1111010101110101101000110110101110011101110111101001\n",
"6 3 1\n100110\n",
"15 11 0\n100000100100100\n",
"8 6 1\n10000110\n",
"96 10 0\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"46 16 2\n1001011011100010100000101001001011001110011101\n",
"11 9 1\n11110011000\n"
],
"output": [
"1\n",
"3\n",
"2\n",
"1\n",
"0\n",
"1\n",
"19\n",
"1\n",
"1\n",
"0\n",
"0\n",
"1\n",
"0\n",
"12\n",
"1\n",
"0\n",
"2\n",
"1\n",
"11\n",
"0\n",
"4\n",
"3\n",
"7\n",
"1\n",
"1\n",
"2\n",
"2\n",
"2\n",
"6\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"1\n",
"2\n",
"3\n",
"3\n",
"9\n",
"3\n",
"21\n",
"0\n",
"2\n",
"1\n",
"1\n",
"0\n",
"1\n",
"0\n",
"4\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"9\n",
"1\n",
"5\n",
"1\n",
"3\n",
"1\n",
"1\n",
"0\n",
"5\n",
"26\n",
"8\n",
"0\n",
"2\n",
"26\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"20\n",
"1\n",
"1\n",
"47\n",
"0\n",
"1\n",
"1\n",
"0\n",
"4\n",
"0\n",
"13\n",
"6\n",
"4\n",
"4\n",
"1\n",
"0\n",
"2\n",
"8\n",
"0\n",
"2\n",
"3\n",
"3\n",
"0\n",
"1\n",
"2\n",
"19\n",
"3\n",
"13\n",
"11\n",
"6\n",
"21\n",
"4\n",
"0\n",
"5\n",
"26\n",
"25\n",
"27\n",
"14\n",
"15\n",
"9\n",
"28\n",
"8\n",
"29\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"6\n",
"6\n",
"2\n",
"0\n",
"3\n",
"3\n",
"3\n",
"1\n",
"0\n",
"21\n",
"1\n",
"1\n",
"2\n",
"6\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"3\n",
"1\n",
"0\n",
"1\n",
"2\n",
"25\n",
"2\n",
"3\n",
"1\n",
"6\n",
"1\n",
"2\n",
"3\n",
"0\n",
"3\n",
"26\n",
"1\n",
"4\n",
"1\n",
"6\n",
"9\n",
"5\n"
]
} | 2CODEFORCES
|
1165_A. Remainder_903 | You are given a huge decimal number consisting of n digits. It is guaranteed that this number has no leading zeros. Each digit of this number is either 0 or 1.
You may perform several (possibly zero) operations with this number. During each operation you are allowed to change any digit of your number; you may change 0 to 1 or 1 to 0. It is possible that after some operation you can obtain a number with leading zeroes, but it does not matter for this problem.
You are also given two integers 0 ≤ y < x < n. Your task is to calculate the minimum number of operations you should perform to obtain the number that has remainder 10^y modulo 10^x. In other words, the obtained number should have remainder 10^y when divided by 10^x.
Input
The first line of the input contains three integers n, x, y (0 ≤ y < x < n ≤ 2 ⋅ 10^5) — the length of the number and the integers x and y, respectively.
The second line of the input contains one decimal number consisting of n digits, each digit of this number is either 0 or 1. It is guaranteed that the first digit of the number is 1.
Output
Print one integer — the minimum number of operations you should perform to obtain the number having remainder 10^y modulo 10^x. In other words, the obtained number should have remainder 10^y when divided by 10^x.
Examples
Input
11 5 2
11010100101
Output
1
Input
11 5 1
11010100101
Output
3
Note
In the first example the number will be 11010100100 after performing one operation. It has remainder 100 modulo 100000.
In the second example the number will be 11010100010 after performing three operations. It has remainder 10 modulo 100000. | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, y, x, sum = 0;
string str;
cin >> n >> x >> y >> str;
int len = str.size() - 1;
for (int i = len; i > len - x; i--) {
if (str[i] == '1') sum++;
}
if (str[len - y] == '0')
sum++;
else
sum--;
cout << sum << endl;
return 0;
}
| 2C++
| {
"input": [
"11 5 2\n11010100101\n",
"11 5 1\n11010100101\n",
"6 4 2\n100010\n",
"4 2 1\n1000\n",
"8 5 2\n10000100\n",
"11 5 2\n11010000101\n",
"64 40 14\n1010011100101100101011000001000011110111011011000111011011000100\n",
"7 5 3\n1011000\n",
"8 5 1\n10000000\n",
"5 2 1\n11010\n",
"11 5 2\n11110000100\n",
"4 1 0\n1000\n",
"5 2 1\n10010\n",
"96 25 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101011\n",
"3 1 0\n100\n",
"8 6 5\n10100000\n",
"11 5 0\n11010100100\n",
"11 5 2\n10000000000\n",
"46 16 10\n1001011011100010100000101001001010001110111101\n",
"6 3 1\n100010\n",
"102 5 2\n111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"8 5 2\n10011110\n",
"20 11 9\n11110000010011101010\n",
"10 1 0\n1010000100\n",
"8 3 1\n10000000\n",
"8 5 2\n10000010\n",
"5 3 2\n10111\n",
"5 3 2\n10010\n",
"10 7 3\n1101111111\n",
"5 1 0\n10000\n",
"4 2 0\n1001\n",
"10 5 3\n1000000000\n",
"7 5 2\n1000000\n",
"12 5 2\n100000000100\n",
"7 5 4\n1010100\n",
"4 2 0\n1000\n",
"5 3 2\n10100\n",
"5 4 0\n11001\n",
"11 5 2\n11010000001\n",
"10 5 3\n1111001111\n",
"213 5 3\n111001111110111001101011111100010010011001000001111010110110011000100000101010111110010001111110001010011001101000000011111110101001101100100100110100000111111100010100011010010001011100111011000001110000111000101\n",
"39 15 0\n101101100000000000110001011011111010011\n",
"40 7 0\n1101010110000100101110101100100101001000\n",
"74 43 12\n10001011100000010110110111000101110100000000001100100100110110111101001011\n",
"7 1 0\n1111001\n",
"11 5 0\n11010011001\n",
"11 5 2\n11110000101\n",
"5 2 1\n10000\n",
"5 3 0\n10001\n",
"10 1 0\n1000000000\n",
"7 5 2\n1000100\n",
"12 4 3\n110011100111\n",
"5 3 1\n10001\n",
"4 2 1\n1011\n",
"9 3 2\n100010101\n",
"5 3 0\n10000\n",
"5 3 0\n10111\n",
"81 24 18\n111010110101010001111101100001101000000100111111111001100101011110001000001000110\n",
"7 5 2\n1010100\n",
"78 7 5\n101001001101100101110111111110010011101100010100100001111011110110111100011101\n",
"5 2 0\n10000\n",
"11 5 1\n11010000101\n",
"7 5 2\n1000101\n",
"2 1 0\n10\n",
"7 4 2\n1000100\n",
"13 10 0\n1000001101100\n",
"51 44 21\n111011011001100110101011100110010010011111111101000\n",
"50 14 6\n10110010000100111011111111000010001011100010100110\n",
"4 1 0\n1101\n",
"10 5 3\n1111000100\n",
"52 43 29\n1111010100110101101000010110101110011101110111101001\n",
"6 3 0\n110011\n",
"5 1 0\n11101\n",
"6 1 0\n100000\n",
"5 2 0\n11011\n",
"6 2 1\n111000\n",
"74 45 35\n10110111111000011110111110000101000110000000100010101010001110010111100101\n",
"5 3 2\n10000\n",
"16 2 0\n1101011000011000\n",
"100 89 33\n1011000100000110011111000100001000000000010110100111101110111011010001010110110011010110101101111101\n",
"11 5 1\n11111000010\n",
"6 3 2\n100000\n",
"7 3 0\n1100101\n",
"6 4 2\n100100\n",
"103 5 2\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"11 1 0\n11010100101\n",
"28 25 19\n1000011111100000111101010101\n",
"60 17 15\n111101011111000010000001011000000001010011001000011100110100\n",
"107 5 3\n11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"46 15 12\n1000111101111100001010001100000001000101010100\n",
"6 3 1\n110110\n",
"10 5 2\n1101000100\n",
"11 5 4\n10101010101\n",
"49 15 14\n1011110111101100110101010110110100001100011011010\n",
"5 1 0\n10101\n",
"5 3 1\n10111\n",
"5 3 2\n10011\n",
"15 6 1\n100000000100100\n",
"5 1 0\n10001\n",
"6 4 2\n100110\n",
"4 2 1\n1001\n",
"64 40 7\n1010011100101100101011000001000011110111011011000111011011000100\n",
"11 10 2\n11110000100\n",
"96 25 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"46 16 1\n1001011011100010100000101001001010001110111101\n",
"10 7 0\n1101111111\n",
"74 43 12\n10001011100000010010110111000101110100000000001100100100110110111101001011\n",
"11 5 1\n11010011001\n",
"7 5 2\n1100100\n",
"78 7 1\n101001001101100101110111111110010011101100010100100001111011110110111100011101\n",
"51 44 1\n111011011001100110101011100110010010011111111101000\n",
"52 43 29\n1111010100110101101000110110101110011101110111101001\n",
"74 57 35\n10110111111000011110111110000101000110000000100010101010001110010111100101\n",
"28 25 19\n1000011111100010111101010101\n",
"49 29 14\n1011110111101100110101010110110100001100011011010\n",
"46 16 2\n1001011011100010100000101001001010001110111101\n",
"74 57 35\n10110111111000011110111110000101000110000000101010101010001110010111100101\n",
"46 16 2\n1001011011100010100000101001001010001110011101\n",
"74 57 35\n10110111111000011110111110000101100110000000101010101010001110010111100101\n",
"8 5 1\n10000100\n",
"7 5 3\n1011010\n",
"8 6 1\n10000000\n",
"5 2 0\n11010\n",
"5 2 0\n10010\n",
"3 2 0\n100\n",
"11 7 2\n10000000000\n",
"8 5 2\n10000000\n",
"8 6 2\n10000010\n",
"5 1 0\n00000\n",
"10 5 3\n1010000000\n",
"7 5 4\n1000000\n",
"5 3 0\n10100\n",
"5 4 0\n11011\n",
"11 7 2\n11010000001\n",
"213 5 0\n111001111110111001101011111100010010011001000001111010110110011000100000101010111110010001111110001010011001101000000011111110101001101100100100110100000111111100010100011010010001011100111011000001110000111000101\n",
"7 1 0\n1111000\n",
"5 3 1\n10000\n",
"10 1 0\n1100000000\n",
"5 3 1\n00000\n",
"5 2 0\n11000\n",
"5 3 0\n10011\n",
"7 5 1\n1000100\n",
"7 4 2\n1000101\n",
"6 1 0\n110011\n",
"5 3 2\n00100\n",
"16 2 0\n1101011001011000\n",
"11 5 1\n11111000011\n",
"60 18 15\n111101011111000010000001011000000001010011001000011100110100\n",
"46 15 14\n1000111101111100001010001100000001000101010100\n",
"6 3 1\n110100\n",
"10 5 2\n1111000100\n",
"11 5 4\n10101010111\n",
"15 6 1\n100000100100100\n",
"11 5 4\n11010100101\n",
"6 4 1\n100110\n",
"8 6 2\n10000100\n",
"64 40 0\n1010011100101100101011000001000011110111011011000111011011000100\n",
"8 6 1\n00000000\n",
"5 1 0\n11010\n",
"5 2 0\n10110\n",
"96 10 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"9 7 2\n10000000000\n",
"8 6 3\n10000010\n",
"5 4 0\n10000\n",
"10 6 3\n1010000000\n",
"7 5 4\n0000000\n",
"5 3 0\n00100\n",
"11 5 1\n11010011000\n",
"5 4 1\n00000\n",
"5 2 0\n11001\n",
"5 3 0\n10101\n",
"7 5 0\n1000100\n",
"52 43 3\n1111010100110101101000110110101110011101110111101001\n",
"6 3 1\n100100\n",
"15 6 0\n100000100100100\n",
"8 6 2\n10000110\n",
"96 10 1\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"9 4 2\n10000000000\n",
"8 6 4\n10000010\n",
"11 5 1\n11110011000\n",
"5 4 1\n00010\n",
"7 5 0\n1000110\n",
"52 43 3\n1111010101110101101000110110101110011101110111101001\n",
"6 3 1\n100110\n",
"15 11 0\n100000100100100\n",
"8 6 1\n10000110\n",
"96 10 0\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"46 16 2\n1001011011100010100000101001001011001110011101\n",
"11 9 1\n11110011000\n"
],
"output": [
"1\n",
"3\n",
"2\n",
"1\n",
"0\n",
"1\n",
"19\n",
"1\n",
"1\n",
"0\n",
"0\n",
"1\n",
"0\n",
"12\n",
"1\n",
"0\n",
"2\n",
"1\n",
"11\n",
"0\n",
"4\n",
"3\n",
"7\n",
"1\n",
"1\n",
"2\n",
"2\n",
"2\n",
"6\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"1\n",
"2\n",
"3\n",
"3\n",
"9\n",
"3\n",
"21\n",
"0\n",
"2\n",
"1\n",
"1\n",
"0\n",
"1\n",
"0\n",
"4\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"9\n",
"1\n",
"5\n",
"1\n",
"3\n",
"1\n",
"1\n",
"0\n",
"5\n",
"26\n",
"8\n",
"0\n",
"2\n",
"26\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"20\n",
"1\n",
"1\n",
"47\n",
"0\n",
"1\n",
"1\n",
"0\n",
"4\n",
"0\n",
"13\n",
"6\n",
"4\n",
"4\n",
"1\n",
"0\n",
"2\n",
"8\n",
"0\n",
"2\n",
"3\n",
"3\n",
"0\n",
"1\n",
"2\n",
"19\n",
"3\n",
"13\n",
"11\n",
"6\n",
"21\n",
"4\n",
"0\n",
"5\n",
"26\n",
"25\n",
"27\n",
"14\n",
"15\n",
"9\n",
"28\n",
"8\n",
"29\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"6\n",
"6\n",
"2\n",
"0\n",
"3\n",
"3\n",
"3\n",
"1\n",
"0\n",
"21\n",
"1\n",
"1\n",
"2\n",
"6\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"3\n",
"1\n",
"0\n",
"1\n",
"2\n",
"25\n",
"2\n",
"3\n",
"1\n",
"6\n",
"1\n",
"2\n",
"3\n",
"0\n",
"3\n",
"26\n",
"1\n",
"4\n",
"1\n",
"6\n",
"9\n",
"5\n"
]
} | 2CODEFORCES
|
1165_A. Remainder_904 | You are given a huge decimal number consisting of n digits. It is guaranteed that this number has no leading zeros. Each digit of this number is either 0 or 1.
You may perform several (possibly zero) operations with this number. During each operation you are allowed to change any digit of your number; you may change 0 to 1 or 1 to 0. It is possible that after some operation you can obtain a number with leading zeroes, but it does not matter for this problem.
You are also given two integers 0 ≤ y < x < n. Your task is to calculate the minimum number of operations you should perform to obtain the number that has remainder 10^y modulo 10^x. In other words, the obtained number should have remainder 10^y when divided by 10^x.
Input
The first line of the input contains three integers n, x, y (0 ≤ y < x < n ≤ 2 ⋅ 10^5) — the length of the number and the integers x and y, respectively.
The second line of the input contains one decimal number consisting of n digits, each digit of this number is either 0 or 1. It is guaranteed that the first digit of the number is 1.
Output
Print one integer — the minimum number of operations you should perform to obtain the number having remainder 10^y modulo 10^x. In other words, the obtained number should have remainder 10^y when divided by 10^x.
Examples
Input
11 5 2
11010100101
Output
1
Input
11 5 1
11010100101
Output
3
Note
In the first example the number will be 11010100100 after performing one operation. It has remainder 100 modulo 100000.
In the second example the number will be 11010100010 after performing three operations. It has remainder 10 modulo 100000. | n,x,y = map(int,input().split())
s = input()[-x:]
if(y == 0):
num = s[:-(y+1)].count('1')
else:
num = s[:-(y+1)].count('1') + s[-y:].count('1')
if(s[-(y+1)] == "0"):
num = num + 1
print(num) | 3Python3
| {
"input": [
"11 5 2\n11010100101\n",
"11 5 1\n11010100101\n",
"6 4 2\n100010\n",
"4 2 1\n1000\n",
"8 5 2\n10000100\n",
"11 5 2\n11010000101\n",
"64 40 14\n1010011100101100101011000001000011110111011011000111011011000100\n",
"7 5 3\n1011000\n",
"8 5 1\n10000000\n",
"5 2 1\n11010\n",
"11 5 2\n11110000100\n",
"4 1 0\n1000\n",
"5 2 1\n10010\n",
"96 25 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101011\n",
"3 1 0\n100\n",
"8 6 5\n10100000\n",
"11 5 0\n11010100100\n",
"11 5 2\n10000000000\n",
"46 16 10\n1001011011100010100000101001001010001110111101\n",
"6 3 1\n100010\n",
"102 5 2\n111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"8 5 2\n10011110\n",
"20 11 9\n11110000010011101010\n",
"10 1 0\n1010000100\n",
"8 3 1\n10000000\n",
"8 5 2\n10000010\n",
"5 3 2\n10111\n",
"5 3 2\n10010\n",
"10 7 3\n1101111111\n",
"5 1 0\n10000\n",
"4 2 0\n1001\n",
"10 5 3\n1000000000\n",
"7 5 2\n1000000\n",
"12 5 2\n100000000100\n",
"7 5 4\n1010100\n",
"4 2 0\n1000\n",
"5 3 2\n10100\n",
"5 4 0\n11001\n",
"11 5 2\n11010000001\n",
"10 5 3\n1111001111\n",
"213 5 3\n111001111110111001101011111100010010011001000001111010110110011000100000101010111110010001111110001010011001101000000011111110101001101100100100110100000111111100010100011010010001011100111011000001110000111000101\n",
"39 15 0\n101101100000000000110001011011111010011\n",
"40 7 0\n1101010110000100101110101100100101001000\n",
"74 43 12\n10001011100000010110110111000101110100000000001100100100110110111101001011\n",
"7 1 0\n1111001\n",
"11 5 0\n11010011001\n",
"11 5 2\n11110000101\n",
"5 2 1\n10000\n",
"5 3 0\n10001\n",
"10 1 0\n1000000000\n",
"7 5 2\n1000100\n",
"12 4 3\n110011100111\n",
"5 3 1\n10001\n",
"4 2 1\n1011\n",
"9 3 2\n100010101\n",
"5 3 0\n10000\n",
"5 3 0\n10111\n",
"81 24 18\n111010110101010001111101100001101000000100111111111001100101011110001000001000110\n",
"7 5 2\n1010100\n",
"78 7 5\n101001001101100101110111111110010011101100010100100001111011110110111100011101\n",
"5 2 0\n10000\n",
"11 5 1\n11010000101\n",
"7 5 2\n1000101\n",
"2 1 0\n10\n",
"7 4 2\n1000100\n",
"13 10 0\n1000001101100\n",
"51 44 21\n111011011001100110101011100110010010011111111101000\n",
"50 14 6\n10110010000100111011111111000010001011100010100110\n",
"4 1 0\n1101\n",
"10 5 3\n1111000100\n",
"52 43 29\n1111010100110101101000010110101110011101110111101001\n",
"6 3 0\n110011\n",
"5 1 0\n11101\n",
"6 1 0\n100000\n",
"5 2 0\n11011\n",
"6 2 1\n111000\n",
"74 45 35\n10110111111000011110111110000101000110000000100010101010001110010111100101\n",
"5 3 2\n10000\n",
"16 2 0\n1101011000011000\n",
"100 89 33\n1011000100000110011111000100001000000000010110100111101110111011010001010110110011010110101101111101\n",
"11 5 1\n11111000010\n",
"6 3 2\n100000\n",
"7 3 0\n1100101\n",
"6 4 2\n100100\n",
"103 5 2\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"11 1 0\n11010100101\n",
"28 25 19\n1000011111100000111101010101\n",
"60 17 15\n111101011111000010000001011000000001010011001000011100110100\n",
"107 5 3\n11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"46 15 12\n1000111101111100001010001100000001000101010100\n",
"6 3 1\n110110\n",
"10 5 2\n1101000100\n",
"11 5 4\n10101010101\n",
"49 15 14\n1011110111101100110101010110110100001100011011010\n",
"5 1 0\n10101\n",
"5 3 1\n10111\n",
"5 3 2\n10011\n",
"15 6 1\n100000000100100\n",
"5 1 0\n10001\n",
"6 4 2\n100110\n",
"4 2 1\n1001\n",
"64 40 7\n1010011100101100101011000001000011110111011011000111011011000100\n",
"11 10 2\n11110000100\n",
"96 25 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"46 16 1\n1001011011100010100000101001001010001110111101\n",
"10 7 0\n1101111111\n",
"74 43 12\n10001011100000010010110111000101110100000000001100100100110110111101001011\n",
"11 5 1\n11010011001\n",
"7 5 2\n1100100\n",
"78 7 1\n101001001101100101110111111110010011101100010100100001111011110110111100011101\n",
"51 44 1\n111011011001100110101011100110010010011111111101000\n",
"52 43 29\n1111010100110101101000110110101110011101110111101001\n",
"74 57 35\n10110111111000011110111110000101000110000000100010101010001110010111100101\n",
"28 25 19\n1000011111100010111101010101\n",
"49 29 14\n1011110111101100110101010110110100001100011011010\n",
"46 16 2\n1001011011100010100000101001001010001110111101\n",
"74 57 35\n10110111111000011110111110000101000110000000101010101010001110010111100101\n",
"46 16 2\n1001011011100010100000101001001010001110011101\n",
"74 57 35\n10110111111000011110111110000101100110000000101010101010001110010111100101\n",
"8 5 1\n10000100\n",
"7 5 3\n1011010\n",
"8 6 1\n10000000\n",
"5 2 0\n11010\n",
"5 2 0\n10010\n",
"3 2 0\n100\n",
"11 7 2\n10000000000\n",
"8 5 2\n10000000\n",
"8 6 2\n10000010\n",
"5 1 0\n00000\n",
"10 5 3\n1010000000\n",
"7 5 4\n1000000\n",
"5 3 0\n10100\n",
"5 4 0\n11011\n",
"11 7 2\n11010000001\n",
"213 5 0\n111001111110111001101011111100010010011001000001111010110110011000100000101010111110010001111110001010011001101000000011111110101001101100100100110100000111111100010100011010010001011100111011000001110000111000101\n",
"7 1 0\n1111000\n",
"5 3 1\n10000\n",
"10 1 0\n1100000000\n",
"5 3 1\n00000\n",
"5 2 0\n11000\n",
"5 3 0\n10011\n",
"7 5 1\n1000100\n",
"7 4 2\n1000101\n",
"6 1 0\n110011\n",
"5 3 2\n00100\n",
"16 2 0\n1101011001011000\n",
"11 5 1\n11111000011\n",
"60 18 15\n111101011111000010000001011000000001010011001000011100110100\n",
"46 15 14\n1000111101111100001010001100000001000101010100\n",
"6 3 1\n110100\n",
"10 5 2\n1111000100\n",
"11 5 4\n10101010111\n",
"15 6 1\n100000100100100\n",
"11 5 4\n11010100101\n",
"6 4 1\n100110\n",
"8 6 2\n10000100\n",
"64 40 0\n1010011100101100101011000001000011110111011011000111011011000100\n",
"8 6 1\n00000000\n",
"5 1 0\n11010\n",
"5 2 0\n10110\n",
"96 10 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"9 7 2\n10000000000\n",
"8 6 3\n10000010\n",
"5 4 0\n10000\n",
"10 6 3\n1010000000\n",
"7 5 4\n0000000\n",
"5 3 0\n00100\n",
"11 5 1\n11010011000\n",
"5 4 1\n00000\n",
"5 2 0\n11001\n",
"5 3 0\n10101\n",
"7 5 0\n1000100\n",
"52 43 3\n1111010100110101101000110110101110011101110111101001\n",
"6 3 1\n100100\n",
"15 6 0\n100000100100100\n",
"8 6 2\n10000110\n",
"96 10 1\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"9 4 2\n10000000000\n",
"8 6 4\n10000010\n",
"11 5 1\n11110011000\n",
"5 4 1\n00010\n",
"7 5 0\n1000110\n",
"52 43 3\n1111010101110101101000110110101110011101110111101001\n",
"6 3 1\n100110\n",
"15 11 0\n100000100100100\n",
"8 6 1\n10000110\n",
"96 10 0\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"46 16 2\n1001011011100010100000101001001011001110011101\n",
"11 9 1\n11110011000\n"
],
"output": [
"1\n",
"3\n",
"2\n",
"1\n",
"0\n",
"1\n",
"19\n",
"1\n",
"1\n",
"0\n",
"0\n",
"1\n",
"0\n",
"12\n",
"1\n",
"0\n",
"2\n",
"1\n",
"11\n",
"0\n",
"4\n",
"3\n",
"7\n",
"1\n",
"1\n",
"2\n",
"2\n",
"2\n",
"6\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"1\n",
"2\n",
"3\n",
"3\n",
"9\n",
"3\n",
"21\n",
"0\n",
"2\n",
"1\n",
"1\n",
"0\n",
"1\n",
"0\n",
"4\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"9\n",
"1\n",
"5\n",
"1\n",
"3\n",
"1\n",
"1\n",
"0\n",
"5\n",
"26\n",
"8\n",
"0\n",
"2\n",
"26\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"20\n",
"1\n",
"1\n",
"47\n",
"0\n",
"1\n",
"1\n",
"0\n",
"4\n",
"0\n",
"13\n",
"6\n",
"4\n",
"4\n",
"1\n",
"0\n",
"2\n",
"8\n",
"0\n",
"2\n",
"3\n",
"3\n",
"0\n",
"1\n",
"2\n",
"19\n",
"3\n",
"13\n",
"11\n",
"6\n",
"21\n",
"4\n",
"0\n",
"5\n",
"26\n",
"25\n",
"27\n",
"14\n",
"15\n",
"9\n",
"28\n",
"8\n",
"29\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"6\n",
"6\n",
"2\n",
"0\n",
"3\n",
"3\n",
"3\n",
"1\n",
"0\n",
"21\n",
"1\n",
"1\n",
"2\n",
"6\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"3\n",
"1\n",
"0\n",
"1\n",
"2\n",
"25\n",
"2\n",
"3\n",
"1\n",
"6\n",
"1\n",
"2\n",
"3\n",
"0\n",
"3\n",
"26\n",
"1\n",
"4\n",
"1\n",
"6\n",
"9\n",
"5\n"
]
} | 2CODEFORCES
|
1165_A. Remainder_905 | You are given a huge decimal number consisting of n digits. It is guaranteed that this number has no leading zeros. Each digit of this number is either 0 or 1.
You may perform several (possibly zero) operations with this number. During each operation you are allowed to change any digit of your number; you may change 0 to 1 or 1 to 0. It is possible that after some operation you can obtain a number with leading zeroes, but it does not matter for this problem.
You are also given two integers 0 ≤ y < x < n. Your task is to calculate the minimum number of operations you should perform to obtain the number that has remainder 10^y modulo 10^x. In other words, the obtained number should have remainder 10^y when divided by 10^x.
Input
The first line of the input contains three integers n, x, y (0 ≤ y < x < n ≤ 2 ⋅ 10^5) — the length of the number and the integers x and y, respectively.
The second line of the input contains one decimal number consisting of n digits, each digit of this number is either 0 or 1. It is guaranteed that the first digit of the number is 1.
Output
Print one integer — the minimum number of operations you should perform to obtain the number having remainder 10^y modulo 10^x. In other words, the obtained number should have remainder 10^y when divided by 10^x.
Examples
Input
11 5 2
11010100101
Output
1
Input
11 5 1
11010100101
Output
3
Note
In the first example the number will be 11010100100 after performing one operation. It has remainder 100 modulo 100000.
In the second example the number will be 11010100010 after performing three operations. It has remainder 10 modulo 100000. | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int c=0, t,n=sc.nextInt(),x=sc.nextInt(),y=sc.nextInt();
String s=sc.next();
for(t=0;t<y;t++){
n--;
if(s.charAt(n)!='0')c++;
}n--;
if(s.charAt(n)!='1')c++;
for(t=y+1;t<x;t++){
n--;
if(s.charAt(n)!='0')c++;
}
System.out.print(c);
}
} | 4JAVA
| {
"input": [
"11 5 2\n11010100101\n",
"11 5 1\n11010100101\n",
"6 4 2\n100010\n",
"4 2 1\n1000\n",
"8 5 2\n10000100\n",
"11 5 2\n11010000101\n",
"64 40 14\n1010011100101100101011000001000011110111011011000111011011000100\n",
"7 5 3\n1011000\n",
"8 5 1\n10000000\n",
"5 2 1\n11010\n",
"11 5 2\n11110000100\n",
"4 1 0\n1000\n",
"5 2 1\n10010\n",
"96 25 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101011\n",
"3 1 0\n100\n",
"8 6 5\n10100000\n",
"11 5 0\n11010100100\n",
"11 5 2\n10000000000\n",
"46 16 10\n1001011011100010100000101001001010001110111101\n",
"6 3 1\n100010\n",
"102 5 2\n111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"8 5 2\n10011110\n",
"20 11 9\n11110000010011101010\n",
"10 1 0\n1010000100\n",
"8 3 1\n10000000\n",
"8 5 2\n10000010\n",
"5 3 2\n10111\n",
"5 3 2\n10010\n",
"10 7 3\n1101111111\n",
"5 1 0\n10000\n",
"4 2 0\n1001\n",
"10 5 3\n1000000000\n",
"7 5 2\n1000000\n",
"12 5 2\n100000000100\n",
"7 5 4\n1010100\n",
"4 2 0\n1000\n",
"5 3 2\n10100\n",
"5 4 0\n11001\n",
"11 5 2\n11010000001\n",
"10 5 3\n1111001111\n",
"213 5 3\n111001111110111001101011111100010010011001000001111010110110011000100000101010111110010001111110001010011001101000000011111110101001101100100100110100000111111100010100011010010001011100111011000001110000111000101\n",
"39 15 0\n101101100000000000110001011011111010011\n",
"40 7 0\n1101010110000100101110101100100101001000\n",
"74 43 12\n10001011100000010110110111000101110100000000001100100100110110111101001011\n",
"7 1 0\n1111001\n",
"11 5 0\n11010011001\n",
"11 5 2\n11110000101\n",
"5 2 1\n10000\n",
"5 3 0\n10001\n",
"10 1 0\n1000000000\n",
"7 5 2\n1000100\n",
"12 4 3\n110011100111\n",
"5 3 1\n10001\n",
"4 2 1\n1011\n",
"9 3 2\n100010101\n",
"5 3 0\n10000\n",
"5 3 0\n10111\n",
"81 24 18\n111010110101010001111101100001101000000100111111111001100101011110001000001000110\n",
"7 5 2\n1010100\n",
"78 7 5\n101001001101100101110111111110010011101100010100100001111011110110111100011101\n",
"5 2 0\n10000\n",
"11 5 1\n11010000101\n",
"7 5 2\n1000101\n",
"2 1 0\n10\n",
"7 4 2\n1000100\n",
"13 10 0\n1000001101100\n",
"51 44 21\n111011011001100110101011100110010010011111111101000\n",
"50 14 6\n10110010000100111011111111000010001011100010100110\n",
"4 1 0\n1101\n",
"10 5 3\n1111000100\n",
"52 43 29\n1111010100110101101000010110101110011101110111101001\n",
"6 3 0\n110011\n",
"5 1 0\n11101\n",
"6 1 0\n100000\n",
"5 2 0\n11011\n",
"6 2 1\n111000\n",
"74 45 35\n10110111111000011110111110000101000110000000100010101010001110010111100101\n",
"5 3 2\n10000\n",
"16 2 0\n1101011000011000\n",
"100 89 33\n1011000100000110011111000100001000000000010110100111101110111011010001010110110011010110101101111101\n",
"11 5 1\n11111000010\n",
"6 3 2\n100000\n",
"7 3 0\n1100101\n",
"6 4 2\n100100\n",
"103 5 2\n1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"11 1 0\n11010100101\n",
"28 25 19\n1000011111100000111101010101\n",
"60 17 15\n111101011111000010000001011000000001010011001000011100110100\n",
"107 5 3\n11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n",
"46 15 12\n1000111101111100001010001100000001000101010100\n",
"6 3 1\n110110\n",
"10 5 2\n1101000100\n",
"11 5 4\n10101010101\n",
"49 15 14\n1011110111101100110101010110110100001100011011010\n",
"5 1 0\n10101\n",
"5 3 1\n10111\n",
"5 3 2\n10011\n",
"15 6 1\n100000000100100\n",
"5 1 0\n10001\n",
"6 4 2\n100110\n",
"4 2 1\n1001\n",
"64 40 7\n1010011100101100101011000001000011110111011011000111011011000100\n",
"11 10 2\n11110000100\n",
"96 25 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"46 16 1\n1001011011100010100000101001001010001110111101\n",
"10 7 0\n1101111111\n",
"74 43 12\n10001011100000010010110111000101110100000000001100100100110110111101001011\n",
"11 5 1\n11010011001\n",
"7 5 2\n1100100\n",
"78 7 1\n101001001101100101110111111110010011101100010100100001111011110110111100011101\n",
"51 44 1\n111011011001100110101011100110010010011111111101000\n",
"52 43 29\n1111010100110101101000110110101110011101110111101001\n",
"74 57 35\n10110111111000011110111110000101000110000000100010101010001110010111100101\n",
"28 25 19\n1000011111100010111101010101\n",
"49 29 14\n1011110111101100110101010110110100001100011011010\n",
"46 16 2\n1001011011100010100000101001001010001110111101\n",
"74 57 35\n10110111111000011110111110000101000110000000101010101010001110010111100101\n",
"46 16 2\n1001011011100010100000101001001010001110011101\n",
"74 57 35\n10110111111000011110111110000101100110000000101010101010001110010111100101\n",
"8 5 1\n10000100\n",
"7 5 3\n1011010\n",
"8 6 1\n10000000\n",
"5 2 0\n11010\n",
"5 2 0\n10010\n",
"3 2 0\n100\n",
"11 7 2\n10000000000\n",
"8 5 2\n10000000\n",
"8 6 2\n10000010\n",
"5 1 0\n00000\n",
"10 5 3\n1010000000\n",
"7 5 4\n1000000\n",
"5 3 0\n10100\n",
"5 4 0\n11011\n",
"11 7 2\n11010000001\n",
"213 5 0\n111001111110111001101011111100010010011001000001111010110110011000100000101010111110010001111110001010011001101000000011111110101001101100100100110100000111111100010100011010010001011100111011000001110000111000101\n",
"7 1 0\n1111000\n",
"5 3 1\n10000\n",
"10 1 0\n1100000000\n",
"5 3 1\n00000\n",
"5 2 0\n11000\n",
"5 3 0\n10011\n",
"7 5 1\n1000100\n",
"7 4 2\n1000101\n",
"6 1 0\n110011\n",
"5 3 2\n00100\n",
"16 2 0\n1101011001011000\n",
"11 5 1\n11111000011\n",
"60 18 15\n111101011111000010000001011000000001010011001000011100110100\n",
"46 15 14\n1000111101111100001010001100000001000101010100\n",
"6 3 1\n110100\n",
"10 5 2\n1111000100\n",
"11 5 4\n10101010111\n",
"15 6 1\n100000100100100\n",
"11 5 4\n11010100101\n",
"6 4 1\n100110\n",
"8 6 2\n10000100\n",
"64 40 0\n1010011100101100101011000001000011110111011011000111011011000100\n",
"8 6 1\n00000000\n",
"5 1 0\n11010\n",
"5 2 0\n10110\n",
"96 10 9\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"9 7 2\n10000000000\n",
"8 6 3\n10000010\n",
"5 4 0\n10000\n",
"10 6 3\n1010000000\n",
"7 5 4\n0000000\n",
"5 3 0\n00100\n",
"11 5 1\n11010011000\n",
"5 4 1\n00000\n",
"5 2 0\n11001\n",
"5 3 0\n10101\n",
"7 5 0\n1000100\n",
"52 43 3\n1111010100110101101000110110101110011101110111101001\n",
"6 3 1\n100100\n",
"15 6 0\n100000100100100\n",
"8 6 2\n10000110\n",
"96 10 1\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"9 4 2\n10000000000\n",
"8 6 4\n10000010\n",
"11 5 1\n11110011000\n",
"5 4 1\n00010\n",
"7 5 0\n1000110\n",
"52 43 3\n1111010101110101101000110110101110011101110111101001\n",
"6 3 1\n100110\n",
"15 11 0\n100000100100100\n",
"8 6 1\n10000110\n",
"96 10 0\n101110000001101011011001000111010111110011010010100111111100101111010000100001111100101001101111\n",
"46 16 2\n1001011011100010100000101001001011001110011101\n",
"11 9 1\n11110011000\n"
],
"output": [
"1\n",
"3\n",
"2\n",
"1\n",
"0\n",
"1\n",
"19\n",
"1\n",
"1\n",
"0\n",
"0\n",
"1\n",
"0\n",
"12\n",
"1\n",
"0\n",
"2\n",
"1\n",
"11\n",
"0\n",
"4\n",
"3\n",
"7\n",
"1\n",
"1\n",
"2\n",
"2\n",
"2\n",
"6\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"1\n",
"2\n",
"3\n",
"3\n",
"9\n",
"3\n",
"21\n",
"0\n",
"2\n",
"1\n",
"1\n",
"0\n",
"1\n",
"0\n",
"4\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"9\n",
"1\n",
"5\n",
"1\n",
"3\n",
"1\n",
"1\n",
"0\n",
"5\n",
"26\n",
"8\n",
"0\n",
"2\n",
"26\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"20\n",
"1\n",
"1\n",
"47\n",
"0\n",
"1\n",
"1\n",
"0\n",
"4\n",
"0\n",
"13\n",
"6\n",
"4\n",
"4\n",
"1\n",
"0\n",
"2\n",
"8\n",
"0\n",
"2\n",
"3\n",
"3\n",
"0\n",
"1\n",
"2\n",
"19\n",
"3\n",
"13\n",
"11\n",
"6\n",
"21\n",
"4\n",
"0\n",
"5\n",
"26\n",
"25\n",
"27\n",
"14\n",
"15\n",
"9\n",
"28\n",
"8\n",
"29\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"6\n",
"6\n",
"2\n",
"0\n",
"3\n",
"3\n",
"3\n",
"1\n",
"0\n",
"21\n",
"1\n",
"1\n",
"2\n",
"6\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"3\n",
"1\n",
"0\n",
"1\n",
"2\n",
"25\n",
"2\n",
"3\n",
"1\n",
"6\n",
"1\n",
"2\n",
"3\n",
"0\n",
"3\n",
"26\n",
"1\n",
"4\n",
"1\n",
"6\n",
"9\n",
"5\n"
]
} | 2CODEFORCES
|
1184_B3. The Doctor Meets Vader (Hard)_906 | The rebels have saved enough gold to launch a full-scale attack. Now the situation is flipped, the rebels will send out the spaceships to attack the Empire bases!
The galaxy can be represented as an undirected graph with n planets (nodes) and m wormholes (edges), each connecting two planets.
A total of s rebel spaceships and b empire bases are located at different planets in the galaxy.
Each spaceship is given a location x, denoting the index of the planet on which it is located, an attacking strength a, a certain amount of fuel f, and a price to operate p.
Each base is given a location x, a defensive strength d, and a certain amount of gold g.
A spaceship can attack a base if both of these conditions hold:
* the spaceship's attacking strength is greater or equal than the defensive strength of the base
* the spaceship's fuel is greater or equal to the shortest distance, computed as the number of wormholes, between the spaceship's node and the base's node
The rebels are very proud fighters. So, if a spaceship cannot attack any base, no rebel pilot will accept to operate it.
If a spaceship is operated, the profit generated by that spaceship is equal to the gold of the base it attacks minus the price to operate the spaceship. Note that this might be negative. A spaceship that is operated will attack the base that maximizes its profit.
Darth Vader likes to appear rich at all times. Therefore, whenever a base is attacked and its gold stolen, he makes sure to immediately refill that base with gold.
Therefore, for the purposes of the rebels, multiple spaceships can attack the same base, in which case each spaceship will still receive all the gold of that base.
The rebels have tasked Heidi and the Doctor to decide which set of spaceships to operate in order to maximize the total profit.
However, as the war has been going on for a long time, the pilots have formed unbreakable bonds, and some of them refuse to operate spaceships if their friends are not also operating spaceships.
They have a list of k dependencies of the form s_1, s_2, denoting that spaceship s_1 can be operated only if spaceship s_2 is also operated.
Input
The first line of input contains integers n and m (1 ≤ n ≤ 100, 0 ≤ m ≤ 10000), the number of nodes and the number of edges, respectively.
The next m lines contain integers u and v (1 ≤ u, v ≤ n) denoting an undirected edge between the two nodes.
The next line contains integers s, b and k (1 ≤ s, b ≤ 10^5, 0 ≤ k ≤ 1000), the number of spaceships, bases, and dependencies, respectively.
The next s lines contain integers x, a, f, p (1 ≤ x ≤ n, 0 ≤ a, f, p ≤ 10^9), denoting the location, attack, fuel, and price of the spaceship. Ships are numbered from 1 to s.
The next b lines contain integers x, d, g (1 ≤ x ≤ n, 0 ≤ d, g ≤ 10^9), denoting the location, defence, and gold of the base.
The next k lines contain integers s_1 and s_2 (1 ≤ s_1, s_2 ≤ s), denoting a dependency of s_1 on s_2.
Output
Print a single integer, the maximum total profit that can be achieved.
Example
Input
6 7
1 2
2 3
3 4
4 6
6 5
4 4
3 6
4 2 2
1 10 2 5
3 8 2 7
5 1 0 2
6 5 4 1
3 7 6
5 2 3
4 2
3 2
Output
2
Note
The optimal strategy is to operate spaceships 1, 2, and 4, which will attack bases 1, 1, and 2, respectively. | #include <bits/stdc++.h>
using namespace std;
const int N = 1e2 + 10;
const int maxs = 1e5 + 10;
const int maxn = 2e3 + 10;
const int maxm = 6e3 + 10;
const long long INF = 1e14 + 10;
const long long INF_CAP = INF;
struct spaceship {
int x, a, f, p;
} sp[maxs];
struct base {
int d, g;
bool operator<(const base& b) const { return d < b.d; }
};
long long best_goal[maxs];
vector<base> ba[N];
vector<int> pre[N];
vector<int> g[maxs];
bool used[maxs];
int w[N][N], id[maxs];
struct Dinic {
int n, m, s, t, pos;
int d[maxn], head[maxn], que[maxn], ptr[maxn];
int to[maxm], nxt[maxm];
long long cap[maxm];
void init() { memset(head, -1, sizeof head); }
void addedge(int a, int b, long long c) {
cap[m] = c;
to[m] = b;
nxt[m] = head[a];
head[a] = m++;
cap[m] = 0;
to[m] = a;
nxt[m] = head[b];
head[b] = m++;
}
bool bfs() {
pos = 0;
memset(d, -1, sizeof d);
que[pos++] = s;
d[s] = 0;
for (int i = 0; i < pos; i++) {
int x = que[i];
for (int u = head[x]; ~u; u = nxt[u]) {
if (d[to[u]] == -1 && cap[u]) {
d[to[u]] = d[x] + 1;
que[pos++] = to[u];
if (d[t] != -1) return true;
}
}
}
return d[t] != -1;
}
long long dfs(int o, long long mi) {
if (o == t || mi == 0) return mi;
long long res = 0;
for (int& x = ptr[o]; ~x; x = nxt[x])
if (d[to[x]] == d[o] + 1 && cap[x]) {
long long tmp = dfs(to[x], min(mi, cap[x]));
cap[x] -= tmp;
cap[x ^ 1] += tmp;
if (tmp > 0) return tmp;
}
return res;
}
long long maxflow(int s, int t) {
this->s = s;
this->t = t;
long long res = 0;
while (bfs()) {
memcpy(ptr, head, sizeof head);
res += dfs(s, INF_CAP);
}
return res;
}
} D;
int main() {
D.init();
int n, m, s, b, k;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) fill(w[i] + 1, w[i] + 1 + n, n), w[i][i] = 0;
for (int i = 0; i < m; i++) {
int a, b;
scanf("%d%d", &a, &b);
w[b][a] = w[a][b] = min(w[a][b], 1);
}
for (int d = 1; d <= n; d++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
w[i][j] = min(w[i][j], w[i][d] + w[d][j]);
}
}
}
scanf("%d%d%d", &s, &b, &k);
for (int i = 1; i <= s; i++) {
scanf("%d%d%d%d", &sp[i].x, &sp[i].a, &sp[i].f, &sp[i].p);
}
for (int i = 0; i < b; i++) {
int x, d, g;
scanf("%d%d%d", &x, &d, &g);
ba[x].push_back(base{d, g});
}
for (int i = 1; i <= n; i++)
if (ba[i].size()) {
int sz = (int)ba[i].size();
sort(ba[i].begin(), ba[i].end());
pre[i].resize(sz);
pre[i][0] = ba[i][0].g;
for (int j = 1; j < sz; j++) pre[i][j] = max(pre[i][j - 1], ba[i][j].g);
}
for (int i = 1; i <= s; i++) {
best_goal[i] = -INF_CAP;
int x = sp[i].x;
for (int j = 1; j <= n; j++) {
if (w[x][j] <= sp[i].f) {
int pos = upper_bound(ba[j].begin(), ba[j].end(), base{sp[i].a, 0}) -
ba[j].begin();
--pos;
if (pos >= 0) {
best_goal[i] = max(best_goal[i], (long long)pre[j][pos] - sp[i].p);
}
}
}
}
for (int i = 0; i < k; i++) {
int a, b;
scanf("%d%d", &a, &b);
g[a].push_back(b);
used[a] = used[b] = 1;
}
long long ans = 0;
int cnt = 0;
for (int i = 1; i <= s; i++) {
if (!used[i]) {
if (best_goal[i] > 0) ans += best_goal[i];
} else {
id[i] = ++cnt;
}
}
int st = 0, ed = cnt + 1;
cnt = 0;
for (int i = 1; i <= s; i++) {
if (used[i]) {
if (best_goal[i] >= 0)
ans += best_goal[i], D.addedge(st, id[i], best_goal[i]);
else
D.addedge(id[i], ed, -best_goal[i]);
for (auto& u : g[i]) D.addedge(id[i], id[u], INF_CAP);
}
}
ans -= D.maxflow(st, ed);
printf("%lld\n", ans);
return 0;
}
| 2C++
| {
"input": [
"6 7\n1 2\n2 3\n3 4\n4 6\n6 5\n4 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 2\n3 2\n",
"1 0\n1 1 0\n1 446844829 77109657 780837560\n1 754808995 539371459\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 457379982 948257592\n1 45309968 181471857\n1 558039453 931056469\n",
"1 1\n1 1\n1 2 0\n1 424550512 267535146 337021959\n1 340728578 862017405\n1 296016606 901537974\n",
"1 0\n1 1 0\n1 710831619 862166501 30583621\n1 790845747 504719880\n",
"1 0\n1 1 1\n1 393719043 515372386 379329282\n1 446687639 688441074\n1 1\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 638564514 680433292 994431111\n1 452689372 642414314\n2 1\n",
"1 1\n1 1\n2 1 1\n1 629075344 435788130 187757098\n1 464180683 238039721 270559705\n1 512723125 959796342\n2 1\n",
"1 0\n1 1 0\n1 258129110 790518782 878821407\n1 297422778 577668719\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 720019121 224386186\n1 105343720 162417396\n1 598490187 99799082\n2 1\n",
"2 0\n3 2 2\n1 1 1 10\n2 1 1 0\n2 1 1 0\n1 1 0\n2 1 7\n2 1\n3 1\n",
"1 0\n1 1 0\n1 309612754 148757376 932599775\n1 953264671 466422620\n",
"1 0\n1 1 0\n1 446844829 1905225 780837560\n1 754808995 539371459\n",
"6 7\n1 2\n2 3\n3 4\n4 6\n6 5\n4 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 4\n3 2\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 638564514 620703360 994431111\n1 593426713 1146089297\n2 1\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 457379982 948257592\n1 45309968 181471857\n1 558039453 1234474669\n",
"1 0\n1 1 1\n1 393719043 515372386 379329282\n1 141854662 688441074\n1 1\n",
"1 1\n1 1\n2 1 1\n1 629075344 435788130 187757098\n1 464180683 238039721 270559705\n1 512723125 1704063958\n2 1\n",
"6 7\n1 2\n2 3\n3 4\n4 6\n6 5\n4 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n1 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 2\n3 2\n",
"6 7\n1 2\n2 3\n3 5\n4 6\n6 5\n6 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 7 6\n5 2 1\n4 4\n3 2\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 457379982 948257592\n1 45309968 181471857\n1 242647803 931056469\n",
"1 0\n1 1 0\n1 710831619 862166501 22053717\n1 790845747 504719880\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 638564514 680433292 994431111\n1 593426713 642414314\n2 1\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 496308794 224386186\n1 105343720 162417396\n1 598490187 99799082\n2 1\n",
"1 0\n1 1 0\n1 309612754 100506644 932599775\n1 953264671 466422620\n",
"1 0\n1 0 0\n1 710831619 862166501 22053717\n1 790845747 504719880\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 638564514 620703360 994431111\n1 593426713 642414314\n2 1\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 496308794 224386186\n1 22212869 162417396\n1 598490187 99799082\n2 1\n",
"1 0\n1 0 0\n1 710831619 862166501 22053717\n2 790845747 504719880\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 702986742 224386186\n1 22212869 162417396\n1 598490187 99799082\n2 1\n",
"1 0\n1 1 0\n1 446844829 77109657 780837560\n1 754808995 547190589\n",
"1 0\n1 1 0\n1 258129110 790518782 878821407\n1 297422778 411483956\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 720019121 224386186\n1 105343720 1626869\n1 598490187 99799082\n2 1\n",
"1 0\n1 1 0\n1 361320808 148757376 932599775\n1 953264671 466422620\n",
"1 0\n1 1 0\n1 446844829 1905225 780837560\n1 565521318 539371459\n",
"1 0\n1 1 0\n1 710831619 1073213104 22053717\n1 790845747 504719880\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 638564514 296501213 994431111\n1 593426713 642414314\n2 1\n",
"1 0\n1 1 0\n1 245371969 100506644 932599775\n1 953264671 466422620\n",
"6 7\n1 2\n2 3\n3 5\n4 6\n6 5\n4 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 4\n3 2\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 144701635 496308794 224386186\n1 22212869 162417396\n1 598490187 99799082\n2 1\n",
"1 1\n1 1\n2 1 1\n1 1447071613 511405192 843598992\n1 638564514 620703360 994431111\n1 593426713 1146089297\n2 1\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 457379982 948257592\n1 7799424 181471857\n1 558039453 1234474669\n",
"1 0\n1 1 1\n1 520460943 515372386 379329282\n1 141854662 688441074\n1 1\n",
"1 1\n1 1\n2 1 1\n1 629075344 435788130 187757098\n1 464180683 441339219 270559705\n1 512723125 1704063958\n2 1\n",
"1 0\n1 1 0\n1 258129110 790518782 878821407\n1 297422778 409227125\n",
"1 0\n1 1 0\n1 361320808 148757376 932599775\n1 1268543273 466422620\n",
"6 7\n1 2\n2 3\n3 4\n4 6\n6 5\n4 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n1 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 1\n3 2\n",
"1 0\n1 1 0\n1 446844829 1905225 39569983\n1 565521318 539371459\n",
"1 0\n1 1 0\n1 710831619 1073213104 22053717\n1 1501039140 504719880\n",
"1 1\n1 1\n2 1 1\n1 945415859 511405192 843598992\n1 638564514 296501213 994431111\n1 593426713 642414314\n2 1\n",
"2 0\n1 1 0\n1 245371969 100506644 932599775\n1 953264671 466422620\n",
"6 7\n1 2\n2 3\n3 5\n4 6\n6 5\n6 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 4\n3 2\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 144701635 496308794 432289847\n1 22212869 162417396\n1 598490187 99799082\n2 1\n",
"1 1\n1 1\n2 1 1\n1 1447071613 511405192 843598992\n1 638564514 620703360 994431111\n1 593426713 1146089297\n1 1\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 457379982 948257592\n1 3253333 181471857\n1 558039453 1234474669\n",
"1 0\n1 1 0\n1 361320808 148757376 650964501\n1 1268543273 466422620\n",
"1 0\n1 1 0\n1 710831619 1983209426 22053717\n1 1501039140 504719880\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 144701635 496308794 432289847\n1 22212869 162417396\n1 1109425667 99799082\n2 1\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 37618092 948257592\n1 3253333 181471857\n1 558039453 1234474669\n",
"1 0\n1 1 0\n1 295326905 148757376 650964501\n1 1268543273 466422620\n",
"6 7\n1 2\n2 3\n3 5\n4 6\n6 5\n6 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 12 6\n5 2 1\n4 4\n3 2\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 1214932840\n1 936400451 37618092 948257592\n1 3253333 181471857\n1 558039453 1234474669\n",
"2 0\n1 1 0\n1 295326905 148757376 650964501\n1 1268543273 466422620\n",
"2 0\n1 1 0\n1 295326905 148757376 650964501\n1 618476796 466422620\n",
"2 0\n1 1 0\n1 295326905 148757376 650964501\n1 618476796 439363392\n",
"1 0\n1 1 0\n1 710831619 609649899 30583621\n1 790845747 504719880\n",
"1 0\n1 1 1\n1 393719043 515372386 379329282\n1 35945095 688441074\n1 1\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 760299511 680433292 994431111\n1 452689372 642414314\n2 1\n",
"1 0\n1 1 0\n1 258129110 790518782 878821407\n1 297422778 1033304588\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 720019121 224386186\n1 105343720 162417396\n1 25820908 99799082\n2 1\n"
],
"output": [
"2\n",
"0\n",
"0\n",
"564516015\n",
"0\n",
"0\n",
"0\n",
"772039244\n",
"0\n",
"0\n",
"4\n",
"0\n",
"0\n",
"3\n",
"454148491\n",
"286217077\n",
"309111792\n",
"1516306860\n",
"2\n",
"1\n",
"285913154\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"3\n",
"0\n",
"454148491\n",
"286217077\n",
"309111792\n",
"1516306860\n",
"0\n",
"0\n",
"3\n",
"0\n",
"0\n",
"0\n",
"0\n",
"3\n",
"0\n",
"454148491\n",
"286217077\n",
"0\n",
"0\n",
"0\n",
"286217077\n",
"0\n",
"0\n",
"286217077\n",
"0\n",
"0\n",
"0\n",
"0\n",
"309111792\n",
"0\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
|
1184_B3. The Doctor Meets Vader (Hard)_907 | The rebels have saved enough gold to launch a full-scale attack. Now the situation is flipped, the rebels will send out the spaceships to attack the Empire bases!
The galaxy can be represented as an undirected graph with n planets (nodes) and m wormholes (edges), each connecting two planets.
A total of s rebel spaceships and b empire bases are located at different planets in the galaxy.
Each spaceship is given a location x, denoting the index of the planet on which it is located, an attacking strength a, a certain amount of fuel f, and a price to operate p.
Each base is given a location x, a defensive strength d, and a certain amount of gold g.
A spaceship can attack a base if both of these conditions hold:
* the spaceship's attacking strength is greater or equal than the defensive strength of the base
* the spaceship's fuel is greater or equal to the shortest distance, computed as the number of wormholes, between the spaceship's node and the base's node
The rebels are very proud fighters. So, if a spaceship cannot attack any base, no rebel pilot will accept to operate it.
If a spaceship is operated, the profit generated by that spaceship is equal to the gold of the base it attacks minus the price to operate the spaceship. Note that this might be negative. A spaceship that is operated will attack the base that maximizes its profit.
Darth Vader likes to appear rich at all times. Therefore, whenever a base is attacked and its gold stolen, he makes sure to immediately refill that base with gold.
Therefore, for the purposes of the rebels, multiple spaceships can attack the same base, in which case each spaceship will still receive all the gold of that base.
The rebels have tasked Heidi and the Doctor to decide which set of spaceships to operate in order to maximize the total profit.
However, as the war has been going on for a long time, the pilots have formed unbreakable bonds, and some of them refuse to operate spaceships if their friends are not also operating spaceships.
They have a list of k dependencies of the form s_1, s_2, denoting that spaceship s_1 can be operated only if spaceship s_2 is also operated.
Input
The first line of input contains integers n and m (1 ≤ n ≤ 100, 0 ≤ m ≤ 10000), the number of nodes and the number of edges, respectively.
The next m lines contain integers u and v (1 ≤ u, v ≤ n) denoting an undirected edge between the two nodes.
The next line contains integers s, b and k (1 ≤ s, b ≤ 10^5, 0 ≤ k ≤ 1000), the number of spaceships, bases, and dependencies, respectively.
The next s lines contain integers x, a, f, p (1 ≤ x ≤ n, 0 ≤ a, f, p ≤ 10^9), denoting the location, attack, fuel, and price of the spaceship. Ships are numbered from 1 to s.
The next b lines contain integers x, d, g (1 ≤ x ≤ n, 0 ≤ d, g ≤ 10^9), denoting the location, defence, and gold of the base.
The next k lines contain integers s_1 and s_2 (1 ≤ s_1, s_2 ≤ s), denoting a dependency of s_1 on s_2.
Output
Print a single integer, the maximum total profit that can be achieved.
Example
Input
6 7
1 2
2 3
3 4
4 6
6 5
4 4
3 6
4 2 2
1 10 2 5
3 8 2 7
5 1 0 2
6 5 4 1
3 7 6
5 2 3
4 2
3 2
Output
2
Note
The optimal strategy is to operate spaceships 1, 2, and 4, which will attack bases 1, 1, and 2, respectively. | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.util.Arrays;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.io.Writer;
import java.io.BufferedReader;
import java.util.Comparator;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Niyaz Nigmatullin
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
FastPrinter out = new FastPrinter(outputStream);
TaskB3 solver = new TaskB3();
solver.solve(1, in, out);
out.close();
}
static class TaskB3 {
public void solve(int testNumber, FastScanner in, FastPrinter out) {
int n = in.nextInt();
int m = in.nextInt();
int[][] a = new int[n][n];
for (int[] e : a) Arrays.fill(e, Integer.MAX_VALUE);
for (int i = 0; i < m; i++) {
int from = in.nextInt() - 1;
int to = in.nextInt() - 1;
a[from][to] = a[to][from] = 1;
}
for (int i = 0; i < n; i++) {
a[i][i] = 0;
}
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (a[i][k] != Integer.MAX_VALUE && a[k][j] != Integer.MAX_VALUE) {
a[i][j] = Math.min(a[i][j], a[i][k] + a[k][j]);
}
}
}
}
int s = in.nextInt();
int b = in.nextInt();
int k = in.nextInt();
TaskB3.Ship[] ships = new TaskB3.Ship[s];
for (int i = 0; i < s; i++) {
ships[i] = new TaskB3.Ship(in.nextInt() - 1, in.nextInt(), in.nextInt(), in.nextInt());
}
TaskB3.Base[] bases = new TaskB3.Base[b];
for (int i = 0; i < b; i++) {
bases[i] = new TaskB3.Base(in.nextInt() - 1, in.nextInt(), in.nextInt());
}
Arrays.sort(bases, new Comparator<TaskB3.Base>() {
public int compare(TaskB3.Base o1, TaskB3.Base o2) {
return Integer.compare(o1.g, o2.g);
}
});
List<TaskB3.Base>[] bestInVertex = new List[n];
for (int i = 0; i < n; i++) bestInVertex[i] = new ArrayList<>();
for (TaskB3.Base e : bases) {
int v = e.x;
while (bestInVertex[v].size() > 0 && bestInVertex[v].get(bestInVertex[v].size() - 1).d >= e.d) {
bestInVertex[v].remove(bestInVertex[v].size() - 1);
}
bestInVertex[v].add(e);
}
TaskB3.DinicGraph g = new TaskB3.DinicGraph(s + 2);
long INF = 1L << 60;
long MAX = 1L << 40;
int src = s;
int tar = src + 1;
for (int i = 0; i < s; i++) {
TaskB3.Ship e = ships[i];
int best = Integer.MIN_VALUE;
for (int v = 0; v < n; v++) {
if (a[e.x][v] > e.f) continue;
int left = -1;
List<TaskB3.Base> list = bestInVertex[v];
int right = list.size();
while (left < right - 1) {
int mid = left + right >>> 1;
if (list.get(mid).d > e.a) {
right = mid;
} else {
left = mid;
}
}
if (left >= 0) {
best = Math.max(best, list.get(left).g);
}
}
if (best == Integer.MIN_VALUE) {
g.addEdge(i, tar, INF);
g.addEdge(src, i, MAX);
} else {
g.addEdge(i, tar, MAX + (e.p - best));
g.addEdge(src, i, MAX);
}
}
for (int i = 0; i < k; i++) {
int s1 = in.nextInt() - 1;
int s2 = in.nextInt() - 1;
g.addEdge(s1, s2, INF);
}
long have = g.getMaxFlow(src, tar);
out.println(-(have - MAX * s));
}
public static class DinicGraph {
public ArrayList<TaskB3.DinicGraph.Edge>[] edges;
int[] cur;
int[] q;
public int[] d;
int n;
public DinicGraph(int n) {
edges = new ArrayList[n];
this.n = n;
for (int i = 0; i < edges.length; i++) {
edges[i] = new ArrayList<TaskB3.DinicGraph.Edge>();
}
q = new int[n];
d = new int[n];
cur = new int[n];
}
public TaskB3.DinicGraph.Edge addEdge(int from, int to, long cap) {
TaskB3.DinicGraph.Edge e1 = new TaskB3.DinicGraph.Edge(from, to, 0, cap);
TaskB3.DinicGraph.Edge e2 = new TaskB3.DinicGraph.Edge(to, from, 0, 0);
e1.rev = e2;
e2.rev = e1;
edges[from].add(e1);
edges[to].add(e2);
return e1;
}
boolean bfs(int source, int target) {
int head = 0;
int tail = 1;
Arrays.fill(d, Integer.MAX_VALUE);
d[source] = 0;
q[0] = source;
while (head < tail) {
int x = q[head++];
for (int i = 0; i < edges[x].size(); i++) {
TaskB3.DinicGraph.Edge e = edges[x].get(i);
if (e.cap - e.flow > 0 && d[e.to] == Integer.MAX_VALUE) {
d[e.to] = d[x] + 1;
q[tail++] = e.to;
if (e.to == target) {
return true;
}
}
}
}
return false;
}
public long dfs(int x, int target, long cMin) {
if (x == target) {
return cMin;
}
for (int i = cur[x]; i < edges[x].size(); cur[x] = ++i) {
TaskB3.DinicGraph.Edge e = edges[x].get(i);
if (d[e.to] != d[x] + 1 || e.cap - e.flow == 0) {
continue;
}
long add = dfs(e.to, target, Math.min(cMin, e.cap - e.flow));
if (add == 0) {
continue;
}
e.flow += add;
e.rev.flow -= add;
return add;
}
return 0;
}
public long getMaxFlow(int source, int target) {
long flow = 0;
while (bfs(source, target)) {
Arrays.fill(cur, 0);
while (true) {
long add = dfs(source, target, Long.MAX_VALUE);
if (add == 0) {
break;
}
flow += add;
}
}
return flow;
}
public static class Edge {
public int from;
public int to;
public long flow;
public long cap;
public TaskB3.DinicGraph.Edge rev;
public Edge(int from, int to, int flow, long cap) {
super();
this.from = from;
this.to = to;
this.flow = flow;
this.cap = cap;
}
}
}
static class Ship {
int x;
int a;
int f;
int p;
public Ship(int x, int a, int f, int p) {
this.x = x;
this.a = a;
this.f = f;
this.p = p;
}
}
static class Base {
int x;
int d;
int g;
public Base(int x, int d, int g) {
this.x = x;
this.d = d;
this.g = g;
}
}
}
static class FastPrinter extends PrintWriter {
public FastPrinter(OutputStream out) {
super(out);
}
public FastPrinter(Writer out) {
super(out);
}
}
static class FastScanner extends BufferedReader {
public FastScanner(InputStream is) {
super(new InputStreamReader(is));
}
public int read() {
try {
int ret = super.read();
// if (isEOF && ret < 0) {
// throw new InputMismatchException();
// }
// isEOF = ret == -1;
return ret;
} catch (IOException e) {
throw new InputMismatchException();
}
}
static boolean isWhiteSpace(int c) {
return c >= 0 && c <= 32;
}
public int nextInt() {
int c = read();
while (isWhiteSpace(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int ret = 0;
while (c >= 0 && !isWhiteSpace(c)) {
if (c < '0' || c > '9') {
throw new NumberFormatException("digit expected " + (char) c
+ " found");
}
ret = ret * 10 + c - '0';
c = read();
}
return ret * sgn;
}
public String readLine() {
try {
return super.readLine();
} catch (IOException e) {
return null;
}
}
}
}
| 4JAVA
| {
"input": [
"6 7\n1 2\n2 3\n3 4\n4 6\n6 5\n4 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 2\n3 2\n",
"1 0\n1 1 0\n1 446844829 77109657 780837560\n1 754808995 539371459\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 457379982 948257592\n1 45309968 181471857\n1 558039453 931056469\n",
"1 1\n1 1\n1 2 0\n1 424550512 267535146 337021959\n1 340728578 862017405\n1 296016606 901537974\n",
"1 0\n1 1 0\n1 710831619 862166501 30583621\n1 790845747 504719880\n",
"1 0\n1 1 1\n1 393719043 515372386 379329282\n1 446687639 688441074\n1 1\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 638564514 680433292 994431111\n1 452689372 642414314\n2 1\n",
"1 1\n1 1\n2 1 1\n1 629075344 435788130 187757098\n1 464180683 238039721 270559705\n1 512723125 959796342\n2 1\n",
"1 0\n1 1 0\n1 258129110 790518782 878821407\n1 297422778 577668719\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 720019121 224386186\n1 105343720 162417396\n1 598490187 99799082\n2 1\n",
"2 0\n3 2 2\n1 1 1 10\n2 1 1 0\n2 1 1 0\n1 1 0\n2 1 7\n2 1\n3 1\n",
"1 0\n1 1 0\n1 309612754 148757376 932599775\n1 953264671 466422620\n",
"1 0\n1 1 0\n1 446844829 1905225 780837560\n1 754808995 539371459\n",
"6 7\n1 2\n2 3\n3 4\n4 6\n6 5\n4 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 4\n3 2\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 638564514 620703360 994431111\n1 593426713 1146089297\n2 1\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 457379982 948257592\n1 45309968 181471857\n1 558039453 1234474669\n",
"1 0\n1 1 1\n1 393719043 515372386 379329282\n1 141854662 688441074\n1 1\n",
"1 1\n1 1\n2 1 1\n1 629075344 435788130 187757098\n1 464180683 238039721 270559705\n1 512723125 1704063958\n2 1\n",
"6 7\n1 2\n2 3\n3 4\n4 6\n6 5\n4 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n1 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 2\n3 2\n",
"6 7\n1 2\n2 3\n3 5\n4 6\n6 5\n6 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 7 6\n5 2 1\n4 4\n3 2\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 457379982 948257592\n1 45309968 181471857\n1 242647803 931056469\n",
"1 0\n1 1 0\n1 710831619 862166501 22053717\n1 790845747 504719880\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 638564514 680433292 994431111\n1 593426713 642414314\n2 1\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 496308794 224386186\n1 105343720 162417396\n1 598490187 99799082\n2 1\n",
"1 0\n1 1 0\n1 309612754 100506644 932599775\n1 953264671 466422620\n",
"1 0\n1 0 0\n1 710831619 862166501 22053717\n1 790845747 504719880\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 638564514 620703360 994431111\n1 593426713 642414314\n2 1\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 496308794 224386186\n1 22212869 162417396\n1 598490187 99799082\n2 1\n",
"1 0\n1 0 0\n1 710831619 862166501 22053717\n2 790845747 504719880\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 702986742 224386186\n1 22212869 162417396\n1 598490187 99799082\n2 1\n",
"1 0\n1 1 0\n1 446844829 77109657 780837560\n1 754808995 547190589\n",
"1 0\n1 1 0\n1 258129110 790518782 878821407\n1 297422778 411483956\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 720019121 224386186\n1 105343720 1626869\n1 598490187 99799082\n2 1\n",
"1 0\n1 1 0\n1 361320808 148757376 932599775\n1 953264671 466422620\n",
"1 0\n1 1 0\n1 446844829 1905225 780837560\n1 565521318 539371459\n",
"1 0\n1 1 0\n1 710831619 1073213104 22053717\n1 790845747 504719880\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 638564514 296501213 994431111\n1 593426713 642414314\n2 1\n",
"1 0\n1 1 0\n1 245371969 100506644 932599775\n1 953264671 466422620\n",
"6 7\n1 2\n2 3\n3 5\n4 6\n6 5\n4 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 4\n3 2\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 144701635 496308794 224386186\n1 22212869 162417396\n1 598490187 99799082\n2 1\n",
"1 1\n1 1\n2 1 1\n1 1447071613 511405192 843598992\n1 638564514 620703360 994431111\n1 593426713 1146089297\n2 1\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 457379982 948257592\n1 7799424 181471857\n1 558039453 1234474669\n",
"1 0\n1 1 1\n1 520460943 515372386 379329282\n1 141854662 688441074\n1 1\n",
"1 1\n1 1\n2 1 1\n1 629075344 435788130 187757098\n1 464180683 441339219 270559705\n1 512723125 1704063958\n2 1\n",
"1 0\n1 1 0\n1 258129110 790518782 878821407\n1 297422778 409227125\n",
"1 0\n1 1 0\n1 361320808 148757376 932599775\n1 1268543273 466422620\n",
"6 7\n1 2\n2 3\n3 4\n4 6\n6 5\n4 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n1 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 1\n3 2\n",
"1 0\n1 1 0\n1 446844829 1905225 39569983\n1 565521318 539371459\n",
"1 0\n1 1 0\n1 710831619 1073213104 22053717\n1 1501039140 504719880\n",
"1 1\n1 1\n2 1 1\n1 945415859 511405192 843598992\n1 638564514 296501213 994431111\n1 593426713 642414314\n2 1\n",
"2 0\n1 1 0\n1 245371969 100506644 932599775\n1 953264671 466422620\n",
"6 7\n1 2\n2 3\n3 5\n4 6\n6 5\n6 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 7 6\n5 2 3\n4 4\n3 2\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 144701635 496308794 432289847\n1 22212869 162417396\n1 598490187 99799082\n2 1\n",
"1 1\n1 1\n2 1 1\n1 1447071613 511405192 843598992\n1 638564514 620703360 994431111\n1 593426713 1146089297\n1 1\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 457379982 948257592\n1 3253333 181471857\n1 558039453 1234474669\n",
"1 0\n1 1 0\n1 361320808 148757376 650964501\n1 1268543273 466422620\n",
"1 0\n1 1 0\n1 710831619 1983209426 22053717\n1 1501039140 504719880\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 144701635 496308794 432289847\n1 22212869 162417396\n1 1109425667 99799082\n2 1\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 645143315\n1 936400451 37618092 948257592\n1 3253333 181471857\n1 558039453 1234474669\n",
"1 0\n1 1 0\n1 295326905 148757376 650964501\n1 1268543273 466422620\n",
"6 7\n1 2\n2 3\n3 5\n4 6\n6 5\n6 4\n3 6\n4 2 2\n1 10 2 5\n3 8 2 7\n5 1 0 2\n6 5 4 1\n3 12 6\n5 2 1\n4 4\n3 2\n",
"1 1\n1 1\n2 2 0\n1 531091498 755275238 1214932840\n1 936400451 37618092 948257592\n1 3253333 181471857\n1 558039453 1234474669\n",
"2 0\n1 1 0\n1 295326905 148757376 650964501\n1 1268543273 466422620\n",
"2 0\n1 1 0\n1 295326905 148757376 650964501\n1 618476796 466422620\n",
"2 0\n1 1 0\n1 295326905 148757376 650964501\n1 618476796 439363392\n",
"1 0\n1 1 0\n1 710831619 609649899 30583621\n1 790845747 504719880\n",
"1 0\n1 1 1\n1 393719043 515372386 379329282\n1 35945095 688441074\n1 1\n",
"1 1\n1 1\n2 1 1\n1 977821005 511405192 843598992\n1 760299511 680433292 994431111\n1 452689372 642414314\n2 1\n",
"1 0\n1 1 0\n1 258129110 790518782 878821407\n1 297422778 1033304588\n",
"1 1\n1 1\n2 2 1\n1 182345837 974625469 989301423\n1 762016619 720019121 224386186\n1 105343720 162417396\n1 25820908 99799082\n2 1\n"
],
"output": [
"2\n",
"0\n",
"0\n",
"564516015\n",
"0\n",
"0\n",
"0\n",
"772039244\n",
"0\n",
"0\n",
"4\n",
"0\n",
"0\n",
"3\n",
"454148491\n",
"286217077\n",
"309111792\n",
"1516306860\n",
"2\n",
"1\n",
"285913154\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"3\n",
"0\n",
"454148491\n",
"286217077\n",
"309111792\n",
"1516306860\n",
"0\n",
"0\n",
"3\n",
"0\n",
"0\n",
"0\n",
"0\n",
"3\n",
"0\n",
"454148491\n",
"286217077\n",
"0\n",
"0\n",
"0\n",
"286217077\n",
"0\n",
"0\n",
"286217077\n",
"0\n",
"0\n",
"0\n",
"0\n",
"309111792\n",
"0\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
|
1202_C. You Are Given a WASD-string..._908 | You have a string s — a sequence of commands for your toy robot. The robot is placed in some cell of a rectangular grid. He can perform four commands:
* 'W' — move one cell up;
* 'S' — move one cell down;
* 'A' — move one cell left;
* 'D' — move one cell right.
Let Grid(s) be the grid of minimum possible area such that there is a position in the grid where you can place the robot in such a way that it will not fall from the grid while running the sequence of commands s. For example, if s = DSAWWAW then Grid(s) is the 4 × 3 grid:
1. you can place the robot in the cell (3, 2);
2. the robot performs the command 'D' and moves to (3, 3);
3. the robot performs the command 'S' and moves to (4, 3);
4. the robot performs the command 'A' and moves to (4, 2);
5. the robot performs the command 'W' and moves to (3, 2);
6. the robot performs the command 'W' and moves to (2, 2);
7. the robot performs the command 'A' and moves to (2, 1);
8. the robot performs the command 'W' and moves to (1, 1).
<image>
You have 4 extra letters: one 'W', one 'A', one 'S', one 'D'. You'd like to insert at most one of these letters in any position of sequence s to minimize the area of Grid(s).
What is the minimum area of Grid(s) you can achieve?
Input
The first line contains one integer T (1 ≤ T ≤ 1000) — the number of queries.
Next T lines contain queries: one per line. This line contains single string s (1 ≤ |s| ≤ 2 ⋅ 10^5, s_i ∈ \{W, A, S, D\}) — the sequence of commands.
It's guaranteed that the total length of s over all queries doesn't exceed 2 ⋅ 10^5.
Output
Print T integers: one per query. For each query print the minimum area of Grid(s) you can achieve.
Example
Input
3
DSAWWAW
D
WA
Output
8
2
4
Note
In the first query you have to get string DSAWW\underline{D}AW.
In second and third queries you can not decrease the area of Grid(s). | from __future__ import division, print_function
DEBUG = 0
INF = float('inf')
MOD = 10**9 + 7
import os, sys
from atexit import register
from io import BytesIO
import itertools
if sys.version_info[0] < 3:
input = raw_input
range = xrange
filter = itertools.ifilter
map = itertools.imap
zip = itertools.izip
if DEBUG:
debug_print = print
else:
sys.stdin = BytesIO(os.read(0, os.fstat(0).st_size))
sys.stdout = BytesIO()
register(lambda: os.write(1, sys.stdout.getvalue()))
input = lambda: sys.stdin.readline().rstrip('\r\n')
debug_print = lambda *x, **y: None
def input_as_list():
return list(map(int, input().split()))
def array_of(f, *dim):
return [array_of(f, *dim[1:]) for _ in range(dim[0])] if dim else f()
def main():
q = int(input())
df = {'W': (0, 1), 'A': (-1, 0), 'S': (0, -1), 'D': (1, 0)}
rdf = {'W': (0, -1), 'A': (1, 0), 'S': (0, 1), 'D': (-1, 0)}
for _ in range(q):
s = input()
px, py = 0, 0
minx, miny, maxx, maxy = 0, 0, 0, 0
sbd = [[minx, miny, maxx, maxy]]
for c in s:
d = df[c]
px += d[0]
py += d[1]
minx = min(minx, px)
miny = min(miny, py)
maxx = max(maxx, px)
maxy = max(maxy, py)
sbd.append([minx, miny, maxx, maxy])
minx, miny, maxx, maxy = px, py, px, py
ebd = [[minx, miny, maxx, maxy]]
for c in reversed(s):
d = rdf[c]
px += d[0]
py += d[1]
minx = min(minx, px)
miny = min(miny, py)
maxx = max(maxx, px)
maxy = max(maxy, py)
ebd.append([minx, miny, maxx, maxy])
g = INF
for i in range(len(s)):
ed = ebd[i]
sd = sbd[len(s)-i]
for dx, dy in (0, 1), (0, -1), (1, 0), (-1, 0):
edmod = (ed[0]+dx, ed[1]+dy, ed[2]+dx, ed[3]+dy)
newbd = (min(edmod[0], sd[0]), min(edmod[1], sd[1]),
max(edmod[2], sd[2]), max(edmod[3], sd[3]))
g = min(g, (newbd[3]-newbd[1]+1) * (newbd[2]-newbd[0]+1))
print(g)
debug_print(sbd)
debug_print(ebd)
main() | 1Python2
| {
"input": [
"3\nDSAWWAW\nD\nWA\n",
"3\nDSAWWAW\nD\nAW\n",
"3\nWSAWDAW\nD\nAW\n",
"3\nDAAWWSW\nD\nAW\n",
"3\nWAWWASD\nD\nWA\n",
"3\nASAWWDW\nD\nWA\n",
"3\nWAWWASD\nD\nAW\n",
"3\nWSAWDAW\nD\nWA\n",
"3\nWDWWASA\nD\nWA\n",
"3\nWDWWASA\nD\nAW\n",
"3\nWSADWAW\nD\nWA\n",
"3\nWWWDASA\nD\nAW\n",
"3\nWADWASW\nD\nAW\n",
"3\nWAWDASW\nD\nWA\n",
"3\nAWDWASW\nD\nAW\n",
"3\nWADWASW\nD\nWA\n",
"3\nASAWWDW\nD\nAW\n",
"3\nWSADWAW\nD\nAW\n",
"3\nAWDWASW\nD\nWA\n",
"3\nAAWWWSD\nD\nWA\n",
"3\nWSAWADW\nD\nWA\n",
"3\nWSWDAAW\nD\nWA\n",
"3\nWAWSAWD\nD\nWA\n",
"3\nWWWDASA\nD\nWA\n",
"3\nDAAWWSW\nD\nWA\n",
"3\nWWWADSA\nD\nAW\n",
"3\nWAWDASW\nD\nAW\n",
"3\nAAWWWSD\nD\nAW\n",
"3\nDWASWAW\nD\nWA\n",
"3\nASADWWW\nD\nWA\n",
"3\nDWAWASW\nD\nWA\n",
"3\nSWWDAWA\nD\nAW\n",
"3\nAADWWSW\nD\nAW\n",
"3\nAADWWSW\nD\nWA\n",
"3\nWADSAWW\nD\nWA\n",
"3\nWSAWDWA\nD\nAW\n",
"3\nWSWDAAW\nD\nAW\n",
"3\nWAWSAWD\nD\nAW\n",
"3\nWWASWAD\nD\nWA\n",
"3\nDWAWASW\nD\nAW\n",
"3\nWDAWSAW\nD\nWA\n",
"3\nDSWWWAA\nD\nWA\n",
"3\nWDAWASW\nD\nWA\n",
"3\nAWWSAWD\nD\nWA\n",
"3\nWSWWAAD\nD\nAW\n",
"3\nWSWWDAA\nD\nAW\n",
"3\nWWAWDSA\nD\nAW\n",
"3\nWSAWAWD\nD\nWA\n",
"3\nWDAWASW\nD\nAW\n",
"3\nWDWAASW\nD\nAW\n",
"3\nWSAWADW\nD\nAW\n",
"3\nWAAWDSW\nD\nAW\n",
"3\nWSDAWAW\nD\nAW\n",
"3\nWSAWDWA\nD\nWA\n",
"3\nDSWWWAA\nD\nAW\n",
"3\nSWWDAAW\nD\nWA\n",
"3\nDWASAWW\nD\nWA\n",
"3\nSAADWWW\nD\nWA\n",
"3\nDWASWWA\nD\nWA\n",
"3\nWSWWAAD\nD\nWA\n",
"3\nWWAWDSA\nD\nWA\n",
"3\nWSAWAWD\nD\nAW\n",
"3\nSAWDWAW\nD\nWA\n",
"3\nSAADWWW\nD\nAW\n",
"3\nDWASWWA\nD\nAW\n"
],
"output": [
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n"
]
} | 2CODEFORCES
|
1202_C. You Are Given a WASD-string..._909 | You have a string s — a sequence of commands for your toy robot. The robot is placed in some cell of a rectangular grid. He can perform four commands:
* 'W' — move one cell up;
* 'S' — move one cell down;
* 'A' — move one cell left;
* 'D' — move one cell right.
Let Grid(s) be the grid of minimum possible area such that there is a position in the grid where you can place the robot in such a way that it will not fall from the grid while running the sequence of commands s. For example, if s = DSAWWAW then Grid(s) is the 4 × 3 grid:
1. you can place the robot in the cell (3, 2);
2. the robot performs the command 'D' and moves to (3, 3);
3. the robot performs the command 'S' and moves to (4, 3);
4. the robot performs the command 'A' and moves to (4, 2);
5. the robot performs the command 'W' and moves to (3, 2);
6. the robot performs the command 'W' and moves to (2, 2);
7. the robot performs the command 'A' and moves to (2, 1);
8. the robot performs the command 'W' and moves to (1, 1).
<image>
You have 4 extra letters: one 'W', one 'A', one 'S', one 'D'. You'd like to insert at most one of these letters in any position of sequence s to minimize the area of Grid(s).
What is the minimum area of Grid(s) you can achieve?
Input
The first line contains one integer T (1 ≤ T ≤ 1000) — the number of queries.
Next T lines contain queries: one per line. This line contains single string s (1 ≤ |s| ≤ 2 ⋅ 10^5, s_i ∈ \{W, A, S, D\}) — the sequence of commands.
It's guaranteed that the total length of s over all queries doesn't exceed 2 ⋅ 10^5.
Output
Print T integers: one per query. For each query print the minimum area of Grid(s) you can achieve.
Example
Input
3
DSAWWAW
D
WA
Output
8
2
4
Note
In the first query you have to get string DSAWW\underline{D}AW.
In second and third queries you can not decrease the area of Grid(s). | #include <bits/stdc++.h>
using namespace std;
const int maxs = 200000;
const char dbuf[] = "DWAS";
const int dx[] = {1, 0, -1, 0};
const int dy[] = {0, 1, 0, -1};
char s[maxs + 1];
int xv[maxs + 1];
int yv[maxs + 1];
int lprv[maxs + 1];
int bprv[maxs + 1];
int rprv[maxs + 1];
int tprv[maxs + 1];
int lnxt[maxs + 1];
int bnxt[maxs + 1];
int rnxt[maxs + 1];
int tnxt[maxs + 1];
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int T;
cin >> T;
for (int TN = 0; TN < T; TN++) {
cin >> s;
int n = strlen(s);
xv[0] = 0;
yv[0] = 0;
for (int i = 0; i < n; i++) {
int d = find(dbuf, dbuf + 4, s[i]) - dbuf;
xv[i + 1] = xv[i] + dx[d];
yv[i + 1] = yv[i] + dy[d];
}
lprv[0] = rprv[0] = xv[0];
bprv[0] = tprv[0] = yv[0];
for (int i = 1; i <= n; i++) {
lprv[i] = min(lprv[i - 1], xv[i]);
bprv[i] = min(bprv[i - 1], yv[i]);
rprv[i] = max(rprv[i - 1], xv[i]);
tprv[i] = max(tprv[i - 1], yv[i]);
}
lnxt[n] = rnxt[n] = xv[n];
bnxt[n] = tnxt[n] = yv[n];
for (int i = n - 1; i >= 0; i--) {
lnxt[i] = min(lnxt[i + 1], xv[i]);
bnxt[i] = min(bnxt[i + 1], yv[i]);
rnxt[i] = max(rnxt[i + 1], xv[i]);
tnxt[i] = max(tnxt[i + 1], yv[i]);
}
long long ans = 0x7f7f7f7f7f7f7f7fll;
for (int i = 0; i <= n; i++) {
for (int d = 0; d < 4; d++) {
int w =
max(rprv[i], rnxt[i] + dx[d]) - min(lprv[i], lnxt[i] + dx[d]) + 1;
int h =
max(tprv[i], tnxt[i] + dy[d]) - min(bprv[i], bnxt[i] + dy[d]) + 1;
ans = min(ans, (long long)w * h);
}
}
cout << ans << '\n';
}
return 0;
}
| 2C++
| {
"input": [
"3\nDSAWWAW\nD\nWA\n",
"3\nDSAWWAW\nD\nAW\n",
"3\nWSAWDAW\nD\nAW\n",
"3\nDAAWWSW\nD\nAW\n",
"3\nWAWWASD\nD\nWA\n",
"3\nASAWWDW\nD\nWA\n",
"3\nWAWWASD\nD\nAW\n",
"3\nWSAWDAW\nD\nWA\n",
"3\nWDWWASA\nD\nWA\n",
"3\nWDWWASA\nD\nAW\n",
"3\nWSADWAW\nD\nWA\n",
"3\nWWWDASA\nD\nAW\n",
"3\nWADWASW\nD\nAW\n",
"3\nWAWDASW\nD\nWA\n",
"3\nAWDWASW\nD\nAW\n",
"3\nWADWASW\nD\nWA\n",
"3\nASAWWDW\nD\nAW\n",
"3\nWSADWAW\nD\nAW\n",
"3\nAWDWASW\nD\nWA\n",
"3\nAAWWWSD\nD\nWA\n",
"3\nWSAWADW\nD\nWA\n",
"3\nWSWDAAW\nD\nWA\n",
"3\nWAWSAWD\nD\nWA\n",
"3\nWWWDASA\nD\nWA\n",
"3\nDAAWWSW\nD\nWA\n",
"3\nWWWADSA\nD\nAW\n",
"3\nWAWDASW\nD\nAW\n",
"3\nAAWWWSD\nD\nAW\n",
"3\nDWASWAW\nD\nWA\n",
"3\nASADWWW\nD\nWA\n",
"3\nDWAWASW\nD\nWA\n",
"3\nSWWDAWA\nD\nAW\n",
"3\nAADWWSW\nD\nAW\n",
"3\nAADWWSW\nD\nWA\n",
"3\nWADSAWW\nD\nWA\n",
"3\nWSAWDWA\nD\nAW\n",
"3\nWSWDAAW\nD\nAW\n",
"3\nWAWSAWD\nD\nAW\n",
"3\nWWASWAD\nD\nWA\n",
"3\nDWAWASW\nD\nAW\n",
"3\nWDAWSAW\nD\nWA\n",
"3\nDSWWWAA\nD\nWA\n",
"3\nWDAWASW\nD\nWA\n",
"3\nAWWSAWD\nD\nWA\n",
"3\nWSWWAAD\nD\nAW\n",
"3\nWSWWDAA\nD\nAW\n",
"3\nWWAWDSA\nD\nAW\n",
"3\nWSAWAWD\nD\nWA\n",
"3\nWDAWASW\nD\nAW\n",
"3\nWDWAASW\nD\nAW\n",
"3\nWSAWADW\nD\nAW\n",
"3\nWAAWDSW\nD\nAW\n",
"3\nWSDAWAW\nD\nAW\n",
"3\nWSAWDWA\nD\nWA\n",
"3\nDSWWWAA\nD\nAW\n",
"3\nSWWDAAW\nD\nWA\n",
"3\nDWASAWW\nD\nWA\n",
"3\nSAADWWW\nD\nWA\n",
"3\nDWASWWA\nD\nWA\n",
"3\nWSWWAAD\nD\nWA\n",
"3\nWWAWDSA\nD\nWA\n",
"3\nWSAWAWD\nD\nAW\n",
"3\nSAWDWAW\nD\nWA\n",
"3\nSAADWWW\nD\nAW\n",
"3\nDWASWWA\nD\nAW\n"
],
"output": [
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n"
]
} | 2CODEFORCES
|
1202_C. You Are Given a WASD-string..._910 | You have a string s — a sequence of commands for your toy robot. The robot is placed in some cell of a rectangular grid. He can perform four commands:
* 'W' — move one cell up;
* 'S' — move one cell down;
* 'A' — move one cell left;
* 'D' — move one cell right.
Let Grid(s) be the grid of minimum possible area such that there is a position in the grid where you can place the robot in such a way that it will not fall from the grid while running the sequence of commands s. For example, if s = DSAWWAW then Grid(s) is the 4 × 3 grid:
1. you can place the robot in the cell (3, 2);
2. the robot performs the command 'D' and moves to (3, 3);
3. the robot performs the command 'S' and moves to (4, 3);
4. the robot performs the command 'A' and moves to (4, 2);
5. the robot performs the command 'W' and moves to (3, 2);
6. the robot performs the command 'W' and moves to (2, 2);
7. the robot performs the command 'A' and moves to (2, 1);
8. the robot performs the command 'W' and moves to (1, 1).
<image>
You have 4 extra letters: one 'W', one 'A', one 'S', one 'D'. You'd like to insert at most one of these letters in any position of sequence s to minimize the area of Grid(s).
What is the minimum area of Grid(s) you can achieve?
Input
The first line contains one integer T (1 ≤ T ≤ 1000) — the number of queries.
Next T lines contain queries: one per line. This line contains single string s (1 ≤ |s| ≤ 2 ⋅ 10^5, s_i ∈ \{W, A, S, D\}) — the sequence of commands.
It's guaranteed that the total length of s over all queries doesn't exceed 2 ⋅ 10^5.
Output
Print T integers: one per query. For each query print the minimum area of Grid(s) you can achieve.
Example
Input
3
DSAWWAW
D
WA
Output
8
2
4
Note
In the first query you have to get string DSAWW\underline{D}AW.
In second and third queries you can not decrease the area of Grid(s). | def lim(s):
now = 0
up, down = 0, 0
for i in s:
now += i
up = max(up, now)
down = min(down, now)
return up, down
def f(a):
return a[0] - a[1] + 1
def upg(s):
t = lim(s)
up, down = t[0], t[1]
arr = [1, 1]
now = 0
for i in range(len(s) - 1):
if now == up - 1 and s[i + 1] == 1 and arr[0] == 1:
arr[0] = 0
if f(lim(s[:(i + 1)] + [-1] + s[(i + 1):])) < f(t):
return 1
if now == down + 1 and s[i + 1] == -1 and arr[1] == 1:
arr[1] = 0
if f(lim(s[:(i + 1)] + [1] + s[(i + 1):])) < f(t):
return 1
now += s[i + 1]
return 0
for q in range(int(input())):
s = input()
s1, s2 = [0], [0]
for i in s:
if i == 'W': s1.append(1)
if i == 'S': s1.append(-1)
if i == 'A': s2.append(1)
if i == 'D': s2.append(-1)
u1 = upg(s1)
u2 = upg(s2)
res1, res2 = f(lim(s1)), f(lim(s2))
ans = min((res1 - u1) * res2, (res2 - u2) * res1)
print(ans) | 3Python3
| {
"input": [
"3\nDSAWWAW\nD\nWA\n",
"3\nDSAWWAW\nD\nAW\n",
"3\nWSAWDAW\nD\nAW\n",
"3\nDAAWWSW\nD\nAW\n",
"3\nWAWWASD\nD\nWA\n",
"3\nASAWWDW\nD\nWA\n",
"3\nWAWWASD\nD\nAW\n",
"3\nWSAWDAW\nD\nWA\n",
"3\nWDWWASA\nD\nWA\n",
"3\nWDWWASA\nD\nAW\n",
"3\nWSADWAW\nD\nWA\n",
"3\nWWWDASA\nD\nAW\n",
"3\nWADWASW\nD\nAW\n",
"3\nWAWDASW\nD\nWA\n",
"3\nAWDWASW\nD\nAW\n",
"3\nWADWASW\nD\nWA\n",
"3\nASAWWDW\nD\nAW\n",
"3\nWSADWAW\nD\nAW\n",
"3\nAWDWASW\nD\nWA\n",
"3\nAAWWWSD\nD\nWA\n",
"3\nWSAWADW\nD\nWA\n",
"3\nWSWDAAW\nD\nWA\n",
"3\nWAWSAWD\nD\nWA\n",
"3\nWWWDASA\nD\nWA\n",
"3\nDAAWWSW\nD\nWA\n",
"3\nWWWADSA\nD\nAW\n",
"3\nWAWDASW\nD\nAW\n",
"3\nAAWWWSD\nD\nAW\n",
"3\nDWASWAW\nD\nWA\n",
"3\nASADWWW\nD\nWA\n",
"3\nDWAWASW\nD\nWA\n",
"3\nSWWDAWA\nD\nAW\n",
"3\nAADWWSW\nD\nAW\n",
"3\nAADWWSW\nD\nWA\n",
"3\nWADSAWW\nD\nWA\n",
"3\nWSAWDWA\nD\nAW\n",
"3\nWSWDAAW\nD\nAW\n",
"3\nWAWSAWD\nD\nAW\n",
"3\nWWASWAD\nD\nWA\n",
"3\nDWAWASW\nD\nAW\n",
"3\nWDAWSAW\nD\nWA\n",
"3\nDSWWWAA\nD\nWA\n",
"3\nWDAWASW\nD\nWA\n",
"3\nAWWSAWD\nD\nWA\n",
"3\nWSWWAAD\nD\nAW\n",
"3\nWSWWDAA\nD\nAW\n",
"3\nWWAWDSA\nD\nAW\n",
"3\nWSAWAWD\nD\nWA\n",
"3\nWDAWASW\nD\nAW\n",
"3\nWDWAASW\nD\nAW\n",
"3\nWSAWADW\nD\nAW\n",
"3\nWAAWDSW\nD\nAW\n",
"3\nWSDAWAW\nD\nAW\n",
"3\nWSAWDWA\nD\nWA\n",
"3\nDSWWWAA\nD\nAW\n",
"3\nSWWDAAW\nD\nWA\n",
"3\nDWASAWW\nD\nWA\n",
"3\nSAADWWW\nD\nWA\n",
"3\nDWASWWA\nD\nWA\n",
"3\nWSWWAAD\nD\nWA\n",
"3\nWWAWDSA\nD\nWA\n",
"3\nWSAWAWD\nD\nAW\n",
"3\nSAWDWAW\nD\nWA\n",
"3\nSAADWWW\nD\nAW\n",
"3\nDWASWWA\nD\nAW\n"
],
"output": [
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n"
]
} | 2CODEFORCES
|
1202_C. You Are Given a WASD-string..._911 | You have a string s — a sequence of commands for your toy robot. The robot is placed in some cell of a rectangular grid. He can perform four commands:
* 'W' — move one cell up;
* 'S' — move one cell down;
* 'A' — move one cell left;
* 'D' — move one cell right.
Let Grid(s) be the grid of minimum possible area such that there is a position in the grid where you can place the robot in such a way that it will not fall from the grid while running the sequence of commands s. For example, if s = DSAWWAW then Grid(s) is the 4 × 3 grid:
1. you can place the robot in the cell (3, 2);
2. the robot performs the command 'D' and moves to (3, 3);
3. the robot performs the command 'S' and moves to (4, 3);
4. the robot performs the command 'A' and moves to (4, 2);
5. the robot performs the command 'W' and moves to (3, 2);
6. the robot performs the command 'W' and moves to (2, 2);
7. the robot performs the command 'A' and moves to (2, 1);
8. the robot performs the command 'W' and moves to (1, 1).
<image>
You have 4 extra letters: one 'W', one 'A', one 'S', one 'D'. You'd like to insert at most one of these letters in any position of sequence s to minimize the area of Grid(s).
What is the minimum area of Grid(s) you can achieve?
Input
The first line contains one integer T (1 ≤ T ≤ 1000) — the number of queries.
Next T lines contain queries: one per line. This line contains single string s (1 ≤ |s| ≤ 2 ⋅ 10^5, s_i ∈ \{W, A, S, D\}) — the sequence of commands.
It's guaranteed that the total length of s over all queries doesn't exceed 2 ⋅ 10^5.
Output
Print T integers: one per query. For each query print the minimum area of Grid(s) you can achieve.
Example
Input
3
DSAWWAW
D
WA
Output
8
2
4
Note
In the first query you have to get string DSAWW\underline{D}AW.
In second and third queries you can not decrease the area of Grid(s). | import java.io.*;
import java.util.*;
public class Main {
static int inf = (int) (1e9 + 7);
public static void main(String[] args) throws IOException {
sc = new Scanner(System.in);
pw = new PrintWriter(System.out);
for(int test = sc.nextInt();test > 0;test--) {
char h[] = sc.next().toCharArray();
int n = h.length;
int x[] = new int [n + 1];
int y[] = new int [n + 1];
int this_x = 0;
int this_y = 0;
int id1_min = 0, id1_max = 0, id2_min = 0, id2_max = 0, id3_min = 0, id3_max = 0, id4_min = 0, id4_max = 0;
for(int i = 1;i <= n;i++) {
if (h[i - 1] == 'D') this_x--;
if (h[i - 1] == 'A') this_x++;
if (h[i - 1] == 'W') this_y++;
if (h[i - 1] == 'S') this_y--;
x[i] = this_x;
y[i] = this_y;
if (x[i] <= x[id1_max]) id1_max = i;
if (x[i] >= x[id2_max]) id2_max = i;
if (y[i] <= y[id3_max]) id3_max = i;
if (y[i] >= y[id4_max]) id4_max = i;
if (x[i] < x[id1_min]) id1_min = i;
if (x[i] > x[id2_min]) id2_min = i;
if (y[i] < y[id3_min]) id3_min = i;
if (y[i] > y[id4_min]) id4_min = i;
}
for(int i = id1_max + 1;i <= n;i++) {
if (h[i - 1] == 'A') {
id1_max = i;
break;
}
}
for(int i = id2_max + 1;i <= n;i++) {
if (h[i - 1] == 'D') {
id2_max = i;
break;
}
}
for(int i = id3_max + 1;i <= n;i++) {
if (h[i - 1] == 'W') {
id3_max = i;
break;
}
}
for(int i = id4_max + 1;i <= n;i++) {
if (h[i - 1] == 'S') {
id4_max = i;
break;
}
}
long ans1 = x[id2_min] - x[id1_min] + 1;
long ans2 = y[id4_min] - y[id3_min] + 1;
boolean one = id1_max < id2_min || id2_max < id1_min;
boolean two = id3_max < id4_min || id4_max < id3_min;
if (one && (!two || (ans1 - 1) * ans2 < ans1 * (ans2 - 1))) ans1--;
else if (two) ans2--;
pw.println(ans1 * ans2);
}
pw.close();
}
static Scanner sc;
static PrintWriter pw;
static class Scanner {
BufferedReader br;
StringTokenizer st = new StringTokenizer("");
Scanner(InputStream in) throws FileNotFoundException {
br = new BufferedReader(new InputStreamReader(in));
}
Scanner(String in) throws FileNotFoundException {
br = new BufferedReader(new FileReader(in));
}
String next() throws IOException {
while (!st.hasMoreTokens()) st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
} | 4JAVA
| {
"input": [
"3\nDSAWWAW\nD\nWA\n",
"3\nDSAWWAW\nD\nAW\n",
"3\nWSAWDAW\nD\nAW\n",
"3\nDAAWWSW\nD\nAW\n",
"3\nWAWWASD\nD\nWA\n",
"3\nASAWWDW\nD\nWA\n",
"3\nWAWWASD\nD\nAW\n",
"3\nWSAWDAW\nD\nWA\n",
"3\nWDWWASA\nD\nWA\n",
"3\nWDWWASA\nD\nAW\n",
"3\nWSADWAW\nD\nWA\n",
"3\nWWWDASA\nD\nAW\n",
"3\nWADWASW\nD\nAW\n",
"3\nWAWDASW\nD\nWA\n",
"3\nAWDWASW\nD\nAW\n",
"3\nWADWASW\nD\nWA\n",
"3\nASAWWDW\nD\nAW\n",
"3\nWSADWAW\nD\nAW\n",
"3\nAWDWASW\nD\nWA\n",
"3\nAAWWWSD\nD\nWA\n",
"3\nWSAWADW\nD\nWA\n",
"3\nWSWDAAW\nD\nWA\n",
"3\nWAWSAWD\nD\nWA\n",
"3\nWWWDASA\nD\nWA\n",
"3\nDAAWWSW\nD\nWA\n",
"3\nWWWADSA\nD\nAW\n",
"3\nWAWDASW\nD\nAW\n",
"3\nAAWWWSD\nD\nAW\n",
"3\nDWASWAW\nD\nWA\n",
"3\nASADWWW\nD\nWA\n",
"3\nDWAWASW\nD\nWA\n",
"3\nSWWDAWA\nD\nAW\n",
"3\nAADWWSW\nD\nAW\n",
"3\nAADWWSW\nD\nWA\n",
"3\nWADSAWW\nD\nWA\n",
"3\nWSAWDWA\nD\nAW\n",
"3\nWSWDAAW\nD\nAW\n",
"3\nWAWSAWD\nD\nAW\n",
"3\nWWASWAD\nD\nWA\n",
"3\nDWAWASW\nD\nAW\n",
"3\nWDAWSAW\nD\nWA\n",
"3\nDSWWWAA\nD\nWA\n",
"3\nWDAWASW\nD\nWA\n",
"3\nAWWSAWD\nD\nWA\n",
"3\nWSWWAAD\nD\nAW\n",
"3\nWSWWDAA\nD\nAW\n",
"3\nWWAWDSA\nD\nAW\n",
"3\nWSAWAWD\nD\nWA\n",
"3\nWDAWASW\nD\nAW\n",
"3\nWDWAASW\nD\nAW\n",
"3\nWSAWADW\nD\nAW\n",
"3\nWAAWDSW\nD\nAW\n",
"3\nWSDAWAW\nD\nAW\n",
"3\nWSAWDWA\nD\nWA\n",
"3\nDSWWWAA\nD\nAW\n",
"3\nSWWDAAW\nD\nWA\n",
"3\nDWASAWW\nD\nWA\n",
"3\nSAADWWW\nD\nWA\n",
"3\nDWASWWA\nD\nWA\n",
"3\nWSWWAAD\nD\nWA\n",
"3\nWWAWDSA\nD\nWA\n",
"3\nWSAWAWD\nD\nAW\n",
"3\nSAWDWAW\nD\nWA\n",
"3\nSAADWWW\nD\nAW\n",
"3\nDWASWWA\nD\nAW\n"
],
"output": [
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"4\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"4\n2\n4\n",
"8\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"6\n2\n4\n",
"8\n2\n4\n",
"6\n2\n4\n"
]
} | 2CODEFORCES
|
1219_H. Function Composition_912 | We are definitely not going to bother you with another generic story when Alice finds about an array or when Alice and Bob play some stupid game. This time you'll get a simple, plain text.
First, let us define several things. We define function F on the array A such that F(i, 1) = A[i] and F(i, m) = A[F(i, m - 1)] for m > 1. In other words, value F(i, m) represents composition A[...A[i]] applied m times.
You are given an array of length N with non-negative integers. You are expected to give an answer on Q queries. Each query consists of two numbers – m and y. For each query determine how many x exist such that F(x,m) = y.
Input
The first line contains one integer N (1 ≤ N ≤ 2 ⋅ 10^5) – the size of the array A. The next line contains N non-negative integers – the array A itself (1 ≤ A_i ≤ N). The next line contains one integer Q (1 ≤ Q ≤ 10^5) – the number of queries. Each of the next Q lines contain two integers m and y (1 ≤ m ≤ 10^{18}, 1≤ y ≤ N).
Output
Output exactly Q lines with a single integer in each that represent the solution. Output the solutions in the order the queries were asked in.
Example
Input
10
2 3 1 5 6 4 2 10 7 7
5
10 1
5 7
10 6
1 1
10 8
Output
3
0
1
1
0
Note
For the first query we can notice that F(3, 10) = 1,\ F(9, 10) = 1 and F(10, 10) = 1.
For the second query no x satisfies condition F(x, 5) = 7.
For the third query F(5, 10) = 6 holds.
For the fourth query F(3, 1) = 1.
For the fifth query no x satisfies condition F(x, 10) = 8. | #include <bits/stdc++.h>
using namespace std;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
const int N = 200200;
int n, m;
int ANS[N];
int g[N];
vector<int> G[N];
int deg[N];
int q[N];
int topQ;
int id[N];
vector<int> a[N];
vector<pair<long long, int> > Q[N];
vector<pair<int, int> > b[N];
vector<int> pref[N];
void read() {
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &g[i]);
g[i]--;
deg[g[i]]++;
}
scanf("%d", &m);
for (int i = 0; i < m; i++) {
long long x;
int v;
scanf("%lld%d", &x, &v);
v--;
Q[v].push_back(make_pair(x, i));
}
}
void solveTree(int v) {
int big = -1;
for (int u : G[v]) {
if (big == -1 || (int)a[id[u]].size() > (int)a[id[big]].size()) big = u;
}
if (big == -1) {
id[v] = v;
} else {
id[v] = id[big];
}
int sz = (int)a[id[v]].size();
for (int u : G[v]) {
if (u == big) continue;
int z = id[u];
reverse(a[z].begin(), a[z].end());
for (int i = 0; i < (int)a[z].size(); i++) a[id[v]][sz - 1 - i] += a[z][i];
}
a[id[v]].push_back(1);
for (pair<long long, int> t : Q[v]) {
long long x = t.first;
if (x <= sz) ANS[t.second] = a[id[v]][sz - x];
}
int u = g[v];
G[u].push_back(v);
deg[u]--;
if (deg[u] == 0) q[topQ++] = u;
}
void solveCycle(vector<int> cycle) {
reverse(cycle.begin(), cycle.end());
int k = (int)cycle.size();
for (int i = 0; i < k; i++) {
b[i].clear();
pref[i].clear();
}
for (int t = 0; t < k; t++) {
int v = cycle[t];
int big = -1;
for (int u : G[v]) {
if (big == -1 || (int)a[id[u]].size() > (int)a[id[big]].size()) big = u;
}
if (big == -1) {
id[v] = v;
} else {
id[v] = id[big];
}
int sz = (int)a[id[v]].size();
for (int u : G[v]) {
if (u == big) continue;
int z = id[u];
reverse(a[z].begin(), a[z].end());
for (int i = 0; i < (int)a[z].size(); i++)
a[id[v]][sz - 1 - i] += a[z][i];
}
a[id[v]].push_back(1);
reverse(a[id[v]].begin(), a[id[v]].end());
for (int i = 0; i <= sz; i++) {
int p = (t + i) % k;
b[p].push_back(make_pair(i, a[id[v]][i]));
}
}
for (int i = 0; i < k; i++) {
sort(b[i].begin(), b[i].end());
pref[i].push_back(0);
for (pair<int, int> t : b[i]) pref[i].push_back(pref[i].back() + t.second);
}
for (int t = 0; t < k; t++) {
int v = cycle[t];
for (pair<long long, int> z : Q[v]) {
long long x = z.first;
int xx;
if (x > (long long)1e7) {
xx = x - ((x - (long long)1e7) / k) * k;
} else {
xx = x;
}
int p = (xx + t) % k;
int pos = lower_bound(b[p].begin(), b[p].end(), make_pair(xx, N)) -
b[p].begin();
ANS[z.second] = pref[p][pos];
}
}
}
int main() {
read();
for (int v = 0; v < n; v++)
if (deg[v] == 0) q[topQ++] = v;
for (int i = 0; i < topQ; i++) {
int v = q[i];
solveTree(v);
}
for (int v = 0; v < n; v++) {
if (deg[v] == 0) continue;
vector<int> all;
int u = v;
do {
all.push_back(u);
u = g[u];
} while (u != v);
solveCycle(all);
for (int u : all) deg[u] = 0;
}
for (int i = 0; i < m; i++) printf("%d\n", ANS[i]);
return 0;
}
| 2C++
| {
"input": [
"10\n2 3 1 5 6 4 2 10 7 7\n5\n10 1\n5 7\n10 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 4 1 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n5\n10 1\n5 7\n10 6\n1 2\n10 8\n",
"10\n1 3 1 5 6 4 1 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n10 8\n",
"10\n2 3 1 5 3 4 2 10 7 7\n5\n10 1\n5 7\n10 6\n1 2\n10 8\n",
"10\n2 3 1 5 3 2 2 10 7 7\n5\n10 1\n5 7\n10 6\n1 2\n10 8\n",
"10\n2 3 1 5 3 2 2 10 7 7\n5\n10 1\n5 7\n10 6\n1 2\n10 1\n",
"10\n2 3 1 5 6 4 3 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 4 4 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n12 8\n",
"10\n1 3 1 5 6 4 1 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n10 5\n",
"10\n2 2 1 5 3 4 2 10 7 7\n5\n10 1\n5 7\n10 6\n1 2\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n2\n10 1\n5 7\n19 6\n2 1\n12 8\n",
"10\n2 3 1 5 3 2 2 10 7 7\n5\n10 1\n5 7\n10 6\n0 2\n10 8\n",
"10\n2 3 1 5 3 2 2 6 7 7\n5\n10 1\n5 7\n10 6\n1 2\n10 1\n",
"10\n2 3 1 5 6 4 4 10 7 7\n3\n10 1\n5 7\n19 6\n1 1\n12 8\n",
"10\n2 3 1 5 5 2 2 10 7 7\n5\n10 1\n5 7\n10 2\n0 2\n10 8\n",
"10\n2 3 1 3 3 2 2 6 7 7\n5\n10 1\n5 7\n10 6\n2 2\n10 1\n",
"10\n2 3 1 5 6 1 2 10 7 5\n5\n14 1\n10 7\n10 6\n1 2\n10 8\n",
"10\n2 3 1 10 6 4 4 10 7 7\n3\n10 1\n5 7\n19 6\n1 0\n12 8\n",
"10\n1 3 1 5 6 4 1 5 7 7\n5\n10 1\n5 7\n19 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 4 1 10 7 7\n2\n10 1\n5 7\n19 6\n0 1\n10 8\n",
"10\n2 3 1 5 3 2 2 10 7 7\n5\n10 1\n5 2\n10 6\n0 2\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 5\n5\n17 1\n10 7\n10 6\n1 2\n10 8\n",
"10\n2 3 1 5 6 4 3 10 7 7\n5\n10 1\n4 4\n11 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 4 5 10 7 7\n3\n10 1\n5 7\n19 6\n1 0\n12 8\n",
"10\n1 3 1 3 3 2 2 6 7 7\n5\n10 1\n5 7\n10 6\n2 2\n10 1\n",
"10\n2 3 1 5 6 1 2 10 7 5\n5\n14 1\n10 2\n10 6\n1 2\n10 8\n",
"10\n1 3 1 10 6 4 4 10 7 7\n3\n10 1\n5 7\n19 6\n1 0\n18 4\n",
"10\n2 3 1 5 6 1 2 10 7 7\n5\n10 1\n5 7\n19 6\n3 1\n12 8\n",
"10\n2 3 1 5 3 2 2 10 7 7\n5\n10 1\n5 7\n9 6\n1 2\n1 1\n",
"10\n1 3 1 5 6 4 3 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n1 8\n",
"10\n2 3 1 5 6 4 1 10 7 7\n2\n10 1\n5 3\n19 6\n3 1\n8 8\n",
"10\n2 2 1 5 5 2 2 10 7 7\n5\n10 1\n8 7\n13 2\n0 2\n10 8\n",
"10\n1 3 1 10 6 4 4 10 7 7\n3\n10 1\n7 7\n19 6\n1 0\n18 4\n",
"10\n2 2 1 10 3 4 4 10 7 7\n3\n18 1\n5 7\n19 6\n1 1\n18 4\n",
"10\n2 6 1 5 6 1 2 10 7 7\n5\n10 1\n5 7\n19 6\n3 1\n12 8\n",
"10\n2 3 1 1 3 2 2 10 7 7\n5\n10 1\n5 7\n9 6\n1 2\n1 1\n",
"10\n1 3 1 5 5 4 3 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n1 8\n",
"10\n2 3 1 5 6 5 5 10 7 7\n3\n10 1\n5 7\n22 6\n1 0\n12 8\n",
"10\n2 3 1 5 4 4 3 10 7 7\n5\n10 1\n6 7\n10 6\n0 1\n10 8\n",
"10\n2 6 1 5 6 1 2 1 7 7\n5\n10 1\n5 7\n19 6\n3 1\n12 8\n",
"10\n2 3 1 1 3 2 2 10 7 7\n5\n11 1\n5 7\n9 6\n1 2\n1 1\n",
"10\n1 3 1 5 5 4 3 10 7 1\n5\n10 1\n5 7\n19 6\n1 1\n1 8\n",
"10\n2 6 1 5 6 1 2 1 7 7\n5\n10 1\n5 7\n19 6\n3 2\n12 8\n",
"10\n2 3 1 1 2 2 2 10 7 7\n5\n11 1\n5 7\n9 6\n1 2\n1 1\n",
"10\n2 3 1 5 6 4 2 10 5 5\n5\n20 1\n10 7\n10 6\n1 4\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n12 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n5\n10 1\n5 7\n19 6\n2 1\n12 8\n",
"10\n2 3 1 5 6 4 1 10 7 7\n5\n10 1\n5 7\n19 6\n0 1\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 5\n5\n10 1\n5 7\n10 6\n1 2\n10 8\n",
"10\n2 3 1 5 6 4 3 10 7 7\n5\n10 1\n4 7\n19 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 5\n5\n10 1\n10 7\n10 6\n1 2\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n2\n10 1\n5 7\n19 6\n3 1\n12 8\n",
"10\n2 3 1 5 5 2 2 10 7 7\n5\n10 1\n5 7\n10 6\n0 2\n10 8\n",
"10\n2 3 1 3 3 2 2 6 7 7\n5\n10 1\n5 7\n10 6\n1 2\n10 1\n",
"10\n2 3 1 5 6 4 3 10 7 7\n5\n10 1\n4 7\n11 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 1 2 10 7 5\n5\n10 1\n10 7\n10 6\n1 2\n10 8\n",
"10\n2 3 1 5 6 4 4 10 7 7\n3\n10 1\n5 7\n19 6\n1 0\n12 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n2\n10 1\n5 7\n19 6\n3 1\n8 8\n",
"10\n2 3 1 5 5 2 2 10 7 7\n5\n10 1\n5 7\n13 2\n0 2\n10 8\n",
"10\n2 3 1 10 6 4 4 10 7 7\n3\n10 1\n5 7\n19 6\n1 0\n18 8\n",
"10\n2 3 1 10 6 4 4 10 7 7\n3\n10 1\n5 7\n19 6\n1 0\n18 4\n",
"10\n2 3 1 10 3 4 4 10 7 7\n3\n10 1\n5 7\n19 6\n1 0\n18 4\n",
"10\n2 3 1 10 3 4 4 10 7 7\n3\n10 1\n5 7\n19 6\n1 1\n18 4\n",
"10\n2 3 1 5 6 4 2 10 7 7\n5\n10 1\n5 7\n10 6\n0 1\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n5\n10 2\n5 7\n19 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 4 1 10 7 7\n5\n10 1\n5 7\n19 6\n1 2\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n1 8\n",
"10\n2 3 1 5 3 4 2 10 7 7\n5\n10 1\n5 7\n14 6\n1 2\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n5\n10 1\n5 7\n19 6\n3 1\n12 8\n",
"10\n2 3 1 5 3 2 2 10 7 7\n5\n10 1\n5 7\n9 6\n1 2\n10 1\n",
"10\n2 3 1 5 6 4 3 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n1 8\n",
"10\n2 3 1 5 6 4 4 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n12 10\n",
"10\n1 3 1 5 6 4 1 10 7 7\n5\n10 1\n5 7\n19 6\n1 1\n15 5\n",
"10\n2 2 1 5 3 4 2 10 7 7\n5\n10 1\n5 7\n10 6\n1 2\n10 9\n",
"10\n2 3 1 5 3 2 2 1 7 7\n5\n10 1\n5 7\n10 6\n1 2\n10 1\n",
"10\n2 3 1 5 6 4 3 10 7 7\n5\n10 1\n4 7\n19 6\n1 1\n10 10\n",
"10\n2 1 1 5 6 4 4 10 7 7\n3\n10 1\n5 7\n19 6\n1 1\n12 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n2\n10 1\n5 7\n19 6\n3 1\n13 8\n",
"10\n2 3 1 5 6 1 2 10 7 5\n5\n10 1\n10 7\n10 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 4 1 10 7 7\n2\n10 1\n5 7\n19 6\n3 1\n8 8\n",
"10\n2 3 1 10 6 4 4 10 7 7\n3\n5 1\n5 7\n19 6\n1 0\n12 8\n",
"10\n2 3 1 5 5 2 2 10 7 7\n5\n10 1\n8 7\n13 2\n0 2\n10 8\n",
"10\n2 3 1 10 3 4 4 10 7 7\n3\n10 1\n5 7\n19 6\n1 0\n18 1\n",
"10\n2 3 1 10 3 4 4 10 7 7\n3\n18 1\n5 7\n19 6\n1 1\n18 4\n",
"10\n2 3 1 5 6 4 2 10 7 7\n5\n10 1\n6 7\n10 6\n0 1\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n5\n3 2\n5 7\n19 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n5\n6 1\n5 7\n19 6\n1 1\n1 8\n",
"10\n1 3 1 5 6 4 1 5 7 7\n5\n14 1\n5 7\n19 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 4 1 10 7 7\n2\n10 2\n5 7\n19 6\n0 1\n10 8\n",
"10\n2 3 1 5 3 3 2 10 7 7\n5\n10 1\n5 2\n10 6\n0 2\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 5\n5\n11 1\n10 7\n10 6\n1 2\n10 8\n",
"10\n2 3 1 5 6 4 2 10 7 7\n2\n10 1\n5 9\n19 6\n3 1\n13 8\n",
"10\n2 3 1 5 6 4 3 10 7 7\n5\n10 1\n8 4\n11 6\n1 1\n10 8\n",
"10\n2 1 1 5 6 1 2 10 7 5\n5\n10 1\n10 7\n10 6\n1 1\n10 8\n",
"10\n2 3 1 5 6 5 5 10 7 7\n3\n10 1\n5 7\n19 6\n1 0\n12 8\n",
"10\n2 3 1 10 6 4 4 10 7 7\n3\n5 1\n8 7\n19 6\n1 0\n12 8\n",
"10\n2 3 1 8 3 4 4 10 7 7\n3\n10 1\n5 7\n19 6\n1 0\n18 1\n",
"10\n2 3 1 5 6 4 3 10 7 7\n5\n10 1\n6 7\n10 6\n0 1\n10 8\n",
"10\n2 3 1 5 6 4 1 10 7 7\n2\n10 2\n5 7\n19 6\n0 1\n10 1\n"
],
"output": [
"3\n0\n1\n1\n0\n",
"3\n0\n1\n1\n0\n",
"2\n0\n1\n2\n0\n",
"3\n0\n1\n2\n0\n",
"7\n0\n1\n3\n0\n",
"4\n0\n0\n2\n0\n",
"3\n0\n0\n3\n0\n",
"3\n0\n0\n3\n3\n",
"2\n0\n1\n1\n0\n",
"1\n0\n3\n1\n0\n",
"7\n0\n1\n3\n1\n",
"0\n0\n0\n3\n0\n",
"3\n0\n",
"3\n0\n0\n1\n0\n",
"4\n0\n0\n3\n4\n",
"1\n0\n3\n",
"3\n0\n3\n1\n0\n",
"4\n0\n0\n4\n4\n",
"2\n0\n0\n2\n0\n",
"1\n2\n0\n",
"6\n0\n1\n3\n0\n",
"2\n0\n",
"3\n3\n0\n1\n0\n",
"1\n0\n1\n2\n0\n",
"2\n1\n1\n1\n0\n",
"1\n0\n2\n",
"10\n0\n0\n3\n10\n",
"2\n4\n0\n2\n0\n",
"3\n2\n0\n",
"4\n0\n0\n3\n0\n",
"3\n0\n0\n3\n1\n",
"7\n0\n1\n2\n0\n",
"2\n2\n",
"0\n0\n8\n1\n0\n",
"3\n3\n0\n",
"0\n2\n0\n",
"4\n0\n3\n3\n0\n",
"4\n0\n0\n3\n2\n",
"7\n0\n0\n2\n0\n",
"1\n0\n4\n",
"2\n0\n0\n1\n0\n",
"5\n0\n2\n3\n0\n",
"3\n0\n0\n3\n2\n",
"7\n0\n0\n3\n0\n",
"5\n0\n2\n2\n0\n",
"2\n0\n0\n4\n2\n",
"1\n0\n1\n1\n0\n",
"3\n0\n1\n1\n0\n",
"3\n0\n1\n1\n0\n",
"2\n0\n1\n1\n0\n",
"2\n0\n1\n2\n0\n",
"2\n0\n1\n1\n0\n",
"2\n0\n1\n2\n0\n",
"3\n0\n",
"3\n0\n0\n1\n0\n",
"4\n0\n0\n3\n4\n",
"2\n0\n1\n1\n0\n",
"4\n0\n0\n2\n0\n",
"1\n0\n3\n",
"3\n0\n",
"3\n0\n3\n1\n0\n",
"1\n2\n0\n",
"1\n2\n0\n",
"1\n2\n0\n",
"1\n2\n0\n",
"3\n0\n1\n1\n0\n",
"2\n0\n1\n1\n0\n",
"2\n0\n1\n1\n0\n",
"3\n0\n1\n1\n0\n",
"4\n0\n0\n2\n0\n",
"3\n0\n1\n2\n0\n",
"3\n0\n0\n3\n3\n",
"2\n0\n1\n1\n0\n",
"1\n0\n3\n1\n0\n",
"7\n0\n1\n3\n1\n",
"0\n0\n0\n3\n0\n",
"4\n0\n0\n3\n4\n",
"2\n0\n1\n1\n0\n",
"1\n0\n3\n",
"3\n0\n",
"4\n0\n0\n2\n0\n",
"2\n0\n",
"1\n2\n0\n",
"3\n0\n3\n1\n0\n",
"1\n2\n0\n",
"1\n2\n0\n",
"3\n0\n1\n1\n0\n",
"2\n0\n1\n1\n0\n",
"2\n0\n1\n1\n0\n",
"6\n0\n1\n3\n0\n",
"2\n0\n",
"3\n3\n0\n1\n0\n",
"1\n0\n1\n2\n0\n",
"3\n0\n",
"2\n1\n1\n1\n0\n",
"4\n0\n0\n3\n0\n",
"1\n0\n3\n",
"1\n2\n0\n",
"1\n2\n0\n",
"2\n0\n1\n1\n0\n",
"2\n0\n"
]
} | 2CODEFORCES
|
1244_C. The Football Season_913 | The football season has just ended in Berland. According to the rules of Berland football, each match is played between two teams. The result of each match is either a draw, or a victory of one of the playing teams. If a team wins the match, it gets w points, and the opposing team gets 0 points. If the game results in a draw, both teams get d points.
The manager of the Berland capital team wants to summarize the results of the season, but, unfortunately, all information about the results of each match is lost. The manager only knows that the team has played n games and got p points for them.
You have to determine three integers x, y and z — the number of wins, draws and loses of the team. If there are multiple answers, print any of them. If there is no suitable triple (x, y, z), report about it.
Input
The first line contains four integers n, p, w and d (1 ≤ n ≤ 10^{12}, 0 ≤ p ≤ 10^{17}, 1 ≤ d < w ≤ 10^{5}) — the number of games, the number of points the team got, the number of points awarded for winning a match, and the number of points awarded for a draw, respectively. Note that w > d, so the number of points awarded for winning is strictly greater than the number of points awarded for draw.
Output
If there is no answer, print -1.
Otherwise print three non-negative integers x, y and z — the number of wins, draws and losses of the team. If there are multiple possible triples (x, y, z), print any of them. The numbers should meet the following conditions:
* x ⋅ w + y ⋅ d = p,
* x + y + z = n.
Examples
Input
30 60 3 1
Output
17 9 4
Input
10 51 5 4
Output
-1
Input
20 0 15 5
Output
0 0 20
Note
One of the possible answers in the first example — 17 wins, 9 draws and 4 losses. Then the team got 17 ⋅ 3 + 9 ⋅ 1 = 60 points in 17 + 9 + 4 = 30 games.
In the second example the maximum possible score is 10 ⋅ 5 = 50. Since p = 51, there is no answer.
In the third example the team got 0 points, so all 20 games were lost. | from fractions import gcd
def modinv(x, n):
s, old_s = 0, 1
t, old_t = 1, 0
r, old_r = n, x
while r != 0:
quotient = old_r // r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
old_t, t = t, old_t - quotient * t
if old_r != 1: return -1
return old_s % n
n, p, w, d = map(int, raw_input().strip().split())
g = gcd(w, d)
if p % g != 0:
print -1
exit()
r = modinv(d / g, (w - d) / g)
r *= (p / g)
if r < 0:
print -1
exit()
q = (p - w * r + (w * (w - d) / g) - 1) / (w * (w - d) / g)
N = q * ((w - d) / g) + r
if N > n:
print -1
exit()
x = (p - N * d) / (w - d)
if (x < 0):
print -1
exit()
y = N - x
z = n - N
try:
assert (w * x + d * y == p and x >= 0 and y >= 0 and z >= 0)
except:
print -1
exit()
print x, y, z | 1Python2
| {
"input": [
"30 60 3 1\n",
"20 0 15 5\n",
"10 51 5 4\n",
"728961319347 33282698448966372 52437 42819\n",
"461788563846 36692905412962338 93797 64701\n",
"567018385179 15765533940665693 35879 13819\n",
"21644595275 987577030498703 66473 35329\n",
"1000000000000 1000000000000 6 3\n",
"33 346 15 8\n",
"778 37556 115 38\n",
"452930477 24015855239835 99139 99053\n",
"1626 464236 319 90\n",
"626551778970 11261673116424810 25436 16077\n",
"316431201244 22970110124811658 78990 69956\n",
"659005771612 8740175676351733 72838 11399\n",
"1000000000000 100000000000000000 2 1\n",
"255955272979 18584110298742443 84443 67017\n",
"829472166240 86795313135266670 99396 49566\n",
"800615518359 27492868036334099 39349 2743\n",
"923399641127 50915825165227299 94713 49302\n",
"65 156 3 2\n",
"121166844658 6273282308873264 90390 3089\n",
"485893699458 9386899988612745 18092 2271\n",
"98 1097 19 4\n",
"526 18991 101 1\n",
"545639068499 45316046550943260 98938 8870\n",
"294218384074 21229345014119430 82662 56136\n",
"425759632892 10334986958474555 86605 2090\n",
"528779165237 9396634689650360 52340 6485\n",
"405474135446 9175138941687990 36662 10272\n",
"781429727430 47248576977719402 55689 35782\n",
"434885118278 10488684591116139 29511 23709\n",
"325138082692 26994768135772682 69964 51890\n",
"168571061796 15587958107141409 89749 67408\n",
"1000000000000 4 3 1\n",
"1000000000000 100000000000000000 100000 99999\n",
"130 360 4 2\n",
"623613234187 52755669736852211 96570 37199\n",
"705649717763 57047872059963073 56261 47441\n",
"506653534206 7153934847788313 38594 815\n",
"100 1 5 4\n",
"89098731339 5432576028974229 58055 12533\n",
"299274054887 15719841679546731 55352 27135\n",
"144909459461 7102805144952765 44289 7844\n",
"1000000000000 9999800001 100000 99999\n",
"724702302065 48182461851369906 73825 19927\n",
"443446305522 27647487098967065 69157 50453\n",
"696412900091 6736266643903368 54933 3903\n",
"418432416616 24658101316371093 59858 38173\n",
"627936103814 4254617095171609 45205 1927\n",
"145 4916 44 14\n",
"349635951477 36106123740954124 98573 34441\n",
"925788714959 96322100031725408 92054 60779\n",
"26674807466 1870109097117044 81788 66136\n",
"274 4140 45 10\n",
"723896198002 51499967450600956 69846 24641\n",
"167902901259 6951019289944068 89131 1780\n",
"234 7120 100 20\n",
"10 6 10 9\n",
"770678486109 22046056358414016 33530 26247\n",
"1000000000000 99999999999999999 100000 99999\n",
"762165386087 30387541871424412 50653 10444\n",
"217860443650 6034676879163619 69811 23794\n",
"10 2 5 3\n",
"273950120471 13443354669488442 66084 42861\n",
"91179823860 5603936160630260 83969 50563\n",
"586620919668 3579247631251079 7829 2972\n",
"10 10 15 10\n",
"1000000000000 0 100000 99999\n",
"934954412120 41821365176919518 43902 32291\n",
"728961319347 41296937719710726 52437 42819\n",
"567018385179 15765533940665693 70514 13819\n",
"21644595275 987577030498703 66473 38440\n",
"1000000000000 1000000000000 7 3\n",
"61 346 15 8\n",
"778 18752 115 38\n",
"1626 464236 313 90\n",
"1252579684821 11261673116424810 25436 16077\n",
"255955272979 12186554461405819 84443 67017\n",
"800615518359 27492868036334099 39349 1968\n",
"681381921985 50915825165227299 94713 49302\n",
"526 20306 101 1\n",
"318683515195 21229345014119430 82662 56136\n",
"528779165237 9396634689650360 48273 6485\n",
"781429727430 47248576977719402 85951 35782\n",
"434885118278 10488684591116139 56582 23709\n",
"562066151912 26994768135772682 69964 51890\n",
"1000000000000 4 6 1\n",
"1000000000000 100000000000000000 100000 78533\n",
"130 360 4 1\n",
"1016723457870 57047872059963073 56261 47441\n",
"310059898330 15719841679546731 55352 27135\n",
"1108577267933 48182461851369906 73825 19927\n",
"696412900091 6736266643903368 54933 5916\n",
"627936103814 4254617095171609 56651 1927\n",
"145 4916 66 14\n",
"645162568811 36106123740954124 98573 34441\n",
"26649937200 1870109097117044 81788 66136\n",
"274 4140 45 8\n",
"234 7120 101 20\n",
"770678486109 22046056358414016 51408 26247\n",
"1000000000000 68088352351238212 100000 99999\n",
"762165386087 30387541871424412 90735 10444\n",
"397093763162 6034676879163619 69811 23794\n",
"273950120471 13443354669488442 93454 42861\n",
"689072378256 3579247631251079 7829 2972\n",
"11 10 15 10\n",
"1000000010000 0 100000 99999\n",
"986521542235 41821365176919518 43902 32291\n",
"27 60 3 1\n",
"20 0 28 5\n",
"23127939333 987577030498703 66473 38440\n",
"1000000000000 1000000000000 7 4\n",
"61 346 15 13\n",
"1073008108950 11261673116424810 25436 16077\n",
"255955272979 12186554461405819 84443 16112\n",
"526 12088 101 1\n",
"781429727430 47248576977719402 96729 35782\n",
"434885118278 3018002350592325 56582 23709\n",
"130 497 4 1\n",
"1016723457870 57047872059963073 56261 41421\n",
"162012525733 5432576028974229 58055 652\n",
"310059898330 15719841679546731 110562 27135\n",
"1108577267933 48182461851369906 125899 19927\n",
"706733805289 6736266643903368 54933 5916\n",
"461788563846 67788855547251287 93797 64701\n",
"1000000001000 100000000000000000 2 1\n",
"829472166240 86795313135266670 99396 29683\n",
"485893699458 9386899988612745 18092 3712\n",
"292125285461 45316046550943260 98938 8870\n",
"168571061796 15587958107141409 6881 67408\n",
"77402627512 52755669736852211 96570 37199\n",
"101 1 5 4\n",
"89098731339 5432576028974229 58055 652\n",
"2793081589 7102805144952765 44289 7844\n",
"443446305522 32747442079410032 69157 50453\n",
"418432416616 24658101316371093 12169 38173\n",
"925788714959 144591147723839756 92054 60779\n",
"723896198002 71829078543696504 69846 24641\n",
"167902901259 6951019289944068 6865 1780\n",
"10 2 10 9\n",
"91179823860 10867212342363410 83969 50563\n",
"10 2 5 4\n",
"742953363062 41296937719710726 52437 42819\n",
"461788563846 67788855547251287 93797 33861\n",
"1000001001000 100000000000000000 2 1\n",
"250942590153 86795313135266670 99396 29683\n",
"800615518359 41903389016474980 39349 1968\n",
"250607186981 50915825165227299 94713 49302\n",
"485893699458 9386899988612745 4495 3712\n",
"292125285461 45316046550943260 98938 5348\n",
"318683515195 34052234833359426 82662 56136\n",
"180944310543 9396634689650360 48273 6485\n",
"46320976162 15587958107141409 6881 67408\n",
"1000000000000 100000000000000100 100000 78533\n",
"77402627512 52755669736852211 96570 23835\n",
"101 2 5 4\n",
"2793081589 1816641096932155 44289 7844\n",
"336574279134 32747442079410032 69157 50453\n"
],
"output": [
"20 0 10\n",
"0 0 20\n",
"-1\n",
"634717821311 1235 94243496801\n",
"391194850251 31591 70593682004\n",
"439408390432 21735 127609973012\n",
"14856801037 25338 6787768900\n",
"-1\n",
"22 2 9\n",
"316 32 430\n",
"242155141 89212 210686124\n",
"1444 40 142\n",
"442745437221 10902 183806330847\n",
"290797673439 27158 25633500647\n",
"119994721911 10685 539011039016\n",
"-1\n",
"220078745839 11398 35876515742\n",
"-1\n",
"698692927740 8273 101922582346\n",
"537580105939 11996 385819523192\n",
"52 0 13\n",
"69402391377 49306 51764403975\n",
"-1\n",
"55 13 30\n",
"188 3 335\n",
"458024686435 14029 87614368035\n",
"256821083749 10497 37397289828\n",
"119334760673 4971 306424867248\n",
"179530657991 7772 349248499474\n",
"250262913633 202 155211221611\n",
"-1\n",
"355416098329 4780 79469015169\n",
"-1\n",
"-1\n",
"1 1 999999999998\n",
"1000000000000 0 0\n",
"90 0 40\n",
"546294573362 74929 77318585896\n",
"-1\n",
"185363912572 7343 321289614291\n",
"-1\n",
"-1\n",
"283997702553 31245 15276321089\n",
"-1\n",
"0 99999 999999900001\n",
"652657777056 73278 72044451731\n",
"399778534331 59466 43667711725\n",
"122626956087 16699 573785927305\n",
"411943266569 33167 6489116880\n",
"94118284813 15672 533817803329\n",
"106 18 21\n",
"-1\n",
"-1\n",
"22865323651 96 3809483719\n",
"92 0 182\n",
"-1\n",
"77986550528 30805 89916319926\n",
"71 1 162\n",
"-1\n",
"657502420434 7668 113176058007\n",
"999999999999 1 0\n",
"599915933004 11200 162249441883\n",
"86443056871 26727 131417360052\n",
"-1\n",
"203428283112 194 70521837165\n",
"66738106973 80221 24441636666\n",
"457178136015 1477 129442782176\n",
"0 1 9\n",
"0 0 1000000000000\n",
"-1\n",
"-1\n",
"223580185583 53149 343438146447\n",
"14856785031 50966 6787759278\n",
"142857142855 5 857142857140\n",
"22 2 37\n",
"132 94 552\n",
"1432 178 16\n",
"442745437221 10902 809834236698\n",
"144316899929 37016 111638336034\n",
"698692926503 36264 101922555592\n",
"537580105939 11996 143801804050\n",
"201 5 320\n",
"256821083749 10497 61862420949\n",
"194656113755 17017 334123034465\n",
"549715247270 49176 231714430984\n",
"185371387749 30769 249513699760\n",
"385837968988 9125 176228173799\n",
"0 4 999999999996\n",
"1000000000000 0 0\n",
"90 0 40\n",
"1013986095907 6706 2737355257\n",
"283997702553 31245 26062164532\n",
"652657777056 73278 455919417599\n",
"122626957036 2205 573785940850\n",
"75102241362 10261 552833852191\n",
"73 7 65\n",
"366288143815 73769 278874351227\n",
"22865323651 96 3784613453\n",
"92 0 182\n",
"60 53 121\n",
"428844850721 10384 341833625004\n",
"680883461725 61788 319116476487\n",
"334904292404 86188 427261007495\n",
"86443056871 26727 310650679564\n",
"143849941275 52672 130100126524\n",
"457178136015 1477 231894240764\n",
"0 1 10\n",
"0 0 1000000010000\n",
"952607264430 32638 33914245167\n",
"20 0 7\n",
"0 0 20\n",
"14856785031 50966 8271103336\n",
"142857142856 2 857142857142\n",
"17 7 37\n",
"442745437221 10902 630262660827\n",
"144316922145 37532 111638313302\n",
"119 69 338\n",
"488463375208 88235 292966263987\n",
"53338540260 44945 381546533073\n",
"124 1 5\n",
"1013986061114 54939 2737341817\n",
"93576367547 16922 68436141264\n",
"142181226938 31945 167878639447\n",
"382707249106 95156 725869923671\n",
"122626957036 2205 584106846048\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n"
]
} | 2CODEFORCES
|
1244_C. The Football Season_914 | The football season has just ended in Berland. According to the rules of Berland football, each match is played between two teams. The result of each match is either a draw, or a victory of one of the playing teams. If a team wins the match, it gets w points, and the opposing team gets 0 points. If the game results in a draw, both teams get d points.
The manager of the Berland capital team wants to summarize the results of the season, but, unfortunately, all information about the results of each match is lost. The manager only knows that the team has played n games and got p points for them.
You have to determine three integers x, y and z — the number of wins, draws and loses of the team. If there are multiple answers, print any of them. If there is no suitable triple (x, y, z), report about it.
Input
The first line contains four integers n, p, w and d (1 ≤ n ≤ 10^{12}, 0 ≤ p ≤ 10^{17}, 1 ≤ d < w ≤ 10^{5}) — the number of games, the number of points the team got, the number of points awarded for winning a match, and the number of points awarded for a draw, respectively. Note that w > d, so the number of points awarded for winning is strictly greater than the number of points awarded for draw.
Output
If there is no answer, print -1.
Otherwise print three non-negative integers x, y and z — the number of wins, draws and losses of the team. If there are multiple possible triples (x, y, z), print any of them. The numbers should meet the following conditions:
* x ⋅ w + y ⋅ d = p,
* x + y + z = n.
Examples
Input
30 60 3 1
Output
17 9 4
Input
10 51 5 4
Output
-1
Input
20 0 15 5
Output
0 0 20
Note
One of the possible answers in the first example — 17 wins, 9 draws and 4 losses. Then the team got 17 ⋅ 3 + 9 ⋅ 1 = 60 points in 17 + 9 + 4 = 30 games.
In the second example the maximum possible score is 10 ⋅ 5 = 50. Since p = 51, there is no answer.
In the third example the team got 0 points, so all 20 games were lost. | #include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
const int mod1 = 998244353;
const long long inf = 5e18;
long long n, p, w, d;
void solve() {
cin >> n >> p >> w >> d;
for (long long draw = 0; draw < w; draw++) {
long long score = draw * d;
long long win = (p - score) / w;
if (win >= 0 && score >= 0 && score + win * w == p && win + draw <= n) {
cout << win << " " << draw << " " << n - win - draw;
return;
}
}
cout << -1;
}
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
solve();
return 0;
}
| 2C++
| {
"input": [
"30 60 3 1\n",
"20 0 15 5\n",
"10 51 5 4\n",
"728961319347 33282698448966372 52437 42819\n",
"461788563846 36692905412962338 93797 64701\n",
"567018385179 15765533940665693 35879 13819\n",
"21644595275 987577030498703 66473 35329\n",
"1000000000000 1000000000000 6 3\n",
"33 346 15 8\n",
"778 37556 115 38\n",
"452930477 24015855239835 99139 99053\n",
"1626 464236 319 90\n",
"626551778970 11261673116424810 25436 16077\n",
"316431201244 22970110124811658 78990 69956\n",
"659005771612 8740175676351733 72838 11399\n",
"1000000000000 100000000000000000 2 1\n",
"255955272979 18584110298742443 84443 67017\n",
"829472166240 86795313135266670 99396 49566\n",
"800615518359 27492868036334099 39349 2743\n",
"923399641127 50915825165227299 94713 49302\n",
"65 156 3 2\n",
"121166844658 6273282308873264 90390 3089\n",
"485893699458 9386899988612745 18092 2271\n",
"98 1097 19 4\n",
"526 18991 101 1\n",
"545639068499 45316046550943260 98938 8870\n",
"294218384074 21229345014119430 82662 56136\n",
"425759632892 10334986958474555 86605 2090\n",
"528779165237 9396634689650360 52340 6485\n",
"405474135446 9175138941687990 36662 10272\n",
"781429727430 47248576977719402 55689 35782\n",
"434885118278 10488684591116139 29511 23709\n",
"325138082692 26994768135772682 69964 51890\n",
"168571061796 15587958107141409 89749 67408\n",
"1000000000000 4 3 1\n",
"1000000000000 100000000000000000 100000 99999\n",
"130 360 4 2\n",
"623613234187 52755669736852211 96570 37199\n",
"705649717763 57047872059963073 56261 47441\n",
"506653534206 7153934847788313 38594 815\n",
"100 1 5 4\n",
"89098731339 5432576028974229 58055 12533\n",
"299274054887 15719841679546731 55352 27135\n",
"144909459461 7102805144952765 44289 7844\n",
"1000000000000 9999800001 100000 99999\n",
"724702302065 48182461851369906 73825 19927\n",
"443446305522 27647487098967065 69157 50453\n",
"696412900091 6736266643903368 54933 3903\n",
"418432416616 24658101316371093 59858 38173\n",
"627936103814 4254617095171609 45205 1927\n",
"145 4916 44 14\n",
"349635951477 36106123740954124 98573 34441\n",
"925788714959 96322100031725408 92054 60779\n",
"26674807466 1870109097117044 81788 66136\n",
"274 4140 45 10\n",
"723896198002 51499967450600956 69846 24641\n",
"167902901259 6951019289944068 89131 1780\n",
"234 7120 100 20\n",
"10 6 10 9\n",
"770678486109 22046056358414016 33530 26247\n",
"1000000000000 99999999999999999 100000 99999\n",
"762165386087 30387541871424412 50653 10444\n",
"217860443650 6034676879163619 69811 23794\n",
"10 2 5 3\n",
"273950120471 13443354669488442 66084 42861\n",
"91179823860 5603936160630260 83969 50563\n",
"586620919668 3579247631251079 7829 2972\n",
"10 10 15 10\n",
"1000000000000 0 100000 99999\n",
"934954412120 41821365176919518 43902 32291\n",
"728961319347 41296937719710726 52437 42819\n",
"567018385179 15765533940665693 70514 13819\n",
"21644595275 987577030498703 66473 38440\n",
"1000000000000 1000000000000 7 3\n",
"61 346 15 8\n",
"778 18752 115 38\n",
"1626 464236 313 90\n",
"1252579684821 11261673116424810 25436 16077\n",
"255955272979 12186554461405819 84443 67017\n",
"800615518359 27492868036334099 39349 1968\n",
"681381921985 50915825165227299 94713 49302\n",
"526 20306 101 1\n",
"318683515195 21229345014119430 82662 56136\n",
"528779165237 9396634689650360 48273 6485\n",
"781429727430 47248576977719402 85951 35782\n",
"434885118278 10488684591116139 56582 23709\n",
"562066151912 26994768135772682 69964 51890\n",
"1000000000000 4 6 1\n",
"1000000000000 100000000000000000 100000 78533\n",
"130 360 4 1\n",
"1016723457870 57047872059963073 56261 47441\n",
"310059898330 15719841679546731 55352 27135\n",
"1108577267933 48182461851369906 73825 19927\n",
"696412900091 6736266643903368 54933 5916\n",
"627936103814 4254617095171609 56651 1927\n",
"145 4916 66 14\n",
"645162568811 36106123740954124 98573 34441\n",
"26649937200 1870109097117044 81788 66136\n",
"274 4140 45 8\n",
"234 7120 101 20\n",
"770678486109 22046056358414016 51408 26247\n",
"1000000000000 68088352351238212 100000 99999\n",
"762165386087 30387541871424412 90735 10444\n",
"397093763162 6034676879163619 69811 23794\n",
"273950120471 13443354669488442 93454 42861\n",
"689072378256 3579247631251079 7829 2972\n",
"11 10 15 10\n",
"1000000010000 0 100000 99999\n",
"986521542235 41821365176919518 43902 32291\n",
"27 60 3 1\n",
"20 0 28 5\n",
"23127939333 987577030498703 66473 38440\n",
"1000000000000 1000000000000 7 4\n",
"61 346 15 13\n",
"1073008108950 11261673116424810 25436 16077\n",
"255955272979 12186554461405819 84443 16112\n",
"526 12088 101 1\n",
"781429727430 47248576977719402 96729 35782\n",
"434885118278 3018002350592325 56582 23709\n",
"130 497 4 1\n",
"1016723457870 57047872059963073 56261 41421\n",
"162012525733 5432576028974229 58055 652\n",
"310059898330 15719841679546731 110562 27135\n",
"1108577267933 48182461851369906 125899 19927\n",
"706733805289 6736266643903368 54933 5916\n",
"461788563846 67788855547251287 93797 64701\n",
"1000000001000 100000000000000000 2 1\n",
"829472166240 86795313135266670 99396 29683\n",
"485893699458 9386899988612745 18092 3712\n",
"292125285461 45316046550943260 98938 8870\n",
"168571061796 15587958107141409 6881 67408\n",
"77402627512 52755669736852211 96570 37199\n",
"101 1 5 4\n",
"89098731339 5432576028974229 58055 652\n",
"2793081589 7102805144952765 44289 7844\n",
"443446305522 32747442079410032 69157 50453\n",
"418432416616 24658101316371093 12169 38173\n",
"925788714959 144591147723839756 92054 60779\n",
"723896198002 71829078543696504 69846 24641\n",
"167902901259 6951019289944068 6865 1780\n",
"10 2 10 9\n",
"91179823860 10867212342363410 83969 50563\n",
"10 2 5 4\n",
"742953363062 41296937719710726 52437 42819\n",
"461788563846 67788855547251287 93797 33861\n",
"1000001001000 100000000000000000 2 1\n",
"250942590153 86795313135266670 99396 29683\n",
"800615518359 41903389016474980 39349 1968\n",
"250607186981 50915825165227299 94713 49302\n",
"485893699458 9386899988612745 4495 3712\n",
"292125285461 45316046550943260 98938 5348\n",
"318683515195 34052234833359426 82662 56136\n",
"180944310543 9396634689650360 48273 6485\n",
"46320976162 15587958107141409 6881 67408\n",
"1000000000000 100000000000000100 100000 78533\n",
"77402627512 52755669736852211 96570 23835\n",
"101 2 5 4\n",
"2793081589 1816641096932155 44289 7844\n",
"336574279134 32747442079410032 69157 50453\n"
],
"output": [
"20 0 10\n",
"0 0 20\n",
"-1\n",
"634717821311 1235 94243496801\n",
"391194850251 31591 70593682004\n",
"439408390432 21735 127609973012\n",
"14856801037 25338 6787768900\n",
"-1\n",
"22 2 9\n",
"316 32 430\n",
"242155141 89212 210686124\n",
"1444 40 142\n",
"442745437221 10902 183806330847\n",
"290797673439 27158 25633500647\n",
"119994721911 10685 539011039016\n",
"-1\n",
"220078745839 11398 35876515742\n",
"-1\n",
"698692927740 8273 101922582346\n",
"537580105939 11996 385819523192\n",
"52 0 13\n",
"69402391377 49306 51764403975\n",
"-1\n",
"55 13 30\n",
"188 3 335\n",
"458024686435 14029 87614368035\n",
"256821083749 10497 37397289828\n",
"119334760673 4971 306424867248\n",
"179530657991 7772 349248499474\n",
"250262913633 202 155211221611\n",
"-1\n",
"355416098329 4780 79469015169\n",
"-1\n",
"-1\n",
"1 1 999999999998\n",
"1000000000000 0 0\n",
"90 0 40\n",
"546294573362 74929 77318585896\n",
"-1\n",
"185363912572 7343 321289614291\n",
"-1\n",
"-1\n",
"283997702553 31245 15276321089\n",
"-1\n",
"0 99999 999999900001\n",
"652657777056 73278 72044451731\n",
"399778534331 59466 43667711725\n",
"122626956087 16699 573785927305\n",
"411943266569 33167 6489116880\n",
"94118284813 15672 533817803329\n",
"106 18 21\n",
"-1\n",
"-1\n",
"22865323651 96 3809483719\n",
"92 0 182\n",
"-1\n",
"77986550528 30805 89916319926\n",
"71 1 162\n",
"-1\n",
"657502420434 7668 113176058007\n",
"999999999999 1 0\n",
"599915933004 11200 162249441883\n",
"86443056871 26727 131417360052\n",
"-1\n",
"203428283112 194 70521837165\n",
"66738106973 80221 24441636666\n",
"457178136015 1477 129442782176\n",
"0 1 9\n",
"0 0 1000000000000\n",
"-1\n",
"-1\n",
"223580185583 53149 343438146447\n",
"14856785031 50966 6787759278\n",
"142857142855 5 857142857140\n",
"22 2 37\n",
"132 94 552\n",
"1432 178 16\n",
"442745437221 10902 809834236698\n",
"144316899929 37016 111638336034\n",
"698692926503 36264 101922555592\n",
"537580105939 11996 143801804050\n",
"201 5 320\n",
"256821083749 10497 61862420949\n",
"194656113755 17017 334123034465\n",
"549715247270 49176 231714430984\n",
"185371387749 30769 249513699760\n",
"385837968988 9125 176228173799\n",
"0 4 999999999996\n",
"1000000000000 0 0\n",
"90 0 40\n",
"1013986095907 6706 2737355257\n",
"283997702553 31245 26062164532\n",
"652657777056 73278 455919417599\n",
"122626957036 2205 573785940850\n",
"75102241362 10261 552833852191\n",
"73 7 65\n",
"366288143815 73769 278874351227\n",
"22865323651 96 3784613453\n",
"92 0 182\n",
"60 53 121\n",
"428844850721 10384 341833625004\n",
"680883461725 61788 319116476487\n",
"334904292404 86188 427261007495\n",
"86443056871 26727 310650679564\n",
"143849941275 52672 130100126524\n",
"457178136015 1477 231894240764\n",
"0 1 10\n",
"0 0 1000000010000\n",
"952607264430 32638 33914245167\n",
"20 0 7\n",
"0 0 20\n",
"14856785031 50966 8271103336\n",
"142857142856 2 857142857142\n",
"17 7 37\n",
"442745437221 10902 630262660827\n",
"144316922145 37532 111638313302\n",
"119 69 338\n",
"488463375208 88235 292966263987\n",
"53338540260 44945 381546533073\n",
"124 1 5\n",
"1013986061114 54939 2737341817\n",
"93576367547 16922 68436141264\n",
"142181226938 31945 167878639447\n",
"382707249106 95156 725869923671\n",
"122626957036 2205 584106846048\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n"
]
} | 2CODEFORCES
|
1244_C. The Football Season_915 | The football season has just ended in Berland. According to the rules of Berland football, each match is played between two teams. The result of each match is either a draw, or a victory of one of the playing teams. If a team wins the match, it gets w points, and the opposing team gets 0 points. If the game results in a draw, both teams get d points.
The manager of the Berland capital team wants to summarize the results of the season, but, unfortunately, all information about the results of each match is lost. The manager only knows that the team has played n games and got p points for them.
You have to determine three integers x, y and z — the number of wins, draws and loses of the team. If there are multiple answers, print any of them. If there is no suitable triple (x, y, z), report about it.
Input
The first line contains four integers n, p, w and d (1 ≤ n ≤ 10^{12}, 0 ≤ p ≤ 10^{17}, 1 ≤ d < w ≤ 10^{5}) — the number of games, the number of points the team got, the number of points awarded for winning a match, and the number of points awarded for a draw, respectively. Note that w > d, so the number of points awarded for winning is strictly greater than the number of points awarded for draw.
Output
If there is no answer, print -1.
Otherwise print three non-negative integers x, y and z — the number of wins, draws and losses of the team. If there are multiple possible triples (x, y, z), print any of them. The numbers should meet the following conditions:
* x ⋅ w + y ⋅ d = p,
* x + y + z = n.
Examples
Input
30 60 3 1
Output
17 9 4
Input
10 51 5 4
Output
-1
Input
20 0 15 5
Output
0 0 20
Note
One of the possible answers in the first example — 17 wins, 9 draws and 4 losses. Then the team got 17 ⋅ 3 + 9 ⋅ 1 = 60 points in 17 + 9 + 4 = 30 games.
In the second example the maximum possible score is 10 ⋅ 5 = 50. Since p = 51, there is no answer.
In the third example the team got 0 points, so all 20 games were lost. | import sys
from sys import argv
def extendedEuclideanAlgorithm(old_r, r):
negative = False
s, old_t = 0, 0
old_s, t = 1, 1
if (r < 0):
r = abs(r)
negative = True
while r > 0:
q = old_r // r
#MCD:
r, old_r = old_r - q * r, r
#Coeficiente s:
s, old_s = old_s - q * s, s
#Coeficiente t:
t, old_t = old_t - q * t, t
if negative:
old_t = old_t * -1
return old_r, old_s, old_t
n, p, w, d = [int(i) for i in input().split()]
mcd, s, t = extendedEuclideanAlgorithm(w, d)
if p % mcd == 0:
a1, b1, c1 = -w // mcd, d // mcd, p // mcd
x1, y1 = s * c1, t * c1
k = y1 * mcd // w
x0 = x1 + (d * k) // mcd
y0 = y1 - (w * k) // mcd
if x0 + y0 <= n and x0 >= 0 and y0 >= 0:
print(x0, y0, n - x0 - y0)
else:
print(-1)
else:
print(-1) | 3Python3
| {
"input": [
"30 60 3 1\n",
"20 0 15 5\n",
"10 51 5 4\n",
"728961319347 33282698448966372 52437 42819\n",
"461788563846 36692905412962338 93797 64701\n",
"567018385179 15765533940665693 35879 13819\n",
"21644595275 987577030498703 66473 35329\n",
"1000000000000 1000000000000 6 3\n",
"33 346 15 8\n",
"778 37556 115 38\n",
"452930477 24015855239835 99139 99053\n",
"1626 464236 319 90\n",
"626551778970 11261673116424810 25436 16077\n",
"316431201244 22970110124811658 78990 69956\n",
"659005771612 8740175676351733 72838 11399\n",
"1000000000000 100000000000000000 2 1\n",
"255955272979 18584110298742443 84443 67017\n",
"829472166240 86795313135266670 99396 49566\n",
"800615518359 27492868036334099 39349 2743\n",
"923399641127 50915825165227299 94713 49302\n",
"65 156 3 2\n",
"121166844658 6273282308873264 90390 3089\n",
"485893699458 9386899988612745 18092 2271\n",
"98 1097 19 4\n",
"526 18991 101 1\n",
"545639068499 45316046550943260 98938 8870\n",
"294218384074 21229345014119430 82662 56136\n",
"425759632892 10334986958474555 86605 2090\n",
"528779165237 9396634689650360 52340 6485\n",
"405474135446 9175138941687990 36662 10272\n",
"781429727430 47248576977719402 55689 35782\n",
"434885118278 10488684591116139 29511 23709\n",
"325138082692 26994768135772682 69964 51890\n",
"168571061796 15587958107141409 89749 67408\n",
"1000000000000 4 3 1\n",
"1000000000000 100000000000000000 100000 99999\n",
"130 360 4 2\n",
"623613234187 52755669736852211 96570 37199\n",
"705649717763 57047872059963073 56261 47441\n",
"506653534206 7153934847788313 38594 815\n",
"100 1 5 4\n",
"89098731339 5432576028974229 58055 12533\n",
"299274054887 15719841679546731 55352 27135\n",
"144909459461 7102805144952765 44289 7844\n",
"1000000000000 9999800001 100000 99999\n",
"724702302065 48182461851369906 73825 19927\n",
"443446305522 27647487098967065 69157 50453\n",
"696412900091 6736266643903368 54933 3903\n",
"418432416616 24658101316371093 59858 38173\n",
"627936103814 4254617095171609 45205 1927\n",
"145 4916 44 14\n",
"349635951477 36106123740954124 98573 34441\n",
"925788714959 96322100031725408 92054 60779\n",
"26674807466 1870109097117044 81788 66136\n",
"274 4140 45 10\n",
"723896198002 51499967450600956 69846 24641\n",
"167902901259 6951019289944068 89131 1780\n",
"234 7120 100 20\n",
"10 6 10 9\n",
"770678486109 22046056358414016 33530 26247\n",
"1000000000000 99999999999999999 100000 99999\n",
"762165386087 30387541871424412 50653 10444\n",
"217860443650 6034676879163619 69811 23794\n",
"10 2 5 3\n",
"273950120471 13443354669488442 66084 42861\n",
"91179823860 5603936160630260 83969 50563\n",
"586620919668 3579247631251079 7829 2972\n",
"10 10 15 10\n",
"1000000000000 0 100000 99999\n",
"934954412120 41821365176919518 43902 32291\n",
"728961319347 41296937719710726 52437 42819\n",
"567018385179 15765533940665693 70514 13819\n",
"21644595275 987577030498703 66473 38440\n",
"1000000000000 1000000000000 7 3\n",
"61 346 15 8\n",
"778 18752 115 38\n",
"1626 464236 313 90\n",
"1252579684821 11261673116424810 25436 16077\n",
"255955272979 12186554461405819 84443 67017\n",
"800615518359 27492868036334099 39349 1968\n",
"681381921985 50915825165227299 94713 49302\n",
"526 20306 101 1\n",
"318683515195 21229345014119430 82662 56136\n",
"528779165237 9396634689650360 48273 6485\n",
"781429727430 47248576977719402 85951 35782\n",
"434885118278 10488684591116139 56582 23709\n",
"562066151912 26994768135772682 69964 51890\n",
"1000000000000 4 6 1\n",
"1000000000000 100000000000000000 100000 78533\n",
"130 360 4 1\n",
"1016723457870 57047872059963073 56261 47441\n",
"310059898330 15719841679546731 55352 27135\n",
"1108577267933 48182461851369906 73825 19927\n",
"696412900091 6736266643903368 54933 5916\n",
"627936103814 4254617095171609 56651 1927\n",
"145 4916 66 14\n",
"645162568811 36106123740954124 98573 34441\n",
"26649937200 1870109097117044 81788 66136\n",
"274 4140 45 8\n",
"234 7120 101 20\n",
"770678486109 22046056358414016 51408 26247\n",
"1000000000000 68088352351238212 100000 99999\n",
"762165386087 30387541871424412 90735 10444\n",
"397093763162 6034676879163619 69811 23794\n",
"273950120471 13443354669488442 93454 42861\n",
"689072378256 3579247631251079 7829 2972\n",
"11 10 15 10\n",
"1000000010000 0 100000 99999\n",
"986521542235 41821365176919518 43902 32291\n",
"27 60 3 1\n",
"20 0 28 5\n",
"23127939333 987577030498703 66473 38440\n",
"1000000000000 1000000000000 7 4\n",
"61 346 15 13\n",
"1073008108950 11261673116424810 25436 16077\n",
"255955272979 12186554461405819 84443 16112\n",
"526 12088 101 1\n",
"781429727430 47248576977719402 96729 35782\n",
"434885118278 3018002350592325 56582 23709\n",
"130 497 4 1\n",
"1016723457870 57047872059963073 56261 41421\n",
"162012525733 5432576028974229 58055 652\n",
"310059898330 15719841679546731 110562 27135\n",
"1108577267933 48182461851369906 125899 19927\n",
"706733805289 6736266643903368 54933 5916\n",
"461788563846 67788855547251287 93797 64701\n",
"1000000001000 100000000000000000 2 1\n",
"829472166240 86795313135266670 99396 29683\n",
"485893699458 9386899988612745 18092 3712\n",
"292125285461 45316046550943260 98938 8870\n",
"168571061796 15587958107141409 6881 67408\n",
"77402627512 52755669736852211 96570 37199\n",
"101 1 5 4\n",
"89098731339 5432576028974229 58055 652\n",
"2793081589 7102805144952765 44289 7844\n",
"443446305522 32747442079410032 69157 50453\n",
"418432416616 24658101316371093 12169 38173\n",
"925788714959 144591147723839756 92054 60779\n",
"723896198002 71829078543696504 69846 24641\n",
"167902901259 6951019289944068 6865 1780\n",
"10 2 10 9\n",
"91179823860 10867212342363410 83969 50563\n",
"10 2 5 4\n",
"742953363062 41296937719710726 52437 42819\n",
"461788563846 67788855547251287 93797 33861\n",
"1000001001000 100000000000000000 2 1\n",
"250942590153 86795313135266670 99396 29683\n",
"800615518359 41903389016474980 39349 1968\n",
"250607186981 50915825165227299 94713 49302\n",
"485893699458 9386899988612745 4495 3712\n",
"292125285461 45316046550943260 98938 5348\n",
"318683515195 34052234833359426 82662 56136\n",
"180944310543 9396634689650360 48273 6485\n",
"46320976162 15587958107141409 6881 67408\n",
"1000000000000 100000000000000100 100000 78533\n",
"77402627512 52755669736852211 96570 23835\n",
"101 2 5 4\n",
"2793081589 1816641096932155 44289 7844\n",
"336574279134 32747442079410032 69157 50453\n"
],
"output": [
"20 0 10\n",
"0 0 20\n",
"-1\n",
"634717821311 1235 94243496801\n",
"391194850251 31591 70593682004\n",
"439408390432 21735 127609973012\n",
"14856801037 25338 6787768900\n",
"-1\n",
"22 2 9\n",
"316 32 430\n",
"242155141 89212 210686124\n",
"1444 40 142\n",
"442745437221 10902 183806330847\n",
"290797673439 27158 25633500647\n",
"119994721911 10685 539011039016\n",
"-1\n",
"220078745839 11398 35876515742\n",
"-1\n",
"698692927740 8273 101922582346\n",
"537580105939 11996 385819523192\n",
"52 0 13\n",
"69402391377 49306 51764403975\n",
"-1\n",
"55 13 30\n",
"188 3 335\n",
"458024686435 14029 87614368035\n",
"256821083749 10497 37397289828\n",
"119334760673 4971 306424867248\n",
"179530657991 7772 349248499474\n",
"250262913633 202 155211221611\n",
"-1\n",
"355416098329 4780 79469015169\n",
"-1\n",
"-1\n",
"1 1 999999999998\n",
"1000000000000 0 0\n",
"90 0 40\n",
"546294573362 74929 77318585896\n",
"-1\n",
"185363912572 7343 321289614291\n",
"-1\n",
"-1\n",
"283997702553 31245 15276321089\n",
"-1\n",
"0 99999 999999900001\n",
"652657777056 73278 72044451731\n",
"399778534331 59466 43667711725\n",
"122626956087 16699 573785927305\n",
"411943266569 33167 6489116880\n",
"94118284813 15672 533817803329\n",
"106 18 21\n",
"-1\n",
"-1\n",
"22865323651 96 3809483719\n",
"92 0 182\n",
"-1\n",
"77986550528 30805 89916319926\n",
"71 1 162\n",
"-1\n",
"657502420434 7668 113176058007\n",
"999999999999 1 0\n",
"599915933004 11200 162249441883\n",
"86443056871 26727 131417360052\n",
"-1\n",
"203428283112 194 70521837165\n",
"66738106973 80221 24441636666\n",
"457178136015 1477 129442782176\n",
"0 1 9\n",
"0 0 1000000000000\n",
"-1\n",
"-1\n",
"223580185583 53149 343438146447\n",
"14856785031 50966 6787759278\n",
"142857142855 5 857142857140\n",
"22 2 37\n",
"132 94 552\n",
"1432 178 16\n",
"442745437221 10902 809834236698\n",
"144316899929 37016 111638336034\n",
"698692926503 36264 101922555592\n",
"537580105939 11996 143801804050\n",
"201 5 320\n",
"256821083749 10497 61862420949\n",
"194656113755 17017 334123034465\n",
"549715247270 49176 231714430984\n",
"185371387749 30769 249513699760\n",
"385837968988 9125 176228173799\n",
"0 4 999999999996\n",
"1000000000000 0 0\n",
"90 0 40\n",
"1013986095907 6706 2737355257\n",
"283997702553 31245 26062164532\n",
"652657777056 73278 455919417599\n",
"122626957036 2205 573785940850\n",
"75102241362 10261 552833852191\n",
"73 7 65\n",
"366288143815 73769 278874351227\n",
"22865323651 96 3784613453\n",
"92 0 182\n",
"60 53 121\n",
"428844850721 10384 341833625004\n",
"680883461725 61788 319116476487\n",
"334904292404 86188 427261007495\n",
"86443056871 26727 310650679564\n",
"143849941275 52672 130100126524\n",
"457178136015 1477 231894240764\n",
"0 1 10\n",
"0 0 1000000010000\n",
"952607264430 32638 33914245167\n",
"20 0 7\n",
"0 0 20\n",
"14856785031 50966 8271103336\n",
"142857142856 2 857142857142\n",
"17 7 37\n",
"442745437221 10902 630262660827\n",
"144316922145 37532 111638313302\n",
"119 69 338\n",
"488463375208 88235 292966263987\n",
"53338540260 44945 381546533073\n",
"124 1 5\n",
"1013986061114 54939 2737341817\n",
"93576367547 16922 68436141264\n",
"142181226938 31945 167878639447\n",
"382707249106 95156 725869923671\n",
"122626957036 2205 584106846048\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n"
]
} | 2CODEFORCES
|
1244_C. The Football Season_916 | The football season has just ended in Berland. According to the rules of Berland football, each match is played between two teams. The result of each match is either a draw, or a victory of one of the playing teams. If a team wins the match, it gets w points, and the opposing team gets 0 points. If the game results in a draw, both teams get d points.
The manager of the Berland capital team wants to summarize the results of the season, but, unfortunately, all information about the results of each match is lost. The manager only knows that the team has played n games and got p points for them.
You have to determine three integers x, y and z — the number of wins, draws and loses of the team. If there are multiple answers, print any of them. If there is no suitable triple (x, y, z), report about it.
Input
The first line contains four integers n, p, w and d (1 ≤ n ≤ 10^{12}, 0 ≤ p ≤ 10^{17}, 1 ≤ d < w ≤ 10^{5}) — the number of games, the number of points the team got, the number of points awarded for winning a match, and the number of points awarded for a draw, respectively. Note that w > d, so the number of points awarded for winning is strictly greater than the number of points awarded for draw.
Output
If there is no answer, print -1.
Otherwise print three non-negative integers x, y and z — the number of wins, draws and losses of the team. If there are multiple possible triples (x, y, z), print any of them. The numbers should meet the following conditions:
* x ⋅ w + y ⋅ d = p,
* x + y + z = n.
Examples
Input
30 60 3 1
Output
17 9 4
Input
10 51 5 4
Output
-1
Input
20 0 15 5
Output
0 0 20
Note
One of the possible answers in the first example — 17 wins, 9 draws and 4 losses. Then the team got 17 ⋅ 3 + 9 ⋅ 1 = 60 points in 17 + 9 + 4 = 30 games.
In the second example the maximum possible score is 10 ⋅ 5 = 50. Since p = 51, there is no answer.
In the third example the team got 0 points, so all 20 games were lost. | import java.util.*;
import java.io.*;
public class C592
{
public static void main(String [] args)
{
MyScanner sc = new MyScanner();
PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
long n = sc.nextLong(); long p = sc.nextLong(); long w = sc.nextLong(); long d = sc.nextLong();
boolean ok = false; long x = -1; long q = -1; long z = -1;
for (int y = 0; y <= w - 1; y++) {
long dif = p - y * d;
if (dif % w == 0 && dif / w + y <= n && dif / w >= 0 && dif / w + y >= 0) {
ok = true; q = y; x = dif / w; z = n - x - q; break;
}
}
if (ok) {
out.println(x + " " + q + " " + z);
} else out.println(-1);
out.close();
}
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | 4JAVA
| {
"input": [
"30 60 3 1\n",
"20 0 15 5\n",
"10 51 5 4\n",
"728961319347 33282698448966372 52437 42819\n",
"461788563846 36692905412962338 93797 64701\n",
"567018385179 15765533940665693 35879 13819\n",
"21644595275 987577030498703 66473 35329\n",
"1000000000000 1000000000000 6 3\n",
"33 346 15 8\n",
"778 37556 115 38\n",
"452930477 24015855239835 99139 99053\n",
"1626 464236 319 90\n",
"626551778970 11261673116424810 25436 16077\n",
"316431201244 22970110124811658 78990 69956\n",
"659005771612 8740175676351733 72838 11399\n",
"1000000000000 100000000000000000 2 1\n",
"255955272979 18584110298742443 84443 67017\n",
"829472166240 86795313135266670 99396 49566\n",
"800615518359 27492868036334099 39349 2743\n",
"923399641127 50915825165227299 94713 49302\n",
"65 156 3 2\n",
"121166844658 6273282308873264 90390 3089\n",
"485893699458 9386899988612745 18092 2271\n",
"98 1097 19 4\n",
"526 18991 101 1\n",
"545639068499 45316046550943260 98938 8870\n",
"294218384074 21229345014119430 82662 56136\n",
"425759632892 10334986958474555 86605 2090\n",
"528779165237 9396634689650360 52340 6485\n",
"405474135446 9175138941687990 36662 10272\n",
"781429727430 47248576977719402 55689 35782\n",
"434885118278 10488684591116139 29511 23709\n",
"325138082692 26994768135772682 69964 51890\n",
"168571061796 15587958107141409 89749 67408\n",
"1000000000000 4 3 1\n",
"1000000000000 100000000000000000 100000 99999\n",
"130 360 4 2\n",
"623613234187 52755669736852211 96570 37199\n",
"705649717763 57047872059963073 56261 47441\n",
"506653534206 7153934847788313 38594 815\n",
"100 1 5 4\n",
"89098731339 5432576028974229 58055 12533\n",
"299274054887 15719841679546731 55352 27135\n",
"144909459461 7102805144952765 44289 7844\n",
"1000000000000 9999800001 100000 99999\n",
"724702302065 48182461851369906 73825 19927\n",
"443446305522 27647487098967065 69157 50453\n",
"696412900091 6736266643903368 54933 3903\n",
"418432416616 24658101316371093 59858 38173\n",
"627936103814 4254617095171609 45205 1927\n",
"145 4916 44 14\n",
"349635951477 36106123740954124 98573 34441\n",
"925788714959 96322100031725408 92054 60779\n",
"26674807466 1870109097117044 81788 66136\n",
"274 4140 45 10\n",
"723896198002 51499967450600956 69846 24641\n",
"167902901259 6951019289944068 89131 1780\n",
"234 7120 100 20\n",
"10 6 10 9\n",
"770678486109 22046056358414016 33530 26247\n",
"1000000000000 99999999999999999 100000 99999\n",
"762165386087 30387541871424412 50653 10444\n",
"217860443650 6034676879163619 69811 23794\n",
"10 2 5 3\n",
"273950120471 13443354669488442 66084 42861\n",
"91179823860 5603936160630260 83969 50563\n",
"586620919668 3579247631251079 7829 2972\n",
"10 10 15 10\n",
"1000000000000 0 100000 99999\n",
"934954412120 41821365176919518 43902 32291\n",
"728961319347 41296937719710726 52437 42819\n",
"567018385179 15765533940665693 70514 13819\n",
"21644595275 987577030498703 66473 38440\n",
"1000000000000 1000000000000 7 3\n",
"61 346 15 8\n",
"778 18752 115 38\n",
"1626 464236 313 90\n",
"1252579684821 11261673116424810 25436 16077\n",
"255955272979 12186554461405819 84443 67017\n",
"800615518359 27492868036334099 39349 1968\n",
"681381921985 50915825165227299 94713 49302\n",
"526 20306 101 1\n",
"318683515195 21229345014119430 82662 56136\n",
"528779165237 9396634689650360 48273 6485\n",
"781429727430 47248576977719402 85951 35782\n",
"434885118278 10488684591116139 56582 23709\n",
"562066151912 26994768135772682 69964 51890\n",
"1000000000000 4 6 1\n",
"1000000000000 100000000000000000 100000 78533\n",
"130 360 4 1\n",
"1016723457870 57047872059963073 56261 47441\n",
"310059898330 15719841679546731 55352 27135\n",
"1108577267933 48182461851369906 73825 19927\n",
"696412900091 6736266643903368 54933 5916\n",
"627936103814 4254617095171609 56651 1927\n",
"145 4916 66 14\n",
"645162568811 36106123740954124 98573 34441\n",
"26649937200 1870109097117044 81788 66136\n",
"274 4140 45 8\n",
"234 7120 101 20\n",
"770678486109 22046056358414016 51408 26247\n",
"1000000000000 68088352351238212 100000 99999\n",
"762165386087 30387541871424412 90735 10444\n",
"397093763162 6034676879163619 69811 23794\n",
"273950120471 13443354669488442 93454 42861\n",
"689072378256 3579247631251079 7829 2972\n",
"11 10 15 10\n",
"1000000010000 0 100000 99999\n",
"986521542235 41821365176919518 43902 32291\n",
"27 60 3 1\n",
"20 0 28 5\n",
"23127939333 987577030498703 66473 38440\n",
"1000000000000 1000000000000 7 4\n",
"61 346 15 13\n",
"1073008108950 11261673116424810 25436 16077\n",
"255955272979 12186554461405819 84443 16112\n",
"526 12088 101 1\n",
"781429727430 47248576977719402 96729 35782\n",
"434885118278 3018002350592325 56582 23709\n",
"130 497 4 1\n",
"1016723457870 57047872059963073 56261 41421\n",
"162012525733 5432576028974229 58055 652\n",
"310059898330 15719841679546731 110562 27135\n",
"1108577267933 48182461851369906 125899 19927\n",
"706733805289 6736266643903368 54933 5916\n",
"461788563846 67788855547251287 93797 64701\n",
"1000000001000 100000000000000000 2 1\n",
"829472166240 86795313135266670 99396 29683\n",
"485893699458 9386899988612745 18092 3712\n",
"292125285461 45316046550943260 98938 8870\n",
"168571061796 15587958107141409 6881 67408\n",
"77402627512 52755669736852211 96570 37199\n",
"101 1 5 4\n",
"89098731339 5432576028974229 58055 652\n",
"2793081589 7102805144952765 44289 7844\n",
"443446305522 32747442079410032 69157 50453\n",
"418432416616 24658101316371093 12169 38173\n",
"925788714959 144591147723839756 92054 60779\n",
"723896198002 71829078543696504 69846 24641\n",
"167902901259 6951019289944068 6865 1780\n",
"10 2 10 9\n",
"91179823860 10867212342363410 83969 50563\n",
"10 2 5 4\n",
"742953363062 41296937719710726 52437 42819\n",
"461788563846 67788855547251287 93797 33861\n",
"1000001001000 100000000000000000 2 1\n",
"250942590153 86795313135266670 99396 29683\n",
"800615518359 41903389016474980 39349 1968\n",
"250607186981 50915825165227299 94713 49302\n",
"485893699458 9386899988612745 4495 3712\n",
"292125285461 45316046550943260 98938 5348\n",
"318683515195 34052234833359426 82662 56136\n",
"180944310543 9396634689650360 48273 6485\n",
"46320976162 15587958107141409 6881 67408\n",
"1000000000000 100000000000000100 100000 78533\n",
"77402627512 52755669736852211 96570 23835\n",
"101 2 5 4\n",
"2793081589 1816641096932155 44289 7844\n",
"336574279134 32747442079410032 69157 50453\n"
],
"output": [
"20 0 10\n",
"0 0 20\n",
"-1\n",
"634717821311 1235 94243496801\n",
"391194850251 31591 70593682004\n",
"439408390432 21735 127609973012\n",
"14856801037 25338 6787768900\n",
"-1\n",
"22 2 9\n",
"316 32 430\n",
"242155141 89212 210686124\n",
"1444 40 142\n",
"442745437221 10902 183806330847\n",
"290797673439 27158 25633500647\n",
"119994721911 10685 539011039016\n",
"-1\n",
"220078745839 11398 35876515742\n",
"-1\n",
"698692927740 8273 101922582346\n",
"537580105939 11996 385819523192\n",
"52 0 13\n",
"69402391377 49306 51764403975\n",
"-1\n",
"55 13 30\n",
"188 3 335\n",
"458024686435 14029 87614368035\n",
"256821083749 10497 37397289828\n",
"119334760673 4971 306424867248\n",
"179530657991 7772 349248499474\n",
"250262913633 202 155211221611\n",
"-1\n",
"355416098329 4780 79469015169\n",
"-1\n",
"-1\n",
"1 1 999999999998\n",
"1000000000000 0 0\n",
"90 0 40\n",
"546294573362 74929 77318585896\n",
"-1\n",
"185363912572 7343 321289614291\n",
"-1\n",
"-1\n",
"283997702553 31245 15276321089\n",
"-1\n",
"0 99999 999999900001\n",
"652657777056 73278 72044451731\n",
"399778534331 59466 43667711725\n",
"122626956087 16699 573785927305\n",
"411943266569 33167 6489116880\n",
"94118284813 15672 533817803329\n",
"106 18 21\n",
"-1\n",
"-1\n",
"22865323651 96 3809483719\n",
"92 0 182\n",
"-1\n",
"77986550528 30805 89916319926\n",
"71 1 162\n",
"-1\n",
"657502420434 7668 113176058007\n",
"999999999999 1 0\n",
"599915933004 11200 162249441883\n",
"86443056871 26727 131417360052\n",
"-1\n",
"203428283112 194 70521837165\n",
"66738106973 80221 24441636666\n",
"457178136015 1477 129442782176\n",
"0 1 9\n",
"0 0 1000000000000\n",
"-1\n",
"-1\n",
"223580185583 53149 343438146447\n",
"14856785031 50966 6787759278\n",
"142857142855 5 857142857140\n",
"22 2 37\n",
"132 94 552\n",
"1432 178 16\n",
"442745437221 10902 809834236698\n",
"144316899929 37016 111638336034\n",
"698692926503 36264 101922555592\n",
"537580105939 11996 143801804050\n",
"201 5 320\n",
"256821083749 10497 61862420949\n",
"194656113755 17017 334123034465\n",
"549715247270 49176 231714430984\n",
"185371387749 30769 249513699760\n",
"385837968988 9125 176228173799\n",
"0 4 999999999996\n",
"1000000000000 0 0\n",
"90 0 40\n",
"1013986095907 6706 2737355257\n",
"283997702553 31245 26062164532\n",
"652657777056 73278 455919417599\n",
"122626957036 2205 573785940850\n",
"75102241362 10261 552833852191\n",
"73 7 65\n",
"366288143815 73769 278874351227\n",
"22865323651 96 3784613453\n",
"92 0 182\n",
"60 53 121\n",
"428844850721 10384 341833625004\n",
"680883461725 61788 319116476487\n",
"334904292404 86188 427261007495\n",
"86443056871 26727 310650679564\n",
"143849941275 52672 130100126524\n",
"457178136015 1477 231894240764\n",
"0 1 10\n",
"0 0 1000000010000\n",
"952607264430 32638 33914245167\n",
"20 0 7\n",
"0 0 20\n",
"14856785031 50966 8271103336\n",
"142857142856 2 857142857142\n",
"17 7 37\n",
"442745437221 10902 630262660827\n",
"144316922145 37532 111638313302\n",
"119 69 338\n",
"488463375208 88235 292966263987\n",
"53338540260 44945 381546533073\n",
"124 1 5\n",
"1013986061114 54939 2737341817\n",
"93576367547 16922 68436141264\n",
"142181226938 31945 167878639447\n",
"382707249106 95156 725869923671\n",
"122626957036 2205 584106846048\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n"
]
} | 2CODEFORCES
|
1264_A. Beautiful Regional Contest_917 | So the Beautiful Regional Contest (BeRC) has come to an end! n students took part in the contest. The final standings are already known: the participant in the i-th place solved p_i problems. Since the participants are primarily sorted by the number of solved problems, then p_1 ≥ p_2 ≥ ... ≥ p_n.
Help the jury distribute the gold, silver and bronze medals. Let their numbers be g, s and b, respectively. Here is a list of requirements from the rules, which all must be satisfied:
* for each of the three types of medals, at least one medal must be awarded (that is, g>0, s>0 and b>0);
* the number of gold medals must be strictly less than the number of silver and the number of bronze (that is, g<s and g<b, but there are no requirements between s and b);
* each gold medalist must solve strictly more problems than any awarded with a silver medal;
* each silver medalist must solve strictly more problems than any awarded a bronze medal;
* each bronze medalist must solve strictly more problems than any participant not awarded a medal;
* the total number of medalists g+s+b should not exceed half of all participants (for example, if n=21, then you can award a maximum of 10 participants, and if n=26, then you can award a maximum of 13 participants).
The jury wants to reward with medals the total maximal number participants (i.e. to maximize g+s+b) so that all of the items listed above are fulfilled. Help the jury find such a way to award medals.
Input
The first line of the input contains an integer t (1 ≤ t ≤ 10000) — the number of test cases in the input. Then t test cases follow.
The first line of a test case contains an integer n (1 ≤ n ≤ 4⋅10^5) — the number of BeRC participants. The second line of a test case contains integers p_1, p_2, ..., p_n (0 ≤ p_i ≤ 10^6), where p_i is equal to the number of problems solved by the i-th participant from the final standings. The values p_i are sorted in non-increasing order, i.e. p_1 ≥ p_2 ≥ ... ≥ p_n.
The sum of n over all test cases in the input does not exceed 4⋅10^5.
Output
Print t lines, the j-th line should contain the answer to the j-th test case.
The answer consists of three non-negative integers g, s, b.
* Print g=s=b=0 if there is no way to reward participants with medals so that all requirements from the statement are satisfied at the same time.
* Otherwise, print three positive numbers g, s, b — the possible number of gold, silver and bronze medals, respectively. The sum of g+s+b should be the maximum possible. If there are several answers, print any of them.
Example
Input
5
12
5 4 4 3 2 2 1 1 1 1 1 1
4
4 3 2 1
1
1000000
20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
32
64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11
Output
1 2 3
0 0 0
0 0 0
2 5 3
2 6 6
Note
In the first test case, it is possible to reward 1 gold, 2 silver and 3 bronze medals. In this case, the participant solved 5 tasks will be rewarded with the gold medal, participants solved 4 tasks will be rewarded with silver medals, participants solved 2 or 3 tasks will be rewarded with bronze medals. Participants solved exactly 1 task won't be rewarded. It's easy to see, that in this case, all conditions are satisfied and it is possible to reward participants in this way. It is impossible to give more than 6 medals because the number of medals should not exceed half of the number of participants. The answer 1, 3, 2 is also correct in this test case.
In the second and third test cases, it is impossible to reward medals, because at least one medal of each type should be given, but the number of medals should not exceed half of the number of participants. | '''input
6
13
39 29 26 24 24 24 24 8 8 2 2 2 2
12
5 4 4 3 2 2 1 1 1 1 1 1
4
4 3 2 1
1
1000000
20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
32
64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11
'''
import sys
debug = 0
readln = sys.stdin.readline
def write(s):
sys.stdout.write(s)
def writeln(s):
sys.stdout.write(s)
sys.stdout.write('\n')
def readint():
return int(readln())
def readints():
return map(int, readln().split())
def readstr():
return readln()
def readstrs():
return readln().split()
def dprint(*args):
if debug: print(' '.join(map(str, args)))
def getn(p, start):
ans = 0
n = len(p)
for i in xrange(start, n):
if i != start and p[i] != p[i-1]:
return ans, i
if i >= n / 2:
return -1, -1
if i == start or p[i] == p[i-1]:
ans += 1
return -1, -1
def solve(p):
n = len(p)
g, s, b = 0, 0, 0
g, nstart = getn(p, 0)
if g < 0:
return 0,0,0
while s <= g:
tmp, nstart = getn(p, nstart)
if tmp >= 0: s += tmp
else: return 0,0,0
while b <= g:
tmp, nstart = getn(p, nstart)
if tmp >= 0: b += tmp
else: return 0,0,0
while True:
tmp, nstart = getn(p, nstart)
if tmp >= 0: b += tmp
else: break
return g,s,b
t = readint()
for _ in xrange(t):
n = readint()
p = readints()
g,s,b = solve(p)
writeln("%d %d %d" % (g,s,b)) | 1Python2
| {
"input": [
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n125 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 5 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 29 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 4 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 3 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 22 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 0 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 9 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 -1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 9 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 0 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 2 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 0 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 43 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 22 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 12 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 18 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 23 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 2 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 1 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 7 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 13 14 13 12 11 10 9 8 7 6 5 4 1 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 53 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 23 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 53 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 1 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 0\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 4\n32\n64 64 63 58 58 58 58 58 53 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 12\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 19 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000001\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 17 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 4 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n40 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 1 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 25 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n125 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 21 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 43 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 21 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 8 17 17 17 22 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 24 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 18 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 3 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 4 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n87 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 12 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000001\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 4 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 7 7 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 2 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 1 17 16 16 16 16 11\n"
],
"output": [
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"0 0 0\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 5 7\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"0 0 0\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n"
]
} | 2CODEFORCES
|
1264_A. Beautiful Regional Contest_918 | So the Beautiful Regional Contest (BeRC) has come to an end! n students took part in the contest. The final standings are already known: the participant in the i-th place solved p_i problems. Since the participants are primarily sorted by the number of solved problems, then p_1 ≥ p_2 ≥ ... ≥ p_n.
Help the jury distribute the gold, silver and bronze medals. Let their numbers be g, s and b, respectively. Here is a list of requirements from the rules, which all must be satisfied:
* for each of the three types of medals, at least one medal must be awarded (that is, g>0, s>0 and b>0);
* the number of gold medals must be strictly less than the number of silver and the number of bronze (that is, g<s and g<b, but there are no requirements between s and b);
* each gold medalist must solve strictly more problems than any awarded with a silver medal;
* each silver medalist must solve strictly more problems than any awarded a bronze medal;
* each bronze medalist must solve strictly more problems than any participant not awarded a medal;
* the total number of medalists g+s+b should not exceed half of all participants (for example, if n=21, then you can award a maximum of 10 participants, and if n=26, then you can award a maximum of 13 participants).
The jury wants to reward with medals the total maximal number participants (i.e. to maximize g+s+b) so that all of the items listed above are fulfilled. Help the jury find such a way to award medals.
Input
The first line of the input contains an integer t (1 ≤ t ≤ 10000) — the number of test cases in the input. Then t test cases follow.
The first line of a test case contains an integer n (1 ≤ n ≤ 4⋅10^5) — the number of BeRC participants. The second line of a test case contains integers p_1, p_2, ..., p_n (0 ≤ p_i ≤ 10^6), where p_i is equal to the number of problems solved by the i-th participant from the final standings. The values p_i are sorted in non-increasing order, i.e. p_1 ≥ p_2 ≥ ... ≥ p_n.
The sum of n over all test cases in the input does not exceed 4⋅10^5.
Output
Print t lines, the j-th line should contain the answer to the j-th test case.
The answer consists of three non-negative integers g, s, b.
* Print g=s=b=0 if there is no way to reward participants with medals so that all requirements from the statement are satisfied at the same time.
* Otherwise, print three positive numbers g, s, b — the possible number of gold, silver and bronze medals, respectively. The sum of g+s+b should be the maximum possible. If there are several answers, print any of them.
Example
Input
5
12
5 4 4 3 2 2 1 1 1 1 1 1
4
4 3 2 1
1
1000000
20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
32
64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11
Output
1 2 3
0 0 0
0 0 0
2 5 3
2 6 6
Note
In the first test case, it is possible to reward 1 gold, 2 silver and 3 bronze medals. In this case, the participant solved 5 tasks will be rewarded with the gold medal, participants solved 4 tasks will be rewarded with silver medals, participants solved 2 or 3 tasks will be rewarded with bronze medals. Participants solved exactly 1 task won't be rewarded. It's easy to see, that in this case, all conditions are satisfied and it is possible to reward participants in this way. It is impossible to give more than 6 medals because the number of medals should not exceed half of the number of participants. The answer 1, 3, 2 is also correct in this test case.
In the second and third test cases, it is impossible to reward medals, because at least one medal of each type should be given, but the number of medals should not exceed half of the number of participants. | #include <bits/stdc++.h>
using namespace std;
int p[400100];
int s[400100];
int cnt[1000100], ct[400100];
int main() {
int t;
cin >> t;
while (t--) {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &p[i]);
int len = 0;
for (int i = 1; i <= n; i++) {
if (cnt[p[i]] == 0 and i > 1) {
ct[++len] = cnt[p[i - 1]];
cnt[p[i]]++;
continue;
}
cnt[p[i]]++;
}
ct[++len] = cnt[p[n]];
for (int i = 1; i <= len; i++) s[i] = s[i - 1] + ct[i];
int id = upper_bound(s + 1, s + len + 1, n / 2) - s - 1;
int g = ct[1];
int st = upper_bound(s + 1, s + len + 1, 2 * g) - s;
int ed = upper_bound(s + 1, s + len + 1, s[st] + g) - s;
if (ed <= id) {
printf("%d %d %d\n", g, s[st] - g, s[id] - s[st]);
} else {
puts("0 0 0");
}
for (int i = 1; i <= n; i++) cnt[p[i]] = 0;
for (int i = 1; i <= len; i++) s[i] = 0, ct[i] = 0;
}
return 0;
}
| 2C++
| {
"input": [
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n125 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 5 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 29 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 4 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 3 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 22 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 0 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 9 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 -1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 9 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 0 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 2 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 0 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 43 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 22 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 12 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 18 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 23 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 2 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 1 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 7 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 13 14 13 12 11 10 9 8 7 6 5 4 1 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 53 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 23 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 53 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 1 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 0\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 4\n32\n64 64 63 58 58 58 58 58 53 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 12\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 19 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000001\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 17 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 4 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n40 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 1 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 25 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n125 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 21 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 43 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 21 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 8 17 17 17 22 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 24 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 18 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 3 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 4 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n87 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 12 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000001\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 4 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 7 7 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 2 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 1 17 16 16 16 16 11\n"
],
"output": [
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"0 0 0\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 5 7\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"0 0 0\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n"
]
} | 2CODEFORCES
|
1264_A. Beautiful Regional Contest_919 | So the Beautiful Regional Contest (BeRC) has come to an end! n students took part in the contest. The final standings are already known: the participant in the i-th place solved p_i problems. Since the participants are primarily sorted by the number of solved problems, then p_1 ≥ p_2 ≥ ... ≥ p_n.
Help the jury distribute the gold, silver and bronze medals. Let their numbers be g, s and b, respectively. Here is a list of requirements from the rules, which all must be satisfied:
* for each of the three types of medals, at least one medal must be awarded (that is, g>0, s>0 and b>0);
* the number of gold medals must be strictly less than the number of silver and the number of bronze (that is, g<s and g<b, but there are no requirements between s and b);
* each gold medalist must solve strictly more problems than any awarded with a silver medal;
* each silver medalist must solve strictly more problems than any awarded a bronze medal;
* each bronze medalist must solve strictly more problems than any participant not awarded a medal;
* the total number of medalists g+s+b should not exceed half of all participants (for example, if n=21, then you can award a maximum of 10 participants, and if n=26, then you can award a maximum of 13 participants).
The jury wants to reward with medals the total maximal number participants (i.e. to maximize g+s+b) so that all of the items listed above are fulfilled. Help the jury find such a way to award medals.
Input
The first line of the input contains an integer t (1 ≤ t ≤ 10000) — the number of test cases in the input. Then t test cases follow.
The first line of a test case contains an integer n (1 ≤ n ≤ 4⋅10^5) — the number of BeRC participants. The second line of a test case contains integers p_1, p_2, ..., p_n (0 ≤ p_i ≤ 10^6), where p_i is equal to the number of problems solved by the i-th participant from the final standings. The values p_i are sorted in non-increasing order, i.e. p_1 ≥ p_2 ≥ ... ≥ p_n.
The sum of n over all test cases in the input does not exceed 4⋅10^5.
Output
Print t lines, the j-th line should contain the answer to the j-th test case.
The answer consists of three non-negative integers g, s, b.
* Print g=s=b=0 if there is no way to reward participants with medals so that all requirements from the statement are satisfied at the same time.
* Otherwise, print three positive numbers g, s, b — the possible number of gold, silver and bronze medals, respectively. The sum of g+s+b should be the maximum possible. If there are several answers, print any of them.
Example
Input
5
12
5 4 4 3 2 2 1 1 1 1 1 1
4
4 3 2 1
1
1000000
20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
32
64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11
Output
1 2 3
0 0 0
0 0 0
2 5 3
2 6 6
Note
In the first test case, it is possible to reward 1 gold, 2 silver and 3 bronze medals. In this case, the participant solved 5 tasks will be rewarded with the gold medal, participants solved 4 tasks will be rewarded with silver medals, participants solved 2 or 3 tasks will be rewarded with bronze medals. Participants solved exactly 1 task won't be rewarded. It's easy to see, that in this case, all conditions are satisfied and it is possible to reward participants in this way. It is impossible to give more than 6 medals because the number of medals should not exceed half of the number of participants. The answer 1, 3, 2 is also correct in this test case.
In the second and third test cases, it is impossible to reward medals, because at least one medal of each type should be given, but the number of medals should not exceed half of the number of participants. | '''input
5
12
5 4 4 3 2 2 1 1 1 1 1 1
4
4 3 2 1
1
1000000
20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
32
64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11
'''
t=int(input())
for i in range(t):
n=int(input())
s=list(map(int,input().split()))
if n//2<3:
print("0 0 0")
continue
dict={}
l=[]
flag=-1
if s[n//2-1]==s[n//2]:
flag=s[n//2]
for j in range(n//2):
if s[j]!=flag:
if dict.get(s[j])==None:
dict[s[j]]=0
l.append(s[j])
dict[s[j]]+=1
total=0
for j in range(len(l)):
total+=dict[l[j]]
if len(l)<3:
print("0 0 0")
continue
g=dict[l[0]]
s=0
b=0
for j in range(1,len(l)):
if(s<=g):
s+=dict[l[j]]
else:
break
b=total-g-s
if g>=s or g>=b:
print("0 0 0")
continue
print(g,s,b) | 3Python3
| {
"input": [
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n125 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 5 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 29 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 4 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 3 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 22 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 0 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 9 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 -1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 9 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 0 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 2 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 0 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 43 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 22 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 12 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 18 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 23 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 2 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 1 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 7 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 13 14 13 12 11 10 9 8 7 6 5 4 1 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 53 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 23 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 53 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 1 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 0\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 4\n32\n64 64 63 58 58 58 58 58 53 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 12\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 19 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000001\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 17 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 4 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n40 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 1 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 25 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n125 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 21 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 43 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 21 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 8 17 17 17 22 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 24 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 18 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 3 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 4 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n87 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 12 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000001\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 4 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 7 7 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 2 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 1 17 16 16 16 16 11\n"
],
"output": [
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"0 0 0\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 5 7\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"0 0 0\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n"
]
} | 2CODEFORCES
|
1264_A. Beautiful Regional Contest_920 | So the Beautiful Regional Contest (BeRC) has come to an end! n students took part in the contest. The final standings are already known: the participant in the i-th place solved p_i problems. Since the participants are primarily sorted by the number of solved problems, then p_1 ≥ p_2 ≥ ... ≥ p_n.
Help the jury distribute the gold, silver and bronze medals. Let their numbers be g, s and b, respectively. Here is a list of requirements from the rules, which all must be satisfied:
* for each of the three types of medals, at least one medal must be awarded (that is, g>0, s>0 and b>0);
* the number of gold medals must be strictly less than the number of silver and the number of bronze (that is, g<s and g<b, but there are no requirements between s and b);
* each gold medalist must solve strictly more problems than any awarded with a silver medal;
* each silver medalist must solve strictly more problems than any awarded a bronze medal;
* each bronze medalist must solve strictly more problems than any participant not awarded a medal;
* the total number of medalists g+s+b should not exceed half of all participants (for example, if n=21, then you can award a maximum of 10 participants, and if n=26, then you can award a maximum of 13 participants).
The jury wants to reward with medals the total maximal number participants (i.e. to maximize g+s+b) so that all of the items listed above are fulfilled. Help the jury find such a way to award medals.
Input
The first line of the input contains an integer t (1 ≤ t ≤ 10000) — the number of test cases in the input. Then t test cases follow.
The first line of a test case contains an integer n (1 ≤ n ≤ 4⋅10^5) — the number of BeRC participants. The second line of a test case contains integers p_1, p_2, ..., p_n (0 ≤ p_i ≤ 10^6), where p_i is equal to the number of problems solved by the i-th participant from the final standings. The values p_i are sorted in non-increasing order, i.e. p_1 ≥ p_2 ≥ ... ≥ p_n.
The sum of n over all test cases in the input does not exceed 4⋅10^5.
Output
Print t lines, the j-th line should contain the answer to the j-th test case.
The answer consists of three non-negative integers g, s, b.
* Print g=s=b=0 if there is no way to reward participants with medals so that all requirements from the statement are satisfied at the same time.
* Otherwise, print three positive numbers g, s, b — the possible number of gold, silver and bronze medals, respectively. The sum of g+s+b should be the maximum possible. If there are several answers, print any of them.
Example
Input
5
12
5 4 4 3 2 2 1 1 1 1 1 1
4
4 3 2 1
1
1000000
20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
32
64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11
Output
1 2 3
0 0 0
0 0 0
2 5 3
2 6 6
Note
In the first test case, it is possible to reward 1 gold, 2 silver and 3 bronze medals. In this case, the participant solved 5 tasks will be rewarded with the gold medal, participants solved 4 tasks will be rewarded with silver medals, participants solved 2 or 3 tasks will be rewarded with bronze medals. Participants solved exactly 1 task won't be rewarded. It's easy to see, that in this case, all conditions are satisfied and it is possible to reward participants in this way. It is impossible to give more than 6 medals because the number of medals should not exceed half of the number of participants. The answer 1, 3, 2 is also correct in this test case.
In the second and third test cases, it is impossible to reward medals, because at least one medal of each type should be given, but the number of medals should not exceed half of the number of participants. | import java.util.*;
import java.io.*;
public class bfs {
static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
int t=Integer.parseInt(reader.readLine());
while(t-->0){
int n=Integer.parseInt(reader.readLine());
String[] temp=reader.readLine().split(" ");
int[] arr=new int[n];
for (int i=0;i<n;i++) {
arr[i]=Integer.parseInt(temp[i]);
}
if(n<=3) {System.out.println("0 0 0");
continue;
}
int g=0,s=0,b=0;
ArrayList<Integer> jj=new ArrayList<>();
int count=1;
for( int i=1;i<=n/2;i++) {
if (arr[i-1]==arr[i]) {
count++;
}
else {
jj.add(count);
count=1;
}
if(arr[i]==arr[n/2]) break;
}
int ss=jj.size();
if(!jj.isEmpty())
g=jj.get(0);
else {
System.out.println("0 0 0");continue;
}
for( int i=1;i<ss;i++) {
if(s<=g ) {
s+=jj.get(i);
}
else {
b+=jj.get(i);
}
}
if(g>=s || g>=b || s==0 || b==0) {
System.out.println("0 0 0");
}else
System.out.println(g+" "+s+" "+b);
}
}}
| 4JAVA
| {
"input": [
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n125 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 5 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 29 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 4 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 3 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 22 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 0 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 9 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 -1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 9 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 0 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 2 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 0 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 11 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 43 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 22 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 12 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 18 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 23 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 2 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 1 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 7 7 9 6 5 4 3 2 1\n32\n108 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 13 14 13 12 11 10 9 8 7 6 5 4 1 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 53 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 23 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 53 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 1 2\n1\n1000100\n20\n20 19 18 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 0\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 4\n32\n64 64 63 58 58 58 58 58 53 45 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 3 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 12\n",
"5\n12\n5 4 4 3 2 1 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 19 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000001\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 17 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 4 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 7 5 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n40 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 1 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 9 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 46 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 2\n1\n1000100\n20\n20 19 25 17 16 15 14 13 15 11 10 9 8 7 6 5 4 3 2 1\n32\n125 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 1 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 17 17 16 12 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 11 28 28 24 24 19 21 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000100\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 43 37 37 37 34 34 28 28 28 20 28 28 24 24 19 17 17 17 17 16 16 21 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 48 34 28 28 28 28 28 28 24 24 8 17 17 17 22 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n1000110\n20\n20 19 24 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 18 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 11 16 3 11\n",
"5\n12\n5 4 4 3 2 2 1 1 1 1 1 1\n4\n4 3 2 1\n1\n0000110\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 9 6 5 4 3 4 1\n32\n64 64 63 58 58 58 58 58 37 37 37 56 34 34 28 28 28 20 9 28 24 24 19 17 17 17 17 16 16 16 16 8\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n87 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 17 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 0 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 14 28 28 24 24 19 12 6 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000001\n20\n20 19 18 17 16 15 14 13 12 11 9 9 8 7 6 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 4 28 28 24 24 19 17 17 17 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 1 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 7 7 7 5 4 3 2 1\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 13 17 16 16 16 16 11\n",
"5\n12\n5 4 4 3 2 2 2 1 0 1 1 1\n4\n4 3 2 1\n1\n1000000\n20\n20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 2\n32\n64 64 63 58 58 58 58 58 37 37 37 37 34 34 28 28 28 28 28 28 24 24 19 17 17 1 17 16 16 16 16 11\n"
],
"output": [
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"0 0 0\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 5 7\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 2\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n1 2 11\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"1 2 3\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n",
"0 0 0\n0 0 0\n0 0 0\n1 2 7\n2 6 6\n"
]
} | 2CODEFORCES
|
1285_C. Fadi and LCM_921 | Today, Osama gave Fadi an integer X, and Fadi was wondering about the minimum possible value of max(a, b) such that LCM(a, b) equals X. Both a and b should be positive integers.
LCM(a, b) is the smallest positive integer that is divisible by both a and b. For example, LCM(6, 8) = 24, LCM(4, 12) = 12, LCM(2, 3) = 6.
Of course, Fadi immediately knew the answer. Can you be just like Fadi and find any such pair?
Input
The first and only line contains an integer X (1 ≤ X ≤ 10^{12}).
Output
Print two positive integers, a and b, such that the value of max(a, b) is minimum possible and LCM(a, b) equals X. If there are several possible such pairs, you can print any.
Examples
Input
2
Output
1 2
Input
6
Output
2 3
Input
4
Output
1 4
Input
1
Output
1 1 | def gcd(a,b):
while b:
a,b=b,a%b
return a
n=input()
maxx=n
for i in range(1,int(n**(0.5)+1)):
if n%i==0:
s=n/i
x=gcd(i,s)
m=max(i,s)
m*=x
maxx=min(maxx,m)
a=maxx
b=n/maxx
b*=gcd(a,b)
print min(a,b),max(a,b)
| 1Python2
| {
"input": [
"1\n",
"4\n",
"6\n",
"2\n",
"205078485761\n",
"873109054817\n",
"518649879439\n",
"401021537803\n",
"821985629174\n",
"614685146646\n",
"551519879446\n",
"583102513046\n",
"690824608515\n",
"681460970070\n",
"355170254369\n",
"924639053494\n",
"726702209411\n",
"287784545004\n",
"914665370955\n",
"645583369174\n",
"671487287531\n",
"878787770060\n",
"966195369633\n",
"416673935585\n",
"438282886646\n",
"2038074743\n",
"24\n",
"126260820780\n",
"526667661132\n",
"857863230070\n",
"147869771841\n",
"991921850317\n",
"738263110956\n",
"406700253046\n",
"220324310508\n",
"256201911404\n",
"965585325539\n",
"8728860684\n",
"981441194380\n",
"432604171403\n",
"185131120683\n",
"999966000289\n",
"483524125987\n",
"946248004555\n",
"723017286209\n",
"418335521569\n",
"956221687094\n",
"375802030518\n",
"200560490130\n",
"769845744556\n",
"199399770518\n",
"54580144118\n",
"451941492387\n",
"244641009859\n",
"659852019009\n",
"1000000000000\n",
"463502393932\n",
"934002691939\n",
"252097800623\n",
"157843454379\n",
"904691688417\n",
"167817136918\n",
"893056419894\n",
"963761198400\n",
"179452405440\n",
"997167959139\n",
"386752887969\n",
"213058376259\n",
"101041313494\n",
"691434652609\n",
"629930971393\n",
"308341796022\n",
"173495852161\n",
"69458679894\n",
"452551536481\n",
"484134170081\n",
"495085027532\n",
"639904653932\n",
"713043603670\n",
"111992170945\n",
"665808572289\n",
"999999999989\n",
"344219396918\n",
"934612736033\n",
"140303299577\n",
"192582416360\n",
"628664286016\n",
"65109088632\n",
"414153533126\n",
"182639942204\n",
"688247699499\n",
"17958769566\n",
"648295157479\n",
"906202950530\n",
"52060513729\n",
"672466471658\n",
"1920759094\n",
"30\n",
"63530561151\n",
"763812215560\n",
"944978185671\n",
"182044297372\n",
"124039431287\n",
"386202445606\n",
"339923213884\n",
"477856670853\n",
"3366686094\n",
"549160175915\n",
"267644568308\n",
"61094496602\n",
"342868561927\n",
"27715792218\n",
"24948886905\n",
"968076475438\n",
"680263906293\n",
"269432643000\n",
"300988633071\n",
"311026553637\n",
"773526351\n",
"130173701196\n",
"54248288303\n",
"754291610150\n",
"1000000010000\n",
"875711210051\n",
"851113045466\n",
"256732783424\n",
"65140096818\n",
"597312454546\n",
"312998113429\n",
"15092021603\n",
"102079743760\n",
"381330007930\n",
"282604943750\n",
"15702234503\n",
"629423750253\n",
"6605128194\n",
"333367991751\n",
"60998210888\n",
"724579492566\n",
"303063611364\n",
"166011077471\n",
"698826752744\n",
"16339768924\n",
"156962721936\n",
"23590631518\n",
"82260431800\n",
"3\n",
"8\n",
"261890559122\n",
"55835372970\n",
"57862748131\n",
"14785933174\n",
"541568945077\n",
"130152511309\n",
"63167190513\n",
"5754818196\n",
"72339963660\n",
"48221246381\n",
"888633320276\n",
"1004361432\n",
"54\n",
"4309579306\n",
"582613996699\n",
"291947330368\n",
"226839115295\n",
"682205858750\n",
"56409009632\n",
"844795526430\n",
"5889328928\n",
"744034595465\n",
"198498263244\n",
"35799189264\n"
],
"output": [
"1 1\n",
"1 4\n",
"2 3\n",
"1 2\n",
"185921 1103041\n",
"145967 5981551\n",
"1 518649879439\n",
"583081 687763\n",
"2 410992814587\n",
"6 102447524441\n",
"142 3883942813\n",
"2 291551256523\n",
"45 15351657967\n",
"748373 910590\n",
"7 50738607767\n",
"598 1546219153\n",
"623971 1164641\n",
"482119 596916\n",
"105 8711098771\n",
"7222 89391217\n",
"389527 1723853\n",
"689321 1274860\n",
"39 24774240247\n",
"309655 1345607\n",
"652531 671666\n",
"1 2038074743\n",
"3 8\n",
"22380 5641681\n",
"214836 2451487\n",
"824698 1040215\n",
"314347 470403\n",
"1 991921850317\n",
"4956 148963501\n",
"2 203350126523\n",
"12 18360359209\n",
"4 64050477851\n",
"163 5923836353\n",
"348 25082933\n",
"438980 2235731\n",
"207661 2083223\n",
"213 869160191\n",
"1 999966000289\n",
"1967 245818061\n",
"1855 510106741\n",
"528287 1368607\n",
"119 3515424551\n",
"933761 1024054\n",
"438918 856201\n",
"447051 448630\n",
"626341 1229116\n",
"12662 15747889\n",
"2 27290072059\n",
"427623 1056869\n",
"15703 15579253\n",
"313517 2104677\n",
"4096 244140625\n",
"2372 195405731\n",
"23 40608812693\n",
"1 252097800623\n",
"382083 413113\n",
"576747 1568611\n",
"94606 1773853\n",
"102 8755455097\n",
"969408 994175\n",
"418187 429120\n",
"955767 1043317\n",
"147 2630972027\n",
"3 71019458753\n",
"176374 572881\n",
"687347 1005947\n",
"37189 16938637\n",
"234 1317699983\n",
"1 173495852161\n",
"6 11576446649\n",
"11 41141048771\n",
"408007 1186583\n",
"53932 9179801\n",
"1004 637355233\n",
"674777 1056710\n",
"243989 459005\n",
"8043 82781123\n",
"1 999999999989\n",
"2 172109698459\n",
"89 10501266697\n",
"252679 555263\n",
"282232 682355\n",
"832 755606113\n",
"216264 301063\n",
"504334 821189\n",
"68 2685881503\n",
"507951 1354949\n",
"438 41001757\n",
"617 1050721487\n",
"13190 68703787\n",
"1043 49914203\n",
"15062 44646559\n",
"35807 53642\n",
"5 6\n",
"9 7058951239\n",
"40 19095305389\n",
"960999 983329\n",
"28 6501582049\n",
"316913 391399\n",
"34 11358895459\n",
"307676 1104809\n",
"589307 810879\n",
"48777 69022\n",
"4615 118994621\n",
"9308 28754251\n",
"194198 314599\n",
"232987 1471621\n",
"8958 3093971\n",
"137539 181395\n",
"2 484038237719\n",
"63243 10756351\n",
"489000 550987\n",
"487173 617827\n",
"550779 564703\n",
"6591 117361\n",
"359436 362161\n",
"120499 450197\n",
"642374 1174225\n",
"170000 5882353\n",
"112033 7816547\n",
"158 5386791427\n",
"266701 962624\n",
"99942 651779\n",
"34 17568013369\n",
"42349 7390921\n",
"1 15092021603\n",
"2480 41161187\n",
"530 719490581\n",
"447691 631250\n",
"14137 1110719\n",
"112677 5586089\n",
"15162 435637\n",
"111 3003315241\n",
"17176 3551363\n",
"6 120763248761\n",
"2196 138007109\n",
"1 166011077471\n",
"8 87353344093\n",
"123428 132383\n",
"360336 435601\n",
"898 26270191\n",
"200 411302159\n",
"1 3\n",
"1 8\n",
"502189 521498\n",
"1170 47722541\n",
"196699 294169\n",
"334 44269261\n",
"1 541568945077\n",
"17 7656030077\n",
"111279 567647\n",
"37764 152389\n",
"238365 303484\n",
"120439 400379\n",
"755453 1176292\n",
"456 2202547\n",
"2 27\n",
"2 2154789653\n",
"7 83230570957\n",
"511552 570709\n",
"1235 183675397\n",
"583750 1168661\n",
"992 56863921\n",
"20310 41595053\n",
"47584 123767\n",
"732865 1015241\n",
"20676 9600419\n",
"80273 445968\n"
]
} | 2CODEFORCES
|
1285_C. Fadi and LCM_922 | Today, Osama gave Fadi an integer X, and Fadi was wondering about the minimum possible value of max(a, b) such that LCM(a, b) equals X. Both a and b should be positive integers.
LCM(a, b) is the smallest positive integer that is divisible by both a and b. For example, LCM(6, 8) = 24, LCM(4, 12) = 12, LCM(2, 3) = 6.
Of course, Fadi immediately knew the answer. Can you be just like Fadi and find any such pair?
Input
The first and only line contains an integer X (1 ≤ X ≤ 10^{12}).
Output
Print two positive integers, a and b, such that the value of max(a, b) is minimum possible and LCM(a, b) equals X. If there are several possible such pairs, you can print any.
Examples
Input
2
Output
1 2
Input
6
Output
2 3
Input
4
Output
1 4
Input
1
Output
1 1 | #include <bits/stdc++.h>
using namespace std;
vector<long long> factors;
void trial(long long n) {
int count;
long long ini = n;
for (long long d = 2; d * d <= n; d++) {
if (n % d == 0) {
ini = n;
while (n % d == 0) {
n /= d;
}
long long s = ini / n;
factors.push_back(s);
}
}
if (n > 1) {
factors.push_back(n);
}
}
int main() {
long long n;
cin >> n;
trial(n);
int siz = factors.size();
long long a = 1;
long long b = 1;
long long ra = 1, rb = 1;
long long mini = 1000000000000;
for (int i = 1; i < (1 << siz); i++) {
a = 1;
b = 1;
for (int j = 1; j <= siz; j++) {
if (i & (1 << (j - 1)))
a *= factors[siz - j];
else
b *= factors[siz - j];
}
if (mini > max(a, b)) {
ra = a;
rb = b;
mini = max(a, b);
}
}
cout << ra << ' ' << rb << endl;
}
| 2C++
| {
"input": [
"1\n",
"4\n",
"6\n",
"2\n",
"205078485761\n",
"873109054817\n",
"518649879439\n",
"401021537803\n",
"821985629174\n",
"614685146646\n",
"551519879446\n",
"583102513046\n",
"690824608515\n",
"681460970070\n",
"355170254369\n",
"924639053494\n",
"726702209411\n",
"287784545004\n",
"914665370955\n",
"645583369174\n",
"671487287531\n",
"878787770060\n",
"966195369633\n",
"416673935585\n",
"438282886646\n",
"2038074743\n",
"24\n",
"126260820780\n",
"526667661132\n",
"857863230070\n",
"147869771841\n",
"991921850317\n",
"738263110956\n",
"406700253046\n",
"220324310508\n",
"256201911404\n",
"965585325539\n",
"8728860684\n",
"981441194380\n",
"432604171403\n",
"185131120683\n",
"999966000289\n",
"483524125987\n",
"946248004555\n",
"723017286209\n",
"418335521569\n",
"956221687094\n",
"375802030518\n",
"200560490130\n",
"769845744556\n",
"199399770518\n",
"54580144118\n",
"451941492387\n",
"244641009859\n",
"659852019009\n",
"1000000000000\n",
"463502393932\n",
"934002691939\n",
"252097800623\n",
"157843454379\n",
"904691688417\n",
"167817136918\n",
"893056419894\n",
"963761198400\n",
"179452405440\n",
"997167959139\n",
"386752887969\n",
"213058376259\n",
"101041313494\n",
"691434652609\n",
"629930971393\n",
"308341796022\n",
"173495852161\n",
"69458679894\n",
"452551536481\n",
"484134170081\n",
"495085027532\n",
"639904653932\n",
"713043603670\n",
"111992170945\n",
"665808572289\n",
"999999999989\n",
"344219396918\n",
"934612736033\n",
"140303299577\n",
"192582416360\n",
"628664286016\n",
"65109088632\n",
"414153533126\n",
"182639942204\n",
"688247699499\n",
"17958769566\n",
"648295157479\n",
"906202950530\n",
"52060513729\n",
"672466471658\n",
"1920759094\n",
"30\n",
"63530561151\n",
"763812215560\n",
"944978185671\n",
"182044297372\n",
"124039431287\n",
"386202445606\n",
"339923213884\n",
"477856670853\n",
"3366686094\n",
"549160175915\n",
"267644568308\n",
"61094496602\n",
"342868561927\n",
"27715792218\n",
"24948886905\n",
"968076475438\n",
"680263906293\n",
"269432643000\n",
"300988633071\n",
"311026553637\n",
"773526351\n",
"130173701196\n",
"54248288303\n",
"754291610150\n",
"1000000010000\n",
"875711210051\n",
"851113045466\n",
"256732783424\n",
"65140096818\n",
"597312454546\n",
"312998113429\n",
"15092021603\n",
"102079743760\n",
"381330007930\n",
"282604943750\n",
"15702234503\n",
"629423750253\n",
"6605128194\n",
"333367991751\n",
"60998210888\n",
"724579492566\n",
"303063611364\n",
"166011077471\n",
"698826752744\n",
"16339768924\n",
"156962721936\n",
"23590631518\n",
"82260431800\n",
"3\n",
"8\n",
"261890559122\n",
"55835372970\n",
"57862748131\n",
"14785933174\n",
"541568945077\n",
"130152511309\n",
"63167190513\n",
"5754818196\n",
"72339963660\n",
"48221246381\n",
"888633320276\n",
"1004361432\n",
"54\n",
"4309579306\n",
"582613996699\n",
"291947330368\n",
"226839115295\n",
"682205858750\n",
"56409009632\n",
"844795526430\n",
"5889328928\n",
"744034595465\n",
"198498263244\n",
"35799189264\n"
],
"output": [
"1 1\n",
"1 4\n",
"2 3\n",
"1 2\n",
"185921 1103041\n",
"145967 5981551\n",
"1 518649879439\n",
"583081 687763\n",
"2 410992814587\n",
"6 102447524441\n",
"142 3883942813\n",
"2 291551256523\n",
"45 15351657967\n",
"748373 910590\n",
"7 50738607767\n",
"598 1546219153\n",
"623971 1164641\n",
"482119 596916\n",
"105 8711098771\n",
"7222 89391217\n",
"389527 1723853\n",
"689321 1274860\n",
"39 24774240247\n",
"309655 1345607\n",
"652531 671666\n",
"1 2038074743\n",
"3 8\n",
"22380 5641681\n",
"214836 2451487\n",
"824698 1040215\n",
"314347 470403\n",
"1 991921850317\n",
"4956 148963501\n",
"2 203350126523\n",
"12 18360359209\n",
"4 64050477851\n",
"163 5923836353\n",
"348 25082933\n",
"438980 2235731\n",
"207661 2083223\n",
"213 869160191\n",
"1 999966000289\n",
"1967 245818061\n",
"1855 510106741\n",
"528287 1368607\n",
"119 3515424551\n",
"933761 1024054\n",
"438918 856201\n",
"447051 448630\n",
"626341 1229116\n",
"12662 15747889\n",
"2 27290072059\n",
"427623 1056869\n",
"15703 15579253\n",
"313517 2104677\n",
"4096 244140625\n",
"2372 195405731\n",
"23 40608812693\n",
"1 252097800623\n",
"382083 413113\n",
"576747 1568611\n",
"94606 1773853\n",
"102 8755455097\n",
"969408 994175\n",
"418187 429120\n",
"955767 1043317\n",
"147 2630972027\n",
"3 71019458753\n",
"176374 572881\n",
"687347 1005947\n",
"37189 16938637\n",
"234 1317699983\n",
"1 173495852161\n",
"6 11576446649\n",
"11 41141048771\n",
"408007 1186583\n",
"53932 9179801\n",
"1004 637355233\n",
"674777 1056710\n",
"243989 459005\n",
"8043 82781123\n",
"1 999999999989\n",
"2 172109698459\n",
"89 10501266697\n",
"252679 555263\n",
"282232 682355\n",
"832 755606113\n",
"216264 301063\n",
"504334 821189\n",
"68 2685881503\n",
"507951 1354949\n",
"438 41001757\n",
"617 1050721487\n",
"13190 68703787\n",
"1043 49914203\n",
"15062 44646559\n",
"35807 53642\n",
"5 6\n",
"9 7058951239\n",
"40 19095305389\n",
"960999 983329\n",
"28 6501582049\n",
"316913 391399\n",
"34 11358895459\n",
"307676 1104809\n",
"589307 810879\n",
"48777 69022\n",
"4615 118994621\n",
"9308 28754251\n",
"194198 314599\n",
"232987 1471621\n",
"8958 3093971\n",
"137539 181395\n",
"2 484038237719\n",
"63243 10756351\n",
"489000 550987\n",
"487173 617827\n",
"550779 564703\n",
"6591 117361\n",
"359436 362161\n",
"120499 450197\n",
"642374 1174225\n",
"170000 5882353\n",
"112033 7816547\n",
"158 5386791427\n",
"266701 962624\n",
"99942 651779\n",
"34 17568013369\n",
"42349 7390921\n",
"1 15092021603\n",
"2480 41161187\n",
"530 719490581\n",
"447691 631250\n",
"14137 1110719\n",
"112677 5586089\n",
"15162 435637\n",
"111 3003315241\n",
"17176 3551363\n",
"6 120763248761\n",
"2196 138007109\n",
"1 166011077471\n",
"8 87353344093\n",
"123428 132383\n",
"360336 435601\n",
"898 26270191\n",
"200 411302159\n",
"1 3\n",
"1 8\n",
"502189 521498\n",
"1170 47722541\n",
"196699 294169\n",
"334 44269261\n",
"1 541568945077\n",
"17 7656030077\n",
"111279 567647\n",
"37764 152389\n",
"238365 303484\n",
"120439 400379\n",
"755453 1176292\n",
"456 2202547\n",
"2 27\n",
"2 2154789653\n",
"7 83230570957\n",
"511552 570709\n",
"1235 183675397\n",
"583750 1168661\n",
"992 56863921\n",
"20310 41595053\n",
"47584 123767\n",
"732865 1015241\n",
"20676 9600419\n",
"80273 445968\n"
]
} | 2CODEFORCES
|
1285_C. Fadi and LCM_923 | Today, Osama gave Fadi an integer X, and Fadi was wondering about the minimum possible value of max(a, b) such that LCM(a, b) equals X. Both a and b should be positive integers.
LCM(a, b) is the smallest positive integer that is divisible by both a and b. For example, LCM(6, 8) = 24, LCM(4, 12) = 12, LCM(2, 3) = 6.
Of course, Fadi immediately knew the answer. Can you be just like Fadi and find any such pair?
Input
The first and only line contains an integer X (1 ≤ X ≤ 10^{12}).
Output
Print two positive integers, a and b, such that the value of max(a, b) is minimum possible and LCM(a, b) equals X. If there are several possible such pairs, you can print any.
Examples
Input
2
Output
1 2
Input
6
Output
2 3
Input
4
Output
1 4
Input
1
Output
1 1 | def LMC(a, b):
n = a * b
while a != 0 and b != 0:
if a > b:
a = a % b
else:
b = b % a
nod = a + b
nok = n // nod
return nok
from math import sqrt, ceil
n = int(input())
dividers = []
for i in range(1, ceil(sqrt(n))):
if n % i == 0:
dividers.append([i, n // i])
dividers_with_LMC = []
for el in dividers:
if LMC(el[0], el[1]) == n:
dividers_with_LMC.append(el)
if n == 1:
print('1 1')
else:
print(*dividers_with_LMC[-1]) | 3Python3
| {
"input": [
"1\n",
"4\n",
"6\n",
"2\n",
"205078485761\n",
"873109054817\n",
"518649879439\n",
"401021537803\n",
"821985629174\n",
"614685146646\n",
"551519879446\n",
"583102513046\n",
"690824608515\n",
"681460970070\n",
"355170254369\n",
"924639053494\n",
"726702209411\n",
"287784545004\n",
"914665370955\n",
"645583369174\n",
"671487287531\n",
"878787770060\n",
"966195369633\n",
"416673935585\n",
"438282886646\n",
"2038074743\n",
"24\n",
"126260820780\n",
"526667661132\n",
"857863230070\n",
"147869771841\n",
"991921850317\n",
"738263110956\n",
"406700253046\n",
"220324310508\n",
"256201911404\n",
"965585325539\n",
"8728860684\n",
"981441194380\n",
"432604171403\n",
"185131120683\n",
"999966000289\n",
"483524125987\n",
"946248004555\n",
"723017286209\n",
"418335521569\n",
"956221687094\n",
"375802030518\n",
"200560490130\n",
"769845744556\n",
"199399770518\n",
"54580144118\n",
"451941492387\n",
"244641009859\n",
"659852019009\n",
"1000000000000\n",
"463502393932\n",
"934002691939\n",
"252097800623\n",
"157843454379\n",
"904691688417\n",
"167817136918\n",
"893056419894\n",
"963761198400\n",
"179452405440\n",
"997167959139\n",
"386752887969\n",
"213058376259\n",
"101041313494\n",
"691434652609\n",
"629930971393\n",
"308341796022\n",
"173495852161\n",
"69458679894\n",
"452551536481\n",
"484134170081\n",
"495085027532\n",
"639904653932\n",
"713043603670\n",
"111992170945\n",
"665808572289\n",
"999999999989\n",
"344219396918\n",
"934612736033\n",
"140303299577\n",
"192582416360\n",
"628664286016\n",
"65109088632\n",
"414153533126\n",
"182639942204\n",
"688247699499\n",
"17958769566\n",
"648295157479\n",
"906202950530\n",
"52060513729\n",
"672466471658\n",
"1920759094\n",
"30\n",
"63530561151\n",
"763812215560\n",
"944978185671\n",
"182044297372\n",
"124039431287\n",
"386202445606\n",
"339923213884\n",
"477856670853\n",
"3366686094\n",
"549160175915\n",
"267644568308\n",
"61094496602\n",
"342868561927\n",
"27715792218\n",
"24948886905\n",
"968076475438\n",
"680263906293\n",
"269432643000\n",
"300988633071\n",
"311026553637\n",
"773526351\n",
"130173701196\n",
"54248288303\n",
"754291610150\n",
"1000000010000\n",
"875711210051\n",
"851113045466\n",
"256732783424\n",
"65140096818\n",
"597312454546\n",
"312998113429\n",
"15092021603\n",
"102079743760\n",
"381330007930\n",
"282604943750\n",
"15702234503\n",
"629423750253\n",
"6605128194\n",
"333367991751\n",
"60998210888\n",
"724579492566\n",
"303063611364\n",
"166011077471\n",
"698826752744\n",
"16339768924\n",
"156962721936\n",
"23590631518\n",
"82260431800\n",
"3\n",
"8\n",
"261890559122\n",
"55835372970\n",
"57862748131\n",
"14785933174\n",
"541568945077\n",
"130152511309\n",
"63167190513\n",
"5754818196\n",
"72339963660\n",
"48221246381\n",
"888633320276\n",
"1004361432\n",
"54\n",
"4309579306\n",
"582613996699\n",
"291947330368\n",
"226839115295\n",
"682205858750\n",
"56409009632\n",
"844795526430\n",
"5889328928\n",
"744034595465\n",
"198498263244\n",
"35799189264\n"
],
"output": [
"1 1\n",
"1 4\n",
"2 3\n",
"1 2\n",
"185921 1103041\n",
"145967 5981551\n",
"1 518649879439\n",
"583081 687763\n",
"2 410992814587\n",
"6 102447524441\n",
"142 3883942813\n",
"2 291551256523\n",
"45 15351657967\n",
"748373 910590\n",
"7 50738607767\n",
"598 1546219153\n",
"623971 1164641\n",
"482119 596916\n",
"105 8711098771\n",
"7222 89391217\n",
"389527 1723853\n",
"689321 1274860\n",
"39 24774240247\n",
"309655 1345607\n",
"652531 671666\n",
"1 2038074743\n",
"3 8\n",
"22380 5641681\n",
"214836 2451487\n",
"824698 1040215\n",
"314347 470403\n",
"1 991921850317\n",
"4956 148963501\n",
"2 203350126523\n",
"12 18360359209\n",
"4 64050477851\n",
"163 5923836353\n",
"348 25082933\n",
"438980 2235731\n",
"207661 2083223\n",
"213 869160191\n",
"1 999966000289\n",
"1967 245818061\n",
"1855 510106741\n",
"528287 1368607\n",
"119 3515424551\n",
"933761 1024054\n",
"438918 856201\n",
"447051 448630\n",
"626341 1229116\n",
"12662 15747889\n",
"2 27290072059\n",
"427623 1056869\n",
"15703 15579253\n",
"313517 2104677\n",
"4096 244140625\n",
"2372 195405731\n",
"23 40608812693\n",
"1 252097800623\n",
"382083 413113\n",
"576747 1568611\n",
"94606 1773853\n",
"102 8755455097\n",
"969408 994175\n",
"418187 429120\n",
"955767 1043317\n",
"147 2630972027\n",
"3 71019458753\n",
"176374 572881\n",
"687347 1005947\n",
"37189 16938637\n",
"234 1317699983\n",
"1 173495852161\n",
"6 11576446649\n",
"11 41141048771\n",
"408007 1186583\n",
"53932 9179801\n",
"1004 637355233\n",
"674777 1056710\n",
"243989 459005\n",
"8043 82781123\n",
"1 999999999989\n",
"2 172109698459\n",
"89 10501266697\n",
"252679 555263\n",
"282232 682355\n",
"832 755606113\n",
"216264 301063\n",
"504334 821189\n",
"68 2685881503\n",
"507951 1354949\n",
"438 41001757\n",
"617 1050721487\n",
"13190 68703787\n",
"1043 49914203\n",
"15062 44646559\n",
"35807 53642\n",
"5 6\n",
"9 7058951239\n",
"40 19095305389\n",
"960999 983329\n",
"28 6501582049\n",
"316913 391399\n",
"34 11358895459\n",
"307676 1104809\n",
"589307 810879\n",
"48777 69022\n",
"4615 118994621\n",
"9308 28754251\n",
"194198 314599\n",
"232987 1471621\n",
"8958 3093971\n",
"137539 181395\n",
"2 484038237719\n",
"63243 10756351\n",
"489000 550987\n",
"487173 617827\n",
"550779 564703\n",
"6591 117361\n",
"359436 362161\n",
"120499 450197\n",
"642374 1174225\n",
"170000 5882353\n",
"112033 7816547\n",
"158 5386791427\n",
"266701 962624\n",
"99942 651779\n",
"34 17568013369\n",
"42349 7390921\n",
"1 15092021603\n",
"2480 41161187\n",
"530 719490581\n",
"447691 631250\n",
"14137 1110719\n",
"112677 5586089\n",
"15162 435637\n",
"111 3003315241\n",
"17176 3551363\n",
"6 120763248761\n",
"2196 138007109\n",
"1 166011077471\n",
"8 87353344093\n",
"123428 132383\n",
"360336 435601\n",
"898 26270191\n",
"200 411302159\n",
"1 3\n",
"1 8\n",
"502189 521498\n",
"1170 47722541\n",
"196699 294169\n",
"334 44269261\n",
"1 541568945077\n",
"17 7656030077\n",
"111279 567647\n",
"37764 152389\n",
"238365 303484\n",
"120439 400379\n",
"755453 1176292\n",
"456 2202547\n",
"2 27\n",
"2 2154789653\n",
"7 83230570957\n",
"511552 570709\n",
"1235 183675397\n",
"583750 1168661\n",
"992 56863921\n",
"20310 41595053\n",
"47584 123767\n",
"732865 1015241\n",
"20676 9600419\n",
"80273 445968\n"
]
} | 2CODEFORCES
|
1285_C. Fadi and LCM_924 | Today, Osama gave Fadi an integer X, and Fadi was wondering about the minimum possible value of max(a, b) such that LCM(a, b) equals X. Both a and b should be positive integers.
LCM(a, b) is the smallest positive integer that is divisible by both a and b. For example, LCM(6, 8) = 24, LCM(4, 12) = 12, LCM(2, 3) = 6.
Of course, Fadi immediately knew the answer. Can you be just like Fadi and find any such pair?
Input
The first and only line contains an integer X (1 ≤ X ≤ 10^{12}).
Output
Print two positive integers, a and b, such that the value of max(a, b) is minimum possible and LCM(a, b) equals X. If there are several possible such pairs, you can print any.
Examples
Input
2
Output
1 2
Input
6
Output
2 3
Input
4
Output
1 4
Input
1
Output
1 1 | import java.io.*;
import java.util.*;
/* REMINDERS
* CHECK INT VS LONG, IF YOU NEED TO STORE LARGE NUMBERS
* CHECK CONSTRAINTS, C <= N <= F...
* CHECK SPECIAL CASES, N = 1...
* CHECK ARRAY BOUNDS, HOW BIG ARRAY HAS TO BE
* TO TEST TLE/MLE, PLUG IN MAX VALS ALLOWED AND SEE WHAT HAPPENS
* ALSO CALCULATE BIG-O, OVERALL TIME COMPLEXITY
*/
public class FadiLCMEfficient {
public static void main(String[] args) throws IOException {
//get input separately
BufferedReader b = new BufferedReader(new InputStreamReader(System.in));
PrintWriter p = new PrintWriter(new BufferedOutputStream(System.out));
StringTokenizer s = new StringTokenizer(b.readLine());
long x = Long.parseLong(s.nextToken());
//edge case: x = 1
long[] ints = new long[] {1,1};
if (x != 1) {
ints = printDivisors(x);
Arrays.sort(ints);
}
p.println(ints[0] + " " + ints[1]);
p.close();
}
// Recursive method to return gcd of a and b
public static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
// method to return LCM of two numbers
public static long lcm(long a, long b)
{
return (a*b)/gcd(a, b);
}
public static long[] printDivisors(long n)
{
//find smallest such factors, taking the max
long curr = n;
long first = 0;
long sec = 0;
//find first divisors under sqrt n
for (long i = (long)(Math.sqrt(n)); i > 0; i--) {
if (n % i == 0 && lcm(i, n / i) == n) {
curr = i;
break;
}
}
return new long[] {curr, n / curr};
}
} | 4JAVA
| {
"input": [
"1\n",
"4\n",
"6\n",
"2\n",
"205078485761\n",
"873109054817\n",
"518649879439\n",
"401021537803\n",
"821985629174\n",
"614685146646\n",
"551519879446\n",
"583102513046\n",
"690824608515\n",
"681460970070\n",
"355170254369\n",
"924639053494\n",
"726702209411\n",
"287784545004\n",
"914665370955\n",
"645583369174\n",
"671487287531\n",
"878787770060\n",
"966195369633\n",
"416673935585\n",
"438282886646\n",
"2038074743\n",
"24\n",
"126260820780\n",
"526667661132\n",
"857863230070\n",
"147869771841\n",
"991921850317\n",
"738263110956\n",
"406700253046\n",
"220324310508\n",
"256201911404\n",
"965585325539\n",
"8728860684\n",
"981441194380\n",
"432604171403\n",
"185131120683\n",
"999966000289\n",
"483524125987\n",
"946248004555\n",
"723017286209\n",
"418335521569\n",
"956221687094\n",
"375802030518\n",
"200560490130\n",
"769845744556\n",
"199399770518\n",
"54580144118\n",
"451941492387\n",
"244641009859\n",
"659852019009\n",
"1000000000000\n",
"463502393932\n",
"934002691939\n",
"252097800623\n",
"157843454379\n",
"904691688417\n",
"167817136918\n",
"893056419894\n",
"963761198400\n",
"179452405440\n",
"997167959139\n",
"386752887969\n",
"213058376259\n",
"101041313494\n",
"691434652609\n",
"629930971393\n",
"308341796022\n",
"173495852161\n",
"69458679894\n",
"452551536481\n",
"484134170081\n",
"495085027532\n",
"639904653932\n",
"713043603670\n",
"111992170945\n",
"665808572289\n",
"999999999989\n",
"344219396918\n",
"934612736033\n",
"140303299577\n",
"192582416360\n",
"628664286016\n",
"65109088632\n",
"414153533126\n",
"182639942204\n",
"688247699499\n",
"17958769566\n",
"648295157479\n",
"906202950530\n",
"52060513729\n",
"672466471658\n",
"1920759094\n",
"30\n",
"63530561151\n",
"763812215560\n",
"944978185671\n",
"182044297372\n",
"124039431287\n",
"386202445606\n",
"339923213884\n",
"477856670853\n",
"3366686094\n",
"549160175915\n",
"267644568308\n",
"61094496602\n",
"342868561927\n",
"27715792218\n",
"24948886905\n",
"968076475438\n",
"680263906293\n",
"269432643000\n",
"300988633071\n",
"311026553637\n",
"773526351\n",
"130173701196\n",
"54248288303\n",
"754291610150\n",
"1000000010000\n",
"875711210051\n",
"851113045466\n",
"256732783424\n",
"65140096818\n",
"597312454546\n",
"312998113429\n",
"15092021603\n",
"102079743760\n",
"381330007930\n",
"282604943750\n",
"15702234503\n",
"629423750253\n",
"6605128194\n",
"333367991751\n",
"60998210888\n",
"724579492566\n",
"303063611364\n",
"166011077471\n",
"698826752744\n",
"16339768924\n",
"156962721936\n",
"23590631518\n",
"82260431800\n",
"3\n",
"8\n",
"261890559122\n",
"55835372970\n",
"57862748131\n",
"14785933174\n",
"541568945077\n",
"130152511309\n",
"63167190513\n",
"5754818196\n",
"72339963660\n",
"48221246381\n",
"888633320276\n",
"1004361432\n",
"54\n",
"4309579306\n",
"582613996699\n",
"291947330368\n",
"226839115295\n",
"682205858750\n",
"56409009632\n",
"844795526430\n",
"5889328928\n",
"744034595465\n",
"198498263244\n",
"35799189264\n"
],
"output": [
"1 1\n",
"1 4\n",
"2 3\n",
"1 2\n",
"185921 1103041\n",
"145967 5981551\n",
"1 518649879439\n",
"583081 687763\n",
"2 410992814587\n",
"6 102447524441\n",
"142 3883942813\n",
"2 291551256523\n",
"45 15351657967\n",
"748373 910590\n",
"7 50738607767\n",
"598 1546219153\n",
"623971 1164641\n",
"482119 596916\n",
"105 8711098771\n",
"7222 89391217\n",
"389527 1723853\n",
"689321 1274860\n",
"39 24774240247\n",
"309655 1345607\n",
"652531 671666\n",
"1 2038074743\n",
"3 8\n",
"22380 5641681\n",
"214836 2451487\n",
"824698 1040215\n",
"314347 470403\n",
"1 991921850317\n",
"4956 148963501\n",
"2 203350126523\n",
"12 18360359209\n",
"4 64050477851\n",
"163 5923836353\n",
"348 25082933\n",
"438980 2235731\n",
"207661 2083223\n",
"213 869160191\n",
"1 999966000289\n",
"1967 245818061\n",
"1855 510106741\n",
"528287 1368607\n",
"119 3515424551\n",
"933761 1024054\n",
"438918 856201\n",
"447051 448630\n",
"626341 1229116\n",
"12662 15747889\n",
"2 27290072059\n",
"427623 1056869\n",
"15703 15579253\n",
"313517 2104677\n",
"4096 244140625\n",
"2372 195405731\n",
"23 40608812693\n",
"1 252097800623\n",
"382083 413113\n",
"576747 1568611\n",
"94606 1773853\n",
"102 8755455097\n",
"969408 994175\n",
"418187 429120\n",
"955767 1043317\n",
"147 2630972027\n",
"3 71019458753\n",
"176374 572881\n",
"687347 1005947\n",
"37189 16938637\n",
"234 1317699983\n",
"1 173495852161\n",
"6 11576446649\n",
"11 41141048771\n",
"408007 1186583\n",
"53932 9179801\n",
"1004 637355233\n",
"674777 1056710\n",
"243989 459005\n",
"8043 82781123\n",
"1 999999999989\n",
"2 172109698459\n",
"89 10501266697\n",
"252679 555263\n",
"282232 682355\n",
"832 755606113\n",
"216264 301063\n",
"504334 821189\n",
"68 2685881503\n",
"507951 1354949\n",
"438 41001757\n",
"617 1050721487\n",
"13190 68703787\n",
"1043 49914203\n",
"15062 44646559\n",
"35807 53642\n",
"5 6\n",
"9 7058951239\n",
"40 19095305389\n",
"960999 983329\n",
"28 6501582049\n",
"316913 391399\n",
"34 11358895459\n",
"307676 1104809\n",
"589307 810879\n",
"48777 69022\n",
"4615 118994621\n",
"9308 28754251\n",
"194198 314599\n",
"232987 1471621\n",
"8958 3093971\n",
"137539 181395\n",
"2 484038237719\n",
"63243 10756351\n",
"489000 550987\n",
"487173 617827\n",
"550779 564703\n",
"6591 117361\n",
"359436 362161\n",
"120499 450197\n",
"642374 1174225\n",
"170000 5882353\n",
"112033 7816547\n",
"158 5386791427\n",
"266701 962624\n",
"99942 651779\n",
"34 17568013369\n",
"42349 7390921\n",
"1 15092021603\n",
"2480 41161187\n",
"530 719490581\n",
"447691 631250\n",
"14137 1110719\n",
"112677 5586089\n",
"15162 435637\n",
"111 3003315241\n",
"17176 3551363\n",
"6 120763248761\n",
"2196 138007109\n",
"1 166011077471\n",
"8 87353344093\n",
"123428 132383\n",
"360336 435601\n",
"898 26270191\n",
"200 411302159\n",
"1 3\n",
"1 8\n",
"502189 521498\n",
"1170 47722541\n",
"196699 294169\n",
"334 44269261\n",
"1 541568945077\n",
"17 7656030077\n",
"111279 567647\n",
"37764 152389\n",
"238365 303484\n",
"120439 400379\n",
"755453 1176292\n",
"456 2202547\n",
"2 27\n",
"2 2154789653\n",
"7 83230570957\n",
"511552 570709\n",
"1235 183675397\n",
"583750 1168661\n",
"992 56863921\n",
"20310 41595053\n",
"47584 123767\n",
"732865 1015241\n",
"20676 9600419\n",
"80273 445968\n"
]
} | 2CODEFORCES
|
1304_E. 1-Trees and Queries_925 | Gildong was hiking a mountain, walking by millions of trees. Inspired by them, he suddenly came up with an interesting idea for trees in data structures: What if we add another edge in a tree?
Then he found that such tree-like graphs are called 1-trees. Since Gildong was bored of solving too many tree problems, he wanted to see if similar techniques in trees can be used in 1-trees as well. Instead of solving it by himself, he's going to test you by providing queries on 1-trees.
First, he'll provide you a tree (not 1-tree) with n vertices, then he will ask you q queries. Each query contains 5 integers: x, y, a, b, and k. This means you're asked to determine if there exists a path from vertex a to b that contains exactly k edges after adding a bidirectional edge between vertices x and y. A path can contain the same vertices and same edges multiple times. All queries are independent of each other; i.e. the added edge in a query is removed in the next query.
Input
The first line contains an integer n (3 ≤ n ≤ 10^5), the number of vertices of the tree.
Next n-1 lines contain two integers u and v (1 ≤ u,v ≤ n, u ≠ v) each, which means there is an edge between vertex u and v. All edges are bidirectional and distinct.
Next line contains an integer q (1 ≤ q ≤ 10^5), the number of queries Gildong wants to ask.
Next q lines contain five integers x, y, a, b, and k each (1 ≤ x,y,a,b ≤ n, x ≠ y, 1 ≤ k ≤ 10^9) – the integers explained in the description. It is guaranteed that the edge between x and y does not exist in the original tree.
Output
For each query, print "YES" if there exists a path that contains exactly k edges from vertex a to b after adding an edge between vertices x and y. Otherwise, print "NO".
You can print each letter in any case (upper or lower).
Example
Input
5
1 2
2 3
3 4
4 5
5
1 3 1 2 2
1 4 1 3 2
1 4 1 3 3
4 2 3 3 9
5 2 3 3 9
Output
YES
YES
NO
YES
NO
Note
The image below describes the tree (circles and solid lines) and the added edges for each query (dotted lines).
<image>
Possible paths for the queries with "YES" answers are:
* 1-st query: 1 – 3 – 2
* 2-nd query: 1 – 2 – 3
* 4-th query: 3 – 4 – 2 – 3 – 4 – 2 – 3 – 4 – 2 – 3 | import sys
range = xrange
input = raw_input
class RangeQuery:
def __init__(self, data, func=min):
self.func = func
self._data = _data = [list(data)]
i, n = 1, len(_data[0])
while 2 * i <= n:
prev = _data[-1]
_data.append([func(prev[j], prev[j + i]) for j in range(n - 2 * i + 1)])
i <<= 1
def query(self, begin, end):
depth = (end - begin).bit_length() - 1
return self.func(self._data[depth][begin], self._data[depth][end - (1 << depth)])
class LCA:
def __init__(self, root, graph):
self.time = [-1] * len(graph)
self.path = [-1] * len(graph)
P = [-1] * len(graph)
t = -1
dfs = [root]
while dfs:
node = dfs.pop()
self.path[t] = P[node]
self.time[node] = t = t + 1
for nei in graph[node]:
if self.time[nei] == -1:
P[nei] = node
dfs.append(nei)
self.rmq = RangeQuery(self.time[node] for node in self.path)
def __call__(self, a, b):
if a == b:
return a
a = self.time[a]
b = self.time[b]
if a > b:
a, b = b, a
return self.path[self.rmq.query(a, b)]
inp = [int(x) for x in sys.stdin.read().split()]; ii = 0
n = inp[ii]; ii += 1
coupl = [[] for _ in range(n)]
for _ in range(n - 1):
u = inp[ii] - 1; ii += 1
v = inp[ii] - 1; ii += 1
coupl[u].append(v)
coupl[v].append(u)
root = 0
lca = LCA(root, coupl)
depth = [-1]*n
depth[root] = 0
bfs = [root]
for node in bfs:
for nei in coupl[node]:
if depth[nei] == -1:
depth[nei] = depth[node] + 1
bfs.append(nei)
def dist(a,b):
c = lca(a,b)
return depth[a] + depth[b] - 2 * depth[c]
q = inp[ii]; ii += 1
out = []
for _ in range(q):
x = inp[ii] - 1; ii += 1
y = inp[ii] - 1; ii += 1
a = inp[ii] - 1; ii += 1
b = inp[ii] - 1; ii += 1
k = inp[ii]; ii += 1
dists = [dist(a,b), dist(a,x) + dist(y,b) + 1, dist(a,y) + dist(x,b) + 1]
dist(a,a) + dist(a,a) # this line makes everything 2 s faster for no reason
for d in dists:
if d - k & 1 == 0 and d <= k:
out.append('YES')
break
else:
out.append('NO')
print '\n'.join(out) | 1Python2
| {
"input": [
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 4 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 3 3 9\n4 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 2 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 11\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 4 1 2 2\n1 4 1 3 4\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 7\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n9 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 5 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 9 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 1\n2 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 0\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 2\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 11 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 2\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 1 13 2 5\n1 5 6 8 10\n6 12 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n2 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 4\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n9 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n6 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 2 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 13\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 4 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 6 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 10 14 7 9\n12 5 5 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 12\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 1 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 4\n9 2 7 2 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 13\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 4 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 7 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 4 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 4 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 3\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 11 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 2\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n14 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 12\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 11 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 2 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 6 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 4 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n3 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 11 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 13 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 1 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 7 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 5 1 3 2\n1 4 1 3 3\n4 2 2 2 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 6 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 6 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 8 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 1 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n3 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 7 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 8 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 2\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 12\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 1 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 13 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n"
],
"output": [
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\n",
"NO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nNO\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nNO\n",
"YES\nNO\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n"
]
} | 2CODEFORCES
|
1304_E. 1-Trees and Queries_926 | Gildong was hiking a mountain, walking by millions of trees. Inspired by them, he suddenly came up with an interesting idea for trees in data structures: What if we add another edge in a tree?
Then he found that such tree-like graphs are called 1-trees. Since Gildong was bored of solving too many tree problems, he wanted to see if similar techniques in trees can be used in 1-trees as well. Instead of solving it by himself, he's going to test you by providing queries on 1-trees.
First, he'll provide you a tree (not 1-tree) with n vertices, then he will ask you q queries. Each query contains 5 integers: x, y, a, b, and k. This means you're asked to determine if there exists a path from vertex a to b that contains exactly k edges after adding a bidirectional edge between vertices x and y. A path can contain the same vertices and same edges multiple times. All queries are independent of each other; i.e. the added edge in a query is removed in the next query.
Input
The first line contains an integer n (3 ≤ n ≤ 10^5), the number of vertices of the tree.
Next n-1 lines contain two integers u and v (1 ≤ u,v ≤ n, u ≠ v) each, which means there is an edge between vertex u and v. All edges are bidirectional and distinct.
Next line contains an integer q (1 ≤ q ≤ 10^5), the number of queries Gildong wants to ask.
Next q lines contain five integers x, y, a, b, and k each (1 ≤ x,y,a,b ≤ n, x ≠ y, 1 ≤ k ≤ 10^9) – the integers explained in the description. It is guaranteed that the edge between x and y does not exist in the original tree.
Output
For each query, print "YES" if there exists a path that contains exactly k edges from vertex a to b after adding an edge between vertices x and y. Otherwise, print "NO".
You can print each letter in any case (upper or lower).
Example
Input
5
1 2
2 3
3 4
4 5
5
1 3 1 2 2
1 4 1 3 2
1 4 1 3 3
4 2 3 3 9
5 2 3 3 9
Output
YES
YES
NO
YES
NO
Note
The image below describes the tree (circles and solid lines) and the added edges for each query (dotted lines).
<image>
Possible paths for the queries with "YES" answers are:
* 1-st query: 1 – 3 – 2
* 2-nd query: 1 – 2 – 3
* 4-th query: 3 – 4 – 2 – 3 – 4 – 2 – 3 – 4 – 2 – 3 | #include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
inline long long add(long long a, long long b) {
a += b;
if (a >= mod) a -= mod;
return a;
}
inline long long sub(long long a, long long b) {
a -= b;
if (a < 0) a += mod;
return a;
}
inline long long mul(long long a, long long b) {
return (long long)((long long)a * b % mod);
}
vector<vector<long long> > adj, dp;
vector<long long> cnt, lvl;
void DFSUtil(long long u, long long p) {
if (u != 0) {
lvl[u] = lvl[p] + 1;
}
dp[u][0] = p;
for (long long i = (1); i <= (20); i++) {
dp[u][i] = dp[dp[u][i - 1]][i - 1];
}
for (auto it : adj[u])
if (it != p) DFSUtil(it, u);
}
void DFS() {
long long V = adj.size();
lvl.assign(V, 0);
DFSUtil(0, 0);
}
long long lca(long long x, long long y) {
if (x == y) return 0;
if (lvl[x] < lvl[y]) swap(x, y);
long long d = lvl[x] - lvl[y];
long long x1 = x;
for (long long i = (0); i <= (20); i++)
if ((1 << i) & d) x1 = dp[x1][i];
if (x1 == y) return d;
long long xx = x1, yy = y;
for (long long i = (20); i >= (0); i--)
if (dp[xx][i] != dp[yy][i]) {
d += 2 * (1 << i);
xx = dp[xx][i];
yy = dp[yy][i];
}
d += 2;
return d;
}
bool query() {
long long a, b, x, y, k;
cin >> a >> b >> x >> y >> k;
x--;
y--;
a--;
b--;
long long v1 = lca(x, y), v2 = lca(x, a), v3 = lca(x, b), v4 = lca(y, a),
v5 = lca(y, b);
if (v1 <= k && (k - v1) % 2 == 0) {
return true;
}
if ((v2 + v5 + 1) <= k && (k - (v2 + v5 + 1)) % 2 == 0) {
return true;
}
if ((v3 + v4 + 1) <= k && (k - (v3 + v4 + 1)) % 2 == 0) {
return true;
}
return false;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
;
long long t = 1;
while (t--) {
long long n;
cin >> n;
adj.resize(n + 1);
for (long long i = (1); i <= (n - 1); i++) {
long long p, q;
cin >> p >> q;
p--;
q--;
adj[p].push_back(q);
adj[q].push_back(p);
}
dp.assign(n + 1, vector<long long>(21, 0));
DFS();
long long m;
cin >> m;
for (long long i = (1); i <= (m); i++) {
if (query())
cout << "YES\n";
else
cout << "NO\n";
}
}
return 0;
}
| 2C++
| {
"input": [
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 4 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 3 3 9\n4 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 2 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 11\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 4 1 2 2\n1 4 1 3 4\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 7\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n9 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 5 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 9 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 1\n2 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 0\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 2\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 11 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 2\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 1 13 2 5\n1 5 6 8 10\n6 12 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n2 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 4\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n9 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n6 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 2 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 13\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 4 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 6 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 10 14 7 9\n12 5 5 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 12\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 1 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 4\n9 2 7 2 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 13\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 4 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 7 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 4 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 4 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 3\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 11 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 2\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n14 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 12\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 11 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 2 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 6 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 4 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n3 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 11 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 13 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 1 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 7 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 5 1 3 2\n1 4 1 3 3\n4 2 2 2 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 6 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 6 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 8 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 1 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n3 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 7 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 8 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 2\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 12\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 1 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 13 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n"
],
"output": [
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\n",
"NO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nNO\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nNO\n",
"YES\nNO\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n"
]
} | 2CODEFORCES
|
1304_E. 1-Trees and Queries_927 | Gildong was hiking a mountain, walking by millions of trees. Inspired by them, he suddenly came up with an interesting idea for trees in data structures: What if we add another edge in a tree?
Then he found that such tree-like graphs are called 1-trees. Since Gildong was bored of solving too many tree problems, he wanted to see if similar techniques in trees can be used in 1-trees as well. Instead of solving it by himself, he's going to test you by providing queries on 1-trees.
First, he'll provide you a tree (not 1-tree) with n vertices, then he will ask you q queries. Each query contains 5 integers: x, y, a, b, and k. This means you're asked to determine if there exists a path from vertex a to b that contains exactly k edges after adding a bidirectional edge between vertices x and y. A path can contain the same vertices and same edges multiple times. All queries are independent of each other; i.e. the added edge in a query is removed in the next query.
Input
The first line contains an integer n (3 ≤ n ≤ 10^5), the number of vertices of the tree.
Next n-1 lines contain two integers u and v (1 ≤ u,v ≤ n, u ≠ v) each, which means there is an edge between vertex u and v. All edges are bidirectional and distinct.
Next line contains an integer q (1 ≤ q ≤ 10^5), the number of queries Gildong wants to ask.
Next q lines contain five integers x, y, a, b, and k each (1 ≤ x,y,a,b ≤ n, x ≠ y, 1 ≤ k ≤ 10^9) – the integers explained in the description. It is guaranteed that the edge between x and y does not exist in the original tree.
Output
For each query, print "YES" if there exists a path that contains exactly k edges from vertex a to b after adding an edge between vertices x and y. Otherwise, print "NO".
You can print each letter in any case (upper or lower).
Example
Input
5
1 2
2 3
3 4
4 5
5
1 3 1 2 2
1 4 1 3 2
1 4 1 3 3
4 2 3 3 9
5 2 3 3 9
Output
YES
YES
NO
YES
NO
Note
The image below describes the tree (circles and solid lines) and the added edges for each query (dotted lines).
<image>
Possible paths for the queries with "YES" answers are:
* 1-st query: 1 – 3 – 2
* 2-nd query: 1 – 2 – 3
* 4-th query: 3 – 4 – 2 – 3 – 4 – 2 – 3 – 4 – 2 – 3 | import sys, os
class RangeQuery:
def __init__(self, data, func=min):
self.func = func
self._data = _data = [list(data)]
i, n = 1, len(_data[0])
while 2 * i <= n:
prev = _data[-1]
_data.append([func(prev[j], prev[j + i]) for j in range(n - 2 * i + 1)])
i <<= 1
def query(self, begin, end):
depth = (end - begin).bit_length() - 1
return self.func(self._data[depth][begin], self._data[depth][end - (1 << depth)])
class LCA:
def __init__(self, root, graph):
self.time = [-1] * len(graph)
self.path = [-1] * len(graph)
P = [-1] * len(graph)
t = -1
dfs = [root]
while dfs:
node = dfs.pop()
self.path[t] = P[node]
self.time[node] = t = t + 1
for nei in graph[node]:
if self.time[nei] == -1:
P[nei] = node
dfs.append(nei)
self.rmq = RangeQuery(self.time[node] for node in self.path)
def __call__(self, a, b):
if a == b:
return a
a = self.time[a]
b = self.time[b]
if a > b:
a, b = b, a
return self.path[self.rmq.query(a, b)]
inp = [int(x) for x in sys.stdin.buffer.read().split()]; ii = 0
n = inp[ii]; ii += 1
coupl = [[] for _ in range(n)]
for _ in range(n - 1):
u = inp[ii] - 1; ii += 1
v = inp[ii] - 1; ii += 1
coupl[u].append(v)
coupl[v].append(u)
root = 0
lca = LCA(root, coupl)
depth = [-1]*n
depth[root] = 0
bfs = [root]
for node in bfs:
for nei in coupl[node]:
if depth[nei] == -1:
depth[nei] = depth[node] + 1
bfs.append(nei)
def dist(a,b):
c = lca(a,b)
return depth[a] + depth[b] - 2 * depth[c]
q = inp[ii]; ii += 1
out = []
for _ in range(q):
x = inp[ii] - 1; ii += 1
y = inp[ii] - 1; ii += 1
a = inp[ii] - 1; ii += 1
b = inp[ii] - 1; ii += 1
k = inp[ii]; ii += 1
shortest_odd = 10**9 + 11
shortest_even = 10**9 + 10
for d in [dist(a,b), dist(a,x) + dist(y,b) + 1, dist(a,y) + dist(x,b) + 1]:
if d & 1:
shortest_odd = min(shortest_odd, d)
else:
shortest_even = min(shortest_even, d)
if k & 1:
out.append(b'YES' if shortest_odd <= k else b'NO')
else:
out.append(b'YES' if shortest_even <= k else b'NO')
os.write(1, b'\n'.join(out)) | 3Python3
| {
"input": [
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 4 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 3 3 9\n4 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 2 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 11\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 4 1 2 2\n1 4 1 3 4\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 7\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n9 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 5 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 9 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 1\n2 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 0\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 2\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 11 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 2\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 1 13 2 5\n1 5 6 8 10\n6 12 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n2 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 4\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n9 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n6 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 2 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 13\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 4 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 6 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 10 14 7 9\n12 5 5 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 12\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 1 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 4\n9 2 7 2 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 13\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 4 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 7 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 4 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 4 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 3\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 11 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 2\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n14 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 12\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 11 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 2 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 6 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 4 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n3 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 11 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 13 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 1 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 7 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 5 1 3 2\n1 4 1 3 3\n4 2 2 2 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 6 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 6 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 8 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 1 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n3 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 7 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 8 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 2\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 12\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 1 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 13 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n"
],
"output": [
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\n",
"NO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nNO\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nNO\n",
"YES\nNO\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n"
]
} | 2CODEFORCES
|
1304_E. 1-Trees and Queries_928 | Gildong was hiking a mountain, walking by millions of trees. Inspired by them, he suddenly came up with an interesting idea for trees in data structures: What if we add another edge in a tree?
Then he found that such tree-like graphs are called 1-trees. Since Gildong was bored of solving too many tree problems, he wanted to see if similar techniques in trees can be used in 1-trees as well. Instead of solving it by himself, he's going to test you by providing queries on 1-trees.
First, he'll provide you a tree (not 1-tree) with n vertices, then he will ask you q queries. Each query contains 5 integers: x, y, a, b, and k. This means you're asked to determine if there exists a path from vertex a to b that contains exactly k edges after adding a bidirectional edge between vertices x and y. A path can contain the same vertices and same edges multiple times. All queries are independent of each other; i.e. the added edge in a query is removed in the next query.
Input
The first line contains an integer n (3 ≤ n ≤ 10^5), the number of vertices of the tree.
Next n-1 lines contain two integers u and v (1 ≤ u,v ≤ n, u ≠ v) each, which means there is an edge between vertex u and v. All edges are bidirectional and distinct.
Next line contains an integer q (1 ≤ q ≤ 10^5), the number of queries Gildong wants to ask.
Next q lines contain five integers x, y, a, b, and k each (1 ≤ x,y,a,b ≤ n, x ≠ y, 1 ≤ k ≤ 10^9) – the integers explained in the description. It is guaranteed that the edge between x and y does not exist in the original tree.
Output
For each query, print "YES" if there exists a path that contains exactly k edges from vertex a to b after adding an edge between vertices x and y. Otherwise, print "NO".
You can print each letter in any case (upper or lower).
Example
Input
5
1 2
2 3
3 4
4 5
5
1 3 1 2 2
1 4 1 3 2
1 4 1 3 3
4 2 3 3 9
5 2 3 3 9
Output
YES
YES
NO
YES
NO
Note
The image below describes the tree (circles and solid lines) and the added edges for each query (dotted lines).
<image>
Possible paths for the queries with "YES" answers are:
* 1-st query: 1 – 3 – 2
* 2-nd query: 1 – 2 – 3
* 4-th query: 3 – 4 – 2 – 3 – 4 – 2 – 3 – 4 – 2 – 3 | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author KharYusuf
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E1TreesAndQueries solver = new E1TreesAndQueries();
solver.solve(1, in, out);
out.close();
}
static class E1TreesAndQueries {
public void solve(int testNumber, FastReader s, PrintWriter w) {
int n = s.nextInt();
ArrayList<Integer>[] aw = new ArrayList[n];
for (int i = 0; i < n; i++) aw[i] = new ArrayList<>();
for (int i = 1; i < n; i++) {
int u = s.nextInt() - 1, v = s.nextInt() - 1;
aw[u].add(v);
aw[v].add(u);
}
LCA l = new LCA(n, aw);
l.build(0);
int q = s.nextInt();
while (q-- > 0) {
int x = s.nextInt() - 1, y = s.nextInt() - 1, a = s.nextInt() - 1, b = s.nextInt() - 1, k = s.nextInt();
int dis1 = l.query(a, b), dis2 = l.query(a, x) + l.query(b, y) + 1, dis3 = l.query(b, x) + l.query(a, y) + 1;
//w.println(dis1+" "+dis2+" "+dis3);
w.println((dis1 <= k && dis1 % 2 == k % 2) || (dis2 <= k && dis2 % 2 == k % 2) || (dis3 <= k && dis3 % 2 == k % 2) ? "YES" : "NO");
}
}
public class LCA {
int[][] par;
int[] lvl;
int n;
final int LOG;
ArrayList<Integer>[] a;
LCA(int n, ArrayList<Integer>[] aa) {
a = aa;
this.n = n;
LOG = log2(n) + 1;
par = new int[n][LOG];
lvl = new int[n];
}
void build(int u) {
dfs(u, -1, 0);
for (int j = 1; j < LOG; j++)
for (int i = 0; i < n; i++) {
par[i][j] = -1;
if (par[i][j - 1] != -1) par[i][j] = par[par[i][j - 1]][j - 1];
}
}
void dfs(int cur, int p, int l) {
par[cur][0] = p;
lvl[cur] = l;
for (int i : a[cur]) if (i != p) dfs(i, cur, l + 1);
}
int query(int u, int v) {
if (lvl[u] < lvl[v]) {
int t = u;
u = v;
v = t;
}
int dis = lvl[u] - lvl[v], tot = lvl[u] - lvl[v];
while (dis > 0) {
int raise = log2(dis);
u = par[u][raise];
dis -= 1 << raise;
}
if (u == v) return tot;
for (int i = LOG - 1; i >= 0; i--) {
if (par[u][i] != -1 && par[u][i] != par[v][i]) {
u = par[u][i];
v = par[v][i];
tot += 1 << (i + 1);
}
}
return tot + 2;
}
int log2(int i) {
int cnt = -1;
while (i > 0) {
i >>= 1;
cnt++;
}
return cnt;
}
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private FastReader.SpaceCharFilter filter;
public FastReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
| 4JAVA
| {
"input": [
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 4 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 3 3 9\n4 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 2 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 11\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 4 1 2 2\n1 4 1 3 4\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 7\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n9 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 5 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 9 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 1\n2 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 0\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 2\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 11 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 2\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 1 13 2 5\n1 5 6 8 10\n6 12 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n2 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 4\n1 4 1 4 3\n4 2 3 3 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 4 4\n8 5 5 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n9 7 6 6 4\n8 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n6 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 5\n9 2 7 2 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 13\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 4 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 4 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 6 6\n9 5 2 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 12 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 10 14 7 9\n12 5 5 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 12\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 1 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 8 2 4\n9 2 7 2 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n7 5 3 1 4\n5 4 7 8 3\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 13\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 4 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 7 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 4 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 4 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 3\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 11 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 2\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n14 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 12\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 11 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 6 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 4 1 3 2\n1 4 1 3 3\n4 2 2 2 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 6 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 3 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 4 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 4 6\n8 9 7 3 7\n14 10 7 12 7\n3 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 1\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 11 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 13 10 7\n1 4 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n8 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 5 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n3 14 7 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 1 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 16\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n5 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 7 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"5\n1 2\n2 3\n3 4\n4 5\n5\n1 3 1 2 2\n1 5 1 3 2\n1 4 1 3 3\n4 2 2 2 9\n5 2 3 3 9\n",
"9\n3 9\n3 4\n7 2\n6 9\n5 3\n6 2\n8 3\n1 9\n10\n8 5 6 2 5\n9 2 7 4 4\n8 5 7 3 3\n1 2 3 8 4\n2 9 2 4 3\n6 4 3 4 5\n6 7 6 6 4\n8 5 6 1 4\n5 4 7 8 5\n4 5 1 5 2\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 8 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 1 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 2 14 9 0\n3 4 3 7 9\n9 3 6 13 12\n6 11 11 5 9\n14 5 2 6 4\n13 12 4 2 7\n13 14 7 3 2\n9 5 13 13 6\n8 9 7 3 7\n14 10 7 12 7\n6 12 13 1 1\n8 13 8 10 0\n1 5 7 10 7\n3 7 13 2 6\n1 5 6 4 10\n6 9 11 8 5\n9 5 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n4 4 3 7 9\n9 3 6 13 7\n6 11 12 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 13 7 12 7\n6 12 13 1 1\n8 13 8 10 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 8 9\n12 5 10 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 2\n3 2\n14 9\n7 6\n10 13\n8 7\n5 7\n7 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 5 3 6\n9 5 13 13 6\n8 9 7 3 7\n14 7 7 12 13\n6 12 13 1 1\n8 13 8 10 12\n1 5 7 10 7\n3 4 13 2 5\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 7 9\n12 5 6 8 9\n14 13 2 4 3\n2 6 13 11 7\n",
"14\n4 9\n3 7\n4 1\n3 2\n14 9\n7 6\n10 13\n8 7\n5 9\n14 10\n1 3\n12 3\n7 11\n20\n13 6 14 9 3\n6 4 3 7 9\n9 3 6 13 7\n6 11 11 5 9\n14 5 2 3 4\n13 12 4 2 7\n13 14 7 3 6\n9 5 13 13 9\n8 9 7 3 7\n14 10 7 1 7\n6 12 13 1 1\n8 13 8 4 8\n1 5 7 10 7\n3 2 13 2 6\n1 5 6 8 10\n6 9 11 8 5\n9 7 14 13 9\n12 8 6 8 9\n14 13 2 4 3\n4 6 13 11 7\n"
],
"output": [
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\n",
"NO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nNO\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nNO\n",
"YES\nNO\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n",
"NO\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES\n"
]
} | 2CODEFORCES
|
1328_F. Make k Equal_929 | You are given the array a consisting of n elements and the integer k ≤ n.
You want to obtain at least k equal elements in the array a. In one move, you can make one of the following two operations:
* Take one of the minimum elements of the array and increase its value by one (more formally, if the minimum value of a is mn then you choose such index i that a_i = mn and set a_i := a_i + 1);
* take one of the maximum elements of the array and decrease its value by one (more formally, if the maximum value of a is mx then you choose such index i that a_i = mx and set a_i := a_i - 1).
Your task is to calculate the minimum number of moves required to obtain at least k equal elements in the array.
Input
The first line of the input contains two integers n and k (1 ≤ k ≤ n ≤ 2 ⋅ 10^5) — the number of elements in a and the required number of equal elements.
The second line of the input contains n integers a_1, a_2, ..., a_n (1 ≤ a_i ≤ 10^9), where a_i is the i-th element of a.
Output
Print one integer — the minimum number of moves required to obtain at least k equal elements in the array.
Examples
Input
6 5
1 2 2 4 2 3
Output
3
Input
7 5
3 3 2 1 1 1 3
Output
4 | n,k = map(int,raw_input().split())
arr = map(int,raw_input().split())
d1 ={}
d2 = {}
arr.sort()
for i in range(0,2*10**5+1):
d1[i] = 0
d2[i] = 0
for i in arr:
cnt = 0
if(d2[i]<k):
d2[i] = d2[i] + 1
while(i>0):
i = i/2
cnt = cnt + 1
if(d2[i]<k):
d1[i] = d1[i] + cnt
d2[i] = d2[i] + 1
import sys
mini = 10**9
for i in range(0,2*10**5+1):
if(d2[i] == k):
mini = min(mini,d1[i])
print mini | 1Python2
| {
"input": [
"6 5\n1 2 2 4 2 3\n",
"7 5\n3 3 2 1 1 1 3\n",
"21 6\n12 15 14 4 4 7 2 4 11 1 15 4 12 11 12 8 11 12 3 4 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 26 11 6 2 7 5 2 3 12 16 20 5 16 1 18 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n9 9 9 9 9\n",
"1 1\n1000000000\n",
"7 3\n1 1 1 1 1 1 1\n",
"2 1\n1 1000000000\n",
"5 2\n3 3 3 3 3\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 74830 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 165701 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 50\n86175 169571 61423 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 88721 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"50 25\n162847 80339 131433 130128 135933 64805 74277 145697 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"50 50\n8 63 44 78 3 65 7 27 13 45 7 5 18 94 25 17 26 10 21 44 5 13 6 30 10 11 44 14 71 17 10 5 4 9 8 21 4 9 25 18 3 14 15 8 7 11 5 28 9 1\n",
"4 2\n3 3 3 3\n",
"2 2\n1 1\n",
"10 4\n1 2 3 5 5 5 5 10 11 12\n",
"5 3\n2 2 2 2 2\n",
"4 2\n2 2 2 2\n",
"6 3\n1 10 10 10 10 20\n",
"8 6\n893967334 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"4 2\n5 10 10 20\n",
"50 2\n3 6 10 1 14 5 26 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 4 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n1\n",
"2 1\n1 1\n",
"4 2\n10 20 20 30\n",
"1 1\n1337\n",
"50 25\n199970 199997 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199996 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 146803 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 27036 78631\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 199963 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 199984 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 199959 199990 199982 199987 199992 199997 199985 199976 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"5 3\n1 2 3 4 5\n",
"8 6\n4 5 1 2 3 5 3 3\n",
"2 2\n1 123\n",
"7 4\n3 3 3 3 3 3 3\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 13 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 67 21 12 6 55\n",
"5 3\n1 2 2 4 5\n",
"10 6\n7 7 7 7 7 7 7 7 7 7\n",
"4 2\n9 9 9 9\n",
"50 2\n199995 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 199939 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"5 3\n4 4 4 4 4\n",
"5 3\n1 2 3 3 3\n",
"11 3\n1 1 2 3 4 5 5 5 6 7 8\n",
"2 1\n1 2\n",
"5 2\n4 4 4 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 190346 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 81626 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 4 12 11 12 8 11 12 3 4 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 18 55 16 20 2 3 2 12 65 20 7 11\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 74830 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 125 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 50\n86175 169571 61423 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 20814 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"50 25\n162847 80339 131433 130128 135933 64805 74277 144867 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"10 4\n1 2 3 5 5 5 9 10 11 12\n",
"8 6\n1461516225 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"50 25\n199970 81587 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199996 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 146803 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 49942 78631\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 25432 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 199984 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 343968 199990 199982 199987 199992 199997 199985 199976 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"5 3\n1 2 5 4 5\n",
"8 6\n4 5 1 2 1 5 3 3\n",
"2 2\n2 123\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 2 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 67 21 12 6 55\n",
"7 5\n3 3 2 2 1 1 3\n",
"50 50\n86175 169571 75642 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 20814 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"10 4\n1 2 3 5 5 5 2 10 11 12\n",
"4 2\n5 10 18 17\n",
"50 25\n199970 81587 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199420 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 25432 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 388499 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 343968 199990 199982 199987 199992 199997 199985 40278 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 2 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 36 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n12 9 9 9 9\n",
"5 2\n3 3 3 1 3\n",
"4 1\n3 3 3 3\n",
"4 2\n2 2 1 2\n",
"6 3\n1 10 10 10 17 20\n",
"4 2\n5 10 10 17\n",
"50 2\n3 6 10 1 14 5 11 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 4 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 52 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n2\n",
"1 1\n805\n",
"7 0\n3 3 3 3 3 3 3\n",
"5 4\n1 2 2 4 5\n",
"50 2\n199995 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 381710 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"5 3\n2 2 3 3 3\n",
"11 3\n1 1 2 3 1 5 5 5 6 7 8\n",
"5 2\n4 4 5 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 201609 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 81626 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 4 12 11 12 8 11 12 3 3 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 36 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n12 9 9 11 9\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 102179 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 125 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 25\n156202 80339 131433 130128 135933 64805 74277 144867 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"4 1\n3 3 5 3\n",
"4 2\n4 2 1 2\n",
"6 3\n2 10 10 10 17 20\n",
"8 6\n2015030922 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"50 2\n3 6 10 1 14 5 11 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 5 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 52 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 5 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n920\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 126382 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 49942 78631\n",
"5 3\n1 2 5 4 10\n",
"8 1\n4 5 1 2 1 5 3 3\n",
"7 0\n3 3 3 3 2 3 3\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 2 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 74 21 12 6 55\n",
"50 2\n363005 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 381710 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"11 3\n1 1 1 3 1 5 5 5 6 7 8\n",
"5 2\n4 4 8 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 201609 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 31645 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"7 6\n3 3 2 2 1 1 3\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 2 12 11 12 8 11 12 3 3 4\n",
"5 2\n12 9 9 11 1\n"
],
"output": [
"4\n",
"2\n",
"0\n",
"43\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"12\n",
"780\n",
"364\n",
"167\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"5\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"125\n",
"79\n",
"7\n",
"450\n",
"2\n",
"6\n",
"6\n",
"0\n",
"3\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"165\n",
"989\n",
"2778957\n",
"1107905\n",
"6\n",
"12\n",
"292\n",
"63754\n",
"5\n",
"144464\n",
"2\n",
"8\n",
"121\n",
"9\n",
"3\n",
"2764738\n",
"4\n",
"1\n",
"327\n",
"174581\n",
"304162\n",
"164\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"5\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"3\n",
"165\n",
"0\n",
"989\n",
"1107905\n",
"0\n",
"0\n",
"0\n",
"12\n",
"0\n",
"0\n",
"0\n",
"63754\n",
"5\n",
"0\n",
"0\n",
"9\n",
"0\n",
"0\n",
"0\n",
"0\n",
"4\n",
"5\n",
"0\n"
]
} | 2CODEFORCES
|
1328_F. Make k Equal_930 | You are given the array a consisting of n elements and the integer k ≤ n.
You want to obtain at least k equal elements in the array a. In one move, you can make one of the following two operations:
* Take one of the minimum elements of the array and increase its value by one (more formally, if the minimum value of a is mn then you choose such index i that a_i = mn and set a_i := a_i + 1);
* take one of the maximum elements of the array and decrease its value by one (more formally, if the maximum value of a is mx then you choose such index i that a_i = mx and set a_i := a_i - 1).
Your task is to calculate the minimum number of moves required to obtain at least k equal elements in the array.
Input
The first line of the input contains two integers n and k (1 ≤ k ≤ n ≤ 2 ⋅ 10^5) — the number of elements in a and the required number of equal elements.
The second line of the input contains n integers a_1, a_2, ..., a_n (1 ≤ a_i ≤ 10^9), where a_i is the i-th element of a.
Output
Print one integer — the minimum number of moves required to obtain at least k equal elements in the array.
Examples
Input
6 5
1 2 2 4 2 3
Output
3
Input
7 5
3 3 2 1 1 1 3
Output
4 | #include <bits/stdc++.h>
#pragma warning(disable : 4996)
using namespace std;
const unsigned long long nmax = 200002;
unsigned long long n, k, a[nmax], s[nmax], t[nmax], c[nmax], r = UINT64_MAX, A,
B;
int main() {
scanf("%llu%llu", &n, &k);
for (unsigned long long i = 1; i <= n; ++i) scanf("%llu", a + i);
sort(a + 1, a + n + 1);
for (unsigned long long i = 1; i <= n; ++i) s[i] = s[i - 1] + a[i];
for (unsigned long long i = n; i >= 1; --i) t[i] = t[i + 1] + a[i];
for (unsigned long long i = 1; i <= n; ++i) {
if (a[i] == a[i - 1])
c[i] = c[i - 1] + 1;
else
c[i] = 1;
if (c[i] >= k) {
puts("0");
return 0;
}
}
for (unsigned long long i = 1; i <= n; ++i) {
if (i >= k) {
A = i * a[i] - s[i] - (i - k);
r = min(r, A);
}
if (n - i + 1 >= k) {
B = t[i] - (n - i + 1) * a[i] - (n - i + 1 - k);
r = min(r, B);
}
r = min(r, i * a[i] - s[i] + t[i] - (n - i + 1) * a[i] - (n - k));
}
printf("%llu\n", r);
return 0;
}
| 2C++
| {
"input": [
"6 5\n1 2 2 4 2 3\n",
"7 5\n3 3 2 1 1 1 3\n",
"21 6\n12 15 14 4 4 7 2 4 11 1 15 4 12 11 12 8 11 12 3 4 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 26 11 6 2 7 5 2 3 12 16 20 5 16 1 18 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n9 9 9 9 9\n",
"1 1\n1000000000\n",
"7 3\n1 1 1 1 1 1 1\n",
"2 1\n1 1000000000\n",
"5 2\n3 3 3 3 3\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 74830 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 165701 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 50\n86175 169571 61423 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 88721 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"50 25\n162847 80339 131433 130128 135933 64805 74277 145697 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"50 50\n8 63 44 78 3 65 7 27 13 45 7 5 18 94 25 17 26 10 21 44 5 13 6 30 10 11 44 14 71 17 10 5 4 9 8 21 4 9 25 18 3 14 15 8 7 11 5 28 9 1\n",
"4 2\n3 3 3 3\n",
"2 2\n1 1\n",
"10 4\n1 2 3 5 5 5 5 10 11 12\n",
"5 3\n2 2 2 2 2\n",
"4 2\n2 2 2 2\n",
"6 3\n1 10 10 10 10 20\n",
"8 6\n893967334 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"4 2\n5 10 10 20\n",
"50 2\n3 6 10 1 14 5 26 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 4 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n1\n",
"2 1\n1 1\n",
"4 2\n10 20 20 30\n",
"1 1\n1337\n",
"50 25\n199970 199997 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199996 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 146803 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 27036 78631\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 199963 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 199984 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 199959 199990 199982 199987 199992 199997 199985 199976 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"5 3\n1 2 3 4 5\n",
"8 6\n4 5 1 2 3 5 3 3\n",
"2 2\n1 123\n",
"7 4\n3 3 3 3 3 3 3\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 13 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 67 21 12 6 55\n",
"5 3\n1 2 2 4 5\n",
"10 6\n7 7 7 7 7 7 7 7 7 7\n",
"4 2\n9 9 9 9\n",
"50 2\n199995 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 199939 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"5 3\n4 4 4 4 4\n",
"5 3\n1 2 3 3 3\n",
"11 3\n1 1 2 3 4 5 5 5 6 7 8\n",
"2 1\n1 2\n",
"5 2\n4 4 4 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 190346 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 81626 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 4 12 11 12 8 11 12 3 4 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 18 55 16 20 2 3 2 12 65 20 7 11\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 74830 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 125 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 50\n86175 169571 61423 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 20814 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"50 25\n162847 80339 131433 130128 135933 64805 74277 144867 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"10 4\n1 2 3 5 5 5 9 10 11 12\n",
"8 6\n1461516225 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"50 25\n199970 81587 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199996 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 146803 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 49942 78631\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 25432 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 199984 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 343968 199990 199982 199987 199992 199997 199985 199976 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"5 3\n1 2 5 4 5\n",
"8 6\n4 5 1 2 1 5 3 3\n",
"2 2\n2 123\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 2 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 67 21 12 6 55\n",
"7 5\n3 3 2 2 1 1 3\n",
"50 50\n86175 169571 75642 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 20814 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"10 4\n1 2 3 5 5 5 2 10 11 12\n",
"4 2\n5 10 18 17\n",
"50 25\n199970 81587 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199420 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 25432 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 388499 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 343968 199990 199982 199987 199992 199997 199985 40278 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 2 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 36 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n12 9 9 9 9\n",
"5 2\n3 3 3 1 3\n",
"4 1\n3 3 3 3\n",
"4 2\n2 2 1 2\n",
"6 3\n1 10 10 10 17 20\n",
"4 2\n5 10 10 17\n",
"50 2\n3 6 10 1 14 5 11 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 4 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 52 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n2\n",
"1 1\n805\n",
"7 0\n3 3 3 3 3 3 3\n",
"5 4\n1 2 2 4 5\n",
"50 2\n199995 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 381710 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"5 3\n2 2 3 3 3\n",
"11 3\n1 1 2 3 1 5 5 5 6 7 8\n",
"5 2\n4 4 5 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 201609 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 81626 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 4 12 11 12 8 11 12 3 3 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 36 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n12 9 9 11 9\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 102179 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 125 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 25\n156202 80339 131433 130128 135933 64805 74277 144867 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"4 1\n3 3 5 3\n",
"4 2\n4 2 1 2\n",
"6 3\n2 10 10 10 17 20\n",
"8 6\n2015030922 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"50 2\n3 6 10 1 14 5 11 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 5 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 52 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 5 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n920\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 126382 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 49942 78631\n",
"5 3\n1 2 5 4 10\n",
"8 1\n4 5 1 2 1 5 3 3\n",
"7 0\n3 3 3 3 2 3 3\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 2 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 74 21 12 6 55\n",
"50 2\n363005 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 381710 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"11 3\n1 1 1 3 1 5 5 5 6 7 8\n",
"5 2\n4 4 8 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 201609 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 31645 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"7 6\n3 3 2 2 1 1 3\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 2 12 11 12 8 11 12 3 3 4\n",
"5 2\n12 9 9 11 1\n"
],
"output": [
"4\n",
"2\n",
"0\n",
"43\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"12\n",
"780\n",
"364\n",
"167\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"5\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"125\n",
"79\n",
"7\n",
"450\n",
"2\n",
"6\n",
"6\n",
"0\n",
"3\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"165\n",
"989\n",
"2778957\n",
"1107905\n",
"6\n",
"12\n",
"292\n",
"63754\n",
"5\n",
"144464\n",
"2\n",
"8\n",
"121\n",
"9\n",
"3\n",
"2764738\n",
"4\n",
"1\n",
"327\n",
"174581\n",
"304162\n",
"164\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"5\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"3\n",
"165\n",
"0\n",
"989\n",
"1107905\n",
"0\n",
"0\n",
"0\n",
"12\n",
"0\n",
"0\n",
"0\n",
"63754\n",
"5\n",
"0\n",
"0\n",
"9\n",
"0\n",
"0\n",
"0\n",
"0\n",
"4\n",
"5\n",
"0\n"
]
} | 2CODEFORCES
|
1328_F. Make k Equal_931 | You are given the array a consisting of n elements and the integer k ≤ n.
You want to obtain at least k equal elements in the array a. In one move, you can make one of the following two operations:
* Take one of the minimum elements of the array and increase its value by one (more formally, if the minimum value of a is mn then you choose such index i that a_i = mn and set a_i := a_i + 1);
* take one of the maximum elements of the array and decrease its value by one (more formally, if the maximum value of a is mx then you choose such index i that a_i = mx and set a_i := a_i - 1).
Your task is to calculate the minimum number of moves required to obtain at least k equal elements in the array.
Input
The first line of the input contains two integers n and k (1 ≤ k ≤ n ≤ 2 ⋅ 10^5) — the number of elements in a and the required number of equal elements.
The second line of the input contains n integers a_1, a_2, ..., a_n (1 ≤ a_i ≤ 10^9), where a_i is the i-th element of a.
Output
Print one integer — the minimum number of moves required to obtain at least k equal elements in the array.
Examples
Input
6 5
1 2 2 4 2 3
Output
3
Input
7 5
3 3 2 1 1 1 3
Output
4 | n, k = map(int, input().split())
a = sorted(list(map(int, input().split())))
cnt = dict()
sum = dict()
res = n * 20
for x in a:
y = x
cur = 0
while True:
if y == 0:
break
if y not in cnt:
cnt[y] = 0
sum[y] = 0
if cnt[y] < k:
cnt[y] += 1
sum[y] += cur
if cnt[y] == k:
res = min(res, sum[y])
y >>= 1
cur += 1
print(res) | 3Python3
| {
"input": [
"6 5\n1 2 2 4 2 3\n",
"7 5\n3 3 2 1 1 1 3\n",
"21 6\n12 15 14 4 4 7 2 4 11 1 15 4 12 11 12 8 11 12 3 4 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 26 11 6 2 7 5 2 3 12 16 20 5 16 1 18 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n9 9 9 9 9\n",
"1 1\n1000000000\n",
"7 3\n1 1 1 1 1 1 1\n",
"2 1\n1 1000000000\n",
"5 2\n3 3 3 3 3\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 74830 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 165701 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 50\n86175 169571 61423 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 88721 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"50 25\n162847 80339 131433 130128 135933 64805 74277 145697 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"50 50\n8 63 44 78 3 65 7 27 13 45 7 5 18 94 25 17 26 10 21 44 5 13 6 30 10 11 44 14 71 17 10 5 4 9 8 21 4 9 25 18 3 14 15 8 7 11 5 28 9 1\n",
"4 2\n3 3 3 3\n",
"2 2\n1 1\n",
"10 4\n1 2 3 5 5 5 5 10 11 12\n",
"5 3\n2 2 2 2 2\n",
"4 2\n2 2 2 2\n",
"6 3\n1 10 10 10 10 20\n",
"8 6\n893967334 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"4 2\n5 10 10 20\n",
"50 2\n3 6 10 1 14 5 26 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 4 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n1\n",
"2 1\n1 1\n",
"4 2\n10 20 20 30\n",
"1 1\n1337\n",
"50 25\n199970 199997 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199996 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 146803 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 27036 78631\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 199963 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 199984 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 199959 199990 199982 199987 199992 199997 199985 199976 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"5 3\n1 2 3 4 5\n",
"8 6\n4 5 1 2 3 5 3 3\n",
"2 2\n1 123\n",
"7 4\n3 3 3 3 3 3 3\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 13 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 67 21 12 6 55\n",
"5 3\n1 2 2 4 5\n",
"10 6\n7 7 7 7 7 7 7 7 7 7\n",
"4 2\n9 9 9 9\n",
"50 2\n199995 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 199939 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"5 3\n4 4 4 4 4\n",
"5 3\n1 2 3 3 3\n",
"11 3\n1 1 2 3 4 5 5 5 6 7 8\n",
"2 1\n1 2\n",
"5 2\n4 4 4 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 190346 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 81626 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 4 12 11 12 8 11 12 3 4 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 18 55 16 20 2 3 2 12 65 20 7 11\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 74830 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 125 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 50\n86175 169571 61423 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 20814 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"50 25\n162847 80339 131433 130128 135933 64805 74277 144867 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"10 4\n1 2 3 5 5 5 9 10 11 12\n",
"8 6\n1461516225 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"50 25\n199970 81587 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199996 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 146803 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 49942 78631\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 25432 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 199984 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 343968 199990 199982 199987 199992 199997 199985 199976 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"5 3\n1 2 5 4 5\n",
"8 6\n4 5 1 2 1 5 3 3\n",
"2 2\n2 123\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 2 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 67 21 12 6 55\n",
"7 5\n3 3 2 2 1 1 3\n",
"50 50\n86175 169571 75642 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 20814 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"10 4\n1 2 3 5 5 5 2 10 11 12\n",
"4 2\n5 10 18 17\n",
"50 25\n199970 81587 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199420 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 25432 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 388499 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 343968 199990 199982 199987 199992 199997 199985 40278 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 2 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 36 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n12 9 9 9 9\n",
"5 2\n3 3 3 1 3\n",
"4 1\n3 3 3 3\n",
"4 2\n2 2 1 2\n",
"6 3\n1 10 10 10 17 20\n",
"4 2\n5 10 10 17\n",
"50 2\n3 6 10 1 14 5 11 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 4 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 52 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n2\n",
"1 1\n805\n",
"7 0\n3 3 3 3 3 3 3\n",
"5 4\n1 2 2 4 5\n",
"50 2\n199995 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 381710 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"5 3\n2 2 3 3 3\n",
"11 3\n1 1 2 3 1 5 5 5 6 7 8\n",
"5 2\n4 4 5 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 201609 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 81626 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 4 12 11 12 8 11 12 3 3 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 36 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n12 9 9 11 9\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 102179 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 125 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 25\n156202 80339 131433 130128 135933 64805 74277 144867 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"4 1\n3 3 5 3\n",
"4 2\n4 2 1 2\n",
"6 3\n2 10 10 10 17 20\n",
"8 6\n2015030922 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"50 2\n3 6 10 1 14 5 11 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 5 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 52 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 5 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n920\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 126382 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 49942 78631\n",
"5 3\n1 2 5 4 10\n",
"8 1\n4 5 1 2 1 5 3 3\n",
"7 0\n3 3 3 3 2 3 3\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 2 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 74 21 12 6 55\n",
"50 2\n363005 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 381710 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"11 3\n1 1 1 3 1 5 5 5 6 7 8\n",
"5 2\n4 4 8 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 201609 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 31645 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"7 6\n3 3 2 2 1 1 3\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 2 12 11 12 8 11 12 3 3 4\n",
"5 2\n12 9 9 11 1\n"
],
"output": [
"4\n",
"2\n",
"0\n",
"43\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"12\n",
"780\n",
"364\n",
"167\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"5\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"125\n",
"79\n",
"7\n",
"450\n",
"2\n",
"6\n",
"6\n",
"0\n",
"3\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"165\n",
"989\n",
"2778957\n",
"1107905\n",
"6\n",
"12\n",
"292\n",
"63754\n",
"5\n",
"144464\n",
"2\n",
"8\n",
"121\n",
"9\n",
"3\n",
"2764738\n",
"4\n",
"1\n",
"327\n",
"174581\n",
"304162\n",
"164\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"5\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"3\n",
"165\n",
"0\n",
"989\n",
"1107905\n",
"0\n",
"0\n",
"0\n",
"12\n",
"0\n",
"0\n",
"0\n",
"63754\n",
"5\n",
"0\n",
"0\n",
"9\n",
"0\n",
"0\n",
"0\n",
"0\n",
"4\n",
"5\n",
"0\n"
]
} | 2CODEFORCES
|
1328_F. Make k Equal_932 | You are given the array a consisting of n elements and the integer k ≤ n.
You want to obtain at least k equal elements in the array a. In one move, you can make one of the following two operations:
* Take one of the minimum elements of the array and increase its value by one (more formally, if the minimum value of a is mn then you choose such index i that a_i = mn and set a_i := a_i + 1);
* take one of the maximum elements of the array and decrease its value by one (more formally, if the maximum value of a is mx then you choose such index i that a_i = mx and set a_i := a_i - 1).
Your task is to calculate the minimum number of moves required to obtain at least k equal elements in the array.
Input
The first line of the input contains two integers n and k (1 ≤ k ≤ n ≤ 2 ⋅ 10^5) — the number of elements in a and the required number of equal elements.
The second line of the input contains n integers a_1, a_2, ..., a_n (1 ≤ a_i ≤ 10^9), where a_i is the i-th element of a.
Output
Print one integer — the minimum number of moves required to obtain at least k equal elements in the array.
Examples
Input
6 5
1 2 2 4 2 3
Output
3
Input
7 5
3 3 2 1 1 1 3
Output
4 |
/*
* @author romit17
*/
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.Random;
public class D1213 {
void solve() throws IOException {
PrintWriter out = new PrintWriter(System.out);
StringBuilder sb = new StringBuilder("");
int n = ni(), k = ni();
int[] a = na(n);
randomize(a);
Arrays.sort(a);
HashMap<Integer, Integer> h1 = new HashMap<>();
HashMap<Integer, Integer> h2 = new HashMap<>();
for(int i:a)
{
int ct = 0;
while(i>0)
{
int xx = h2.getOrDefault(i, 0);
if(xx<k)
{
h1.put(i, h1.getOrDefault(i, 0)+ct);
h2.put(i, h2.getOrDefault(i,0)+1);
}
i/=2;
ct++;
}
int xx = h2.getOrDefault(i, 0);
if(xx<k)
{
h1.put(i, h1.getOrDefault(i, 0)+ct);
h2.put(i, h2.getOrDefault(i,0)+1);
}
}
int ans = Integer.MAX_VALUE;
for(int i:h2.keySet())
{
if(h2.get(i) >= k)
ans = Math.min(ans, h1.get(i));
}
System.out.println(ans);
}
void randomize(int arr[]) {
int n = arr.length;
Random r = new Random();
for (int i = n - 1; i > 0; i--) {
int j = r.nextInt(i);
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
// class data
// {
// int n;
// int c;
//
// public data(int n, int c) {
// this.n = n;
// this.c = c;
// }
//
// }
public static void main(String[] args) throws IOException {
new D1213().solve();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
InputStream is = System.in;
private int readByte() {
if (lenbuf == -1) {
throw new InputMismatchException();
}
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0) {
return -1;
}
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b));
return b;
}
private double nd() {
return Double.parseDouble(ns());
}
private char nc() {
return (char) skip();
}
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++) {
map[i] = ns(m);
}
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
private int[] na1(int n) {
int[] a = new int[n + 1];
for (int i = 1; i < n + 1; i++) {
a[i] = ni();
}
return a;
}
private long[] nb(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nl();
}
return a;
}
private long[] nb1(int n) {
long[] a = new long[n + 1];
for (int i = 1; i < n + 1; i++) {
a[i] = nl();
}
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
}
| 4JAVA
| {
"input": [
"6 5\n1 2 2 4 2 3\n",
"7 5\n3 3 2 1 1 1 3\n",
"21 6\n12 15 14 4 4 7 2 4 11 1 15 4 12 11 12 8 11 12 3 4 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 26 11 6 2 7 5 2 3 12 16 20 5 16 1 18 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n9 9 9 9 9\n",
"1 1\n1000000000\n",
"7 3\n1 1 1 1 1 1 1\n",
"2 1\n1 1000000000\n",
"5 2\n3 3 3 3 3\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 74830 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 165701 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 50\n86175 169571 61423 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 88721 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"50 25\n162847 80339 131433 130128 135933 64805 74277 145697 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"50 50\n8 63 44 78 3 65 7 27 13 45 7 5 18 94 25 17 26 10 21 44 5 13 6 30 10 11 44 14 71 17 10 5 4 9 8 21 4 9 25 18 3 14 15 8 7 11 5 28 9 1\n",
"4 2\n3 3 3 3\n",
"2 2\n1 1\n",
"10 4\n1 2 3 5 5 5 5 10 11 12\n",
"5 3\n2 2 2 2 2\n",
"4 2\n2 2 2 2\n",
"6 3\n1 10 10 10 10 20\n",
"8 6\n893967334 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"4 2\n5 10 10 20\n",
"50 2\n3 6 10 1 14 5 26 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 4 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n1\n",
"2 1\n1 1\n",
"4 2\n10 20 20 30\n",
"1 1\n1337\n",
"50 25\n199970 199997 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199996 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 146803 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 27036 78631\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 199963 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 199984 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 199959 199990 199982 199987 199992 199997 199985 199976 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"5 3\n1 2 3 4 5\n",
"8 6\n4 5 1 2 3 5 3 3\n",
"2 2\n1 123\n",
"7 4\n3 3 3 3 3 3 3\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 13 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 67 21 12 6 55\n",
"5 3\n1 2 2 4 5\n",
"10 6\n7 7 7 7 7 7 7 7 7 7\n",
"4 2\n9 9 9 9\n",
"50 2\n199995 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 199939 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"5 3\n4 4 4 4 4\n",
"5 3\n1 2 3 3 3\n",
"11 3\n1 1 2 3 4 5 5 5 6 7 8\n",
"2 1\n1 2\n",
"5 2\n4 4 4 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 190346 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 81626 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 4 12 11 12 8 11 12 3 4 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 18 55 16 20 2 3 2 12 65 20 7 11\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 74830 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 125 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 50\n86175 169571 61423 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 20814 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"50 25\n162847 80339 131433 130128 135933 64805 74277 144867 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"10 4\n1 2 3 5 5 5 9 10 11 12\n",
"8 6\n1461516225 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"50 25\n199970 81587 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199996 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 146803 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 49942 78631\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 25432 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 199984 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 343968 199990 199982 199987 199992 199997 199985 199976 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"5 3\n1 2 5 4 5\n",
"8 6\n4 5 1 2 1 5 3 3\n",
"2 2\n2 123\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 2 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 67 21 12 6 55\n",
"7 5\n3 3 2 2 1 1 3\n",
"50 50\n86175 169571 75642 53837 33228 49923 87369 11875 167105 101762 128203 19011 191596 19500 11213 950 192557 164451 58008 34390 39704 128606 191084 14227 57911 129189 124795 42481 69510 59862 146348 57352 158069 68387 196697 46595 84330 168274 20814 191842 155836 39164 195031 53880 188281 11150 132256 87853 179233 135499\n",
"10 4\n1 2 3 5 5 5 2 10 11 12\n",
"4 2\n5 10 18 17\n",
"50 25\n199970 81587 199998 199988 199999 199981 200000 199990 199974 199985 199932 200000 199966 199999 199999 199951 199983 199975 199974 199996 199974 199992 199979 199995 199955 199989 199960 199975 199983 199990 199950 199952 199999 199999 199962 199939 199979 199977 199962 199420 199910 199997 199976 200000 199999 199997 199998 199973 199996 199917\n",
"50 7\n199961 199990 199995 199997 199963 199995 199985 199994 199974 199974 199997 199991 199993 199982 199991 199982 25432 200000 199994 199997 199963 199991 199947 199996 199994 199995 199995 199990 199972 199973 199980 199955 388499 199998 199998 199992 199986 199986 199997 199995 199987 199958 199982 199998 199996 199995 199979 199943 199992 199993\n",
"50 50\n199987 199984 199987 199977 199996 199923 199984 199995 199991 200000 199998 199990 199983 199981 199973 199989 199981 199993 199959 199994 199973 199962 199998 199970 199999 199981 199996 199996 199985 199980 343968 199990 199982 199987 199992 199997 199985 40278 199947 199998 199962 199987 199984 199982 199999 199997 199985 199992 199979 199974\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 2 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 36 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n12 9 9 9 9\n",
"5 2\n3 3 3 1 3\n",
"4 1\n3 3 3 3\n",
"4 2\n2 2 1 2\n",
"6 3\n1 10 10 10 17 20\n",
"4 2\n5 10 10 17\n",
"50 2\n3 6 10 1 14 5 11 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 4 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 52 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n2\n",
"1 1\n805\n",
"7 0\n3 3 3 3 3 3 3\n",
"5 4\n1 2 2 4 5\n",
"50 2\n199995 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 381710 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"5 3\n2 2 3 3 3\n",
"11 3\n1 1 2 3 1 5 5 5 6 7 8\n",
"5 2\n4 4 5 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 201609 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 81626 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 4 12 11 12 8 11 12 3 3 4\n",
"50 25\n19 1 17 6 4 21 9 16 5 21 2 12 17 11 54 18 36 20 34 17 32 1 4 14 42 11 6 2 7 5 2 3 12 16 20 5 16 1 36 55 16 20 2 3 2 12 65 20 7 11\n",
"5 2\n12 9 9 11 9\n",
"50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 102179 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 125 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"50 25\n156202 80339 131433 130128 135933 64805 74277 144867 92574 169638 26992 155045 32254 97675 177503 143802 44012 171388 185307 33652 194764 80214 169507 71832 180118 117737 198279 89826 9941 120250 158894 31871 616 190147 159249 158867 131076 77551 95165 54709 51376 145758 74581 26670 48775 29351 4750 55294 129850 19793\n",
"4 1\n3 3 5 3\n",
"4 2\n4 2 1 2\n",
"6 3\n2 10 10 10 17 20\n",
"8 6\n2015030922 893967335 893967331 893967332 893967333 893967335 893967333 893967333\n",
"50 2\n3 6 10 1 14 5 11 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 5 20 39 99\n",
"50 4\n29 16 86 40 24 1 6 15 7 30 52 16 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30 29 5 86 40 24 1 6 15 7 30 29 16 86 40 24 1 6 15 7 30\n",
"1 1\n920\n",
"50 7\n155076 162909 18349 8937 38161 128479 127526 128714 164477 163037 130796 160247 17004 73321 175301 175796 79144 75670 46299 197255 10139 2112 195709 124860 6485 137601 63708 117985 94924 65661 113294 85898 7511 137431 115791 66126 126382 121145 96379 126408 195646 70033 131093 86487 94591 3086 59652 188702 49942 78631\n",
"5 3\n1 2 5 4 10\n",
"8 1\n4 5 1 2 1 5 3 3\n",
"7 0\n3 3 3 3 2 3 3\n",
"50 7\n1 2 27 54 6 15 24 1 9 28 3 26 8 12 7 6 8 54 23 8 7 2 18 10 1 33 24 10 34 13 12 9 16 11 36 50 39 9 8 10 2 5 6 4 7 74 21 12 6 55\n",
"50 2\n363005 199977 199982 199979 199998 199991 199999 199976 199974 199971 199966 199999 199978 199987 199989 199995 199968 199987 199988 199987 199987 199998 199988 199958 199985 199999 199997 381710 199992 199999 199985 199994 199987 199965 199947 199991 199993 199997 199998 199994 199971 199999 199999 199990 199993 199983 199983 199999 199970 199952\n",
"11 3\n1 1 1 3 1 5 5 5 6 7 8\n",
"5 2\n4 4 8 4 4\n",
"50 1\n156420 126738 188531 85575 23728 72842 201609 24786 118328 137944 126942 115577 175247 85409 146194 31398 189417 52337 135886 162083 146559 131125 31741 152481 57935 26624 106893 55028 31645 99143 182257 129556 100261 11429 156642 27997 105720 173400 140250 164944 26466 132034 86679 190160 161138 179688 2975 149862 38336 67959\n",
"7 6\n3 3 2 2 1 1 3\n",
"21 6\n12 15 14 4 4 7 3 4 11 1 15 2 12 11 12 8 11 12 3 3 4\n",
"5 2\n12 9 9 11 1\n"
],
"output": [
"4\n",
"2\n",
"0\n",
"43\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"12\n",
"780\n",
"364\n",
"167\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"5\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"125\n",
"79\n",
"7\n",
"450\n",
"2\n",
"6\n",
"6\n",
"0\n",
"3\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"165\n",
"989\n",
"2778957\n",
"1107905\n",
"6\n",
"12\n",
"292\n",
"63754\n",
"5\n",
"144464\n",
"2\n",
"8\n",
"121\n",
"9\n",
"3\n",
"2764738\n",
"4\n",
"1\n",
"327\n",
"174581\n",
"304162\n",
"164\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"5\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"3\n",
"165\n",
"0\n",
"989\n",
"1107905\n",
"0\n",
"0\n",
"0\n",
"12\n",
"0\n",
"0\n",
"0\n",
"63754\n",
"5\n",
"0\n",
"0\n",
"9\n",
"0\n",
"0\n",
"0\n",
"0\n",
"4\n",
"5\n",
"0\n"
]
} | 2CODEFORCES
|
1348_F. Phoenix and Memory_933 | Phoenix is trying to take a photo of his n friends with labels 1, 2, ..., n who are lined up in a row in a special order. But before he can take the photo, his friends get distracted by a duck and mess up their order.
Now, Phoenix must restore the order but he doesn't remember completely! He only remembers that the i-th friend from the left had a label between a_i and b_i inclusive. Does there exist a unique way to order his friends based of his memory?
Input
The first line contains one integer n (1 ≤ n ≤ 2⋅10^5) — the number of friends.
The i-th of the next n lines contain two integers a_i and b_i (1 ≤ a_i ≤ b_i ≤ n) — Phoenix's memory of the i-th position from the left.
It is guaranteed that Phoenix's memory is valid so there is at least one valid ordering.
Output
If Phoenix can reorder his friends in a unique order, print YES followed by n integers — the i-th integer should be the label of the i-th friend from the left.
Otherwise, print NO. Then, print any two distinct valid orderings on the following two lines. If are multiple solutions, print any.
Examples
Input
4
4 4
1 3
2 4
3 4
Output
YES
4 1 2 3
Input
4
1 3
2 4
3 4
2 3
Output
NO
1 3 4 2
1 2 4 3 | #include <bits/stdc++.h>
#pragma GCC optimize(2)
using namespace std;
long long n, m, t, k;
int pos[200005], tmp[200005];
pair<pair<int, int>, int> a[200005];
class dsu {
public:
int fa[200005];
void init(int n) {
for (int i = 0; i <= n; i++) {
fa[i] = i;
}
}
int find(int u) {
while (u != fa[u]) u = fa[u] = fa[fa[u]];
fa[u] = u + 1;
return u;
}
} num;
bool cmp(pair<pair<int, int>, int> a, pair<pair<int, int>, int> b) {
if (a.first.second != b.first.second) return a.first.second < b.first.second;
return a.first.first < b.first.first;
}
set<int> mp;
vector<pair<pair<long long, long long>, int>> points;
void print(int p[200005]) {
for (int i = 1; i <= n; i++) cout << p[i] << " ";
cout << endl;
}
void swp(int a, int b) {
for (int i = 1; i <= n; i++) {
tmp[i] = pos[i];
if (tmp[i] == a) {
tmp[i] = b;
} else if (tmp[i] == b) {
tmp[i] = a;
}
}
}
bool cmp2(pair<pair<long long, long long>, int> a,
pair<pair<long long, long long>, int> b) {
if (a.first.first != b.first.first) return a.first.first < b.first.first;
return a.second < b.second;
}
int main() {
ios::sync_with_stdio(0);
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i].first.first >> a[i].first.second;
a[i].second = i + 1;
}
sort(a, a + n, cmp);
num.init(n);
bool sud = 1;
for (int i = 0; i < n; i++) {
pos[a[i].second] = num.find(a[i].first.first);
points.push_back({make_pair(pos[a[i].second], a[i].first.first), 0});
points.push_back(
{make_pair(a[i].first.second, a[i].first.first), pos[a[i].second]});
}
sort(points.begin(), points.end(), cmp2);
for (auto point : points) {
if (point.second == 0) {
if (!mp.empty() && point.first.second <= (*mp.rbegin())) {
swp((*mp.rbegin()), point.first.first);
sud = 0;
break;
}
mp.insert(point.first.first);
} else {
mp.erase(point.second);
}
}
if (sud) {
cout << "YES\n";
print(pos);
} else {
cout << "NO\n";
print(pos);
print(tmp);
}
return 0;
}
| 2C++
| {
"input": [
"4\n1 3\n2 4\n3 4\n2 3\n",
"4\n4 4\n1 3\n2 4\n3 4\n",
"4\n3 4\n1 2\n3 4\n1 2\n",
"4\n2 4\n1 3\n4 4\n1 1\n",
"10\n6 6\n1 2\n2 2\n6 7\n8 8\n3 5\n5 5\n4 4\n8 9\n10 10\n",
"4\n1 4\n1 4\n2 4\n1 2\n",
"8\n3 4\n7 8\n2 6\n1 3\n6 7\n5 8\n4 6\n8 8\n",
"7\n7 7\n2 3\n2 3\n5 7\n5 6\n4 4\n1 2\n",
"15\n2 2\n10 11\n2 5\n6 7\n7 12\n9 9\n2 3\n5 14\n1 3\n10 10\n15 15\n12 12\n5 6\n6 6\n14 15\n",
"5\n1 3\n4 4\n5 5\n1 4\n1 5\n",
"4\n1 4\n2 3\n2 3\n4 4\n",
"4\n1 4\n1 4\n1 2\n1 4\n",
"5\n1 3\n1 3\n1 5\n3 4\n1 5\n",
"3\n1 3\n2 2\n1 3\n",
"5\n4 4\n1 4\n3 4\n1 3\n3 5\n",
"3\n1 3\n1 2\n2 3\n",
"4\n2 4\n1 3\n2 3\n1 2\n",
"5\n4 5\n4 5\n1 3\n1 2\n2 4\n",
"6\n2 6\n4 6\n6 6\n2 2\n3 3\n1 3\n",
"3\n2 3\n1 2\n1 3\n",
"6\n4 6\n1 3\n4 6\n4 4\n1 4\n1 2\n",
"7\n3 6\n6 6\n5 7\n2 4\n2 3\n1 2\n3 5\n",
"8\n4 6\n8 8\n1 4\n4 5\n6 8\n1 2\n3 6\n1 4\n",
"6\n2 4\n2 6\n4 5\n2 5\n6 6\n1 4\n",
"8\n4 4\n7 7\n3 5\n5 7\n1 8\n4 5\n1 5\n2 2\n",
"4\n3 4\n1 3\n2 3\n1 2\n",
"10\n9 9\n3 4\n1 1\n5 5\n7 7\n3 7\n6 10\n3 3\n10 10\n1 3\n",
"4\n1 4\n4 4\n2 3\n1 1\n",
"1\n1 1\n",
"8\n1 5\n6 8\n1 3\n4 8\n1 1\n3 3\n6 6\n8 8\n",
"5\n3 3\n4 4\n2 2\n1 1\n5 5\n",
"4\n1 1\n2 3\n2 3\n1 4\n",
"4\n3 4\n1 4\n2 3\n1 2\n",
"2\n1 2\n1 2\n",
"8\n3 3\n3 5\n2 3\n1 1\n5 7\n7 7\n5 5\n3 8\n",
"5\n2 2\n3 3\n1 2\n1 5\n4 4\n",
"6\n1 3\n2 4\n3 4\n2 3\n5 5\n6 6\n",
"6\n1 4\n3 6\n6 6\n3 5\n1 5\n2 5\n",
"5\n4 4\n2 3\n4 5\n1 4\n2 4\n",
"3\n1 2\n1 2\n1 3\n",
"4\n1 4\n2 2\n3 3\n1 4\n",
"5\n2 5\n1 1\n2 3\n3 4\n5 5\n",
"4\n2 4\n1 4\n3 4\n1 3\n",
"6\n1 1\n4 6\n3 6\n1 3\n3 4\n3 6\n",
"5\n2 3\n3 4\n4 5\n1 1\n2 3\n",
"5\n2 3\n1 5\n2 4\n3 5\n4 4\n",
"20\n12 14\n13 13\n18 18\n3 3\n7 8\n11 11\n10 13\n2 2\n9 10\n3 5\n7 8\n15 17\n14 15\n9 9\n20 20\n15 16\n6 6\n19 19\n1 1\n5 5\n",
"5\n1 5\n2 2\n3 3\n4 4\n1 5\n",
"7\n5 7\n1 5\n1 2\n1 5\n5 6\n3 5\n7 7\n",
"4\n3 4\n1 2\n3 4\n1 4\n",
"4\n2 4\n1 3\n3 4\n1 1\n",
"4\n1 4\n2 4\n2 4\n1 2\n",
"7\n7 7\n2 3\n2 3\n5 7\n5 6\n4 4\n1 0\n",
"15\n2 2\n10 11\n2 9\n6 7\n7 12\n9 9\n2 3\n5 14\n1 3\n10 10\n15 15\n12 12\n5 6\n6 6\n14 15\n",
"4\n1 4\n1 4\n1 2\n1 3\n",
"5\n1 2\n1 3\n1 5\n3 4\n1 5\n",
"3\n1 4\n2 2\n1 3\n",
"5\n4 4\n1 4\n3 4\n1 3\n1 5\n",
"3\n1 3\n1 2\n2 2\n",
"5\n4 5\n4 5\n1 5\n1 2\n2 4\n",
"3\n2 3\n1 2\n1 1\n",
"6\n4 6\n1 3\n4 6\n4 4\n1 4\n1 0\n",
"8\n4 6\n8 8\n1 4\n4 5\n6 8\n1 2\n1 6\n1 4\n",
"6\n2 4\n2 6\n4 5\n4 5\n6 6\n1 4\n",
"4\n3 4\n1 3\n2 3\n2 2\n",
"10\n9 9\n3 4\n1 1\n5 5\n7 7\n3 7\n6 10\n5 3\n10 10\n1 3\n",
"4\n2 4\n4 4\n2 3\n1 1\n",
"5\n3 3\n4 4\n1 2\n1 1\n5 5\n",
"4\n1 1\n2 3\n2 3\n1 8\n",
"4\n3 4\n1 6\n2 3\n1 2\n",
"2\n1 2\n2 2\n",
"8\n3 3\n3 5\n2 3\n1 1\n5 7\n7 7\n5 5\n6 8\n",
"6\n1 4\n3 6\n4 6\n3 5\n1 5\n2 5\n",
"5\n2 5\n1 1\n2 3\n3 3\n5 5\n",
"4\n2 5\n1 4\n3 4\n1 3\n",
"6\n1 1\n4 6\n2 6\n1 3\n3 4\n3 6\n",
"5\n2 3\n1 2\n2 4\n3 5\n4 4\n",
"20\n12 14\n13 13\n18 18\n3 3\n7 8\n11 11\n10 13\n2 2\n9 10\n3 5\n7 8\n15 14\n14 15\n9 9\n20 20\n15 16\n6 6\n19 19\n1 1\n5 5\n",
"5\n1 5\n2 2\n3 5\n4 4\n1 5\n",
"7\n5 7\n1 5\n1 2\n1 3\n5 6\n3 5\n7 7\n",
"4\n2 4\n1 2\n3 4\n1 4\n",
"4\n2 4\n1 3\n3 4\n1 2\n",
"5\n1 0\n1 3\n1 5\n3 4\n1 5\n",
"3\n1 4\n2 4\n1 3\n",
"8\n4 6\n8 8\n1 4\n4 5\n6 0\n1 2\n1 6\n1 4\n",
"4\n1 4\n2 4\n2 3\n1 2\n",
"5\n4 4\n1 4\n1 4\n1 3\n1 5\n",
"5\n4 5\n4 10\n1 5\n1 2\n2 4\n",
"6\n4 6\n1 3\n1 6\n4 4\n1 4\n1 0\n",
"6\n1 4\n3 6\n1 6\n3 5\n1 5\n2 5\n"
],
"output": [
"NO\n1 3 4 2\n1 2 4 3\n",
"YES\n4 1 2 3 ",
"NO\n3 1 4 2\n3 2 4 1\n",
"NO\n3 2 4 1 \n2 3 4 1 ",
"YES\n6 1 2 7 8 3 5 4 9 10 ",
"NO\n2 3 4 1 \n1 3 4 2 \n",
"YES\n3 7 2 1 6 5 4 8 ",
"NO\n7 2 3 6 5 4 1 \n7 3 2 6 5 4 1 \n",
"YES\n2 11 4 7 8 9 3 13 1 10 15 12 5 6 14 ",
"NO\n1 4 5 2 3 \n2 4 5 1 3 ",
"NO\n1 2 3 4 \n1 3 2 4 \n",
"NO\n2 3 1 4 \n1 3 2 4 \n",
"NO\n1 2 4 3 5 \n2 1 4 3 5 \n",
"NO\n1 2 3 \n3 2 1 \n",
"NO\n4 2 3 1 5 \n4 1 3 2 5 ",
"NO\n2 1 3\n1 2 3\n",
"NO\n4 2 3 1\n4 1 3 2\n",
"NO\n4 5 2 1 3\n4 5 1 2 3\n",
"NO\n4 5 6 2 3 1 \n5 4 6 2 3 1 \n",
"NO\n2 1 3 \n3 1 2 \n",
"NO\n5 2 6 4 3 1 \n5 1 6 4 3 2 \n",
"NO\n5 6 7 3 2 1 4 \n5 6 7 2 3 1 4 ",
"NO\n5 8 2 4 7 1 6 3\n5 8 1 4 7 2 6 3\n",
"NO\n2 5 4 3 6 1 \n3 5 4 2 6 1 ",
"YES\n4 7 3 6 8 5 1 2 ",
"NO\n4 2 3 1\n4 1 3 2\n",
"YES\n9 4 1 5 7 6 8 3 10 2 ",
"NO\n3 4 2 1 \n2 4 3 1 ",
"YES\n1 ",
"NO\n4 7 2 5 1 3 6 8 \n5 7 2 4 1 3 6 8 ",
"YES\n3 4 2 1 5 ",
"NO\n1 2 3 4 \n1 3 2 4 \n",
"NO\n3 4 2 1 \n4 3 2 1 \n",
"NO\n1 2 \n2 1 \n",
"YES\n3 4 2 1 6 7 5 8 ",
"YES\n2 3 1 5 4 ",
"NO\n1 3 4 2 5 6\n1 2 4 3 5 6\n",
"NO\n1 5 6 3 2 4 \n2 5 6 3 1 4 \n",
"NO\n4 2 5 1 3 \n4 3 5 1 2 ",
"NO\n1 2 3 \n2 1 3 \n",
"NO\n1 2 3 4 \n4 2 3 1 \n",
"NO\n4 1 2 3 5 \n3 1 2 4 5 \n",
"NO\n2 3 4 1\n2 1 4 3\n",
"NO\n1 4 5 2 3 6 \n1 5 4 2 3 6 \n",
"NO\n2 4 5 1 3 \n3 4 5 1 2 \n",
"NO\n2 1 3 5 4 \n3 1 2 5 4 ",
"NO\n14 13 18 3 7 11 12 2 10 4 8 17 15 9 20 16 6 19 1 5 \n14 13 18 3 8 11 12 2 10 4 7 17 15 9 20 16 6 19 1 5 \n",
"NO\n1 2 3 4 5 \n5 2 3 4 1 \n",
"NO\n6 2 1 3 5 4 7\n6 1 2 3 5 4 7\n",
"NO\n3 1 4 2 \n3 2 4 1 \n",
"NO\n3 2 4 1 \n2 3 4 1 \n",
"NO\n2 3 4 1 \n1 3 4 2 \n",
"NO\n7 2 3 6 5 4 1 \n7 3 2 6 5 4 1 \n",
"YES\n2 11 4 7 8 9 3 13 1 10 15 12 5 6 14 \n",
"NO\n3 4 1 2 \n3 4 2 1 \n",
"NO\n1 2 4 3 5 \n2 1 4 3 5 \n",
"NO\n3 2 1 \n1 2 3 \n",
"NO\n4 2 3 1 5 \n4 1 3 2 5 \n",
"YES\n3 1 2 \n",
"NO\n4 5 3 1 2 \n4 5 2 1 3 \n",
"YES\n3 2 1 \n",
"NO\n5 2 6 4 3 1 \n5 3 6 4 2 1 \n",
"NO\n5 8 2 4 7 1 6 3 \n5 8 1 4 7 2 6 3 \n",
"NO\n2 3 4 5 6 1 \n3 2 4 5 6 1 \n",
"YES\n4 1 3 2 \n",
"NO\n9 3 1 6 7 4 8 5 10 2 \n9 4 1 6 7 3 8 5 10 2 \n",
"NO\n3 4 2 1 \n2 4 3 1 \n",
"YES\n3 4 2 1 5 \n",
"NO\n1 2 3 4 \n1 3 2 4 \n",
"NO\n3 4 2 1 \n4 3 2 1 \n",
"YES\n1 2 \n",
"YES\n3 4 2 1 6 7 5 8 \n",
"NO\n1 5 6 3 2 4 \n2 5 6 3 1 4 \n",
"YES\n4 1 2 3 5 \n",
"NO\n4 2 3 1 \n4 1 3 2 \n",
"NO\n1 4 5 2 3 6 \n1 5 4 2 3 6 \n",
"NO\n2 1 3 5 4 \n3 1 2 5 4 \n",
"NO\n14 13 18 3 7 11 12 2 10 4 8 15 16 9 20 17 6 19 1 5 \n14 13 18 3 8 11 12 2 10 4 7 15 16 9 20 17 6 19 1 5 \n",
"NO\n1 2 3 4 5 \n5 2 3 4 1 \n",
"NO\n6 3 1 2 5 4 7 \n6 3 2 1 5 4 7 \n",
"NO\n2 1 3 4 \n4 1 3 2 \n",
"NO\n3 2 4 1 \n3 1 4 2 \n",
"NO\n1 2 4 3 5 \n1 2 3 4 5 \n",
"NO\n2 3 1 \n1 3 2 \n",
"NO\n5 8 2 4 6 1 7 3 \n5 8 1 4 6 2 7 3 \n",
"NO\n3 4 2 1 \n2 4 3 1 \n",
"NO\n4 2 3 1 5 \n4 1 3 2 5 \n",
"NO\n4 5 3 1 2 \n4 5 2 1 3 \n",
"NO\n5 2 6 4 3 1 \n5 3 6 4 2 1 \n",
"NO\n1 5 6 3 2 4 \n2 5 6 3 1 4 \n"
]
} | 2CODEFORCES
|
1348_F. Phoenix and Memory_934 | Phoenix is trying to take a photo of his n friends with labels 1, 2, ..., n who are lined up in a row in a special order. But before he can take the photo, his friends get distracted by a duck and mess up their order.
Now, Phoenix must restore the order but he doesn't remember completely! He only remembers that the i-th friend from the left had a label between a_i and b_i inclusive. Does there exist a unique way to order his friends based of his memory?
Input
The first line contains one integer n (1 ≤ n ≤ 2⋅10^5) — the number of friends.
The i-th of the next n lines contain two integers a_i and b_i (1 ≤ a_i ≤ b_i ≤ n) — Phoenix's memory of the i-th position from the left.
It is guaranteed that Phoenix's memory is valid so there is at least one valid ordering.
Output
If Phoenix can reorder his friends in a unique order, print YES followed by n integers — the i-th integer should be the label of the i-th friend from the left.
Otherwise, print NO. Then, print any two distinct valid orderings on the following two lines. If are multiple solutions, print any.
Examples
Input
4
4 4
1 3
2 4
3 4
Output
YES
4 1 2 3
Input
4
1 3
2 4
3 4
2 3
Output
NO
1 3 4 2
1 2 4 3 | import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class f_638 {
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
FastScanner in = new FastScanner(System.in);
OutputStream outputStream = System.out;
PrintWriter out = new PrintWriter(outputStream);
int T = 1;
Solver A = new Solver(in, out);
for(int aa = 0; aa < T; aa++) {
A.answer(aa + 1);
}
out.close();
}
static class Solver {
FastScanner in;
PrintWriter out;
int n, a [][], val [], tree [];
pair p [], sort [];
public Solver(FastScanner in, PrintWriter out) {
this.in = in;
this.out = out;
}
public void answer(int aa) throws Exception {
n = in.nextInt();
a = new int [n][2];
p = new pair [n];
val = new int [n];
tree = new int [4*n];
for(int i = 0; i < n; i++) {
a[i][0] = in.nextInt() - 1;
a[i][1] = in.nextInt() - 1;
p[i] = new pair(a[i][0], a[i][1], i);
}
Arrays.sort(p, new sortFirst());
sort = new pair [n];
int assign [] = new int [n];
TreeSet<pair> min = new TreeSet<>();
int l = 0;
for(int i = n-1; i >= 0; i--) {
while(l < n && p[l].e == i) {
min.add(p[l]);
l++;
}
pair best = min.pollFirst();
sort[i] = best;
assign[best.id] = i;
val[i] = best.s;
}
init();
boolean works = true;
for(int i = 0; i < n-1; i++) {
if(i+1 > sort[i].e) continue;
int small = query(i+1, sort[i].e);
if(val[small] <= i) {
works = false;
swap(i, small);
break;
}
}
if(works) {
out.println("YES");
for(int i = 0; i < n; i++) {
out.print((assign[i]+1) + " ");
}
} else {
out.println("NO");
for(int i = 0; i < n; i++) {
out.print((assign[i]+1) + " ");
}
out.println();
for(int i = 0; i < n; i++) {
assign[sort[i].id] = i;
}
for(int i = 0; i < n; i++) {
out.print((assign[i]+1) + " ");
}
}
}
private void init() {
build(1, 0, n-1);
}
public void build(int c, int l, int r) {
if(l == r) {
tree[c] = l;
} else {
int mid = (l+r)/2;
build(2*c, l, mid);
build(2*c+1, mid+1, r);
tree[c] = val[tree[2*c]] < val[tree[2*c+1]] ? tree[2*c] : tree[2*c+1];
}
}
public int query(int s, int e) {
return smallest(1, 0, n-1, s, e);
}
public int smallest(int c, int l, int r, int s, int e) {
if(s > r || e < l) return s;
if(s <= l && r <= e) {
return tree[c];
}
int mid = (l+r)/2;
int lr = smallest(2*c, l, mid, s, e);
int rr = smallest(2*c+1, mid+1, r, s, e);
return val[lr] < val[rr] ? lr : rr;
}
public void swap(int i, int j) {
pair temp = sort[i];
sort[i] = sort[j];
sort[j] = temp;
}
}
static class pair implements Comparable<pair> {
int s, e, id;
public pair(int S, int E, int ID) {
s = S;
e = E;
id = ID;
}
@Override
public int compareTo(pair o) {
if(s == o.s) {
if(e == o.e) {
return Integer.compare(id, o.id);
}
return Integer.compare(e, o.e);
}
return -Integer.compare(s, o.s);
}
}
static class sortFirst implements Comparator<pair> {
public int compare(pair o1, pair o2) {
if(o1.e == o2.e) {
if(o1.s == o2.s) {
return Integer.compare(o1.id, o2.id);
}
return -Integer.compare(o1.s, o2.s);
} else {
return -Integer.compare(o1.e, o2.e);
}
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream stream) {
br = new BufferedReader(new InputStreamReader(stream));
st = new StringTokenizer("");
}
public FastScanner(String fileName) throws Exception {
br = new BufferedReader(new FileReader(new File(fileName)));
st = new StringTokenizer("");
}
public String next() throws Exception {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public int nextInt() throws Exception {
return Integer.parseInt(next());
}
public long nextLong() throws Exception {
return Long.parseLong(next());
}
public Double nextDouble() throws Exception {
return Double.parseDouble(next());
}
public String nextLine() throws Exception {
if (st.hasMoreTokens()) {
StringBuilder str = new StringBuilder();
boolean first = true;
while (st.hasMoreTokens()) {
if (first) {
first = false;
} else {
str.append(" ");
}
str.append(st.nextToken());
}
return str.toString();
} else {
return br.readLine();
}
}
}
}
| 4JAVA
| {
"input": [
"4\n1 3\n2 4\n3 4\n2 3\n",
"4\n4 4\n1 3\n2 4\n3 4\n",
"4\n3 4\n1 2\n3 4\n1 2\n",
"4\n2 4\n1 3\n4 4\n1 1\n",
"10\n6 6\n1 2\n2 2\n6 7\n8 8\n3 5\n5 5\n4 4\n8 9\n10 10\n",
"4\n1 4\n1 4\n2 4\n1 2\n",
"8\n3 4\n7 8\n2 6\n1 3\n6 7\n5 8\n4 6\n8 8\n",
"7\n7 7\n2 3\n2 3\n5 7\n5 6\n4 4\n1 2\n",
"15\n2 2\n10 11\n2 5\n6 7\n7 12\n9 9\n2 3\n5 14\n1 3\n10 10\n15 15\n12 12\n5 6\n6 6\n14 15\n",
"5\n1 3\n4 4\n5 5\n1 4\n1 5\n",
"4\n1 4\n2 3\n2 3\n4 4\n",
"4\n1 4\n1 4\n1 2\n1 4\n",
"5\n1 3\n1 3\n1 5\n3 4\n1 5\n",
"3\n1 3\n2 2\n1 3\n",
"5\n4 4\n1 4\n3 4\n1 3\n3 5\n",
"3\n1 3\n1 2\n2 3\n",
"4\n2 4\n1 3\n2 3\n1 2\n",
"5\n4 5\n4 5\n1 3\n1 2\n2 4\n",
"6\n2 6\n4 6\n6 6\n2 2\n3 3\n1 3\n",
"3\n2 3\n1 2\n1 3\n",
"6\n4 6\n1 3\n4 6\n4 4\n1 4\n1 2\n",
"7\n3 6\n6 6\n5 7\n2 4\n2 3\n1 2\n3 5\n",
"8\n4 6\n8 8\n1 4\n4 5\n6 8\n1 2\n3 6\n1 4\n",
"6\n2 4\n2 6\n4 5\n2 5\n6 6\n1 4\n",
"8\n4 4\n7 7\n3 5\n5 7\n1 8\n4 5\n1 5\n2 2\n",
"4\n3 4\n1 3\n2 3\n1 2\n",
"10\n9 9\n3 4\n1 1\n5 5\n7 7\n3 7\n6 10\n3 3\n10 10\n1 3\n",
"4\n1 4\n4 4\n2 3\n1 1\n",
"1\n1 1\n",
"8\n1 5\n6 8\n1 3\n4 8\n1 1\n3 3\n6 6\n8 8\n",
"5\n3 3\n4 4\n2 2\n1 1\n5 5\n",
"4\n1 1\n2 3\n2 3\n1 4\n",
"4\n3 4\n1 4\n2 3\n1 2\n",
"2\n1 2\n1 2\n",
"8\n3 3\n3 5\n2 3\n1 1\n5 7\n7 7\n5 5\n3 8\n",
"5\n2 2\n3 3\n1 2\n1 5\n4 4\n",
"6\n1 3\n2 4\n3 4\n2 3\n5 5\n6 6\n",
"6\n1 4\n3 6\n6 6\n3 5\n1 5\n2 5\n",
"5\n4 4\n2 3\n4 5\n1 4\n2 4\n",
"3\n1 2\n1 2\n1 3\n",
"4\n1 4\n2 2\n3 3\n1 4\n",
"5\n2 5\n1 1\n2 3\n3 4\n5 5\n",
"4\n2 4\n1 4\n3 4\n1 3\n",
"6\n1 1\n4 6\n3 6\n1 3\n3 4\n3 6\n",
"5\n2 3\n3 4\n4 5\n1 1\n2 3\n",
"5\n2 3\n1 5\n2 4\n3 5\n4 4\n",
"20\n12 14\n13 13\n18 18\n3 3\n7 8\n11 11\n10 13\n2 2\n9 10\n3 5\n7 8\n15 17\n14 15\n9 9\n20 20\n15 16\n6 6\n19 19\n1 1\n5 5\n",
"5\n1 5\n2 2\n3 3\n4 4\n1 5\n",
"7\n5 7\n1 5\n1 2\n1 5\n5 6\n3 5\n7 7\n",
"4\n3 4\n1 2\n3 4\n1 4\n",
"4\n2 4\n1 3\n3 4\n1 1\n",
"4\n1 4\n2 4\n2 4\n1 2\n",
"7\n7 7\n2 3\n2 3\n5 7\n5 6\n4 4\n1 0\n",
"15\n2 2\n10 11\n2 9\n6 7\n7 12\n9 9\n2 3\n5 14\n1 3\n10 10\n15 15\n12 12\n5 6\n6 6\n14 15\n",
"4\n1 4\n1 4\n1 2\n1 3\n",
"5\n1 2\n1 3\n1 5\n3 4\n1 5\n",
"3\n1 4\n2 2\n1 3\n",
"5\n4 4\n1 4\n3 4\n1 3\n1 5\n",
"3\n1 3\n1 2\n2 2\n",
"5\n4 5\n4 5\n1 5\n1 2\n2 4\n",
"3\n2 3\n1 2\n1 1\n",
"6\n4 6\n1 3\n4 6\n4 4\n1 4\n1 0\n",
"8\n4 6\n8 8\n1 4\n4 5\n6 8\n1 2\n1 6\n1 4\n",
"6\n2 4\n2 6\n4 5\n4 5\n6 6\n1 4\n",
"4\n3 4\n1 3\n2 3\n2 2\n",
"10\n9 9\n3 4\n1 1\n5 5\n7 7\n3 7\n6 10\n5 3\n10 10\n1 3\n",
"4\n2 4\n4 4\n2 3\n1 1\n",
"5\n3 3\n4 4\n1 2\n1 1\n5 5\n",
"4\n1 1\n2 3\n2 3\n1 8\n",
"4\n3 4\n1 6\n2 3\n1 2\n",
"2\n1 2\n2 2\n",
"8\n3 3\n3 5\n2 3\n1 1\n5 7\n7 7\n5 5\n6 8\n",
"6\n1 4\n3 6\n4 6\n3 5\n1 5\n2 5\n",
"5\n2 5\n1 1\n2 3\n3 3\n5 5\n",
"4\n2 5\n1 4\n3 4\n1 3\n",
"6\n1 1\n4 6\n2 6\n1 3\n3 4\n3 6\n",
"5\n2 3\n1 2\n2 4\n3 5\n4 4\n",
"20\n12 14\n13 13\n18 18\n3 3\n7 8\n11 11\n10 13\n2 2\n9 10\n3 5\n7 8\n15 14\n14 15\n9 9\n20 20\n15 16\n6 6\n19 19\n1 1\n5 5\n",
"5\n1 5\n2 2\n3 5\n4 4\n1 5\n",
"7\n5 7\n1 5\n1 2\n1 3\n5 6\n3 5\n7 7\n",
"4\n2 4\n1 2\n3 4\n1 4\n",
"4\n2 4\n1 3\n3 4\n1 2\n",
"5\n1 0\n1 3\n1 5\n3 4\n1 5\n",
"3\n1 4\n2 4\n1 3\n",
"8\n4 6\n8 8\n1 4\n4 5\n6 0\n1 2\n1 6\n1 4\n",
"4\n1 4\n2 4\n2 3\n1 2\n",
"5\n4 4\n1 4\n1 4\n1 3\n1 5\n",
"5\n4 5\n4 10\n1 5\n1 2\n2 4\n",
"6\n4 6\n1 3\n1 6\n4 4\n1 4\n1 0\n",
"6\n1 4\n3 6\n1 6\n3 5\n1 5\n2 5\n"
],
"output": [
"NO\n1 3 4 2\n1 2 4 3\n",
"YES\n4 1 2 3 ",
"NO\n3 1 4 2\n3 2 4 1\n",
"NO\n3 2 4 1 \n2 3 4 1 ",
"YES\n6 1 2 7 8 3 5 4 9 10 ",
"NO\n2 3 4 1 \n1 3 4 2 \n",
"YES\n3 7 2 1 6 5 4 8 ",
"NO\n7 2 3 6 5 4 1 \n7 3 2 6 5 4 1 \n",
"YES\n2 11 4 7 8 9 3 13 1 10 15 12 5 6 14 ",
"NO\n1 4 5 2 3 \n2 4 5 1 3 ",
"NO\n1 2 3 4 \n1 3 2 4 \n",
"NO\n2 3 1 4 \n1 3 2 4 \n",
"NO\n1 2 4 3 5 \n2 1 4 3 5 \n",
"NO\n1 2 3 \n3 2 1 \n",
"NO\n4 2 3 1 5 \n4 1 3 2 5 ",
"NO\n2 1 3\n1 2 3\n",
"NO\n4 2 3 1\n4 1 3 2\n",
"NO\n4 5 2 1 3\n4 5 1 2 3\n",
"NO\n4 5 6 2 3 1 \n5 4 6 2 3 1 \n",
"NO\n2 1 3 \n3 1 2 \n",
"NO\n5 2 6 4 3 1 \n5 1 6 4 3 2 \n",
"NO\n5 6 7 3 2 1 4 \n5 6 7 2 3 1 4 ",
"NO\n5 8 2 4 7 1 6 3\n5 8 1 4 7 2 6 3\n",
"NO\n2 5 4 3 6 1 \n3 5 4 2 6 1 ",
"YES\n4 7 3 6 8 5 1 2 ",
"NO\n4 2 3 1\n4 1 3 2\n",
"YES\n9 4 1 5 7 6 8 3 10 2 ",
"NO\n3 4 2 1 \n2 4 3 1 ",
"YES\n1 ",
"NO\n4 7 2 5 1 3 6 8 \n5 7 2 4 1 3 6 8 ",
"YES\n3 4 2 1 5 ",
"NO\n1 2 3 4 \n1 3 2 4 \n",
"NO\n3 4 2 1 \n4 3 2 1 \n",
"NO\n1 2 \n2 1 \n",
"YES\n3 4 2 1 6 7 5 8 ",
"YES\n2 3 1 5 4 ",
"NO\n1 3 4 2 5 6\n1 2 4 3 5 6\n",
"NO\n1 5 6 3 2 4 \n2 5 6 3 1 4 \n",
"NO\n4 2 5 1 3 \n4 3 5 1 2 ",
"NO\n1 2 3 \n2 1 3 \n",
"NO\n1 2 3 4 \n4 2 3 1 \n",
"NO\n4 1 2 3 5 \n3 1 2 4 5 \n",
"NO\n2 3 4 1\n2 1 4 3\n",
"NO\n1 4 5 2 3 6 \n1 5 4 2 3 6 \n",
"NO\n2 4 5 1 3 \n3 4 5 1 2 \n",
"NO\n2 1 3 5 4 \n3 1 2 5 4 ",
"NO\n14 13 18 3 7 11 12 2 10 4 8 17 15 9 20 16 6 19 1 5 \n14 13 18 3 8 11 12 2 10 4 7 17 15 9 20 16 6 19 1 5 \n",
"NO\n1 2 3 4 5 \n5 2 3 4 1 \n",
"NO\n6 2 1 3 5 4 7\n6 1 2 3 5 4 7\n",
"NO\n3 1 4 2 \n3 2 4 1 \n",
"NO\n3 2 4 1 \n2 3 4 1 \n",
"NO\n2 3 4 1 \n1 3 4 2 \n",
"NO\n7 2 3 6 5 4 1 \n7 3 2 6 5 4 1 \n",
"YES\n2 11 4 7 8 9 3 13 1 10 15 12 5 6 14 \n",
"NO\n3 4 1 2 \n3 4 2 1 \n",
"NO\n1 2 4 3 5 \n2 1 4 3 5 \n",
"NO\n3 2 1 \n1 2 3 \n",
"NO\n4 2 3 1 5 \n4 1 3 2 5 \n",
"YES\n3 1 2 \n",
"NO\n4 5 3 1 2 \n4 5 2 1 3 \n",
"YES\n3 2 1 \n",
"NO\n5 2 6 4 3 1 \n5 3 6 4 2 1 \n",
"NO\n5 8 2 4 7 1 6 3 \n5 8 1 4 7 2 6 3 \n",
"NO\n2 3 4 5 6 1 \n3 2 4 5 6 1 \n",
"YES\n4 1 3 2 \n",
"NO\n9 3 1 6 7 4 8 5 10 2 \n9 4 1 6 7 3 8 5 10 2 \n",
"NO\n3 4 2 1 \n2 4 3 1 \n",
"YES\n3 4 2 1 5 \n",
"NO\n1 2 3 4 \n1 3 2 4 \n",
"NO\n3 4 2 1 \n4 3 2 1 \n",
"YES\n1 2 \n",
"YES\n3 4 2 1 6 7 5 8 \n",
"NO\n1 5 6 3 2 4 \n2 5 6 3 1 4 \n",
"YES\n4 1 2 3 5 \n",
"NO\n4 2 3 1 \n4 1 3 2 \n",
"NO\n1 4 5 2 3 6 \n1 5 4 2 3 6 \n",
"NO\n2 1 3 5 4 \n3 1 2 5 4 \n",
"NO\n14 13 18 3 7 11 12 2 10 4 8 15 16 9 20 17 6 19 1 5 \n14 13 18 3 8 11 12 2 10 4 7 15 16 9 20 17 6 19 1 5 \n",
"NO\n1 2 3 4 5 \n5 2 3 4 1 \n",
"NO\n6 3 1 2 5 4 7 \n6 3 2 1 5 4 7 \n",
"NO\n2 1 3 4 \n4 1 3 2 \n",
"NO\n3 2 4 1 \n3 1 4 2 \n",
"NO\n1 2 4 3 5 \n1 2 3 4 5 \n",
"NO\n2 3 1 \n1 3 2 \n",
"NO\n5 8 2 4 6 1 7 3 \n5 8 1 4 6 2 7 3 \n",
"NO\n3 4 2 1 \n2 4 3 1 \n",
"NO\n4 2 3 1 5 \n4 1 3 2 5 \n",
"NO\n4 5 3 1 2 \n4 5 2 1 3 \n",
"NO\n5 2 6 4 3 1 \n5 3 6 4 2 1 \n",
"NO\n1 5 6 3 2 4 \n2 5 6 3 1 4 \n"
]
} | 2CODEFORCES
|
1369_D. TediousLee_935 | Lee tried so hard to make a good div.2 D problem to balance his recent contest, but it still doesn't feel good at all. Lee invented it so tediously slow that he managed to develop a phobia about div.2 D problem setting instead. And now he is hiding behind the bushes...
Let's define a Rooted Dead Bush (RDB) of level n as a rooted tree constructed as described below.
A rooted dead bush of level 1 is a single vertex. To construct an RDB of level i we, at first, construct an RDB of level i-1, then for each vertex u:
* if u has no children then we will add a single child to it;
* if u has one child then we will add two children to it;
* if u has more than one child, then we will skip it.
<image> Rooted Dead Bushes of level 1, 2 and 3.
Let's define a claw as a rooted tree with four vertices: one root vertex (called also as center) with three children. It looks like a claw:
<image> The center of the claw is the vertex with label 1.
Lee has a Rooted Dead Bush of level n. Initially, all vertices of his RDB are green.
In one move, he can choose a claw in his RDB, if all vertices in the claw are green and all vertices of the claw are children of its center, then he colors the claw's vertices in yellow.
He'd like to know the maximum number of yellow vertices he can achieve. Since the answer might be very large, print it modulo 10^9+7.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) — the number of test cases.
Next t lines contain test cases — one per line.
The first line of each test case contains one integer n (1 ≤ n ≤ 2 ⋅ 10^6) — the level of Lee's RDB.
Output
For each test case, print a single integer — the maximum number of yellow vertices Lee can make modulo 10^9 + 7.
Example
Input
7
1
2
3
4
5
100
2000000
Output
0
0
4
4
12
990998587
804665184
Note
It's easy to see that the answer for RDB of level 1 or 2 is 0.
The answer for RDB of level 3 is 4 since there is only one claw we can choose: \{1, 2, 3, 4\}.
The answer for RDB of level 4 is 4 since we can choose either single claw \{1, 3, 2, 4\} or single claw \{2, 7, 5, 6\}. There are no other claws in the RDB of level 4 (for example, we can't choose \{2, 1, 7, 6\}, since 1 is not a child of center vertex 2).
<image> Rooted Dead Bush of level 4. | from __future__ import division, print_function
from itertools import permutations
import threading,bisect,math,heapq,sys
from collections import deque
# threading.stack_size(2**27)
# sys.setrecursionlimit(10**4)
from sys import stdin, stdout
i_m=9223372036854775807
def cin():
return map(int,sin().split())
def ain(): #takes array as input
return list(map(int,sin().split()))
def sin():
return input()
def inin():
return int(input())
prime=[]
def dfs(n,d,v):
v[n]=1
x=d[n]
for i in x:
if i not in v:
dfs(i,d,v)
return p
def block(x):
v = []
while (x > 0):
v.append(int(x % 2))
x = int(x / 2)
ans=[]
for i in range(0, len(v)):
if (v[i] == 1):
ans.append(2**i)
return ans
"""**************************MAIN*****************************"""
def main():
t=inin()
mod=10**9+7
a=[0,0]
for i in range(3,2000001):
x=a[-1]+2*a[-2]
if i%3==0:
x+=4
x=x%mod
a.append(x)
for _ in range(t):
n=inin()
print(a[n-1])
"""***********************************************"""
def intersection(l,r,ll,rr):
# print(l,r,ll,rr)
if (ll > r or rr < l):
return 0
else:
l = max(l, ll)
r = min(r, rr)
return max(0,r-l+1)
######## Python 2 and 3 footer by Pajenegod and c1729
fac=[]
def fact(n,mod):
global fac
fac.append(1)
for i in range(1,n+1):
fac.append((fac[i-1]*i)%mod)
f=fac[:]
return f
def nCr(n,r,mod):
global fac
x=fac[n]
y=fac[n-r]
z=fac[r]
x=moddiv(x,y,mod)
return moddiv(x,z,mod)
def moddiv(m,n,p):
x=pow(n,p-2,p)
return (m*x)%p
def GCD(x, y):
x=abs(x)
y=abs(y)
if(min(x,y)==0):
return max(x,y)
while(y):
x, y = y, x % y
return x
def Divisors(n) :
l = []
ll=[]
for i in range(1, int(math.sqrt(n) + 1)) :
if (n % i == 0) :
if (n // i == i) :
l.append(i)
else :
l.append(i)
ll.append(n//i)
l.extend(ll[::-1])
return l
def SieveOfEratosthenes(n):
global prime
prime = [True for i in range(n+1)]
p = 2
while (p * p <= n):
if (prime[p] == True):
for i in range(p * p, n+1, p):
prime[i] = False
p += 1
f=[]
for p in range(2, n):
if prime[p]:
f.append(p)
return f
def primeFactors(n):
a=[]
while n % 2 == 0:
a.append(2)
n = n // 2
for i in range(3,int(math.sqrt(n))+1,2):
while n % i== 0:
a.append(i)
n = n // i
if n > 2:
a.append(n)
return a
"""*******************************************************"""
py2 = round(0.5)
if py2:
from future_builtins import ascii, filter, hex, map, oct, zip
range = xrange
import os
from io import IOBase, BytesIO
BUFSIZE = 8192
class FastIO(BytesIO):
newlines = 0
def __init__(self, file):
self._file = file
self._fd = file.fileno()
self.writable = "x" in file.mode or "w" in file.mode
self.write = super(FastIO, self).write if self.writable else None
def _fill(self):
s = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.seek((self.tell(), self.seek(0,2), super(FastIO, self).write(s))[0])
return s
def read(self):
while self._fill(): pass
return super(FastIO,self).read()
def readline(self):
while self.newlines == 0:
s = self._fill(); self.newlines = s.count(b"\n") + (not s)
self.newlines -= 1
return super(FastIO, self).readline()
def flush(self):
if self.writable:
os.write(self._fd, self.getvalue())
self.truncate(0), self.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
if py2:
self.write = self.buffer.write
self.read = self.buffer.read
self.readline = self.buffer.readline
else:
self.write = lambda s:self.buffer.write(s.encode('ascii'))
self.read = lambda:self.buffer.read().decode('ascii')
self.readline = lambda:self.buffer.readline().decode('ascii')
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip('\r\n')
# Cout implemented in Python
class ostream:
def __lshift__(self,a):
sys.stdout.write(str(a))
return self
cout = ostream()
endl = '\n'
# Read all remaining integers in stdin, type is given by optional argument, this is fast
def readnumbers(zero = 0):
conv = ord if py2 else lambda x:x
A = []; numb = zero; sign = 1; i = 0; s = sys.stdin.buffer.read()
try:
while True:
if s[i] >= b'R' [0]:
numb = 10 * numb + conv(s[i]) - 48
elif s[i] == b'-' [0]: sign = -1
elif s[i] != b'\r' [0]:
A.append(sign*numb)
numb = zero; sign = 1
i += 1
except:pass
if s and s[-1] >= b'R' [0]:
A.append(sign*numb)
return A
# threading.Thread(target=main).start()
if __name__== "__main__":
main() | 1Python2
| {
"input": [
"7\n1\n2\n3\n4\n5\n100\n2000000\n",
"3\n1234567\n1268501\n1268499\n",
"3\n60615\n1268501\n1268499\n",
"7\n1\n2\n3\n4\n5\n110\n2000000\n",
"3\n89610\n1268501\n1268499\n",
"7\n2\n2\n5\n4\n5\n110\n2000000\n",
"7\n2\n2\n5\n4\n5\n100\n2000000\n",
"7\n2\n2\n5\n4\n2\n100\n2000000\n",
"3\n112294\n1268501\n1268499\n",
"7\n1\n1\n3\n4\n5\n100\n2000000\n",
"3\n60615\n288786\n1268499\n",
"3\n89610\n1699286\n1268499\n",
"7\n2\n2\n3\n4\n5\n110\n1478999\n",
"7\n2\n2\n5\n4\n5\n101\n2000000\n",
"7\n2\n2\n8\n4\n2\n100\n2000000\n",
"3\n112294\n1268501\n889172\n",
"7\n1\n1\n3\n4\n1\n100\n2000000\n",
"3\n48142\n288786\n1268499\n",
"7\n2\n2\n3\n8\n5\n110\n1478999\n",
"7\n3\n2\n5\n4\n5\n101\n2000000\n",
"7\n2\n2\n8\n1\n2\n100\n2000000\n",
"3\n112294\n1071675\n889172\n",
"3\n48142\n288786\n375262\n",
"7\n2\n2\n6\n8\n5\n110\n1478999\n",
"7\n3\n2\n5\n8\n5\n101\n2000000\n",
"7\n2\n4\n8\n1\n2\n100\n2000000\n",
"3\n112294\n1071675\n666482\n",
"3\n7174\n288786\n375262\n",
"7\n2\n4\n4\n1\n2\n100\n2000000\n",
"3\n112294\n1249048\n666482\n",
"3\n7174\n351971\n375262\n",
"7\n2\n4\n7\n1\n2\n100\n2000000\n",
"3\n7174\n351971\n310335\n",
"3\n7174\n351971\n144653\n",
"3\n7174\n351971\n244158\n",
"3\n7174\n631188\n244158\n",
"3\n7174\n182217\n244158\n",
"3\n12118\n182217\n244158\n",
"3\n20664\n182217\n244158\n",
"3\n20664\n182217\n376770\n",
"3\n20664\n182217\n428443\n",
"3\n27552\n182217\n428443\n",
"3\n38466\n182217\n428443\n",
"3\n38466\n182217\n561112\n",
"3\n38466\n182217\n524106\n",
"3\n38466\n182217\n484934\n",
"3\n38466\n182217\n405486\n",
"3\n38466\n144862\n405486\n",
"3\n38466\n209207\n405486\n",
"3\n38466\n313208\n405486\n",
"3\n27685\n313208\n405486\n",
"3\n27685\n123315\n405486\n",
"3\n40306\n123315\n405486\n",
"7\n2\n2\n3\n4\n5\n110\n2000000\n"
],
"output": [
"0\n0\n4\n4\n12\n990998587\n804665184\n",
"788765312\n999997375\n999999350\n",
"995629981\n999997375\n999999350\n",
"0\n0\n4\n4\n12\n782548134\n804665184\n",
"732651206\n999997375\n999999350\n",
"0\n0\n12\n4\n12\n782548134\n804665184\n",
"0\n0\n12\n4\n12\n990998587\n804665184\n",
"0\n0\n12\n4\n0\n990998587\n804665184\n",
"684869733\n999997375\n999999350\n",
"0\n0\n4\n4\n12\n990998587\n804665184\n",
"995629981\n834524045\n999999350\n",
"732651206\n540789644\n999999350\n",
"0\n0\n4\n4\n12\n782548134\n793574295\n",
"0\n0\n12\n4\n12\n981997171\n804665184\n",
"0\n0\n96\n4\n0\n990998587\n804665184\n",
"684869733\n999997375\n387737221\n",
"0\n0\n4\n4\n0\n990998587\n804665184\n",
"614103887\n834524045\n999999350\n",
"0\n0\n4\n96\n12\n782548134\n793574295\n",
"4\n0\n12\n4\n12\n981997171\n804665184\n",
"0\n0\n96\n0\n0\n990998587\n804665184\n",
"684869733\n855522687\n387737221\n",
"614103887\n834524045\n438814745\n",
"0\n0\n24\n96\n12\n782548134\n793574295\n",
"4\n0\n12\n96\n12\n981997171\n804665184\n",
"0\n4\n96\n0\n0\n990998587\n804665184\n",
"684869733\n855522687\n619095610\n",
"469558586\n834524045\n438814745\n",
"0\n4\n4\n0\n0\n990998587\n804665184\n",
"684869733\n280332756\n619095610\n",
"469558586\n460226479\n438814745\n",
"0\n4\n48\n0\n0\n990998587\n804665184\n",
"469558586\n460226479\n553297662\n",
"469558586\n460226479\n284836013\n",
"469558586\n460226479\n548018697\n",
"469558586\n594755495\n548018697\n",
"469558586\n942659168\n548018697\n",
"677997523\n942659168\n548018697\n",
"2318044\n942659168\n548018697\n",
"2318044\n942659168\n845451688\n",
"2318044\n942659168\n218254841\n",
"69490322\n942659168\n218254841\n",
"40959384\n942659168\n218254841\n",
"40959384\n942659168\n511582588\n",
"40959384\n942659168\n159286033\n",
"40959384\n942659168\n990756980\n",
"40959384\n942659168\n264676407\n",
"40959384\n826951984\n264676407\n",
"40959384\n574398935\n264676407\n",
"40959384\n584751069\n264676407\n",
"201721844\n584751069\n264676407\n",
"201721844\n343942044\n264676407\n",
"808368223\n343942044\n264676407\n",
"0\n0\n4\n4\n12\n782548134\n804665184\n"
]
} | 2CODEFORCES
|
1369_D. TediousLee_936 | Lee tried so hard to make a good div.2 D problem to balance his recent contest, but it still doesn't feel good at all. Lee invented it so tediously slow that he managed to develop a phobia about div.2 D problem setting instead. And now he is hiding behind the bushes...
Let's define a Rooted Dead Bush (RDB) of level n as a rooted tree constructed as described below.
A rooted dead bush of level 1 is a single vertex. To construct an RDB of level i we, at first, construct an RDB of level i-1, then for each vertex u:
* if u has no children then we will add a single child to it;
* if u has one child then we will add two children to it;
* if u has more than one child, then we will skip it.
<image> Rooted Dead Bushes of level 1, 2 and 3.
Let's define a claw as a rooted tree with four vertices: one root vertex (called also as center) with three children. It looks like a claw:
<image> The center of the claw is the vertex with label 1.
Lee has a Rooted Dead Bush of level n. Initially, all vertices of his RDB are green.
In one move, he can choose a claw in his RDB, if all vertices in the claw are green and all vertices of the claw are children of its center, then he colors the claw's vertices in yellow.
He'd like to know the maximum number of yellow vertices he can achieve. Since the answer might be very large, print it modulo 10^9+7.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) — the number of test cases.
Next t lines contain test cases — one per line.
The first line of each test case contains one integer n (1 ≤ n ≤ 2 ⋅ 10^6) — the level of Lee's RDB.
Output
For each test case, print a single integer — the maximum number of yellow vertices Lee can make modulo 10^9 + 7.
Example
Input
7
1
2
3
4
5
100
2000000
Output
0
0
4
4
12
990998587
804665184
Note
It's easy to see that the answer for RDB of level 1 or 2 is 0.
The answer for RDB of level 3 is 4 since there is only one claw we can choose: \{1, 2, 3, 4\}.
The answer for RDB of level 4 is 4 since we can choose either single claw \{1, 3, 2, 4\} or single claw \{2, 7, 5, 6\}. There are no other claws in the RDB of level 4 (for example, we can't choose \{2, 1, 7, 6\}, since 1 is not a child of center vertex 2).
<image> Rooted Dead Bush of level 4. | #include <bits/stdc++.h>
const long long mod = 1000000007;
using namespace std;
vector<long long> child0, child1, claw;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
long long n;
cin >> n;
vector<long long> a(n);
long long max = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
if (a[i] > max) max = a[i];
}
child0.resize(max + 1);
child1.resize(max + 1);
claw.resize(max + 1);
child0[0] = 1;
child0[1] = 1;
child0[2] = 3;
child1[0] = 0;
child1[1] = 1;
child1[2] = 1;
claw[0] = 0;
claw[1] = 0;
claw[2] = 1;
for (int i = 3; i < max; i++) {
claw[i] = (child1[i - 1] + claw[i - 3]) % mod;
child0[i] = (child0[i - 1] + 2 * child1[i - 1]) % mod;
child1[i] = (child0[i - 1]) % mod;
}
for (int i = 0; i < n; i++) {
cout << (4 * claw[a[i] - 1]) % mod << "\n";
}
return 0;
}
| 2C++
| {
"input": [
"7\n1\n2\n3\n4\n5\n100\n2000000\n",
"3\n1234567\n1268501\n1268499\n",
"3\n60615\n1268501\n1268499\n",
"7\n1\n2\n3\n4\n5\n110\n2000000\n",
"3\n89610\n1268501\n1268499\n",
"7\n2\n2\n5\n4\n5\n110\n2000000\n",
"7\n2\n2\n5\n4\n5\n100\n2000000\n",
"7\n2\n2\n5\n4\n2\n100\n2000000\n",
"3\n112294\n1268501\n1268499\n",
"7\n1\n1\n3\n4\n5\n100\n2000000\n",
"3\n60615\n288786\n1268499\n",
"3\n89610\n1699286\n1268499\n",
"7\n2\n2\n3\n4\n5\n110\n1478999\n",
"7\n2\n2\n5\n4\n5\n101\n2000000\n",
"7\n2\n2\n8\n4\n2\n100\n2000000\n",
"3\n112294\n1268501\n889172\n",
"7\n1\n1\n3\n4\n1\n100\n2000000\n",
"3\n48142\n288786\n1268499\n",
"7\n2\n2\n3\n8\n5\n110\n1478999\n",
"7\n3\n2\n5\n4\n5\n101\n2000000\n",
"7\n2\n2\n8\n1\n2\n100\n2000000\n",
"3\n112294\n1071675\n889172\n",
"3\n48142\n288786\n375262\n",
"7\n2\n2\n6\n8\n5\n110\n1478999\n",
"7\n3\n2\n5\n8\n5\n101\n2000000\n",
"7\n2\n4\n8\n1\n2\n100\n2000000\n",
"3\n112294\n1071675\n666482\n",
"3\n7174\n288786\n375262\n",
"7\n2\n4\n4\n1\n2\n100\n2000000\n",
"3\n112294\n1249048\n666482\n",
"3\n7174\n351971\n375262\n",
"7\n2\n4\n7\n1\n2\n100\n2000000\n",
"3\n7174\n351971\n310335\n",
"3\n7174\n351971\n144653\n",
"3\n7174\n351971\n244158\n",
"3\n7174\n631188\n244158\n",
"3\n7174\n182217\n244158\n",
"3\n12118\n182217\n244158\n",
"3\n20664\n182217\n244158\n",
"3\n20664\n182217\n376770\n",
"3\n20664\n182217\n428443\n",
"3\n27552\n182217\n428443\n",
"3\n38466\n182217\n428443\n",
"3\n38466\n182217\n561112\n",
"3\n38466\n182217\n524106\n",
"3\n38466\n182217\n484934\n",
"3\n38466\n182217\n405486\n",
"3\n38466\n144862\n405486\n",
"3\n38466\n209207\n405486\n",
"3\n38466\n313208\n405486\n",
"3\n27685\n313208\n405486\n",
"3\n27685\n123315\n405486\n",
"3\n40306\n123315\n405486\n",
"7\n2\n2\n3\n4\n5\n110\n2000000\n"
],
"output": [
"0\n0\n4\n4\n12\n990998587\n804665184\n",
"788765312\n999997375\n999999350\n",
"995629981\n999997375\n999999350\n",
"0\n0\n4\n4\n12\n782548134\n804665184\n",
"732651206\n999997375\n999999350\n",
"0\n0\n12\n4\n12\n782548134\n804665184\n",
"0\n0\n12\n4\n12\n990998587\n804665184\n",
"0\n0\n12\n4\n0\n990998587\n804665184\n",
"684869733\n999997375\n999999350\n",
"0\n0\n4\n4\n12\n990998587\n804665184\n",
"995629981\n834524045\n999999350\n",
"732651206\n540789644\n999999350\n",
"0\n0\n4\n4\n12\n782548134\n793574295\n",
"0\n0\n12\n4\n12\n981997171\n804665184\n",
"0\n0\n96\n4\n0\n990998587\n804665184\n",
"684869733\n999997375\n387737221\n",
"0\n0\n4\n4\n0\n990998587\n804665184\n",
"614103887\n834524045\n999999350\n",
"0\n0\n4\n96\n12\n782548134\n793574295\n",
"4\n0\n12\n4\n12\n981997171\n804665184\n",
"0\n0\n96\n0\n0\n990998587\n804665184\n",
"684869733\n855522687\n387737221\n",
"614103887\n834524045\n438814745\n",
"0\n0\n24\n96\n12\n782548134\n793574295\n",
"4\n0\n12\n96\n12\n981997171\n804665184\n",
"0\n4\n96\n0\n0\n990998587\n804665184\n",
"684869733\n855522687\n619095610\n",
"469558586\n834524045\n438814745\n",
"0\n4\n4\n0\n0\n990998587\n804665184\n",
"684869733\n280332756\n619095610\n",
"469558586\n460226479\n438814745\n",
"0\n4\n48\n0\n0\n990998587\n804665184\n",
"469558586\n460226479\n553297662\n",
"469558586\n460226479\n284836013\n",
"469558586\n460226479\n548018697\n",
"469558586\n594755495\n548018697\n",
"469558586\n942659168\n548018697\n",
"677997523\n942659168\n548018697\n",
"2318044\n942659168\n548018697\n",
"2318044\n942659168\n845451688\n",
"2318044\n942659168\n218254841\n",
"69490322\n942659168\n218254841\n",
"40959384\n942659168\n218254841\n",
"40959384\n942659168\n511582588\n",
"40959384\n942659168\n159286033\n",
"40959384\n942659168\n990756980\n",
"40959384\n942659168\n264676407\n",
"40959384\n826951984\n264676407\n",
"40959384\n574398935\n264676407\n",
"40959384\n584751069\n264676407\n",
"201721844\n584751069\n264676407\n",
"201721844\n343942044\n264676407\n",
"808368223\n343942044\n264676407\n",
"0\n0\n4\n4\n12\n782548134\n804665184\n"
]
} | 2CODEFORCES
|
1369_D. TediousLee_937 | Lee tried so hard to make a good div.2 D problem to balance his recent contest, but it still doesn't feel good at all. Lee invented it so tediously slow that he managed to develop a phobia about div.2 D problem setting instead. And now he is hiding behind the bushes...
Let's define a Rooted Dead Bush (RDB) of level n as a rooted tree constructed as described below.
A rooted dead bush of level 1 is a single vertex. To construct an RDB of level i we, at first, construct an RDB of level i-1, then for each vertex u:
* if u has no children then we will add a single child to it;
* if u has one child then we will add two children to it;
* if u has more than one child, then we will skip it.
<image> Rooted Dead Bushes of level 1, 2 and 3.
Let's define a claw as a rooted tree with four vertices: one root vertex (called also as center) with three children. It looks like a claw:
<image> The center of the claw is the vertex with label 1.
Lee has a Rooted Dead Bush of level n. Initially, all vertices of his RDB are green.
In one move, he can choose a claw in his RDB, if all vertices in the claw are green and all vertices of the claw are children of its center, then he colors the claw's vertices in yellow.
He'd like to know the maximum number of yellow vertices he can achieve. Since the answer might be very large, print it modulo 10^9+7.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) — the number of test cases.
Next t lines contain test cases — one per line.
The first line of each test case contains one integer n (1 ≤ n ≤ 2 ⋅ 10^6) — the level of Lee's RDB.
Output
For each test case, print a single integer — the maximum number of yellow vertices Lee can make modulo 10^9 + 7.
Example
Input
7
1
2
3
4
5
100
2000000
Output
0
0
4
4
12
990998587
804665184
Note
It's easy to see that the answer for RDB of level 1 or 2 is 0.
The answer for RDB of level 3 is 4 since there is only one claw we can choose: \{1, 2, 3, 4\}.
The answer for RDB of level 4 is 4 since we can choose either single claw \{1, 3, 2, 4\} or single claw \{2, 7, 5, 6\}. There are no other claws in the RDB of level 4 (for example, we can't choose \{2, 1, 7, 6\}, since 1 is not a child of center vertex 2).
<image> Rooted Dead Bush of level 4. | import sys
def input(): return sys.stdin.readline().strip()
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]
def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)]
def ceil(x, y=1): return int(-(-x // y))
def INT(): return int(input())
def MAP(): return map(int, input().split())
def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]
def Yes(): print('Yes')
def No(): print('No')
def YES(): print('YES')
def NO(): print('NO')
INF = 10 ** 19
MOD = 10 ** 9 + 7
def mat_pow(mat, init, K, MOD):
""" 行列累乗 """
def mat_dot(A, B, MOD):
""" 行列の積 """
# 1次元リストが来たら2次元の行列にする
if not isinstance(A[0], list) and not isinstance(A[0], tuple):
A = [A]
if not isinstance(B[0], list) and not isinstance(A[0], tuple):
B = [[b] for b in B]
n1 = len(A)
n2 = len(A[0])
_ = len(B)
m2 = len(B[0])
res = list2d(n1, m2, 0)
for i in range(n1):
for j in range(m2):
for k in range(n2):
res[i][j] += A[i][k] * B[k][j]
res[i][j] %= MOD
return res
def _mat_pow(mat, k, MOD):
""" 行列matをk乗する """
n = len(mat)
res = list2d(n, n, 0)
for i in range(n):
res[i][i] = 1
# 繰り返し二乗法
while k > 0:
if k & 1:
res = mat_dot(res, mat, MOD)
mat = mat_dot(mat, mat, MOD)
k >>= 1
return res
# 行列累乗でK項先へ
res = _mat_pow(mat, K, MOD)
# 最後に初期値と掛ける
res = mat_dot(res, init, MOD)
return [a[0] for a in res]
for _ in range(INT()):
N = INT()
mat = [
[5, 6, 0, 4],
[3, 2, 0, 0],
[1, 2, 0, 0],
[0, 0, 0, 1],
]
init = [4, 0, 0, 1]
if N % 3 == 0:
res = mat_pow(mat, init, N//3-1, MOD)
ans = res[0]
print(ans)
else:
res = mat_pow(mat, init, N//3, MOD)
ans = res[3-N%3]
print(ans)
| 3Python3
| {
"input": [
"7\n1\n2\n3\n4\n5\n100\n2000000\n",
"3\n1234567\n1268501\n1268499\n",
"3\n60615\n1268501\n1268499\n",
"7\n1\n2\n3\n4\n5\n110\n2000000\n",
"3\n89610\n1268501\n1268499\n",
"7\n2\n2\n5\n4\n5\n110\n2000000\n",
"7\n2\n2\n5\n4\n5\n100\n2000000\n",
"7\n2\n2\n5\n4\n2\n100\n2000000\n",
"3\n112294\n1268501\n1268499\n",
"7\n1\n1\n3\n4\n5\n100\n2000000\n",
"3\n60615\n288786\n1268499\n",
"3\n89610\n1699286\n1268499\n",
"7\n2\n2\n3\n4\n5\n110\n1478999\n",
"7\n2\n2\n5\n4\n5\n101\n2000000\n",
"7\n2\n2\n8\n4\n2\n100\n2000000\n",
"3\n112294\n1268501\n889172\n",
"7\n1\n1\n3\n4\n1\n100\n2000000\n",
"3\n48142\n288786\n1268499\n",
"7\n2\n2\n3\n8\n5\n110\n1478999\n",
"7\n3\n2\n5\n4\n5\n101\n2000000\n",
"7\n2\n2\n8\n1\n2\n100\n2000000\n",
"3\n112294\n1071675\n889172\n",
"3\n48142\n288786\n375262\n",
"7\n2\n2\n6\n8\n5\n110\n1478999\n",
"7\n3\n2\n5\n8\n5\n101\n2000000\n",
"7\n2\n4\n8\n1\n2\n100\n2000000\n",
"3\n112294\n1071675\n666482\n",
"3\n7174\n288786\n375262\n",
"7\n2\n4\n4\n1\n2\n100\n2000000\n",
"3\n112294\n1249048\n666482\n",
"3\n7174\n351971\n375262\n",
"7\n2\n4\n7\n1\n2\n100\n2000000\n",
"3\n7174\n351971\n310335\n",
"3\n7174\n351971\n144653\n",
"3\n7174\n351971\n244158\n",
"3\n7174\n631188\n244158\n",
"3\n7174\n182217\n244158\n",
"3\n12118\n182217\n244158\n",
"3\n20664\n182217\n244158\n",
"3\n20664\n182217\n376770\n",
"3\n20664\n182217\n428443\n",
"3\n27552\n182217\n428443\n",
"3\n38466\n182217\n428443\n",
"3\n38466\n182217\n561112\n",
"3\n38466\n182217\n524106\n",
"3\n38466\n182217\n484934\n",
"3\n38466\n182217\n405486\n",
"3\n38466\n144862\n405486\n",
"3\n38466\n209207\n405486\n",
"3\n38466\n313208\n405486\n",
"3\n27685\n313208\n405486\n",
"3\n27685\n123315\n405486\n",
"3\n40306\n123315\n405486\n",
"7\n2\n2\n3\n4\n5\n110\n2000000\n"
],
"output": [
"0\n0\n4\n4\n12\n990998587\n804665184\n",
"788765312\n999997375\n999999350\n",
"995629981\n999997375\n999999350\n",
"0\n0\n4\n4\n12\n782548134\n804665184\n",
"732651206\n999997375\n999999350\n",
"0\n0\n12\n4\n12\n782548134\n804665184\n",
"0\n0\n12\n4\n12\n990998587\n804665184\n",
"0\n0\n12\n4\n0\n990998587\n804665184\n",
"684869733\n999997375\n999999350\n",
"0\n0\n4\n4\n12\n990998587\n804665184\n",
"995629981\n834524045\n999999350\n",
"732651206\n540789644\n999999350\n",
"0\n0\n4\n4\n12\n782548134\n793574295\n",
"0\n0\n12\n4\n12\n981997171\n804665184\n",
"0\n0\n96\n4\n0\n990998587\n804665184\n",
"684869733\n999997375\n387737221\n",
"0\n0\n4\n4\n0\n990998587\n804665184\n",
"614103887\n834524045\n999999350\n",
"0\n0\n4\n96\n12\n782548134\n793574295\n",
"4\n0\n12\n4\n12\n981997171\n804665184\n",
"0\n0\n96\n0\n0\n990998587\n804665184\n",
"684869733\n855522687\n387737221\n",
"614103887\n834524045\n438814745\n",
"0\n0\n24\n96\n12\n782548134\n793574295\n",
"4\n0\n12\n96\n12\n981997171\n804665184\n",
"0\n4\n96\n0\n0\n990998587\n804665184\n",
"684869733\n855522687\n619095610\n",
"469558586\n834524045\n438814745\n",
"0\n4\n4\n0\n0\n990998587\n804665184\n",
"684869733\n280332756\n619095610\n",
"469558586\n460226479\n438814745\n",
"0\n4\n48\n0\n0\n990998587\n804665184\n",
"469558586\n460226479\n553297662\n",
"469558586\n460226479\n284836013\n",
"469558586\n460226479\n548018697\n",
"469558586\n594755495\n548018697\n",
"469558586\n942659168\n548018697\n",
"677997523\n942659168\n548018697\n",
"2318044\n942659168\n548018697\n",
"2318044\n942659168\n845451688\n",
"2318044\n942659168\n218254841\n",
"69490322\n942659168\n218254841\n",
"40959384\n942659168\n218254841\n",
"40959384\n942659168\n511582588\n",
"40959384\n942659168\n159286033\n",
"40959384\n942659168\n990756980\n",
"40959384\n942659168\n264676407\n",
"40959384\n826951984\n264676407\n",
"40959384\n574398935\n264676407\n",
"40959384\n584751069\n264676407\n",
"201721844\n584751069\n264676407\n",
"201721844\n343942044\n264676407\n",
"808368223\n343942044\n264676407\n",
"0\n0\n4\n4\n12\n782548134\n804665184\n"
]
} | 2CODEFORCES
|
1369_D. TediousLee_938 | Lee tried so hard to make a good div.2 D problem to balance his recent contest, but it still doesn't feel good at all. Lee invented it so tediously slow that he managed to develop a phobia about div.2 D problem setting instead. And now he is hiding behind the bushes...
Let's define a Rooted Dead Bush (RDB) of level n as a rooted tree constructed as described below.
A rooted dead bush of level 1 is a single vertex. To construct an RDB of level i we, at first, construct an RDB of level i-1, then for each vertex u:
* if u has no children then we will add a single child to it;
* if u has one child then we will add two children to it;
* if u has more than one child, then we will skip it.
<image> Rooted Dead Bushes of level 1, 2 and 3.
Let's define a claw as a rooted tree with four vertices: one root vertex (called also as center) with three children. It looks like a claw:
<image> The center of the claw is the vertex with label 1.
Lee has a Rooted Dead Bush of level n. Initially, all vertices of his RDB are green.
In one move, he can choose a claw in his RDB, if all vertices in the claw are green and all vertices of the claw are children of its center, then he colors the claw's vertices in yellow.
He'd like to know the maximum number of yellow vertices he can achieve. Since the answer might be very large, print it modulo 10^9+7.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) — the number of test cases.
Next t lines contain test cases — one per line.
The first line of each test case contains one integer n (1 ≤ n ≤ 2 ⋅ 10^6) — the level of Lee's RDB.
Output
For each test case, print a single integer — the maximum number of yellow vertices Lee can make modulo 10^9 + 7.
Example
Input
7
1
2
3
4
5
100
2000000
Output
0
0
4
4
12
990998587
804665184
Note
It's easy to see that the answer for RDB of level 1 or 2 is 0.
The answer for RDB of level 3 is 4 since there is only one claw we can choose: \{1, 2, 3, 4\}.
The answer for RDB of level 4 is 4 since we can choose either single claw \{1, 3, 2, 4\} or single claw \{2, 7, 5, 6\}. There are no other claws in the RDB of level 4 (for example, we can't choose \{2, 1, 7, 6\}, since 1 is not a child of center vertex 2).
<image> Rooted Dead Bush of level 4. | import java.util.*;
import java.io.*;
public class CP{
public static OutputStream out=new BufferedOutputStream(System.out);
static Scanner sc=new Scanner(System.in);
static long mod=1000000007l;
//nl-->neew line; //l-->line; //arp-->array print; //arpnl-->array print new line
public static void nl(Object o) throws IOException{out.write((o+"\n").getBytes());}
public static void l(Object o) throws IOException{out.write((o+"").getBytes());}
public static void arp(int[] o) throws IOException{for(int i=0;i<o.length;i++) out.write((o[i]+" ").getBytes()); out.write(("\n").getBytes());}
public static void arpnl(int[] o) throws IOException{for(int i=0;i<o.length;i++) out.write((o[i]+"\n").getBytes());}
public static void scan(int[] a,int n) {for(int i=0;i<n;i++) a[i]=sc.nextInt();}
public static void scan2D(int[][] a,int n,int m) {for(int i=0;i<n;i++) for(int j=0;j<m;j++) a[i][j]=sc.nextInt();}
//
static long cnt;
static int[] dp;
static TreeSet<Integer> ans;
public static void main(String[] args) throws IOException{
long sttm=System.currentTimeMillis();
long mod=1000000007l;
long[][] dp=new long[2000001][4];
dp[0][0]=1l;dp[0][1]=0l;dp[0][2]=0l;
for(int i=1;i<2000001;i++){
dp[i][2]=(dp[i-1][1]+dp[i-1][2])%mod;
dp[i][1]=dp[i-1][0]%mod;
dp[i][0]=(dp[i-1][0]+(dp[i-1][1]*2)%mod)%mod;
if(i>=3) dp[i][3]=(dp[i-1][1]+dp[i-3][3])%mod;
else dp[i][3]=dp[i-1][1]%mod;
}
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
nl((dp[n-1][3]*4)%mod);
}
out.flush();
}
}
class Pair{
int st,nd;
Pair(int st,int nd){
this.st=st;
this.nd=nd;
}
}
| 4JAVA
| {
"input": [
"7\n1\n2\n3\n4\n5\n100\n2000000\n",
"3\n1234567\n1268501\n1268499\n",
"3\n60615\n1268501\n1268499\n",
"7\n1\n2\n3\n4\n5\n110\n2000000\n",
"3\n89610\n1268501\n1268499\n",
"7\n2\n2\n5\n4\n5\n110\n2000000\n",
"7\n2\n2\n5\n4\n5\n100\n2000000\n",
"7\n2\n2\n5\n4\n2\n100\n2000000\n",
"3\n112294\n1268501\n1268499\n",
"7\n1\n1\n3\n4\n5\n100\n2000000\n",
"3\n60615\n288786\n1268499\n",
"3\n89610\n1699286\n1268499\n",
"7\n2\n2\n3\n4\n5\n110\n1478999\n",
"7\n2\n2\n5\n4\n5\n101\n2000000\n",
"7\n2\n2\n8\n4\n2\n100\n2000000\n",
"3\n112294\n1268501\n889172\n",
"7\n1\n1\n3\n4\n1\n100\n2000000\n",
"3\n48142\n288786\n1268499\n",
"7\n2\n2\n3\n8\n5\n110\n1478999\n",
"7\n3\n2\n5\n4\n5\n101\n2000000\n",
"7\n2\n2\n8\n1\n2\n100\n2000000\n",
"3\n112294\n1071675\n889172\n",
"3\n48142\n288786\n375262\n",
"7\n2\n2\n6\n8\n5\n110\n1478999\n",
"7\n3\n2\n5\n8\n5\n101\n2000000\n",
"7\n2\n4\n8\n1\n2\n100\n2000000\n",
"3\n112294\n1071675\n666482\n",
"3\n7174\n288786\n375262\n",
"7\n2\n4\n4\n1\n2\n100\n2000000\n",
"3\n112294\n1249048\n666482\n",
"3\n7174\n351971\n375262\n",
"7\n2\n4\n7\n1\n2\n100\n2000000\n",
"3\n7174\n351971\n310335\n",
"3\n7174\n351971\n144653\n",
"3\n7174\n351971\n244158\n",
"3\n7174\n631188\n244158\n",
"3\n7174\n182217\n244158\n",
"3\n12118\n182217\n244158\n",
"3\n20664\n182217\n244158\n",
"3\n20664\n182217\n376770\n",
"3\n20664\n182217\n428443\n",
"3\n27552\n182217\n428443\n",
"3\n38466\n182217\n428443\n",
"3\n38466\n182217\n561112\n",
"3\n38466\n182217\n524106\n",
"3\n38466\n182217\n484934\n",
"3\n38466\n182217\n405486\n",
"3\n38466\n144862\n405486\n",
"3\n38466\n209207\n405486\n",
"3\n38466\n313208\n405486\n",
"3\n27685\n313208\n405486\n",
"3\n27685\n123315\n405486\n",
"3\n40306\n123315\n405486\n",
"7\n2\n2\n3\n4\n5\n110\n2000000\n"
],
"output": [
"0\n0\n4\n4\n12\n990998587\n804665184\n",
"788765312\n999997375\n999999350\n",
"995629981\n999997375\n999999350\n",
"0\n0\n4\n4\n12\n782548134\n804665184\n",
"732651206\n999997375\n999999350\n",
"0\n0\n12\n4\n12\n782548134\n804665184\n",
"0\n0\n12\n4\n12\n990998587\n804665184\n",
"0\n0\n12\n4\n0\n990998587\n804665184\n",
"684869733\n999997375\n999999350\n",
"0\n0\n4\n4\n12\n990998587\n804665184\n",
"995629981\n834524045\n999999350\n",
"732651206\n540789644\n999999350\n",
"0\n0\n4\n4\n12\n782548134\n793574295\n",
"0\n0\n12\n4\n12\n981997171\n804665184\n",
"0\n0\n96\n4\n0\n990998587\n804665184\n",
"684869733\n999997375\n387737221\n",
"0\n0\n4\n4\n0\n990998587\n804665184\n",
"614103887\n834524045\n999999350\n",
"0\n0\n4\n96\n12\n782548134\n793574295\n",
"4\n0\n12\n4\n12\n981997171\n804665184\n",
"0\n0\n96\n0\n0\n990998587\n804665184\n",
"684869733\n855522687\n387737221\n",
"614103887\n834524045\n438814745\n",
"0\n0\n24\n96\n12\n782548134\n793574295\n",
"4\n0\n12\n96\n12\n981997171\n804665184\n",
"0\n4\n96\n0\n0\n990998587\n804665184\n",
"684869733\n855522687\n619095610\n",
"469558586\n834524045\n438814745\n",
"0\n4\n4\n0\n0\n990998587\n804665184\n",
"684869733\n280332756\n619095610\n",
"469558586\n460226479\n438814745\n",
"0\n4\n48\n0\n0\n990998587\n804665184\n",
"469558586\n460226479\n553297662\n",
"469558586\n460226479\n284836013\n",
"469558586\n460226479\n548018697\n",
"469558586\n594755495\n548018697\n",
"469558586\n942659168\n548018697\n",
"677997523\n942659168\n548018697\n",
"2318044\n942659168\n548018697\n",
"2318044\n942659168\n845451688\n",
"2318044\n942659168\n218254841\n",
"69490322\n942659168\n218254841\n",
"40959384\n942659168\n218254841\n",
"40959384\n942659168\n511582588\n",
"40959384\n942659168\n159286033\n",
"40959384\n942659168\n990756980\n",
"40959384\n942659168\n264676407\n",
"40959384\n826951984\n264676407\n",
"40959384\n574398935\n264676407\n",
"40959384\n584751069\n264676407\n",
"201721844\n584751069\n264676407\n",
"201721844\n343942044\n264676407\n",
"808368223\n343942044\n264676407\n",
"0\n0\n4\n4\n12\n782548134\n804665184\n"
]
} | 2CODEFORCES
|
1391_C. Cyclic Permutations _939 | A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).
Consider a permutation p of length n, we build a graph of size n using it as follows:
* For every 1 ≤ i ≤ n, find the largest j such that 1 ≤ j < i and p_j > p_i, and add an undirected edge between node i and node j
* For every 1 ≤ i ≤ n, find the smallest j such that i < j ≤ n and p_j > p_i, and add an undirected edge between node i and node j
In cases where no such j exists, we make no edges. Also, note that we make edges between the corresponding indices, not the values at those indices.
For clarity, consider as an example n = 4, and p = [3,1,4,2]; here, the edges of the graph are (1,3),(2,1),(2,3),(4,3).
A permutation p is cyclic if the graph built using p has at least one simple cycle.
Given n, find the number of cyclic permutations of length n. Since the number may be very large, output it modulo 10^9+7.
Please refer to the Notes section for the formal definition of a simple cycle
Input
The first and only line contains a single integer n (3 ≤ n ≤ 10^6).
Output
Output a single integer 0 ≤ x < 10^9+7, the number of cyclic permutations of length n modulo 10^9+7.
Examples
Input
4
Output
16
Input
583291
Output
135712853
Note
There are 16 cyclic permutations for n = 4. [4,2,1,3] is one such permutation, having a cycle of length four: 4 → 3 → 2 → 1 → 4.
Nodes v_1, v_2, …, v_k form a simple cycle if the following conditions hold:
* k ≥ 3.
* v_i ≠ v_j for any pair of indices i and j. (1 ≤ i < j ≤ k)
* v_i and v_{i+1} share an edge for all i (1 ≤ i < k), and v_1 and v_k share an edge. | mod = 1000000007
def xmod(a, b):
return ((a % mod) * (b % mod)) % mod
def fat(n):
x = 1
a = pow(2, n-1, mod)
for k in xrange(2,n+1):
x = xmod(x, k)
return sub(x, a)
def sub(a, b):
return ((a % mod) - (b % mod)) % mod
n = int(raw_input())
print fat(n) | 1Python2
| {
"input": [
"4\n",
"583291\n",
"66\n",
"652615\n",
"482331\n",
"336161\n",
"33\n",
"1000000\n",
"79531\n",
"768208\n",
"3\n",
"885131\n",
"58\n",
"138868\n",
"562984\n",
"359885\n",
"12\n",
"53728\n",
"252321\n",
"714009\n",
"38\n",
"43930\n",
"597870\n",
"66136\n",
"13\n",
"100083\n",
"316077\n",
"181696\n",
"36\n",
"740\n",
"326728\n",
"80255\n",
"17\n",
"103643\n",
"158472\n",
"360620\n",
"23\n",
"1388\n",
"651093\n",
"39028\n",
"18679\n",
"310113\n",
"702449\n",
"22\n",
"372\n",
"609216\n",
"23689\n",
"732\n",
"345589\n",
"5\n",
"220\n",
"671417\n",
"16856\n",
"440\n",
"351815\n",
"6\n",
"243\n",
"671630\n",
"24656\n",
"863\n",
"247579\n",
"9\n",
"46\n",
"536252\n",
"14146\n",
"1269\n",
"454065\n",
"7\n",
"28\n",
"845736\n",
"17998\n",
"1076\n",
"444455\n",
"14\n",
"29\n",
"31000\n",
"165\n",
"804806\n",
"25\n",
"21\n",
"16274\n",
"134\n",
"26\n",
"34\n",
"32187\n",
"173\n",
"48\n",
"55\n",
"52487\n",
"339\n",
"8\n",
"10\n",
"96584\n",
"652\n",
"94614\n",
"96\n",
"9943\n",
"185\n",
"14252\n",
"258\n",
"6600\n",
"133\n",
"8164\n",
"67\n",
"15363\n",
"75\n",
"22959\n",
"77\n"
],
"output": [
"16\n",
"135712853\n",
"257415584\n",
"960319213\n",
"722928541\n",
"234634596\n",
"762187807\n",
"23581336\n",
"162141608\n",
"635322133\n",
"2\n",
"329995454\n",
"528435283\n",
"121164347\n",
"22806685\n",
"75508555\n",
"478999552\n",
"577462895\n",
"360904578\n",
"588154168\n",
"33995846\n",
"131474467\n",
"123747326\n",
"471871040\n",
"227016662\n",
"430066838\n",
"1497981\n",
"183617081\n",
"163357854\n",
"623871952\n",
"139550916\n",
"334979249\n",
"425540655\n",
"217761566\n",
"482435471\n",
"754525926\n",
"856540256\n",
"966344561\n",
"133401775\n",
"972591773\n",
"548151998\n",
"28492139\n",
"944336269\n",
"600543485\n",
"556134810\n",
"986932871\n",
"205121094\n",
"990470109\n",
"626671276\n",
"104\n",
"803006216\n",
"750722336\n",
"608801934\n",
"766599140\n",
"56799687\n",
"688\n",
"398564198\n",
"76202428\n",
"573850707\n",
"834128820\n",
"824213660\n",
"362624\n",
"369570169\n",
"118554507\n",
"88761518\n",
"572219329\n",
"701346436\n",
"4976\n",
"901540166\n",
"213139888\n",
"506406970\n",
"562455768\n",
"897018573\n",
"178282399\n",
"768543267\n",
"961088\n",
"571465220\n",
"809136826\n",
"423955172\n",
"71798726\n",
"243976420\n",
"106056590\n",
"425487579\n",
"353337769\n",
"312408527\n",
"821102330\n",
"139698655\n",
"885818726\n",
"624353643\n",
"165154703\n",
"40192\n",
"3628288\n",
"512861840\n",
"28243227\n",
"368256383\n",
"828964361\n",
"736433594\n",
"240523978\n",
"180171940\n",
"510152781\n",
"215879251\n",
"638229047\n",
"12466570\n",
"951564524\n",
"524474619\n",
"612354659\n",
"425296444\n",
"380023236\n"
]
} | 2CODEFORCES
|
1391_C. Cyclic Permutations _940 | A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).
Consider a permutation p of length n, we build a graph of size n using it as follows:
* For every 1 ≤ i ≤ n, find the largest j such that 1 ≤ j < i and p_j > p_i, and add an undirected edge between node i and node j
* For every 1 ≤ i ≤ n, find the smallest j such that i < j ≤ n and p_j > p_i, and add an undirected edge between node i and node j
In cases where no such j exists, we make no edges. Also, note that we make edges between the corresponding indices, not the values at those indices.
For clarity, consider as an example n = 4, and p = [3,1,4,2]; here, the edges of the graph are (1,3),(2,1),(2,3),(4,3).
A permutation p is cyclic if the graph built using p has at least one simple cycle.
Given n, find the number of cyclic permutations of length n. Since the number may be very large, output it modulo 10^9+7.
Please refer to the Notes section for the formal definition of a simple cycle
Input
The first and only line contains a single integer n (3 ≤ n ≤ 10^6).
Output
Output a single integer 0 ≤ x < 10^9+7, the number of cyclic permutations of length n modulo 10^9+7.
Examples
Input
4
Output
16
Input
583291
Output
135712853
Note
There are 16 cyclic permutations for n = 4. [4,2,1,3] is one such permutation, having a cycle of length four: 4 → 3 → 2 → 1 → 4.
Nodes v_1, v_2, …, v_k form a simple cycle if the following conditions hold:
* k ≥ 3.
* v_i ≠ v_j for any pair of indices i and j. (1 ≤ i < j ≤ k)
* v_i and v_{i+1} share an edge for all i (1 ≤ i < k), and v_1 and v_k share an edge. | #include <bits/stdc++.h>
using namespace std;
const double pi = 3.14159265358979323846;
long long binpow(long long, long long);
long long mult(long long, long long);
long long add(long long, long long);
long long division(long long, long long);
long long nCr(long long, long long);
long long inv(long long);
void calc();
template <class T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &x : v) is >> x;
return is;
}
template <class T>
ostream &operator<<(ostream &os, const vector<T> &v) {
if (!v.empty()) {
os << v.front();
for (int i = 1; i < v.size(); ++i) os << ' ' << v[i];
}
return os;
}
const int N = 1000005;
long long fact[N];
void solve() {
long long n;
cin >> n;
cout << (fact[n] - binpow(2, n - 1) + 1000000007) % 1000000007;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int t = 1;
calc();
for (long long i = 0; i < t; i++) {
solve();
cout << "\n";
}
return 0;
}
long long add(long long a, long long b) {
a += b;
while (a >= 1000000007) a -= 1000000007;
while (a < 0) a += 1000000007;
return a;
}
long long mult(long long a, long long b) { return (a * 1ll * b) % 1000000007; }
long long binpow(long long a, long long b) {
long long c = 1;
while (b > 0) {
if (b % 2 == 1) c = mult(c, a);
a = mult(a, a);
b /= 2;
}
return c;
}
long long inv(long long a) { return binpow(a, 1000000007 - 2); }
long long division(long long a, long long b) { return mult(a, inv(b)); }
void calc() {
fact[0] = 1;
for (long long i = 1; i <= N - 1; i++)
fact[i] = (i * 1ll * fact[i - 1]) % 1000000007;
}
| 2C++
| {
"input": [
"4\n",
"583291\n",
"66\n",
"652615\n",
"482331\n",
"336161\n",
"33\n",
"1000000\n",
"79531\n",
"768208\n",
"3\n",
"885131\n",
"58\n",
"138868\n",
"562984\n",
"359885\n",
"12\n",
"53728\n",
"252321\n",
"714009\n",
"38\n",
"43930\n",
"597870\n",
"66136\n",
"13\n",
"100083\n",
"316077\n",
"181696\n",
"36\n",
"740\n",
"326728\n",
"80255\n",
"17\n",
"103643\n",
"158472\n",
"360620\n",
"23\n",
"1388\n",
"651093\n",
"39028\n",
"18679\n",
"310113\n",
"702449\n",
"22\n",
"372\n",
"609216\n",
"23689\n",
"732\n",
"345589\n",
"5\n",
"220\n",
"671417\n",
"16856\n",
"440\n",
"351815\n",
"6\n",
"243\n",
"671630\n",
"24656\n",
"863\n",
"247579\n",
"9\n",
"46\n",
"536252\n",
"14146\n",
"1269\n",
"454065\n",
"7\n",
"28\n",
"845736\n",
"17998\n",
"1076\n",
"444455\n",
"14\n",
"29\n",
"31000\n",
"165\n",
"804806\n",
"25\n",
"21\n",
"16274\n",
"134\n",
"26\n",
"34\n",
"32187\n",
"173\n",
"48\n",
"55\n",
"52487\n",
"339\n",
"8\n",
"10\n",
"96584\n",
"652\n",
"94614\n",
"96\n",
"9943\n",
"185\n",
"14252\n",
"258\n",
"6600\n",
"133\n",
"8164\n",
"67\n",
"15363\n",
"75\n",
"22959\n",
"77\n"
],
"output": [
"16\n",
"135712853\n",
"257415584\n",
"960319213\n",
"722928541\n",
"234634596\n",
"762187807\n",
"23581336\n",
"162141608\n",
"635322133\n",
"2\n",
"329995454\n",
"528435283\n",
"121164347\n",
"22806685\n",
"75508555\n",
"478999552\n",
"577462895\n",
"360904578\n",
"588154168\n",
"33995846\n",
"131474467\n",
"123747326\n",
"471871040\n",
"227016662\n",
"430066838\n",
"1497981\n",
"183617081\n",
"163357854\n",
"623871952\n",
"139550916\n",
"334979249\n",
"425540655\n",
"217761566\n",
"482435471\n",
"754525926\n",
"856540256\n",
"966344561\n",
"133401775\n",
"972591773\n",
"548151998\n",
"28492139\n",
"944336269\n",
"600543485\n",
"556134810\n",
"986932871\n",
"205121094\n",
"990470109\n",
"626671276\n",
"104\n",
"803006216\n",
"750722336\n",
"608801934\n",
"766599140\n",
"56799687\n",
"688\n",
"398564198\n",
"76202428\n",
"573850707\n",
"834128820\n",
"824213660\n",
"362624\n",
"369570169\n",
"118554507\n",
"88761518\n",
"572219329\n",
"701346436\n",
"4976\n",
"901540166\n",
"213139888\n",
"506406970\n",
"562455768\n",
"897018573\n",
"178282399\n",
"768543267\n",
"961088\n",
"571465220\n",
"809136826\n",
"423955172\n",
"71798726\n",
"243976420\n",
"106056590\n",
"425487579\n",
"353337769\n",
"312408527\n",
"821102330\n",
"139698655\n",
"885818726\n",
"624353643\n",
"165154703\n",
"40192\n",
"3628288\n",
"512861840\n",
"28243227\n",
"368256383\n",
"828964361\n",
"736433594\n",
"240523978\n",
"180171940\n",
"510152781\n",
"215879251\n",
"638229047\n",
"12466570\n",
"951564524\n",
"524474619\n",
"612354659\n",
"425296444\n",
"380023236\n"
]
} | 2CODEFORCES
|
1391_C. Cyclic Permutations _941 | A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).
Consider a permutation p of length n, we build a graph of size n using it as follows:
* For every 1 ≤ i ≤ n, find the largest j such that 1 ≤ j < i and p_j > p_i, and add an undirected edge between node i and node j
* For every 1 ≤ i ≤ n, find the smallest j such that i < j ≤ n and p_j > p_i, and add an undirected edge between node i and node j
In cases where no such j exists, we make no edges. Also, note that we make edges between the corresponding indices, not the values at those indices.
For clarity, consider as an example n = 4, and p = [3,1,4,2]; here, the edges of the graph are (1,3),(2,1),(2,3),(4,3).
A permutation p is cyclic if the graph built using p has at least one simple cycle.
Given n, find the number of cyclic permutations of length n. Since the number may be very large, output it modulo 10^9+7.
Please refer to the Notes section for the formal definition of a simple cycle
Input
The first and only line contains a single integer n (3 ≤ n ≤ 10^6).
Output
Output a single integer 0 ≤ x < 10^9+7, the number of cyclic permutations of length n modulo 10^9+7.
Examples
Input
4
Output
16
Input
583291
Output
135712853
Note
There are 16 cyclic permutations for n = 4. [4,2,1,3] is one such permutation, having a cycle of length four: 4 → 3 → 2 → 1 → 4.
Nodes v_1, v_2, …, v_k form a simple cycle if the following conditions hold:
* k ≥ 3.
* v_i ≠ v_j for any pair of indices i and j. (1 ≤ i < j ≤ k)
* v_i and v_{i+1} share an edge for all i (1 ≤ i < k), and v_1 and v_k share an edge. | n = int(input())
M = 10**9+7
fact = [1]*(n+2)
for i in range(2, n+1):
fact[i] = (i*fact[i-1])%M
print(((fact[n]-pow(2, n-1, M))+M)%M) | 3Python3
| {
"input": [
"4\n",
"583291\n",
"66\n",
"652615\n",
"482331\n",
"336161\n",
"33\n",
"1000000\n",
"79531\n",
"768208\n",
"3\n",
"885131\n",
"58\n",
"138868\n",
"562984\n",
"359885\n",
"12\n",
"53728\n",
"252321\n",
"714009\n",
"38\n",
"43930\n",
"597870\n",
"66136\n",
"13\n",
"100083\n",
"316077\n",
"181696\n",
"36\n",
"740\n",
"326728\n",
"80255\n",
"17\n",
"103643\n",
"158472\n",
"360620\n",
"23\n",
"1388\n",
"651093\n",
"39028\n",
"18679\n",
"310113\n",
"702449\n",
"22\n",
"372\n",
"609216\n",
"23689\n",
"732\n",
"345589\n",
"5\n",
"220\n",
"671417\n",
"16856\n",
"440\n",
"351815\n",
"6\n",
"243\n",
"671630\n",
"24656\n",
"863\n",
"247579\n",
"9\n",
"46\n",
"536252\n",
"14146\n",
"1269\n",
"454065\n",
"7\n",
"28\n",
"845736\n",
"17998\n",
"1076\n",
"444455\n",
"14\n",
"29\n",
"31000\n",
"165\n",
"804806\n",
"25\n",
"21\n",
"16274\n",
"134\n",
"26\n",
"34\n",
"32187\n",
"173\n",
"48\n",
"55\n",
"52487\n",
"339\n",
"8\n",
"10\n",
"96584\n",
"652\n",
"94614\n",
"96\n",
"9943\n",
"185\n",
"14252\n",
"258\n",
"6600\n",
"133\n",
"8164\n",
"67\n",
"15363\n",
"75\n",
"22959\n",
"77\n"
],
"output": [
"16\n",
"135712853\n",
"257415584\n",
"960319213\n",
"722928541\n",
"234634596\n",
"762187807\n",
"23581336\n",
"162141608\n",
"635322133\n",
"2\n",
"329995454\n",
"528435283\n",
"121164347\n",
"22806685\n",
"75508555\n",
"478999552\n",
"577462895\n",
"360904578\n",
"588154168\n",
"33995846\n",
"131474467\n",
"123747326\n",
"471871040\n",
"227016662\n",
"430066838\n",
"1497981\n",
"183617081\n",
"163357854\n",
"623871952\n",
"139550916\n",
"334979249\n",
"425540655\n",
"217761566\n",
"482435471\n",
"754525926\n",
"856540256\n",
"966344561\n",
"133401775\n",
"972591773\n",
"548151998\n",
"28492139\n",
"944336269\n",
"600543485\n",
"556134810\n",
"986932871\n",
"205121094\n",
"990470109\n",
"626671276\n",
"104\n",
"803006216\n",
"750722336\n",
"608801934\n",
"766599140\n",
"56799687\n",
"688\n",
"398564198\n",
"76202428\n",
"573850707\n",
"834128820\n",
"824213660\n",
"362624\n",
"369570169\n",
"118554507\n",
"88761518\n",
"572219329\n",
"701346436\n",
"4976\n",
"901540166\n",
"213139888\n",
"506406970\n",
"562455768\n",
"897018573\n",
"178282399\n",
"768543267\n",
"961088\n",
"571465220\n",
"809136826\n",
"423955172\n",
"71798726\n",
"243976420\n",
"106056590\n",
"425487579\n",
"353337769\n",
"312408527\n",
"821102330\n",
"139698655\n",
"885818726\n",
"624353643\n",
"165154703\n",
"40192\n",
"3628288\n",
"512861840\n",
"28243227\n",
"368256383\n",
"828964361\n",
"736433594\n",
"240523978\n",
"180171940\n",
"510152781\n",
"215879251\n",
"638229047\n",
"12466570\n",
"951564524\n",
"524474619\n",
"612354659\n",
"425296444\n",
"380023236\n"
]
} | 2CODEFORCES
|
1391_C. Cyclic Permutations _942 | A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).
Consider a permutation p of length n, we build a graph of size n using it as follows:
* For every 1 ≤ i ≤ n, find the largest j such that 1 ≤ j < i and p_j > p_i, and add an undirected edge between node i and node j
* For every 1 ≤ i ≤ n, find the smallest j such that i < j ≤ n and p_j > p_i, and add an undirected edge between node i and node j
In cases where no such j exists, we make no edges. Also, note that we make edges between the corresponding indices, not the values at those indices.
For clarity, consider as an example n = 4, and p = [3,1,4,2]; here, the edges of the graph are (1,3),(2,1),(2,3),(4,3).
A permutation p is cyclic if the graph built using p has at least one simple cycle.
Given n, find the number of cyclic permutations of length n. Since the number may be very large, output it modulo 10^9+7.
Please refer to the Notes section for the formal definition of a simple cycle
Input
The first and only line contains a single integer n (3 ≤ n ≤ 10^6).
Output
Output a single integer 0 ≤ x < 10^9+7, the number of cyclic permutations of length n modulo 10^9+7.
Examples
Input
4
Output
16
Input
583291
Output
135712853
Note
There are 16 cyclic permutations for n = 4. [4,2,1,3] is one such permutation, having a cycle of length four: 4 → 3 → 2 → 1 → 4.
Nodes v_1, v_2, …, v_k form a simple cycle if the following conditions hold:
* k ≥ 3.
* v_i ≠ v_j for any pair of indices i and j. (1 ≤ i < j ≤ k)
* v_i and v_{i+1} share an edge for all i (1 ≤ i < k), and v_1 and v_k share an edge. | import java.util.*;
import java.math.*;
public class Sample
{
static long m = (long)Math.pow(10,9)+7;
static long f(long x)
{
if(x==0)
return 1;
if(x<3)
return x;
long a = 2;
for(long i=3; i<=x; i++)
{
a*=i;
a%=m;
}
return a;
}
static long p(long x)
{
long a = 1;
for(int i=1; i<x; i++)
{
a*=2;
a%=m;
}
return a;
}
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
long n = in.nextLong();
long ans = f(n)-p(n);
ans = ans<0 ? ans+m : ans;
System.out.println(ans);
}
} | 4JAVA
| {
"input": [
"4\n",
"583291\n",
"66\n",
"652615\n",
"482331\n",
"336161\n",
"33\n",
"1000000\n",
"79531\n",
"768208\n",
"3\n",
"885131\n",
"58\n",
"138868\n",
"562984\n",
"359885\n",
"12\n",
"53728\n",
"252321\n",
"714009\n",
"38\n",
"43930\n",
"597870\n",
"66136\n",
"13\n",
"100083\n",
"316077\n",
"181696\n",
"36\n",
"740\n",
"326728\n",
"80255\n",
"17\n",
"103643\n",
"158472\n",
"360620\n",
"23\n",
"1388\n",
"651093\n",
"39028\n",
"18679\n",
"310113\n",
"702449\n",
"22\n",
"372\n",
"609216\n",
"23689\n",
"732\n",
"345589\n",
"5\n",
"220\n",
"671417\n",
"16856\n",
"440\n",
"351815\n",
"6\n",
"243\n",
"671630\n",
"24656\n",
"863\n",
"247579\n",
"9\n",
"46\n",
"536252\n",
"14146\n",
"1269\n",
"454065\n",
"7\n",
"28\n",
"845736\n",
"17998\n",
"1076\n",
"444455\n",
"14\n",
"29\n",
"31000\n",
"165\n",
"804806\n",
"25\n",
"21\n",
"16274\n",
"134\n",
"26\n",
"34\n",
"32187\n",
"173\n",
"48\n",
"55\n",
"52487\n",
"339\n",
"8\n",
"10\n",
"96584\n",
"652\n",
"94614\n",
"96\n",
"9943\n",
"185\n",
"14252\n",
"258\n",
"6600\n",
"133\n",
"8164\n",
"67\n",
"15363\n",
"75\n",
"22959\n",
"77\n"
],
"output": [
"16\n",
"135712853\n",
"257415584\n",
"960319213\n",
"722928541\n",
"234634596\n",
"762187807\n",
"23581336\n",
"162141608\n",
"635322133\n",
"2\n",
"329995454\n",
"528435283\n",
"121164347\n",
"22806685\n",
"75508555\n",
"478999552\n",
"577462895\n",
"360904578\n",
"588154168\n",
"33995846\n",
"131474467\n",
"123747326\n",
"471871040\n",
"227016662\n",
"430066838\n",
"1497981\n",
"183617081\n",
"163357854\n",
"623871952\n",
"139550916\n",
"334979249\n",
"425540655\n",
"217761566\n",
"482435471\n",
"754525926\n",
"856540256\n",
"966344561\n",
"133401775\n",
"972591773\n",
"548151998\n",
"28492139\n",
"944336269\n",
"600543485\n",
"556134810\n",
"986932871\n",
"205121094\n",
"990470109\n",
"626671276\n",
"104\n",
"803006216\n",
"750722336\n",
"608801934\n",
"766599140\n",
"56799687\n",
"688\n",
"398564198\n",
"76202428\n",
"573850707\n",
"834128820\n",
"824213660\n",
"362624\n",
"369570169\n",
"118554507\n",
"88761518\n",
"572219329\n",
"701346436\n",
"4976\n",
"901540166\n",
"213139888\n",
"506406970\n",
"562455768\n",
"897018573\n",
"178282399\n",
"768543267\n",
"961088\n",
"571465220\n",
"809136826\n",
"423955172\n",
"71798726\n",
"243976420\n",
"106056590\n",
"425487579\n",
"353337769\n",
"312408527\n",
"821102330\n",
"139698655\n",
"885818726\n",
"624353643\n",
"165154703\n",
"40192\n",
"3628288\n",
"512861840\n",
"28243227\n",
"368256383\n",
"828964361\n",
"736433594\n",
"240523978\n",
"180171940\n",
"510152781\n",
"215879251\n",
"638229047\n",
"12466570\n",
"951564524\n",
"524474619\n",
"612354659\n",
"425296444\n",
"380023236\n"
]
} | 2CODEFORCES
|
1413_F. Roads and Ramen_943 | In the Land of Fire there are n villages and n-1 bidirectional road, and there is a path between any pair of villages by roads. There are only two types of roads: stone ones and sand ones. Since the Land of Fire is constantly renovating, every morning workers choose a single road and flip its type (so it becomes a stone road if it was a sand road and vice versa). Also everyone here loves ramen, that's why every morning a ramen pavilion is set in the middle of every stone road, and at the end of each day all the pavilions are removed.
For each of the following m days, after another road is flipped, Naruto and Jiraiya choose a simple path — that is, a route which starts in a village and ends in a (possibly, the same) village, and doesn't contain any road twice. Since Naruto and Jiraiya also love ramen very much, they buy a single cup of ramen on each stone road and one of them eats it. Since they don't want to offend each other, they only choose routes where they can eat equal number of ramen cups. Since they both like traveling, they choose any longest possible path. After every renovation find the maximal possible length of a path (that is, the number of roads in it) they can follow.
Input
The first line contains the only positive integer n (2 ≤ n ≤ 500 000) standing for the number of villages in the Land of Fire.
Each of the following (n-1) lines contains a description of another road, represented as three positive integers u, v and t (1 ≤ u, v ≤ n, t ∈ \{0,1\}). The first two numbers denote the villages connected by the road, and the third denotes the initial type of the road: 0 for the sand one and 1 for the stone one. Roads are numbered from 1 to (n-1) in the order from the input.
The following line contains a positive integer m (1 ≤ m ≤ 500 000) standing for the number of days Naruto and Jiraiya travel for.
Each of the following m lines contains the single integer id (1 ≤ id ≤ n-1) standing for the index of the road whose type is flipped on the morning of corresponding day.
It is guaranteed that there is a road path between any pair of villages.
Output
Output m lines. In the i-th of them print the only integer denoting the maximal possible length of any valid path on the i-th day.
Example
Input
5
1 2 0
1 3 0
3 5 0
3 4 0
5
3
4
1
3
4
Output
3
2
3
3
2
Note
After the renovation of the 3-rd road the longest path consists of the roads 1, 2 and 4.
After the renovation of the 4-th road one of the longest paths consists of the roads 1 and 2.
After the renovation of the 1-st road one of the longest paths consists of the roads 1, 2 and 3.
After the renovation of the 3-rd road the longest path consists of the roads 1, 2 and 4.
After the renovation of the 4-rd road one of the longest paths consists of the roads 2 and 4. | #include <bits/stdc++.h>
using namespace std;
int n, m, nex[2000000], hea[2000000], wen[2000000], val[2000000], aid[2000000],
root2, root1, len, maxx;
struct segment_tree {
int a[2000000][2], lazy[2000000], fa[1000000], dep[1000000], in[1000000],
out[1000000], m;
void pushdown(int k) {
if (!lazy[k]) return;
swap(a[k << 1][0], a[k << 1][1]);
swap(a[(k << 1) | 1][0], a[(k << 1) | 1][1]);
lazy[k << 1] ^= 1;
lazy[(k << 1) | 1] ^= 1;
lazy[k] = 0;
}
void update1(int l, int r, int k, int x, int y, int z) {
if (l == r) {
a[k][z] = y;
return;
}
int mid = (l + r) >> 1;
if (x <= mid) update1(l, mid, k << 1, x, y, z);
if (x > mid) update1(mid + 1, r, (k << 1) | 1, x, y, z);
a[k][0] = max(a[k << 1][0], a[(k << 1) | 1][0]);
a[k][1] = max(a[k << 1][1], a[(k << 1) | 1][1]);
}
void update2(int l, int r, int k, int x, int y) {
if (l >= x && r <= y) {
lazy[k] ^= 1;
swap(a[k][0], a[k][1]);
return;
}
pushdown(k);
int mid = (l + r) >> 1;
if (x <= mid) update2(l, mid, k << 1, x, y);
if (y > mid) update2(mid + 1, r, (k << 1) | 1, x, y);
a[k][0] = max(a[k << 1][0], a[(k << 1) | 1][0]);
a[k][1] = max(a[k << 1][1], a[(k << 1) | 1][1]);
}
void build(int x, int y, int z) {
int a = 0;
in[x] = ++m;
dep[x] = dep[y] + 1;
for (int i = hea[x]; i; i = nex[i])
if (wen[i] != y) {
++a;
fa[aid[i]] = wen[i];
build(wen[i], x, z ^ val[i]);
}
update1(1, n, 1, in[x], dep[x], z);
out[x] = m;
}
void revers(int x) { update2(1, n, 1, in[fa[x]], out[fa[x]]); }
} st1, st2;
void add(int x, int y, int z, int p) {
++len;
nex[len] = hea[x];
wen[len] = y;
val[len] = z;
aid[len] = p;
hea[x] = len;
}
void dfs(int x, int y, int z) {
if (z >= maxx) maxx = z, root1 = x;
for (int i = hea[x]; i; i = nex[i])
if (wen[i] != y) dfs(wen[i], x, z + 1);
}
void dfs1(int x, int y, int z) {
if (z >= maxx) maxx = z, root2 = x;
for (int i = hea[x]; i; i = nex[i])
if (wen[i] != y) dfs1(wen[i], x, z + 1);
}
int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
add(x, y, z, i);
add(y, x, z, i);
}
dfs(1, 0, 0);
dfs1(root1, 0, 0);
st1.build(root1, 0, 0);
st2.build(root2, 0, 0);
scanf("%d", &m);
for (int i = 1; i <= m; i++) {
int x;
scanf("%d", &x);
st1.revers(x);
st2.revers(x);
printf(" %d\n", max(st1.a[1][0], st2.a[1][0]) - 1);
}
return 0;
}
| 2C++
| {
"input": [
"5\n1 2 0\n1 3 0\n3 5 0\n3 4 0\n5\n3\n4\n1\n3\n4\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 0\n4 9 1\n2 5 1\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n3\n2\n",
"5\n2 4 0\n5 2 0\n1 3 1\n1 2 1\n5\n3\n3\n4\n1\n1\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"2\n2 1 1\n10\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n",
"5\n1 2 0\n1 3 0\n3 5 0\n3 4 0\n3\n3\n4\n1\n3\n4\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"5\n1 2 0\n1 3 1\n3 5 0\n3 4 0\n5\n3\n4\n1\n3\n4\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 0\n4 9 1\n2 5 1\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n6\n2\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 7 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 7 0\n8 6 0\n5 10 1\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 0\n4 9 0\n2 5 1\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n3\n2\n",
"5\n2 4 1\n5 2 0\n1 3 1\n1 2 1\n5\n3\n3\n4\n1\n1\n",
"2\n2 1 0\n10\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n9\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 7 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n14\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 7 0\n8 6 0\n5 10 1\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n2\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 5 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n9\n8\n8\n15\n17\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 1\n4 9 1\n2 5 1\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n6\n2\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n16\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n1\n11\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n13\n17\n17\n8\n8\n15\n17\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 0\n1 9 0\n2 5 1\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n3\n2\n",
"2\n2 1 0\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n9 15 0\n2 20 1\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n9\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 5 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n5\n18\n17\n18\n17\n9\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n13 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n19\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 1\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n16\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 11 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n1\n11\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n13\n17\n17\n8\n8\n15\n17\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 0\n1 9 0\n2 5 0\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n3\n2\n",
"5\n1 2 0\n2 3 1\n3 5 0\n3 4 0\n5\n3\n4\n1\n3\n4\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n13\n17\n17\n8\n8\n15\n17\n",
"5\n1 2 0\n1 3 0\n3 5 0\n3 4 0\n3\n3\n4\n2\n3\n4\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n13 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"5\n2 4 1\n5 2 0\n1 3 1\n1 2 1\n5\n3\n3\n4\n1\n2\n"
],
"output": [
"3\n2\n3\n3\n2\n",
"5\n5\n5\n5\n5\n4\n5\n4\n5\n5\n",
"2\n3\n2\n3\n2\n",
"7\n9\n7\n9\n7\n9\n7\n9\n7\n9\n7\n8\n8\n8\n7\n8\n9\n8\n9\n9\n",
"1\n0\n1\n0\n1\n0\n1\n0\n1\n0\n",
"3\n2\n3\n",
"7\n9\n7\n9\n7\n9\n7\n9\n7\n9\n7\n8\n8\n8\n7\n8\n9\n8\n9\n9\n",
"3\n3\n2\n3\n3\n",
"5\n5\n5\n5\n5\n4\n5\n4\n5\n5\n",
"7\n9\n7\n9\n7\n9\n7\n9\n9\n8\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n",
"9\n11\n9\n11\n9\n8\n9\n9\n9\n11\n9\n9\n11\n11\n9\n11\n11\n11\n10\n11\n",
"11\n8\n11\n9\n11\n11\n11\n11\n11\n8\n11\n11\n10\n10\n11\n10\n11\n10\n11\n9\n",
"5\n5\n5\n5\n4\n5\n5\n5\n5\n5\n",
"3\n3\n3\n2\n3\n",
"0\n1\n0\n1\n0\n1\n0\n1\n0\n1\n",
"7\n9\n7\n9\n7\n9\n7\n9\n7\n9\n7\n8\n8\n8\n7\n9\n9\n9\n7\n8\n",
"9\n11\n9\n11\n9\n9\n9\n9\n9\n11\n9\n9\n11\n11\n9\n11\n11\n11\n10\n11\n",
"11\n8\n11\n11\n9\n9\n9\n9\n9\n11\n9\n9\n11\n11\n9\n11\n11\n11\n10\n11\n",
"7\n8\n7\n8\n7\n8\n7\n8\n7\n8\n7\n7\n7\n7\n7\n8\n8\n8\n8\n8\n",
"4\n5\n4\n5\n5\n5\n4\n5\n5\n5\n",
"7\n7\n9\n7\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n",
"9\n7\n9\n7\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n",
"6\n6\n6\n5\n6\n4\n6\n4\n6\n5\n",
"0\n",
"8\n9\n8\n9\n8\n9\n8\n9\n8\n9\n8\n8\n8\n7\n8\n9\n9\n9\n8\n7\n",
"7\n8\n7\n8\n7\n8\n7\n8\n7\n8\n8\n8\n8\n8\n8\n7\n8\n7\n7\n7\n",
"7\n9\n7\n9\n7\n9\n7\n9\n7\n9\n7\n8\n8\n8\n7\n8\n9\n8\n9\n",
"8\n8\n9\n8\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n",
"9\n7\n9\n7\n9\n8\n9\n9\n9\n9\n9\n9\n9\n8\n8\n8\n9\n8\n9\n9\n",
"4\n4\n4\n6\n5\n6\n4\n6\n5\n6\n",
"3\n3\n2\n3\n3\n",
"7\n9\n7\n9\n7\n9\n7\n9\n9\n8\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n",
"3\n2\n3\n",
"7\n9\n7\n9\n7\n9\n7\n9\n7\n9\n7\n8\n8\n8\n7\n8\n9\n8\n9\n9\n",
"3\n3\n3\n2\n3\n"
]
} | 2CODEFORCES
|
1413_F. Roads and Ramen_944 | In the Land of Fire there are n villages and n-1 bidirectional road, and there is a path between any pair of villages by roads. There are only two types of roads: stone ones and sand ones. Since the Land of Fire is constantly renovating, every morning workers choose a single road and flip its type (so it becomes a stone road if it was a sand road and vice versa). Also everyone here loves ramen, that's why every morning a ramen pavilion is set in the middle of every stone road, and at the end of each day all the pavilions are removed.
For each of the following m days, after another road is flipped, Naruto and Jiraiya choose a simple path — that is, a route which starts in a village and ends in a (possibly, the same) village, and doesn't contain any road twice. Since Naruto and Jiraiya also love ramen very much, they buy a single cup of ramen on each stone road and one of them eats it. Since they don't want to offend each other, they only choose routes where they can eat equal number of ramen cups. Since they both like traveling, they choose any longest possible path. After every renovation find the maximal possible length of a path (that is, the number of roads in it) they can follow.
Input
The first line contains the only positive integer n (2 ≤ n ≤ 500 000) standing for the number of villages in the Land of Fire.
Each of the following (n-1) lines contains a description of another road, represented as three positive integers u, v and t (1 ≤ u, v ≤ n, t ∈ \{0,1\}). The first two numbers denote the villages connected by the road, and the third denotes the initial type of the road: 0 for the sand one and 1 for the stone one. Roads are numbered from 1 to (n-1) in the order from the input.
The following line contains a positive integer m (1 ≤ m ≤ 500 000) standing for the number of days Naruto and Jiraiya travel for.
Each of the following m lines contains the single integer id (1 ≤ id ≤ n-1) standing for the index of the road whose type is flipped on the morning of corresponding day.
It is guaranteed that there is a road path between any pair of villages.
Output
Output m lines. In the i-th of them print the only integer denoting the maximal possible length of any valid path on the i-th day.
Example
Input
5
1 2 0
1 3 0
3 5 0
3 4 0
5
3
4
1
3
4
Output
3
2
3
3
2
Note
After the renovation of the 3-rd road the longest path consists of the roads 1, 2 and 4.
After the renovation of the 4-th road one of the longest paths consists of the roads 1 and 2.
After the renovation of the 1-st road one of the longest paths consists of the roads 1, 2 and 3.
After the renovation of the 3-rd road the longest path consists of the roads 1, 2 and 4.
After the renovation of the 4-rd road one of the longest paths consists of the roads 2 and 4. | //package round679;
import java.io.*;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Queue;
public class D5 {
InputStream is;
FastWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int[] from = new int[n - 1];
int[] to = new int[n - 1];
int[] ws = new int[n-1];
for (int i = 0; i < n - 1; i++) {
from[i] = ni() - 1;
to[i] = ni() - 1;
ws[i] = ni();
}
int[][] g = packU(n, from, to);
// int[][] pars = parents(g, 0);
// int[] par = pars[0], ord = pars[1], dep = pars[2];
int[] dia = diameter(g);
int[] ends = {dia[1], dia[2]};
int[][] ppar = new int[2][];
int[][] iords = new int[2][];
int[][] rights = new int[2][];
SegmentTreeRXQ[] sts = new SegmentTreeRXQ[2];
int p = 0;
for(int end : ends){
int[][] pars = parents(g, end);
int[] par = pars[0], dep = pars[2];
int[][] rs = makeRights(g, par, end);
int[] iord = rs[1], right = rs[2];
ppar[p] = par;
iords[p] = iord;
rights[p] = right;
int[] deps = new int[n];
for(int i = 0;i < n;i++){
deps[iord[i]] = dep[i];
}
SegmentTreeRXQ st = new SegmentTreeRXQ(deps);
for(int i = 0;i < n-1;i++){
if(ws[i] == 1) {
int un = par[from[i]] == to[i] ? from[i] : to[i];
st.flip(iord[un], right[iord[un]]+1);
}
}
sts[p] = st;
p++;
}
for(int Q = ni();Q > 0;Q--){
int i = ni()-1;
// ws[i] ^= 1;
int ans = 0;
for(int k = 0;k < 2;k++) {
int un = ppar[k][from[i]] == to[i] ? from[i] : to[i];
sts[k].flip(iords[k][un], rights[k][iords[k][un]] + 1);
ans = Math.max(ans, sts[k].max0[1]);
}
out.println(ans);
}
}
public static int[] sortByPreorder(int[][] g, int root){
int n = g.length;
int[] stack = new int[n];
int[] ord = new int[n];
boolean[] ved = new boolean[n];
stack[0] = root;
int p = 1;
int r = 0;
ved[root] = true;
while(p > 0){
int cur = stack[p-1];
ord[r++] = cur;
p--;
for(int e : g[cur]){
if(!ved[e]){
ved[e] = true;
stack[p++] = e;
}
}
}
return ord;
}
public static class SegmentTreeRXQ {
public final int M, H, N, LH;
public boolean[] plus;
public int[] max0;
public int[] max1;
public static final int I = Integer.MAX_VALUE/3;
public SegmentTreeRXQ(int n)
{
N = n;
M = Integer.highestOneBit(Math.max(N-1, 1))<<2;
H = M>>>1;
LH = Integer.numberOfTrailingZeros(H);
plus = new boolean[H];
max0 = new int[M];
max1 = new int[M];
Arrays.fill(max0, -I);
Arrays.fill(max1, -I);
}
public SegmentTreeRXQ(int[] a)
{
this(a.length);
for(int i = 0;i < a.length;i++){
max0[H+i] = a[i];
max1[H+i] = -I;
}
for(int i = H-1;i >= 1;i--)propagate(i);
}
private void push(int cur, int len)
{
if(!plus[cur])return;
int L = cur*2, R = L + 1;
{int d = max0[L]; max0[L] = max1[L]; max1[L] = d;}
{int d = max0[R]; max0[R] = max1[R]; max1[R] = d;}
if(L < H){
plus[L] ^= true;
plus[R] ^= true;
}
plus[cur] = false;
}
private void flip1(int cur, int q)
{
{int d = max0[cur]; max0[cur] = max1[cur]; max1[cur] = d;}
if(cur < H) {
plus[cur] ^= true;
}
}
private void pushlr(int l, int r)
{
for(int i = LH;i >= 1;i--) {
if (l >>> i << i != l) push(l >>> i, i);
if (r >>> i << i != r) push(r >>> i, i);
}
}
public void flip(int l, int r) {
if(l >= r)return;
l += H; r += H;
pushlr(l, r);
for(int ll = l, rr = r, q = 0;ll < rr;ll>>>=1,rr>>>=1, q++){
if((ll&1) == 1) flip1(ll++, q);
if((rr&1) == 1) flip1(--rr, q);
}
for(int i = 1;i <= LH;i++){
if(l>>>i<<i != l)propagate(l>>>i);
if(r>>>i<<i != r)propagate(r>>>i);
}
}
private void propagate(int i)
{
max0[i] = Math.max(max0[2*i], max0[2*i+1]);
max1[i] = Math.max(max1[2*i], max1[2*i+1]);
}
}
/**
* ルートrootの木gに対し、行きがけ順で訪れたときの各ノードの子孫を表す範囲の終端を計算する。
* 格納はソート順で行われている。ルートが[0]に対応する。
* [ord, iord, right]
*
* @usage ノード番号xに対して対応する範囲は[iord[x], right[iord[x]]].
* @param g
* @param par
* @param root
* @return
*/
public static int[][] makeRights(int[][] g, int[] par, int root)
{
int n = g.length;
int[] ord = sortByPreorder(g, root);
int[] iord = new int[n];
for(int i = 0;i < n;i++)iord[ord[i]] = i;
int[] right = new int[n];
for(int i = n-1;i >= 1;i--){
if(right[i] == 0)right[i] = i;
int p = iord[par[ord[i]]];
right[p] = Math.max(right[p], right[i]);
}
return new int[][]{ord, iord, right};
}
public static int[] diameter(int[][] g)
{
int n = g.length;
int f0 = -1, f1 = -1, d01 = -1;
int[] q = new int[n];
boolean[] ved = new boolean[n];
{
int qp = 0;
q[qp++] = 0; ved[0] = true;
for(int i = 0;i < qp;i++){
int cur = q[i];
for(int e : g[cur]){
if(!ved[e]){
ved[e] = true;
q[qp++] = e;
continue;
}
}
}
f0 = q[n-1];
}
{
int[] d = new int[n];
int qp = 0;
Arrays.fill(ved, false);
q[qp++] = f0; ved[f0] = true;
for(int i = 0;i < qp;i++){
int cur = q[i];
for(int e : g[cur]){
if(!ved[e]){
ved[e] = true;
q[qp++] = e;
d[e] = d[cur] + 1;
continue;
}
}
}
f1 = q[n-1];
d01 = d[f1];
}
return new int[]{d01, f0, f1};
}
public static int[][] parents ( int[][] g, int root){
int n = g.length;
int[] par = new int[n];
Arrays.fill(par, -1);
int[] depth = new int[n];
depth[0] = 0;
int[] q = new int[n];
q[0] = root;
for (int p = 0, r = 1; p < r; p++) {
int cur = q[p];
for (int nex : g[cur]) {
if (par[cur] != nex) {
q[r++] = nex;
par[nex] = cur;
depth[nex] = depth[cur] + 1;
}
}
}
return new int[][]{par, q, depth};
}
public static int[][] packU ( int n, int[] from, int[] to){
return packU(n, from, to, from.length);
}
public static int[][] packU ( int n, int[] from, int[] to, int sup){
int[][] g = new int[n][];
int[] p = new int[n];
for (int i = 0; i < sup; i++) p[from[i]]++;
for (int i = 0; i < sup; i++) p[to[i]]++;
for (int i = 0; i < n; i++) g[i] = new int[p[i]];
for (int i = 0; i < sup; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new FastWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new D5().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private long[] nal(int n)
{
long[] a = new long[n];
for(int i = 0;i < n;i++)a[i] = nl();
return a;
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[][] nmi(int n, int m) {
int[][] map = new int[n][];
for(int i = 0;i < n;i++)map[i] = na(m);
return map;
}
private int ni() { return (int)nl(); }
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
public static class FastWriter
{
private static final int BUF_SIZE = 1<<13;
private final byte[] buf = new byte[BUF_SIZE];
private final OutputStream out;
private int ptr = 0;
private FastWriter(){out = null;}
public FastWriter(OutputStream os)
{
this.out = os;
}
public FastWriter(String path)
{
try {
this.out = new FileOutputStream(path);
} catch (FileNotFoundException e) {
throw new RuntimeException("FastWriter");
}
}
public FastWriter write(byte b)
{
buf[ptr++] = b;
if(ptr == BUF_SIZE)innerflush();
return this;
}
public FastWriter write(char c)
{
return write((byte)c);
}
public FastWriter write(char[] s)
{
for(char c : s){
buf[ptr++] = (byte)c;
if(ptr == BUF_SIZE)innerflush();
}
return this;
}
public FastWriter write(String s)
{
s.chars().forEach(c -> {
buf[ptr++] = (byte)c;
if(ptr == BUF_SIZE)innerflush();
});
return this;
}
private static int countDigits(int l) {
if (l >= 1000000000) return 10;
if (l >= 100000000) return 9;
if (l >= 10000000) return 8;
if (l >= 1000000) return 7;
if (l >= 100000) return 6;
if (l >= 10000) return 5;
if (l >= 1000) return 4;
if (l >= 100) return 3;
if (l >= 10) return 2;
return 1;
}
public FastWriter write(int x)
{
if(x == Integer.MIN_VALUE){
return write((long)x);
}
if(ptr + 12 >= BUF_SIZE)innerflush();
if(x < 0){
write((byte)'-');
x = -x;
}
int d = countDigits(x);
for(int i = ptr + d - 1;i >= ptr;i--){
buf[i] = (byte)('0'+x%10);
x /= 10;
}
ptr += d;
return this;
}
private static int countDigits(long l) {
if (l >= 1000000000000000000L) return 19;
if (l >= 100000000000000000L) return 18;
if (l >= 10000000000000000L) return 17;
if (l >= 1000000000000000L) return 16;
if (l >= 100000000000000L) return 15;
if (l >= 10000000000000L) return 14;
if (l >= 1000000000000L) return 13;
if (l >= 100000000000L) return 12;
if (l >= 10000000000L) return 11;
if (l >= 1000000000L) return 10;
if (l >= 100000000L) return 9;
if (l >= 10000000L) return 8;
if (l >= 1000000L) return 7;
if (l >= 100000L) return 6;
if (l >= 10000L) return 5;
if (l >= 1000L) return 4;
if (l >= 100L) return 3;
if (l >= 10L) return 2;
return 1;
}
public FastWriter write(long x)
{
if(x == Long.MIN_VALUE){
return write("" + x);
}
if(ptr + 21 >= BUF_SIZE)innerflush();
if(x < 0){
write((byte)'-');
x = -x;
}
int d = countDigits(x);
for(int i = ptr + d - 1;i >= ptr;i--){
buf[i] = (byte)('0'+x%10);
x /= 10;
}
ptr += d;
return this;
}
public FastWriter write(double x, int precision)
{
if(x < 0){
write('-');
x = -x;
}
x += Math.pow(10, -precision)/2;
// if(x < 0){ x = 0; }
write((long)x).write(".");
x -= (long)x;
for(int i = 0;i < precision;i++){
x *= 10;
write((char)('0'+(int)x));
x -= (int)x;
}
return this;
}
public FastWriter writeln(char c){
return write(c).writeln();
}
public FastWriter writeln(int x){
return write(x).writeln();
}
public FastWriter writeln(long x){
return write(x).writeln();
}
public FastWriter writeln(double x, int precision){
return write(x, precision).writeln();
}
public FastWriter write(int... xs)
{
boolean first = true;
for(int x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter write(long... xs)
{
boolean first = true;
for(long x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter writeln()
{
return write((byte)'\n');
}
public FastWriter writeln(int... xs)
{
return write(xs).writeln();
}
public FastWriter writeln(long... xs)
{
return write(xs).writeln();
}
public FastWriter writeln(char[] line)
{
return write(line).writeln();
}
public FastWriter writeln(char[]... map)
{
for(char[] line : map)write(line).writeln();
return this;
}
public FastWriter writeln(String s)
{
return write(s).writeln();
}
private void innerflush()
{
try {
out.write(buf, 0, ptr);
ptr = 0;
} catch (IOException e) {
throw new RuntimeException("innerflush");
}
}
public void flush()
{
innerflush();
try {
out.flush();
} catch (IOException e) {
throw new RuntimeException("flush");
}
}
public FastWriter print(byte b) { return write(b); }
public FastWriter print(char c) { return write(c); }
public FastWriter print(char[] s) { return write(s); }
public FastWriter print(String s) { return write(s); }
public FastWriter print(int x) { return write(x); }
public FastWriter print(long x) { return write(x); }
public FastWriter print(double x, int precision) { return write(x, precision); }
public FastWriter println(char c){ return writeln(c); }
public FastWriter println(int x){ return writeln(x); }
public FastWriter println(long x){ return writeln(x); }
public FastWriter println(double x, int precision){ return writeln(x, precision); }
public FastWriter print(int... xs) { return write(xs); }
public FastWriter print(long... xs) { return write(xs); }
public FastWriter println(int... xs) { return writeln(xs); }
public FastWriter println(long... xs) { return writeln(xs); }
public FastWriter println(char[] line) { return writeln(line); }
public FastWriter println(char[]... map) { return writeln(map); }
public FastWriter println(String s) { return writeln(s); }
public FastWriter println() { return writeln(); }
}
public void trnz(int... o)
{
for(int i = 0;i < o.length;i++)if(o[i] != 0)System.out.print(i+":"+o[i]+" ");
System.out.println();
}
// print ids which are 1
public void trt(long... o)
{
Queue<Integer> stands = new ArrayDeque<>();
for(int i = 0;i < o.length;i++){
for(long x = o[i];x != 0;x &= x-1)stands.add(i<<6|Long.numberOfTrailingZeros(x));
}
System.out.println(stands);
}
public void tf(boolean... r)
{
for(boolean x : r)System.out.print(x?'#':'.');
System.out.println();
}
public void tf(boolean[]... b)
{
for(boolean[] r : b) {
for(boolean x : r)System.out.print(x?'#':'.');
System.out.println();
}
System.out.println();
}
public void tf(long[]... b)
{
if(INPUT.length() != 0) {
for (long[] r : b) {
for (long x : r) {
for (int i = 0; i < 64; i++) {
System.out.print(x << ~i < 0 ? '#' : '.');
}
}
System.out.println();
}
System.out.println();
}
}
public void tf(long... b)
{
if(INPUT.length() != 0) {
for (long x : b) {
for (int i = 0; i < 64; i++) {
System.out.print(x << ~i < 0 ? '#' : '.');
}
}
System.out.println();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
| 4JAVA
| {
"input": [
"5\n1 2 0\n1 3 0\n3 5 0\n3 4 0\n5\n3\n4\n1\n3\n4\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 0\n4 9 1\n2 5 1\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n3\n2\n",
"5\n2 4 0\n5 2 0\n1 3 1\n1 2 1\n5\n3\n3\n4\n1\n1\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"2\n2 1 1\n10\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n",
"5\n1 2 0\n1 3 0\n3 5 0\n3 4 0\n3\n3\n4\n1\n3\n4\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"5\n1 2 0\n1 3 1\n3 5 0\n3 4 0\n5\n3\n4\n1\n3\n4\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 0\n4 9 1\n2 5 1\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n6\n2\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 7 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 7 0\n8 6 0\n5 10 1\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 0\n4 9 0\n2 5 1\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n3\n2\n",
"5\n2 4 1\n5 2 0\n1 3 1\n1 2 1\n5\n3\n3\n4\n1\n1\n",
"2\n2 1 0\n10\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n9\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 7 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n14\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 7 0\n8 6 0\n5 10 1\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n2\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 5 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n9\n8\n8\n15\n17\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 1\n4 9 1\n2 5 1\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n6\n2\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n16\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n1\n11\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n13\n17\n17\n8\n8\n15\n17\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 0\n1 9 0\n2 5 1\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n3\n2\n",
"2\n2 1 0\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n9 15 0\n2 20 1\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n9\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 5 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n9 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n5\n18\n17\n18\n17\n9\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n13 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n19\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 1\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n16\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 11 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n1\n11\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n13\n17\n17\n8\n8\n15\n17\n",
"10\n5 7 0\n2 10 1\n1 5 0\n6 8 0\n1 9 0\n2 5 0\n10 8 0\n2 3 1\n4 2 1\n10\n9\n9\n9\n5\n2\n5\n7\n2\n3\n2\n",
"5\n1 2 0\n2 3 1\n3 5 0\n3 4 0\n5\n3\n4\n1\n3\n4\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n14 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n12\n4\n4\n18\n17\n13\n17\n17\n8\n8\n15\n17\n",
"5\n1 2 0\n1 3 0\n3 5 0\n3 4 0\n3\n3\n4\n2\n3\n4\n",
"20\n9 11 0\n1 5 0\n1 14 0\n5 17 0\n13 3 0\n16 6 0\n9 2 0\n6 4 0\n11 10 0\n12 7 0\n8 18 0\n13 1 0\n18 11 0\n8 6 0\n5 10 0\n5 15 0\n2 20 0\n19 17 0\n7 17 0\n20\n9\n11\n11\n14\n14\n5\n5\n10\n10\n4\n4\n18\n17\n18\n17\n17\n8\n8\n15\n17\n",
"5\n2 4 1\n5 2 0\n1 3 1\n1 2 1\n5\n3\n3\n4\n1\n2\n"
],
"output": [
"3\n2\n3\n3\n2\n",
"5\n5\n5\n5\n5\n4\n5\n4\n5\n5\n",
"2\n3\n2\n3\n2\n",
"7\n9\n7\n9\n7\n9\n7\n9\n7\n9\n7\n8\n8\n8\n7\n8\n9\n8\n9\n9\n",
"1\n0\n1\n0\n1\n0\n1\n0\n1\n0\n",
"3\n2\n3\n",
"7\n9\n7\n9\n7\n9\n7\n9\n7\n9\n7\n8\n8\n8\n7\n8\n9\n8\n9\n9\n",
"3\n3\n2\n3\n3\n",
"5\n5\n5\n5\n5\n4\n5\n4\n5\n5\n",
"7\n9\n7\n9\n7\n9\n7\n9\n9\n8\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n",
"9\n11\n9\n11\n9\n8\n9\n9\n9\n11\n9\n9\n11\n11\n9\n11\n11\n11\n10\n11\n",
"11\n8\n11\n9\n11\n11\n11\n11\n11\n8\n11\n11\n10\n10\n11\n10\n11\n10\n11\n9\n",
"5\n5\n5\n5\n4\n5\n5\n5\n5\n5\n",
"3\n3\n3\n2\n3\n",
"0\n1\n0\n1\n0\n1\n0\n1\n0\n1\n",
"7\n9\n7\n9\n7\n9\n7\n9\n7\n9\n7\n8\n8\n8\n7\n9\n9\n9\n7\n8\n",
"9\n11\n9\n11\n9\n9\n9\n9\n9\n11\n9\n9\n11\n11\n9\n11\n11\n11\n10\n11\n",
"11\n8\n11\n11\n9\n9\n9\n9\n9\n11\n9\n9\n11\n11\n9\n11\n11\n11\n10\n11\n",
"7\n8\n7\n8\n7\n8\n7\n8\n7\n8\n7\n7\n7\n7\n7\n8\n8\n8\n8\n8\n",
"4\n5\n4\n5\n5\n5\n4\n5\n5\n5\n",
"7\n7\n9\n7\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n",
"9\n7\n9\n7\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n",
"6\n6\n6\n5\n6\n4\n6\n4\n6\n5\n",
"0\n",
"8\n9\n8\n9\n8\n9\n8\n9\n8\n9\n8\n8\n8\n7\n8\n9\n9\n9\n8\n7\n",
"7\n8\n7\n8\n7\n8\n7\n8\n7\n8\n8\n8\n8\n8\n8\n7\n8\n7\n7\n7\n",
"7\n9\n7\n9\n7\n9\n7\n9\n7\n9\n7\n8\n8\n8\n7\n8\n9\n8\n9\n",
"8\n8\n9\n8\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n",
"9\n7\n9\n7\n9\n8\n9\n9\n9\n9\n9\n9\n9\n8\n8\n8\n9\n8\n9\n9\n",
"4\n4\n4\n6\n5\n6\n4\n6\n5\n6\n",
"3\n3\n2\n3\n3\n",
"7\n9\n7\n9\n7\n9\n7\n9\n9\n8\n9\n9\n9\n9\n9\n9\n9\n9\n9\n9\n",
"3\n2\n3\n",
"7\n9\n7\n9\n7\n9\n7\n9\n7\n9\n7\n8\n8\n8\n7\n8\n9\n8\n9\n9\n",
"3\n3\n3\n2\n3\n"
]
} | 2CODEFORCES
|
1455_F. String and Operations_945 | You are given a string s consisting of n characters. These characters are among the first k lowercase letters of the Latin alphabet. You have to perform n operations with the string.
During the i-th operation, you take the character that initially occupied the i-th position, and perform one of the following actions with it:
* swap it with the previous character in the string (if it exists). This operation is represented as L;
* swap it with the next character in the string (if it exists). This operation is represented as R;
* cyclically change it to the previous character in the alphabet (b becomes a, c becomes b, and so on; a becomes the k-th letter of the Latin alphabet). This operation is represented as D;
* cyclically change it to the next character in the alphabet (a becomes b, b becomes c, and so on; the k-th letter of the Latin alphabet becomes a). This operation is represented as U;
* do nothing. This operation is represented as 0.
For example, suppose the initial string is test, k = 20, and the sequence of operations is URLD. Then the string is transformed as follows:
1. the first operation is U, so we change the underlined letter in test to the next one in the first 20 Latin letters, which is a. The string is now aest;
2. the second operation is R, so we swap the underlined letter with the next one in the string aest. The string is now aset;
3. the third operation is L, so we swap the underlined letter with the previous one in the string aset (note that this is now the 2-nd character of the string, but it was initially the 3-rd one, so the 3-rd operation is performed to it). The resulting string is saet;
4. the fourth operation is D, so we change the underlined letter in saet to the previous one in the first 20 Latin letters, which is s. The string is now saes.
The result of performing the sequence of operations is saes.
Given the string s and the value of k, find the lexicographically smallest string that can be obtained after applying a sequence of operations to s.
Input
The first line contains one integer t (1 ≤ t ≤ 1000) — the number of test cases.
Each test case consists of two lines. The first line contains two integers n and k (1 ≤ n ≤ 500; 2 ≤ k ≤ 26).
The second line contains a string s consisting of n characters. Each character is one of the k first letters of the Latin alphabet (in lower case).
Output
For each test case, print one line containing the lexicographically smallest string that can be obtained from s using one sequence of operations.
Example
Input
6
4 2
bbab
7 5
cceddda
6 5
ecdaed
7 4
dcdbdaa
8 3
ccabbaca
5 7
eabba
Output
aaaa
baccacd
aabdac
aabacad
aaaaaaaa
abadb | #include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include "e:/Codes/lib/prettyprint.hpp"
#else
#define debug(...)
#endif
int32_t main() {
ios::sync_with_stdio(0);
cout.tie(0);
cin.tie(0);
int tc;
cin >> tc;
while (tc--) {
int n, k;
string s;
cin >> n >> k >> s;
vector<string> dp(n+1);
auto c = [&](char c, int x) {
return string () = ('a' + (c - 'a' + x + k) % k);
};
for (int i = 0; i < n; ++i) {
if (dp[i+1].size() == 0) dp[i+1] = dp[i] + s[i];
for (int j = -1; j <= 1; ++j) {
dp[i+1] = min(dp[i+1], dp[i] + c(s[i], j));
}
if (i > 0) {
string tmp = dp[i] + s[i];
swap(tmp[i], tmp[i-1]);
dp[i+1] = min(dp[i+1], tmp);
}
if (i+2 > n) continue;
if (dp[i+2].size() == 0) dp[i+2] = dp[i] + s[i] + s[i+1];
for (int j = -1; j <= 1; ++j) {
dp[i+2] = min(dp[i+2], dp[i] + c(s[i+1], j) + s[i]);
}
if (i > 0 && i+1 < n) {
string tmp = dp[i] + s[i+1];
swap(tmp[i], tmp[i-1]);
dp[i+2] = min(dp[i+2], tmp + s[i]);
}
}
debug(dp);
cout << dp[n] << '\n';
}
}
| 2C++
| {
"input": [
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 4\ndcdbdaa\n8 3\nccabbaca\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\ndcdbdaa\n8 3\nccabbaca\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdaed\n7 8\ndcdbdaa\n8 3\nccabbaca\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 7\nbabea\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdadd\n7 8\ndcdbdaa\n8 3\nccabbaca\n5 7\neabba\n",
"6\n4 2\nbabb\n7 5\ncceddda\n6 5\ndcdaed\n7 8\ndcdbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndcdbdaa\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdadd\n7 8\nccdbdaa\n8 3\nccabbaca\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndccbdaa\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\nccedddb\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 4\nbaab\n7 10\nccedddb\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\ndcdbdaa\n8 3\nacabbacc\n5 7\naebba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdaed\n7 8\naadbdcd\n8 3\nccabbaca\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 5\nadabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\naadbdcd\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 2\nbaab\n7 5\ncceddea\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabaacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndcdbdaa\n8 5\nccabbaca\n5 7\neabba\n",
"6\n4 4\nbabb\n7 5\nccddeda\n6 5\ndeadce\n7 5\ndccbdaa\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\ndbdbdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 7\necdaed\n7 5\ndcdbdaa\n8 3\naccbbaac\n5 7\nbabea\n",
"6\n4 2\nbaab\n7 5\ncceddea\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabaacc\n5 7\nebbba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndcdbeaa\n8 5\nccabbaca\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 4\ndcdbdaa\n8 3\nccabbaca\n5 7\nabbae\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\neddaec\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 5\nacabbacc\n5 7\nebbba\n",
"6\n4 2\nbaab\n7 5\nccdddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 7\nbabea\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 7\necdaed\n7 5\ndcdbdaa\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 6\ncceddda\n6 9\necdadd\n7 8\ndcdbdaa\n8 3\nccabbaca\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndcdbdaa\n8 5\nacabbacc\n5 7\nabbae\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdba\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 4\nbaab\n7 5\nccedddb\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 14\nbacea\n",
"6\n4 4\nbabb\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndccbdaa\n8 5\nacabbacc\n5 7\neacba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\ndcdbdaa\n8 6\nacabbacc\n5 7\naebba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\naadbdcd\n8 6\nacabbacc\n5 14\nbabea\n",
"6\n4 2\nbaab\n7 5\ncceddea\n6 5\necdaed\n7 5\ndcdbdaa\n8 6\nacabaacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndcdbdaa\n8 5\nccabbaca\n5 7\neabbb\n",
"6\n4 4\nbabb\n7 5\nccddeda\n6 5\ndeadce\n7 5\ndccbdab\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\ndbebdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddea\n6 5\necdaed\n7 5\ndbdbdaa\n8 3\nacabaacc\n5 7\nebbba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndcdbeab\n8 5\nccabbaca\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\nbcdddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 7\nbabea\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 9\necdaed\n7 5\ndddbdaa\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 4\nbaab\n7 5\nccedddb\n6 5\necdaed\n7 5\ndcdbdaa\n8 6\nacabbacc\n5 14\nbacea\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 4\ndcdbdaa\n8 6\nacabbacc\n5 7\naebba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdaed\n7 4\naadbdcd\n8 3\nccabcaca\n5 7\neabba\n",
"6\n4 2\nbabb\n7 5\ncdeddda\n6 5\necdaed\n7 8\ndcdbdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 4\nbbab\n7 5\ncceddda\n6 9\necdaed\n7 8\naadbdcd\n8 3\nccabbaca\n5 12\neacba\n",
"6\n4 2\nbaab\n7 5\nbcdddda\n6 5\necdaed\n7 5\ndcdadba\n8 3\nacabbacc\n5 7\nbabea\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 9\necdaed\n7 5\naadbddd\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 4\nbbab\n7 5\ncceddda\n6 5\ndcdaed\n7 8\naadbdcd\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 4\nbabb\n7 5\nadddecc\n6 5\ndeadce\n7 5\ndccbdaa\n8 5\nacabbacc\n5 10\neacba\n",
"6\n4 2\nbabb\n7 5\ncdeddda\n6 5\ndeadce\n7 8\ndcdbdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\ndbbedaa\n8 3\nacacbacc\n5 7\nabbae\n",
"6\n4 4\nbbab\n7 5\ncceddda\n6 5\ndcdaed\n7 8\naadcdcd\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 4\ndcdbdaa\n8 4\nacabbacc\n5 7\naebaa\n",
"6\n4 2\nbabb\n7 5\ncdeddda\n6 5\ndebdce\n7 8\ndcdbdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 2\nabab\n7 5\ncceddda\n6 5\necdaed\n7 4\ndcdbdaa\n8 3\nccabbaca\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\ndcdbdaa\n8 3\nccabbaca\n5 7\nbaeba\n",
"6\n4 2\nbbab\n7 5\nadddecc\n6 5\necdaed\n7 8\ndcdbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\necdbdaa\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 4\nbaab\n7 6\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncdedcda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabaacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\naadbdcd\n8 5\nadabbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\ndeadde\n7 5\ndcdbdaa\n8 5\nccabbaca\n5 7\neabba\n",
"6\n4 4\nbabb\n7 5\nccddeda\n6 5\ndeadce\n7 5\naadbccd\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdaed\n7 8\naadbdcd\n8 5\nccabbaca\n5 12\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\ndbdbdaa\n8 6\nacacbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 7\necdbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\nadddecc\n6 7\necdaed\n7 5\ndcdbdaa\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdaee\n7 8\naadbdcd\n8 3\nccabcaca\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\nabdadcd\n8 6\nacabbacc\n5 14\nbabea\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndcdbeab\n8 5\nccabbaca\n5 7\ndabba\n",
"6\n4 2\nbaab\n7 5\nbcdddda\n6 5\nedcaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 7\nbabea\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 8\necdaed\n7 4\ndcdbdaa\n8 6\nacabbacc\n5 7\naebba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdaed\n7 4\naadbdcd\n8 3\nccabcaca\n5 7\neabab\n",
"6\n4 2\nbaab\n7 5\nccedcda\n6 9\necdaed\n7 5\naadbddd\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 4\ndcdbdaa\n8 4\nbcaabacc\n5 7\naebba\n",
"6\n4 2\nbabb\n7 5\ncdededa\n6 5\ndeadce\n7 8\ndcdbdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 4\nbbab\n7 5\ncceddda\n6 5\ndddaed\n7 8\naadcdcd\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 4\naadbdcd\n8 7\nacabbacc\n5 7\naebaa\n",
"6\n4 2\nabab\n7 5\ncceddda\n6 5\necdaed\n7 4\ndcdbdaa\n8 3\nccabbaca\n5 7\naebba\n",
"6\n4 2\nbbab\n7 10\nadddecc\n6 5\necdaed\n7 8\ndcdbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 4\nbabb\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndccbdaa\n8 5\nadabbacc\n5 10\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\nedcaed\n7 5\naadbdcd\n8 5\nadabbacc\n5 7\neabba\n",
"6\n4 4\nbabb\n7 5\nccddeda\n6 5\ndeadce\n7 5\naadbccd\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddea\n6 7\necdaed\n7 5\ndcdbdaa\n8 3\nacbbcaac\n5 7\nbabea\n",
"6\n4 4\nbabb\n7 5\ncceddda\n6 5\ndeaece\n7 5\ndccbdaa\n8 5\nacabbacc\n5 13\neacba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdade\n7 8\naadbdcd\n8 3\nccabcaca\n5 7\neabba\n",
"6\n4 4\nbbab\n7 5\ncceddda\n6 9\necdadd\n7 15\naadbdcd\n8 3\nccabbaca\n5 12\neabba\n",
"6\n4 2\nbaab\n7 5\ndceddca\n6 7\necdaed\n7 5\ndcdbdaa\n8 3\ncaabbcca\n5 11\nbabea\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndcdbeab\n8 5\nccabbaca\n5 7\nabbad\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdaed\n7 4\nacdbdad\n8 3\nccabcaca\n5 7\neabab\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 4\ndcdbdaa\n8 4\nccabaacb\n5 7\naebba\n",
"6\n4 5\nbaab\n7 6\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 5\neabba\n",
"6\n4 2\nbabb\n7 5\ncceddea\n6 9\necdaed\n7 8\naadbdcd\n8 5\nccabbaca\n5 12\neabba\n",
"6\n4 4\nbabb\n7 5\ncceddda\n6 5\ndeaece\n7 5\naadbccd\n8 5\nacabbacc\n5 13\neacba\n",
"6\n4 2\nbbab\n7 5\nccdedda\n6 9\necdade\n7 8\naadbdcd\n8 3\nccabcaca\n5 7\neabba\n",
"6\n4 2\nbabb\n7 5\ncdeddda\n6 5\ndebdce\n7 7\naadbdcd\n8 3\nacacbacc\n5 8\neabba\n",
"6\n4 4\nbabb\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndccbdaa\n8 7\nadabbacc\n5 10\neacba\n",
"6\n4 2\nbaab\n7 5\ncceddea\n6 7\necdaec\n7 5\ndcdbdaa\n8 3\ncaacbbca\n5 7\nbabea\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 6\necdaec\n7 4\nacdbdad\n8 3\nccabcaca\n5 7\neabab\n",
"6\n4 2\nbabb\n7 5\ncdeddda\n6 7\ndebdce\n7 7\naadbdcd\n8 3\nacacbacc\n5 8\neabba\n",
"6\n4 4\nbabb\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndccbdaa\n8 7\nadabbacc\n5 10\neacaa\n",
"6\n4 2\nbbab\n7 5\nccecdda\n6 5\necdaed\n7 8\ndcdbdaa\n8 3\nccabbaca\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\naadbdcd\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcebdaa\n8 3\nacabbacc\n5 7\nbabea\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\naadbdcd\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 10\nccedddb\n6 5\necdadd\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\naccbbaac\n5 7\nbacea\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\naadbdcd\n8 3\nacabbacc\n5 14\nbabda\n",
"6\n4 4\nbabb\n7 5\ncccdeda\n6 5\ndeadce\n7 5\ndccbdaa\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 7\necdaed\n7 8\ndbdbdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\nccedadd\n6 7\necdaed\n7 5\ndcdbdaa\n8 3\naccbbaac\n5 7\nbabea\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\neddaec\n7 5\ncddbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncbeddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 5\nacabbacc\n5 7\nebbba\n",
"6\n4 2\nbaab\n7 5\nccdddda\n6 5\necaded\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 7\nbabea\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 10\necdaed\n7 5\ndcdbdba\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 4\nbaab\n7 5\nccedddb\n6 5\necdaed\n7 5\ndcdadaa\n8 3\nacabbacc\n5 14\nbacea\n",
"6\n4 2\nbbab\n7 6\ncceddda\n6 5\necdaed\n7 8\ndbebdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndcdbeab\n8 5\nccabbaca\n5 7\nabbae\n",
"6\n4 4\nbaab\n7 5\nccedddb\n6 9\necdaed\n7 5\ndcdbdaa\n8 6\nacabbacc\n5 14\nbacea\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 4\ndddbdaa\n8 6\nacabbacc\n5 7\naebba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdaed\n7 4\naadbdcd\n8 3\nccabcaca\n5 7\nebaba\n",
"6\n4 2\nbabb\n7 5\ncdeddda\n6 5\necdaed\n7 8\ndcdbdab\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\naadbdcd\n8 6\nacabbacc\n5 14\nbaaeb\n",
"6\n4 4\nbbab\n7 5\ncceddda\n6 5\ndcdaee\n7 8\naadbdcd\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 17\necdaed\n7 4\naadcdcd\n8 3\nccabcaca\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\nccdedda\n6 5\necdaed\n7 4\ndcdbdaa\n8 4\nacabbacc\n5 7\naebaa\n",
"6\n4 2\nbabb\n7 5\ncdeddda\n6 5\ndebdce\n7 4\ndcdbdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 4\ndcdbdba\n8 7\nacabbacc\n5 7\naebaa\n",
"6\n4 2\nabab\n7 5\ncceddda\n6 5\necdaed\n7 4\ndcdbdaa\n8 3\nccabbaca\n5 7\nfabba\n",
"6\n4 4\nbaab\n7 6\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 6\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncdedcda\n6 5\ndeadce\n7 5\ndcdbdaa\n8 3\nacabaacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncbeddda\n6 5\ndeadde\n7 5\ndcdbdaa\n8 5\nccabbaca\n5 7\neabba\n",
"6\n4 4\nbabb\n7 5\nccddeda\n6 5\ndeadce\n7 5\naacbccd\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\nabdbdda\n8 6\nacacbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 7\necdbdaa\n8 3\nacabbacc\n5 7\nabbae\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdaee\n7 8\naadbdcd\n8 6\nccabcaca\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\nadddecc\n6 7\necdaed\n7 5\ndcdbdaa\n8 3\ncaabbcca\n5 11\nbabea\n",
"6\n4 2\nbaab\n7 5\nbcdddda\n6 5\nedcaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 7\nbaaeb\n",
"6\n4 2\nbaab\n7 5\nbddddca\n6 5\necdaed\n7 5\ndcdadba\n8 3\naacbbacc\n5 7\nbabea\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 10\necdaed\n7 4\ndcdbdaa\n8 4\nbcaabacc\n5 7\naebba\n",
"6\n4 2\nabab\n7 5\ncceddad\n6 5\necdaed\n7 4\ndcdbdaa\n8 3\nccabbaca\n5 7\naebba\n",
"6\n4 2\nbbab\n7 10\nadddecc\n6 5\necdaed\n7 8\naadbdcd\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddea\n6 7\neddaed\n7 5\ndcdbdaa\n8 3\nacbbcaac\n5 7\nbabea\n",
"6\n4 4\nbbab\n7 5\ncceddda\n6 9\necdadd\n7 15\naadbdcd\n8 3\nccabbaca\n5 12\nbaeba\n",
"6\n4 2\nbaab\n7 5\nbcdddca\n6 5\nedcaed\n7 9\ndcdbdaa\n8 3\nacabbacc\n5 7\nbabea\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdaed\n7 5\nacdbdad\n8 3\nccabcaca\n5 7\neabab\n",
"6\n4 2\nbabb\n7 5\ncdeddda\n6 5\ndebdce\n7 7\nbcdddaa\n8 3\nacacbacc\n5 8\neabba\n",
"6\n4 2\nbabb\n7 5\ncceddda\n6 5\necdaed\n7 4\naadbdcd\n8 7\nacabbacc\n5 7\naabea\n",
"6\n4 2\nbabb\n7 7\ncceddea\n6 9\necdaed\n7 8\naadbdcd\n8 5\nccabbaca\n5 12\neabba\n",
"6\n4 2\nbabb\n7 5\ncdeddda\n6 5\ndebdce\n7 7\naadbdcd\n8 5\nacacbacc\n5 8\neabba\n",
"6\n4 2\nbabb\n7 5\ncdeddda\n6 7\ncebdde\n7 7\naadbdcd\n8 3\nacacbacc\n5 8\neabba\n",
"6\n4 4\nbabb\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndccbdaa\n8 7\nadabbacc\n5 10\naacae\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdade\n7 4\ndcdbdaa\n8 3\nccbbaaca\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\neceaed\n7 5\naadbdcd\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\nccededa\n6 5\necdaed\n7 5\naadbdcd\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 10\nbdddecc\n6 5\necdadd\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 2\nbaab\n7 6\ncceddda\n6 5\necdaed\n7 5\naadbdcd\n8 3\nacabbacc\n5 14\nbabda\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 7\necdaed\n7 5\naadbdcd\n8 3\nacabbacc\n5 27\nbabea\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\neddaec\n7 4\ncddbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 7\necdaed\n7 5\ndcdbdaa\n8 5\nacaabacc\n5 9\neabba\n",
"6\n4 4\nbaab\n7 6\nccedddb\n6 5\necdaed\n7 5\ndcdadaa\n8 3\nacabbacc\n5 14\nbacea\n",
"6\n4 2\nbabb\n7 5\ndceddda\n6 5\necdaed\n7 12\ndcdbdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 6\nccededa\n6 5\necdaed\n7 8\ndbebdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 8\ndeadce\n7 5\ndcdbeab\n8 5\nccabbaca\n5 7\nabbae\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\naadbdcd\n8 6\nacacbacc\n5 14\nbaaeb\n",
"6\n4 4\nbbab\n7 5\ncceddda\n6 5\ndcdaee\n7 8\naddbdca\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbbb\n7 6\ncceddda\n6 5\necdaed\n7 8\ndbbedaa\n8 3\nacacbacc\n5 13\nabbae\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\ndcdbdba\n8 7\nacabbacc\n5 7\naebaa\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\ndcdbdba\n8 3\nacabbacc\n5 7\nbaeba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 9\necdaed\n7 8\naadbdcd\n8 4\nccabbaca\n5 12\nabbae\n",
"6\n4 2\nbbab\n7 5\ncbeddda\n6 5\necdaed\n7 8\nabdbdda\n8 6\nacacbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\nadddecc\n6 7\ndcdaee\n7 5\ndcdbdaa\n8 3\ncaabbcca\n5 11\nbabea\n",
"6\n4 7\nbbab\n7 5\ncceddda\n6 5\ndddead\n7 8\naadcdcd\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 4\nbbab\n7 5\ncceddda\n6 9\necdadd\n7 15\naddbdca\n8 3\nccabbaca\n5 12\nbaeba\n",
"6\n4 4\nbaab\n7 5\nccededa\n6 5\necdaed\n7 5\naadbdcd\n8 5\nacbbbacc\n5 7\neabba\n",
"6\n4 3\nbbab\n7 5\ncceddea\n6 7\necdaed\n7 8\ndbdbdaa\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\neddeac\n7 4\ncddbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncbeddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 5\nbcabbacc\n5 7\nebbbb\n",
"6\n4 2\nbabb\n7 5\ndceddda\n6 5\necdaed\n7 12\ndcabdda\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 3\nbabb\n7 5\ncddddda\n6 5\necdaed\n7 8\ndcdbdab\n8 3\nacacbacc\n5 7\neabba\n",
"6\n4 2\nbbbb\n7 6\ncceddda\n6 5\necdaed\n7 8\ndbbedaa\n8 4\nacacbacc\n5 13\nabbae\n",
"6\n4 4\nbabb\n7 5\ndccdeda\n6 5\ndeadce\n7 5\naacbccd\n8 5\nacabbacc\n5 12\neabba\n",
"6\n4 2\nbaab\n7 5\nacddddb\n6 5\necdaed\n7 10\ndcdadba\n8 3\naacbbacc\n5 7\nbabea\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 10\necdaed\n7 4\ndcdbdaa\n8 8\nbcaabacc\n5 7\nafbba\n",
"6\n4 7\nbbab\n7 5\ncceddda\n6 5\nddeead\n7 8\naadcdcd\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbabb\n7 5\ncdeddda\n6 9\necdaed\n7 8\naadbdcd\n8 11\nccabbaca\n5 12\neabba\n",
"6\n4 4\nbbab\n7 5\ncceddda\n6 9\necdadd\n7 4\naddbdca\n8 3\nccabbaca\n5 12\nbaeba\n",
"6\n4 4\nbaab\n7 10\nbdddecc\n6 5\necdadd\n7 5\naadbdcd\n8 3\nacacbacc\n5 14\nbabea\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 8\ndcdbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbbab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbabb\n7 5\ncceddda\n6 5\necdaed\n7 8\ndcdbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 5\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 7\neabba\n",
"6\n4 2\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabaacc\n5 7\neabba\n",
"6\n4 4\nbaab\n7 5\ncceddda\n6 5\necdaed\n7 5\ndcdbdaa\n8 3\nacabbacc\n5 14\nbabea\n",
"6\n4 4\nbabb\n7 5\ncceddda\n6 5\ndeadce\n7 5\ndccbdaa\n8 5\nacabbacc\n5 7\neabba\n"
],
"output": [
"\naaaa\nbaccacd\naabdac\naabacad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\nbaedce\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naabaaabb\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaedcc\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\nbaddac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naacdda\nbbdadad\naabaaabb\nabadb\n",
"aaaa\nbaccacd\nbaedcc\nbbaadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naacdda\nbbdacad\naabaaabb\nabadb\n",
"aaaa\nbaccbcd\naabdac\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbbcdbed\naabdac\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\naaaeb\n",
"aaaa\nbaccacd\nbaedce\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naabacbbb\nabadb\n",
"aaaa\nbaccacd\naabdac\naaacddc\naaaaaaaa\naaaad\n",
"aaaa\nbaccaad\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naacdda\nbbdadad\nabbacabc\nabadb\n",
"aaaa\nbbcaadd\naacdda\nbbdacad\naabaaabb\nabadb\n",
"aaaa\nbaccacd\naabdac\nabdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\nbaedce\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccaad\naabdac\nbbdadad\naaaaaaaa\nabaeb\n",
"aaaa\nbaccacd\naacdda\nbbdadae\nabbacabc\nabadb\n",
"aaaa\nbaccacd\naabdac\naabacad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naaccde\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naabaaabb\nabaeb\n",
"aaaa\nbbccacd\naabdac\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaedce\nbbdadad\naabaaabb\nabadb\n",
"aaaa\nbbcdaed\nbaedcc\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naacdda\nbbdadad\naabaaabb\naaaad\n",
"aaaa\nbaccacd\naabdac\nbbdbdad\naaaaaaaa\naaaad\n",
"aaaa\nbaccbcd\naabdac\nbbdadad\naaaaaaaa\naaabe\n",
"aaaa\nbaccacd\naacdda\nbbdacad\naabaaabb\nabdac\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naabaaabb\naaaeb\n",
"aaaa\nbaccacd\naabdac\naaacddc\naabaaabb\naaaad\n",
"aaaa\nbaccaad\naabdac\nbbdadad\naaababbb\nabadb\n",
"aaaa\nbaccacd\naacdda\nbbdadad\nabbacabc\nabbbd\n",
"aaaa\nbbcaadd\naacdda\nbbdacbd\naabaaabb\nabadb\n",
"aaaa\nbaccacd\naabdac\nabdaead\naaaaaaaa\nabadb\n",
"aaaa\nbaccaad\naabdac\nabdadad\naaaaaaaa\nabaeb\n",
"aaaa\nbaccacd\naacdda\nbbdadbe\nabbacabc\nabadb\n",
"aaaa\nabccacd\naabdac\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaedce\ncbcadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccbcd\naabdac\nbbdadad\naabaaabb\naaabe\n",
"aaaa\nbaccacd\naabdac\naabacad\naabaaabb\naaaeb\n",
"aaaa\nbaccacd\nbaedce\naaaaaac\naaaaaaaa\nabadb\n",
"aaaa\nbadcacd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\nbaedce\naaacddc\naaaaaaaa\nabdac\n",
"aaaa\nabccacd\naabdac\nbadbdad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaedce\naaadccc\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaddac\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\naccaccd\naacdda\nbbdacad\naabaaabb\nabdac\n",
"aaaa\nbadcacd\naacdda\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nabdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaddac\naabcddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\naabacad\naabaaabb\naaaae\n",
"aaaa\nbadcacd\nabcdda\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\naabacad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\naaaae\n",
"aaaa\naccaccd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nabaadad\naaaaaaaa\naaaad\n",
"aaaa\nbbcdaed\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbacdadd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\naaacddc\naabacbbb\nabadb\n",
"aaaa\nbaccacd\naadcad\nbbdadad\nabbacabc\nabadb\n",
"aaaa\nbbcaadd\naacdda\naaaccdc\naabaaabb\nabadb\n",
"aaaa\nbaccacd\nbaedce\naaacddc\nabbacabc\nabadb\n",
"aaaa\nbaccacd\naabdac\nabdadad\naabaacbb\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbeadad\naaaaaaaa\nabadb\n",
"aaaa\naccaccd\nbaedce\nbbdadad\naabaaabb\nabadb\n",
"aaaa\nbaccacd\nbaeddd\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\naaacbdc\naabaaabb\naaaad\n",
"aaaa\nbaccacd\naacdda\nbbdadbe\nabbacabc\nabacb\n",
"aaaa\nabccacd\naaccac\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaedce\naabacad\naabaaabb\naaaeb\n",
"aaaa\nbaccacd\nbaedce\naaaaaac\naaaaaaaa\naadba\n",
"aaaa\nbacbadd\nbaedce\naaadccc\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naabdac\naabacad\naaaabbbb\naaaeb\n",
"aaaa\nbadaadd\naacdda\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\ncacdac\naabcddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\naaaaaac\naabaaabb\naaaae\n",
"aaaa\nbaccacd\naabdac\naabacad\naaaaaaaa\naaaeb\n",
"aaaa\nacccbce\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naacdda\nbbdacad\naabacbbb\nabadb\n",
"aaaa\nbaccacd\naaccac\naaacddc\naabacbbb\nabadb\n",
"aaaa\nbbcaadd\naacdda\naaaccdc\naaaaaaaa\nabadb\n",
"aaaa\nbaccaad\nbaedce\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naacdea\nbbdacad\naabaaabb\nabdac\n",
"aaaa\nbaccacd\nbaedcd\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\nbaedcc\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbdacacc\nbaedce\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naacdda\nbbdadbe\nabbacabc\naaaac\n",
"aaaa\nbaccacd\nbaedce\naabacda\naaaaaaaa\naadba\n",
"aaaa\nbaccacd\naabdac\naabacad\nabacabac\naaaeb\n",
"aaaa\nbbcdaed\naabdac\nbbdadad\naaaaaaaa\naaaaa\n",
"aaaa\nbaccaad\nbaedce\naaacddc\nabbacabc\nabadb\n",
"aaaa\nbaccacd\naacdea\naaaccdc\naabaaabb\nabdac\n",
"aaaa\nbbadacd\nbaedcd\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbadcacd\nabcdda\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naacdda\nbbdacad\naabacbbb\nabdac\n",
"aaaa\nbaccaad\nbaecde\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaecde\naabacda\naaaaaaaa\naadba\n",
"aaaa\nbadcacd\nbccedd\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naacdda\nbbdacad\naabacbbb\naadac\n",
"aaaa\nbacbacd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdaead\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naabdac\naaacddc\naabaaabb\nabadb\n",
"aaaa\nbbcdbed\naabdcc\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\naaabe\n",
"aaaa\nbaccacd\naabdac\naaacddc\naaaaaaaa\naaaac\n",
"aaaa\nbbbaadd\naacdda\nbbdacad\naabaaabb\nabadb\n",
"aaaa\nbaccacd\nbaedce\nabdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaacdcc\nbaedce\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naaccde\nbbcadad\naaaaaaaa\nabadb\n",
"aaaa\nacacacd\naabdac\nbbdadad\naabaaabb\nabaeb\n",
"aaaa\nbbccacd\naabadc\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaedce\nbbdbdad\naaaaaaaa\naaaad\n",
"aaaa\nbaccbcd\naabdac\nbadadad\naaaaaaaa\naaabe\n",
"aaaa\nbbcdaed\naabdac\nabdaead\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naacdda\nbbdadbe\nabbacabc\naaaad\n",
"aaaa\nbaccbcd\nbaedce\nbbdadad\naabaaabb\naaabe\n",
"aaaa\nbaccacd\naabdac\naaaaaaa\naabaaabb\naaaeb\n",
"aaaa\nbaccacd\nbaedce\naaaaaac\naaaaaaaa\naaaeb\n",
"aaaa\nbadcacd\naabdac\nbbdadbd\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\naaacddc\naabaaabb\naaaae\n",
"aaaa\nbaccacd\nbaddaa\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\nbaedce\naaaacac\naaaaaaaa\nabadb\n",
"aaaa\nbbadacd\naabdac\naabacad\naabaaabb\naaaae\n",
"aaaa\nbadcacd\nabcdda\naabacad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\naabbcad\naabaaabb\naaaae\n",
"aaaa\nbaccacd\naabdac\naabacad\naaaaaaaa\nabaeb\n",
"aaaa\nbbcdaed\naabdac\nbbdadad\naabaaabb\nabadb\n",
"aaaa\nbacdadd\naacdda\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nacacacd\naadcad\nbbdadad\nabbacabc\nabadb\n",
"aaaa\nbbcaadd\naacdda\naaacbbc\naabaaabb\nabadb\n",
"aaaa\nbaccacd\naabdac\naaadacd\naabaacbb\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbeadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaeddd\naaacddc\nabbacacc\nabadb\n",
"aaaa\naccaccd\nbaedce\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nabccacd\naaccac\nbbdadad\naaaaaaaa\naaaae\n",
"aaaa\nacccacc\naabdac\nbadbdad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaedce\naabacad\naaaabbbb\naaaeb\n",
"aaaa\nbacacdc\naabdac\naabacad\naaaaaaaa\naaaeb\n",
"aaaa\nacccbce\naabdac\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccaad\ncaedce\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaedcc\naaacddc\naaaaaaaa\naaaae\n",
"aaaa\nabccacc\naaccac\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaedce\nabaaddc\naaaaaaaa\naadba\n",
"aaaa\nbadcacd\nabcdda\nabcacad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\naaaaaac\naabaaabb\naaaad\n",
"aaaa\nbbcdaee\nbaedce\naaacddc\nabbacabc\nabadb\n",
"aaaa\nbadcacd\nabcdda\naaacddc\naabaacbb\nabadb\n",
"aaaa\nbadcacd\nbadded\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naacdda\nbbdacad\naabacbbb\naaabd\n",
"aaaa\nbaccacd\naabdad\naabacad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naaacac\naaacddc\naaaaaaaa\nabadb\n",
"aaaa\nbacaadd\naabdac\naaacddc\naabaaabb\nabadb\n",
"aaaa\nacccbce\naabdcc\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbbcdaed\naabdac\naaacddc\naaaaaaaa\naaaac\n",
"aaaa\nbaccacd\nbaedce\naaacddc\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naaccde\nabcadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\nbaedce\nbbdadad\naaaabbbb\nabadb\n",
"aaaa\nbbcdbed\naabdac\nbadadad\naaaaaaaa\naaabe\n",
"aaaa\nbdacacd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbbcdeae\naabdac\nabdaead\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naccedd\nbbdadbe\nabbacabc\naaaad\n",
"aaaa\nbaccacd\naabdac\naaacddc\naabaacbb\naaaae\n",
"aaaa\nbaccacd\nbaddaa\nabccdad\naaaaaaaa\nabadb\n",
"aaaa\nbbcdaed\naabdac\nabdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naabdac\nbbdbdad\naabaaabb\naaaae\n",
"aaaa\nbaccacd\naabdac\nbbdbdad\naaaaaaaa\naaaae\n",
"aaaa\nbaccacd\nbaedce\naaacddc\nabbacabc\naaaad\n",
"aaaa\nacacacd\naabdac\naaadacd\naabaacbb\nabadb\n",
"aaaa\naccaccd\nbadddd\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nccaadc\naabcddc\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\nbaedcc\nabccdad\naaaaaaaa\naaaae\n",
"aaaa\nbacaadd\naabdac\naaacddc\naabacbbb\nabadb\n",
"aaaa\nbaccaad\nbaedce\nabdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\nacaacd\nabcadad\naaaaaaaa\nabadb\n",
"aaaa\nacacacd\naabdac\nbbdadad\naabaaabb\nabbbe\n",
"aaaa\nbdacacd\naabdac\nacbcacd\naaaaaaaa\nabadb\n",
"aaaa\nbcccacd\naabdac\nbbdadbd\naaaaaaaa\nabadb\n",
"aaaa\nbbcdaed\naabdac\nabdadad\naabaacbb\naaaad\n",
"aaaa\nbcdaadd\naacdda\naaacbbc\naabaaabb\nabadb\n",
"aaaa\nabccbcd\naabdac\nbadbdad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\nbaedce\naabacad\naaaabbbb\naaafb\n",
"aaaa\nbaccacd\ncaadde\naabcddc\naaaaaaaa\nabadb\n",
"aaaa\nbadcacd\nbaedce\naaacddc\nabbacabc\nabadb\n",
"aaaa\nbaccacd\nbaedcc\naaaaaab\naaaaaaaa\naaaae\n",
"aaaa\nacccbce\naabdcc\naaacddc\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naabaaabb\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\nabadb\n",
"aaaa\nbaccacd\naabdac\nbbdadad\naaaaaaaa\naaaad\n",
"aaaa\nbaccacd\naacdda\nbbdacad\naabaaabb\nabadb\n"
]
} | 2CODEFORCES
|
147_B. Smile House_946 | A smile house is created to raise the mood. It has n rooms. Some of the rooms are connected by doors. For each two rooms (number i and j), which are connected by a door, Petya knows their value cij — the value which is being added to his mood when he moves from room i to room j.
Petya wondered whether he can raise his mood infinitely, moving along some cycle? And if he can, then what minimum number of rooms he will need to visit during one period of a cycle?
Input
The first line contains two positive integers n and m (<image>), where n is the number of rooms, and m is the number of doors in the Smile House. Then follows the description of the doors: m lines each containing four integers i, j, cij и cji (1 ≤ i, j ≤ n, i ≠ j, - 104 ≤ cij, cji ≤ 104). It is guaranteed that no more than one door connects any two rooms. No door connects the room with itself.
Output
Print the minimum number of rooms that one needs to visit during one traverse of the cycle that can raise mood infinitely. If such cycle does not exist, print number 0.
Examples
Input
4 4
1 2 -10 3
1 3 1 -10
2 4 -10 -1
3 4 0 -3
Output
4
Note
Cycle is such a sequence of rooms a1, a2, ..., ak, that a1 is connected with a2, a2 is connected with a3, ..., ak - 1 is connected with ak, ak is connected with a1. Some elements of the sequence can coincide, that is, the cycle should not necessarily be simple. The number of rooms in the cycle is considered as k, the sequence's length. Note that the minimum possible length equals two. | #include <bits/stdc++.h>
using namespace std;
int gi() {
int w = 0;
bool q = 1;
char c = getchar();
while ((c < '0' || c > '9') && c != '-') c = getchar();
if (c == '-') q = 0, c = getchar();
while (c >= '0' && c <= '9') w = w * 10 + c - '0', c = getchar();
return q ? w : -w;
}
const int N = 510;
long long f[10][N][N], g[10][N][N];
long long h[N][N], H[N][N];
int main() {
int n = gi(), m = gi(), i, j, k, a, b, t, ans;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++) f[0][i][j] = -1LL << 60;
while (m--) {
a = gi(), b = gi();
f[0][a][b] = max(f[0][a][b], (long long)gi());
f[0][b][a] = max(f[0][b][a], (long long)gi());
}
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++) g[0][i][j] = f[0][i][j];
for (t = 1; t < 10; t++) {
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++) {
g[t][i][j] = -1LL << 60;
f[t][i][j] = f[t - 1][i][j];
for (k = 1; k <= n; k++) {
g[t][i][j] = max(g[t][i][j], g[t - 1][i][k] + g[t - 1][k][j]);
f[t][i][j] = max(f[t][i][j], g[t - 1][i][k] + f[t - 1][k][j]);
}
}
for (i = 1; i <= n; i++)
if (f[t][i][i] > 0) break;
if (i <= n) break;
}
if (t == 10) return puts("0"), 0;
for (i = 1, ans = 1 << (--t); i <= n; i++)
for (j = 1; j <= n; j++) h[i][j] = g[t][i][j];
while (--t >= 0) {
for (i = 1; i <= n; i++) {
for (k = 1; k <= n; k++)
if (h[i][k] + f[t][k][i] > 0) break;
if (k <= n) break;
}
if (i > n) {
ans |= 1 << t;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++) {
H[i][j] = -1LL << 60;
for (k = 1; k <= n; k++) H[i][j] = max(H[i][j], h[i][k] + g[t][k][j]);
}
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++) h[i][j] = H[i][j];
}
}
printf("%d\n", ans + 1);
return 0;
}
| 2C++
| {
"input": [
"4 4\n1 2 -10 3\n1 3 1 -10\n2 4 -10 -1\n3 4 0 -3\n",
"5 4\n1 2 1 -1\n2 3 1 -1\n3 1 1 -1\n4 5 2 -1\n",
"3 3\n1 2 -10 30\n1 3 1 1\n2 3 -10 -1\n",
"6 15\n1 2 -52 -10\n1 3 2 -72\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n2 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 9\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 6 7 -10\n1 6 -10 5\n2 4 1 -15\n4 6 1 -16\n2 6 -9 1\n",
"10 8\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 1 7 -10\n4 7 -1 -1\n7 8 -1 -1\n8 4 -1 -1\n",
"2 0\n",
"2 1\n1 2 10 10\n",
"7 21\n1 2 -91 -94\n1 3 4 -96\n1 4 -98 -100\n1 5 -91 -98\n1 6 -97 -29\n1 7 -98 -91\n2 3 -99 -98\n2 4 6 -90\n2 5 -96 -95\n2 6 -100 -96\n2 7 -94 -4\n3 4 -95 -97\n3 5 11 -94\n3 6 -93 -91\n3 7 -97 -95\n4 5 -91 -93\n4 6 1 -98\n4 7 -92 -95\n5 6 -95 -98\n5 7 12 -90\n6 7 -97 -99\n",
"300 0\n",
"5 10\n1 2 -22 -3\n1 3 4 -30\n1 4 -30 -30\n1 5 -12 -21\n2 3 9 -28\n2 4 9 -19\n2 5 -23 7\n3 4 -17 -4\n3 5 -4 -21\n4 5 -12 -4\n",
"4 6\n1 2 -65 -53\n1 3 -64 -19\n1 4 -77 -64\n2 3 -20 8\n2 4 -11 -61\n3 4 -39 -8\n",
"2 1\n1 2 10 -10\n",
"3 3\n1 2 -10 3\n1 3 1 -10\n2 3 -10 -1\n",
"10 9\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 1 7 -10\n4 7 -1 -1\n7 8 -1 -1\n8 4 -1 -1\n6 10 1 1\n",
"1 0\n",
"3 3\n1 2 -10 23\n1 3 1 1\n2 3 -10 -1\n",
"10 9\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 6 7 -10\n1 6 -10 5\n2 4 0 -15\n4 6 1 -16\n2 6 -9 1\n",
"4 0\n",
"10 8\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 1 7 -10\n4 7 -2 -1\n7 8 -1 -1\n8 4 -1 -1\n",
"7 21\n1 2 -91 -94\n1 3 4 -96\n1 4 -98 -100\n1 5 -91 -98\n1 6 -97 -29\n1 7 -98 -91\n2 3 -99 -98\n2 4 6 -90\n2 5 -142 -95\n2 6 -100 -96\n2 7 -94 -4\n3 4 -95 -97\n3 5 11 -94\n3 6 -93 -91\n3 7 -97 -95\n4 5 -91 -93\n4 6 1 -98\n4 7 -92 -95\n5 6 -95 -98\n5 7 12 -90\n6 7 -97 -99\n",
"4 4\n1 2 -10 1\n1 3 1 -10\n2 4 -10 -1\n3 4 0 -3\n",
"6 15\n1 2 -52 -10\n1 3 2 -72\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n1 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"5 10\n1 2 -8 -3\n1 3 4 -30\n1 4 -30 -30\n1 5 -12 -21\n2 3 9 -28\n2 4 9 -19\n2 5 -23 7\n3 4 -17 -4\n3 5 -4 -21\n4 5 -12 -4\n",
"3 1\n1 2 10 -10\n",
"3 3\n1 2 -10 3\n2 3 1 -10\n2 3 -10 -1\n",
"3 0\n",
"4 4\n1 2 -10 3\n1 3 1 -10\n3 4 -10 -1\n3 4 0 -3\n",
"3 3\n1 2 -10 23\n1 3 1 1\n1 3 -10 -1\n",
"10 9\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -18\n5 6 7 -10\n1 6 -10 5\n2 4 0 -15\n4 6 1 -16\n2 6 -9 1\n",
"4 4\n1 2 -10 3\n1 3 1 -10\n1 4 -10 -1\n3 4 0 -3\n",
"5 4\n1 2 2 -1\n2 3 1 -1\n3 1 1 -1\n4 5 2 -1\n",
"3 3\n1 2 -10 30\n1 3 1 2\n2 3 -10 -1\n",
"6 15\n1 2 -52 -10\n1 3 2 -72\n1 4 -72 -2\n1 6 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n2 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 9\n1 2 3 -5\n1 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 6 7 -10\n1 6 -10 5\n2 4 1 -15\n4 6 1 -16\n2 6 -9 1\n",
"4 6\n1 4 -65 -53\n1 3 -64 -19\n1 4 -77 -64\n2 3 -20 8\n2 4 -11 -61\n3 4 -39 -8\n",
"10 9\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 1 7 -10\n4 7 -1 -1\n7 8 -1 -1\n8 4 -1 -1\n6 7 1 1\n",
"3 3\n1 2 -10 23\n1 3 1 1\n2 3 -10 0\n",
"6 15\n1 2 -52 -10\n1 3 2 -72\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n1 6 -17 -8\n3 4 -16 -57\n3 5 -1 14\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 9\n1 2 3 -5\n2 3 6 -7\n3 4 7 -9\n4 5 8 -11\n5 6 7 -10\n1 6 -10 5\n2 4 0 -15\n4 6 1 -16\n2 6 -9 1\n",
"5 10\n1 2 -8 -3\n1 3 4 -30\n1 4 -30 -44\n1 5 -12 -21\n2 3 9 -28\n2 4 9 -19\n2 5 -23 7\n3 4 -17 -4\n3 5 -4 -21\n4 5 -12 -4\n",
"3 3\n1 2 -10 23\n1 3 1 2\n1 3 -10 -1\n",
"4 4\n1 2 -10 3\n1 3 1 -10\n1 4 -10 -1\n3 4 -1 -3\n",
"5 4\n1 2 2 -1\n2 3 1 0\n3 1 1 -1\n4 5 2 -1\n",
"5 3\n1 2 -10 30\n1 3 1 2\n2 3 -10 -1\n",
"6 15\n1 2 -52 -10\n1 3 3 -72\n1 4 -72 -2\n1 6 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n2 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 9\n1 2 3 -1\n1 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 6 7 -10\n1 6 -10 5\n2 4 1 -15\n4 6 1 -16\n2 6 -9 1\n",
"10 8\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 6 -11\n5 1 7 -10\n4 7 -2 -1\n7 8 -1 -1\n8 4 -1 -1\n",
"7 21\n1 2 -91 -94\n1 3 4 -96\n1 4 -98 -100\n1 5 -91 -98\n1 6 -97 -29\n1 7 -98 -91\n2 3 -99 -115\n2 4 6 -90\n2 5 -142 -95\n2 6 -100 -96\n2 7 -94 -4\n3 4 -95 -97\n3 5 11 -94\n3 6 -93 -91\n3 7 -97 -95\n4 5 -91 -93\n4 6 1 -98\n4 7 -92 -95\n5 6 -95 -98\n5 7 12 -90\n6 7 -97 -99\n",
"4 6\n1 4 -65 -53\n1 3 -64 -19\n1 4 -119 -64\n2 3 -20 8\n2 4 -11 -61\n3 4 -39 -8\n",
"6 15\n1 2 -52 -10\n1 3 2 -72\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n1 6 -17 -8\n3 4 -16 -57\n3 5 -1 0\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"3 3\n1 2 -12 23\n1 3 1 2\n1 3 -10 -1\n",
"8 4\n1 2 -10 3\n1 3 1 -10\n1 4 -10 -1\n3 4 -1 -3\n",
"6 15\n1 2 -52 -10\n1 3 3 -72\n1 4 -72 -2\n1 6 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n2 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -37 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 8\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 6 -11\n5 1 7 -10\n4 7 -2 -1\n7 8 -1 -1\n8 5 -1 -1\n",
"7 21\n1 2 -91 -94\n1 3 4 -96\n1 4 -98 -100\n1 5 -91 -98\n1 6 -97 -29\n1 7 -98 -91\n2 3 -99 -115\n2 4 6 -90\n2 5 -142 -190\n2 6 -100 -96\n2 7 -94 -4\n3 4 -95 -97\n3 5 11 -94\n3 6 -93 -91\n3 7 -97 -95\n4 5 -91 -93\n4 6 1 -98\n4 7 -92 -95\n5 6 -95 -98\n5 7 12 -90\n6 7 -97 -99\n",
"4 6\n1 4 -65 -53\n1 3 -64 -19\n1 4 -77 -64\n2 3 -9 8\n2 4 -11 -61\n3 4 -39 -8\n",
"6 15\n1 2 -52 -10\n1 3 2 -98\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n1 6 -17 -8\n3 4 -16 -57\n3 5 -1 0\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"3 3\n1 2 -12 23\n1 3 1 2\n1 3 -10 -2\n",
"6 15\n1 2 -52 -10\n1 3 3 -72\n1 4 -72 -2\n1 6 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n2 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -37 -56\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 8\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 6 -11\n5 1 7 -10\n4 7 -2 -2\n7 8 -1 -1\n8 5 -1 -1\n",
"4 6\n2 4 -65 -53\n1 3 -64 -19\n1 4 -77 -64\n2 3 -9 8\n2 4 -11 -61\n3 4 -39 -8\n",
"6 15\n1 2 -52 -10\n1 3 2 -98\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n1 6 -17 -8\n3 1 -16 -57\n3 5 -1 0\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"3 3\n1 2 -12 23\n1 3 1 2\n1 3 -10 -3\n"
],
"output": [
"4\n",
"2\n",
"2\n",
"2\n",
"3\n",
"5\n",
"0\n",
"2\n",
"7\n",
"0\n",
"3\n",
"0\n",
"0\n",
"3\n",
"2\n",
"0\n",
"2\n",
"3\n",
"0\n",
"5\n",
"7\n",
"4\n",
"2\n",
"3\n",
"0\n",
"0\n",
"0\n",
"0\n",
"2\n",
"3\n",
"0\n",
"2\n",
"2\n",
"2\n",
"3\n",
"0\n",
"2\n",
"2\n",
"2\n",
"3\n",
"3\n",
"2\n",
"0\n",
"2\n",
"2\n",
"2\n",
"2\n",
"5\n",
"7\n",
"0\n",
"3\n",
"2\n",
"0\n",
"2\n",
"4\n",
"7\n",
"0\n",
"3\n",
"2\n",
"2\n",
"4\n",
"0\n",
"3\n",
"2\n"
]
} | 2CODEFORCES
|
147_B. Smile House_947 | A smile house is created to raise the mood. It has n rooms. Some of the rooms are connected by doors. For each two rooms (number i and j), which are connected by a door, Petya knows their value cij — the value which is being added to his mood when he moves from room i to room j.
Petya wondered whether he can raise his mood infinitely, moving along some cycle? And if he can, then what minimum number of rooms he will need to visit during one period of a cycle?
Input
The first line contains two positive integers n and m (<image>), where n is the number of rooms, and m is the number of doors in the Smile House. Then follows the description of the doors: m lines each containing four integers i, j, cij и cji (1 ≤ i, j ≤ n, i ≠ j, - 104 ≤ cij, cji ≤ 104). It is guaranteed that no more than one door connects any two rooms. No door connects the room with itself.
Output
Print the minimum number of rooms that one needs to visit during one traverse of the cycle that can raise mood infinitely. If such cycle does not exist, print number 0.
Examples
Input
4 4
1 2 -10 3
1 3 1 -10
2 4 -10 -1
3 4 0 -3
Output
4
Note
Cycle is such a sequence of rooms a1, a2, ..., ak, that a1 is connected with a2, a2 is connected with a3, ..., ak - 1 is connected with ak, ak is connected with a1. Some elements of the sequence can coincide, that is, the cycle should not necessarily be simple. The number of rooms in the cycle is considered as k, the sequence's length. Note that the minimum possible length equals two. | import java.io.*;
import java.util.*;
public class B {
public B () throws IOException {
int n = sc.nextInt();
int m = sc.nextInt();
int [][] D = new int [n][n];
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
D[i][j] = INF;
for (int d = 0; d < m; ++d) {
int i = sc.nextInt()-1;
int j = sc.nextInt()-1;
D[i][j] = sc.nextInt();
D[j][i] = sc.nextInt();
}
solve(n,D);
}
final static int INF = -1000000;
public void solve (int N, int [][] D)
{
t = millis();
int p = 0, q = 1;
while (q <= N)
q *= 2;
int [][][] A = new int [q+1][][];
A[1] = new int [N][N];
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
A[1][i][j] = D[i][j];
for (int k = 2; k <= q; k *= 2) {
A[k] = new int [N][N];
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {
int P = A[k][i][j] = INF;
for (int m = 0; m < N; ++m)
P = Math.max(P, A[k/2][i][m] + A[k/2][m][j]);
A[k][i][j] = Math.max(A[k/2][i][j], P);
}
}
boolean exit = true;
for (int i = 0; i < N; ++i)
if (A[q][i][i] > 0)
exit = false;
if (exit)
print(0);
int [][] AP = new int [N][N];
int [][] AX = new int [N][N];
while (q - p > 1) {
int x = (p+q)/2;
if (p > 0) {
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {
int P = AX[i][j] = INF;
for (int m = 0; m < N; ++m)
P = Math.max(P, AP[i][m] + A[x-p][m][j]);
AX[i][j] = Math.max(AP[i][j], P);
AX[i][j] = Math.max(A[x-p][i][j], AX[i][j]);
}
} else
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
AX[i][j] = A[x][i][j];
exit = true;
for (int i = 0; i < N; ++i)
if (AX[i][i] > 0)
exit = false;
if (exit) {
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
AP[i][j] = AX[i][j];
p = x;
}
else
q = x;
}
print(q);
}
////////////////////////////////////////////////////////////////////////////////////
static Scanner sc;
static long t;
static void print2 (Object o) {
System.out.println(o);
}
static void print (Object o) {
print2(o);
//print2((millis() - t) / 1000.0);
System.exit(0);
}
static void run () throws IOException {
sc = new Scanner(System.in);
new B();
}
public static void main(String[] args) throws IOException {
run();
}
static long millis() {
return System.currentTimeMillis();
}
}
| 4JAVA
| {
"input": [
"4 4\n1 2 -10 3\n1 3 1 -10\n2 4 -10 -1\n3 4 0 -3\n",
"5 4\n1 2 1 -1\n2 3 1 -1\n3 1 1 -1\n4 5 2 -1\n",
"3 3\n1 2 -10 30\n1 3 1 1\n2 3 -10 -1\n",
"6 15\n1 2 -52 -10\n1 3 2 -72\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n2 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 9\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 6 7 -10\n1 6 -10 5\n2 4 1 -15\n4 6 1 -16\n2 6 -9 1\n",
"10 8\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 1 7 -10\n4 7 -1 -1\n7 8 -1 -1\n8 4 -1 -1\n",
"2 0\n",
"2 1\n1 2 10 10\n",
"7 21\n1 2 -91 -94\n1 3 4 -96\n1 4 -98 -100\n1 5 -91 -98\n1 6 -97 -29\n1 7 -98 -91\n2 3 -99 -98\n2 4 6 -90\n2 5 -96 -95\n2 6 -100 -96\n2 7 -94 -4\n3 4 -95 -97\n3 5 11 -94\n3 6 -93 -91\n3 7 -97 -95\n4 5 -91 -93\n4 6 1 -98\n4 7 -92 -95\n5 6 -95 -98\n5 7 12 -90\n6 7 -97 -99\n",
"300 0\n",
"5 10\n1 2 -22 -3\n1 3 4 -30\n1 4 -30 -30\n1 5 -12 -21\n2 3 9 -28\n2 4 9 -19\n2 5 -23 7\n3 4 -17 -4\n3 5 -4 -21\n4 5 -12 -4\n",
"4 6\n1 2 -65 -53\n1 3 -64 -19\n1 4 -77 -64\n2 3 -20 8\n2 4 -11 -61\n3 4 -39 -8\n",
"2 1\n1 2 10 -10\n",
"3 3\n1 2 -10 3\n1 3 1 -10\n2 3 -10 -1\n",
"10 9\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 1 7 -10\n4 7 -1 -1\n7 8 -1 -1\n8 4 -1 -1\n6 10 1 1\n",
"1 0\n",
"3 3\n1 2 -10 23\n1 3 1 1\n2 3 -10 -1\n",
"10 9\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 6 7 -10\n1 6 -10 5\n2 4 0 -15\n4 6 1 -16\n2 6 -9 1\n",
"4 0\n",
"10 8\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 1 7 -10\n4 7 -2 -1\n7 8 -1 -1\n8 4 -1 -1\n",
"7 21\n1 2 -91 -94\n1 3 4 -96\n1 4 -98 -100\n1 5 -91 -98\n1 6 -97 -29\n1 7 -98 -91\n2 3 -99 -98\n2 4 6 -90\n2 5 -142 -95\n2 6 -100 -96\n2 7 -94 -4\n3 4 -95 -97\n3 5 11 -94\n3 6 -93 -91\n3 7 -97 -95\n4 5 -91 -93\n4 6 1 -98\n4 7 -92 -95\n5 6 -95 -98\n5 7 12 -90\n6 7 -97 -99\n",
"4 4\n1 2 -10 1\n1 3 1 -10\n2 4 -10 -1\n3 4 0 -3\n",
"6 15\n1 2 -52 -10\n1 3 2 -72\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n1 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"5 10\n1 2 -8 -3\n1 3 4 -30\n1 4 -30 -30\n1 5 -12 -21\n2 3 9 -28\n2 4 9 -19\n2 5 -23 7\n3 4 -17 -4\n3 5 -4 -21\n4 5 -12 -4\n",
"3 1\n1 2 10 -10\n",
"3 3\n1 2 -10 3\n2 3 1 -10\n2 3 -10 -1\n",
"3 0\n",
"4 4\n1 2 -10 3\n1 3 1 -10\n3 4 -10 -1\n3 4 0 -3\n",
"3 3\n1 2 -10 23\n1 3 1 1\n1 3 -10 -1\n",
"10 9\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -18\n5 6 7 -10\n1 6 -10 5\n2 4 0 -15\n4 6 1 -16\n2 6 -9 1\n",
"4 4\n1 2 -10 3\n1 3 1 -10\n1 4 -10 -1\n3 4 0 -3\n",
"5 4\n1 2 2 -1\n2 3 1 -1\n3 1 1 -1\n4 5 2 -1\n",
"3 3\n1 2 -10 30\n1 3 1 2\n2 3 -10 -1\n",
"6 15\n1 2 -52 -10\n1 3 2 -72\n1 4 -72 -2\n1 6 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n2 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 9\n1 2 3 -5\n1 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 6 7 -10\n1 6 -10 5\n2 4 1 -15\n4 6 1 -16\n2 6 -9 1\n",
"4 6\n1 4 -65 -53\n1 3 -64 -19\n1 4 -77 -64\n2 3 -20 8\n2 4 -11 -61\n3 4 -39 -8\n",
"10 9\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 1 7 -10\n4 7 -1 -1\n7 8 -1 -1\n8 4 -1 -1\n6 7 1 1\n",
"3 3\n1 2 -10 23\n1 3 1 1\n2 3 -10 0\n",
"6 15\n1 2 -52 -10\n1 3 2 -72\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n1 6 -17 -8\n3 4 -16 -57\n3 5 -1 14\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 9\n1 2 3 -5\n2 3 6 -7\n3 4 7 -9\n4 5 8 -11\n5 6 7 -10\n1 6 -10 5\n2 4 0 -15\n4 6 1 -16\n2 6 -9 1\n",
"5 10\n1 2 -8 -3\n1 3 4 -30\n1 4 -30 -44\n1 5 -12 -21\n2 3 9 -28\n2 4 9 -19\n2 5 -23 7\n3 4 -17 -4\n3 5 -4 -21\n4 5 -12 -4\n",
"3 3\n1 2 -10 23\n1 3 1 2\n1 3 -10 -1\n",
"4 4\n1 2 -10 3\n1 3 1 -10\n1 4 -10 -1\n3 4 -1 -3\n",
"5 4\n1 2 2 -1\n2 3 1 0\n3 1 1 -1\n4 5 2 -1\n",
"5 3\n1 2 -10 30\n1 3 1 2\n2 3 -10 -1\n",
"6 15\n1 2 -52 -10\n1 3 3 -72\n1 4 -72 -2\n1 6 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n2 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 9\n1 2 3 -1\n1 3 5 -7\n3 4 7 -9\n4 5 8 -11\n5 6 7 -10\n1 6 -10 5\n2 4 1 -15\n4 6 1 -16\n2 6 -9 1\n",
"10 8\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 6 -11\n5 1 7 -10\n4 7 -2 -1\n7 8 -1 -1\n8 4 -1 -1\n",
"7 21\n1 2 -91 -94\n1 3 4 -96\n1 4 -98 -100\n1 5 -91 -98\n1 6 -97 -29\n1 7 -98 -91\n2 3 -99 -115\n2 4 6 -90\n2 5 -142 -95\n2 6 -100 -96\n2 7 -94 -4\n3 4 -95 -97\n3 5 11 -94\n3 6 -93 -91\n3 7 -97 -95\n4 5 -91 -93\n4 6 1 -98\n4 7 -92 -95\n5 6 -95 -98\n5 7 12 -90\n6 7 -97 -99\n",
"4 6\n1 4 -65 -53\n1 3 -64 -19\n1 4 -119 -64\n2 3 -20 8\n2 4 -11 -61\n3 4 -39 -8\n",
"6 15\n1 2 -52 -10\n1 3 2 -72\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n1 6 -17 -8\n3 4 -16 -57\n3 5 -1 0\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"3 3\n1 2 -12 23\n1 3 1 2\n1 3 -10 -1\n",
"8 4\n1 2 -10 3\n1 3 1 -10\n1 4 -10 -1\n3 4 -1 -3\n",
"6 15\n1 2 -52 -10\n1 3 3 -72\n1 4 -72 -2\n1 6 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n2 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -37 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 8\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 6 -11\n5 1 7 -10\n4 7 -2 -1\n7 8 -1 -1\n8 5 -1 -1\n",
"7 21\n1 2 -91 -94\n1 3 4 -96\n1 4 -98 -100\n1 5 -91 -98\n1 6 -97 -29\n1 7 -98 -91\n2 3 -99 -115\n2 4 6 -90\n2 5 -142 -190\n2 6 -100 -96\n2 7 -94 -4\n3 4 -95 -97\n3 5 11 -94\n3 6 -93 -91\n3 7 -97 -95\n4 5 -91 -93\n4 6 1 -98\n4 7 -92 -95\n5 6 -95 -98\n5 7 12 -90\n6 7 -97 -99\n",
"4 6\n1 4 -65 -53\n1 3 -64 -19\n1 4 -77 -64\n2 3 -9 8\n2 4 -11 -61\n3 4 -39 -8\n",
"6 15\n1 2 -52 -10\n1 3 2 -98\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n1 6 -17 -8\n3 4 -16 -57\n3 5 -1 0\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"3 3\n1 2 -12 23\n1 3 1 2\n1 3 -10 -2\n",
"6 15\n1 2 -52 -10\n1 3 3 -72\n1 4 -72 -2\n1 6 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n2 6 -17 -8\n3 4 -16 -57\n3 5 -1 8\n3 6 -37 -56\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"10 8\n1 2 3 -5\n2 3 5 -7\n3 4 7 -9\n4 5 6 -11\n5 1 7 -10\n4 7 -2 -2\n7 8 -1 -1\n8 5 -1 -1\n",
"4 6\n2 4 -65 -53\n1 3 -64 -19\n1 4 -77 -64\n2 3 -9 8\n2 4 -11 -61\n3 4 -39 -8\n",
"6 15\n1 2 -52 -10\n1 3 2 -98\n1 4 -72 -2\n1 5 6 -100\n1 6 -100 -97\n2 3 -63 -37\n2 4 -99 -55\n2 5 -84 -9\n1 6 -17 -8\n3 1 -16 -57\n3 5 -1 0\n3 6 -22 -88\n4 5 -59 -75\n4 6 -92 -63\n5 6 9 -65\n",
"3 3\n1 2 -12 23\n1 3 1 2\n1 3 -10 -3\n"
],
"output": [
"4\n",
"2\n",
"2\n",
"2\n",
"3\n",
"5\n",
"0\n",
"2\n",
"7\n",
"0\n",
"3\n",
"0\n",
"0\n",
"3\n",
"2\n",
"0\n",
"2\n",
"3\n",
"0\n",
"5\n",
"7\n",
"4\n",
"2\n",
"3\n",
"0\n",
"0\n",
"0\n",
"0\n",
"2\n",
"3\n",
"0\n",
"2\n",
"2\n",
"2\n",
"3\n",
"0\n",
"2\n",
"2\n",
"2\n",
"3\n",
"3\n",
"2\n",
"0\n",
"2\n",
"2\n",
"2\n",
"2\n",
"5\n",
"7\n",
"0\n",
"3\n",
"2\n",
"0\n",
"2\n",
"4\n",
"7\n",
"0\n",
"3\n",
"2\n",
"2\n",
"4\n",
"0\n",
"3\n",
"2\n"
]
} | 2CODEFORCES
|
1506_F. Triangular Paths_948 | Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The k-th layer of the triangle contains k points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers (r, c) (1 ≤ c ≤ r), where r is the number of the layer, and c is the number of the point in the layer. From each point (r, c) there are two directed edges to the points (r+1, c) and (r+1, c+1), but only one of the edges is activated. If r + c is even, then the edge to the point (r+1, c) is activated, otherwise the edge to the point (r+1, c+1) is activated. Look at the picture for a better understanding.
<image> Activated edges are colored in black. Non-activated edges are colored in gray.
From the point (r_1, c_1) it is possible to reach the point (r_2, c_2), if there is a path between them only from activated edges. For example, in the picture above, there is a path from (1, 1) to (3, 2), but there is no path from (2, 1) to (1, 1).
Initially, you are at the point (1, 1). For each turn, you can:
* Replace activated edge for point (r, c). That is if the edge to the point (r+1, c) is activated, then instead of it, the edge to the point (r+1, c+1) becomes activated, otherwise if the edge to the point (r+1, c+1), then instead if it, the edge to the point (r+1, c) becomes activated. This action increases the cost of the path by 1;
* Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of n points of an infinite triangle (r_1, c_1), (r_2, c_2), …, (r_n, c_n). Find the minimum cost path from (1, 1), passing through all n points in arbitrary order.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) is the number of test cases. Then t test cases follow.
Each test case begins with a line containing one integer n (1 ≤ n ≤ 2 ⋅ 10^5) is the number of points to visit.
The second line contains n numbers r_1, r_2, …, r_n (1 ≤ r_i ≤ 10^9), where r_i is the number of the layer in which i-th point is located.
The third line contains n numbers c_1, c_2, …, c_n (1 ≤ c_i ≤ r_i), where c_i is the number of the i-th point in the r_i layer.
It is guaranteed that all n points are distinct.
It is guaranteed that there is always at least one way to traverse all n points.
It is guaranteed that the sum of n over all test cases does not exceed 2 ⋅ 10^5.
Output
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
Example
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2 | # Enter your code here. Read input from STDIN. Print output to STDOUT# ===============================================================================================
# importing some useful libraries.
from __future__ import division, print_function
from fractions import Fraction
import sys
import os
from io import BytesIO, IOBase
from itertools import *
import bisect
from heapq import *
from math import ceil, floor
from copy import *
from collections import deque, defaultdict
from collections import Counter as counter # Counter(list) return a dict with {key: count}
from itertools import combinations # if a = [1,2,3] then print(list(comb(a,2))) -----> [(1, 2), (1, 3), (2, 3)]
from itertools import permutations as permutate
from bisect import bisect_left as bl
from operator import *
# If the element is already present in the list,
# the left most position where element has to be inserted is returned.
from bisect import bisect_right as br
from bisect import bisect
# If the element is already present in the list,
# the right most position where element has to be inserted is returned
# ==============================================================================================
# fast I/O region
BUFSIZE = 8192
from sys import stderr
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "A" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for A in args:
if not at_start:
file.write(sep)
file.write(str(A))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
# inp = lambda: sys.stdin.readline().rstrip("\r\n")
# ===============================================================================================
### START ITERATE RECURSION ###
from types import GeneratorType
def iterative(f, stack=[]):
def wrapped_func(*args, **kwargs):
if stack: return f(*args, **kwargs)
to = f(*args, **kwargs)
while True:
if type(to) is GeneratorType:
stack.append(to)
to = next(to)
continue
stack.pop()
if not stack: break
to = stack[-1].send(to)
return to
return wrapped_func
#### END ITERATE RECURSION ####
###########################
# Sorted list
class SortedList:
def __init__(self, iterable=[], _load=200):
"""Initialize sorted list instance."""
values = sorted(iterable)
self._len = _len = len(values)
self._load = _load
self._lists = _lists = [values[start:start + _load] for start in range(0, _len, _load)]
self._list_lens = [len(_list) for _list in _lists]
self._mins = [_list[0] for _list in _lists]
self._fen_tree = []
self._rebuild = True
def _fen_build(self):
"""Build a fenwick tree instance."""
self._fen_tree[:] = self._list_lens
_fen_tree = self._fen_tree
for start in range(len(_fen_tree)):
if start | start + 1 < len(_fen_tree):
_fen_tree[start | start + 1] += _fen_tree[start]
self._rebuild = False
def _fen_update(self, index, value):
"""Update `fen_tree[index] += value`."""
if not self._rebuild:
_fen_tree = self._fen_tree
while index < len(_fen_tree):
_fen_tree[index] += value
index |= index + 1
def _fen_query(self, end):
"""Return `sum(_fen_tree[:end])`."""
if self._rebuild:
self._fen_build()
_fen_tree = self._fen_tree
A = 0
while end:
A += _fen_tree[end - 1]
end &= end - 1
return A
def _fen_findkth(self, k):
"""Return a pair of (the largest `idx` such that `sum(_fen_tree[:idx]) <= k`, `k - sum(_fen_tree[:idx])`)."""
_list_lens = self._list_lens
if k < _list_lens[0]:
return 0, k
if k >= self._len - _list_lens[-1]:
return len(_list_lens) - 1, k + _list_lens[-1] - self._len
if self._rebuild:
self._fen_build()
_fen_tree = self._fen_tree
idx = -1
for d in reversed(range(len(_fen_tree).bit_length())):
right_idx = idx + (1 << d)
if right_idx < len(_fen_tree) and k >= _fen_tree[right_idx]:
idx = right_idx
k -= _fen_tree[idx]
return idx + 1, k
def _delete(self, pos, idx):
"""Delete value at the given `(pos, idx)`."""
_lists = self._lists
_mins = self._mins
_list_lens = self._list_lens
self._len -= 1
self._fen_update(pos, -1)
del _lists[pos][idx]
_list_lens[pos] -= 1
if _list_lens[pos]:
_mins[pos] = _lists[pos][0]
else:
del _lists[pos]
del _list_lens[pos]
del _mins[pos]
self._rebuild = True
def _loc_left(self, value):
"""Return an index pair that corresponds to the first position of `value` in the sorted list."""
if not self._len:
return 0, 0
_lists = self._lists
_mins = self._mins
lo, pos = -1, len(_lists) - 1
while lo + 1 < pos:
mi = (lo + pos) >> 1
if value <= _mins[mi]:
pos = mi
else:
lo = mi
if pos and value <= _lists[pos - 1][-1]:
pos -= 1
_list = _lists[pos]
lo, idx = -1, len(_list)
while lo + 1 < idx:
mi = (lo + idx) >> 1
if value <= _list[mi]:
idx = mi
else:
lo = mi
return pos, idx
def _loc_right(self, value):
"""Return an index pair that corresponds to the last position of `value` in the sorted list."""
if not self._len:
return 0, 0
_lists = self._lists
_mins = self._mins
pos, hi = 0, len(_lists)
while pos + 1 < hi:
mi = (pos + hi) >> 1
if value < _mins[mi]:
hi = mi
else:
pos = mi
_list = _lists[pos]
lo, idx = -1, len(_list)
while lo + 1 < idx:
mi = (lo + idx) >> 1
if value < _list[mi]:
idx = mi
else:
lo = mi
return pos, idx
def add(self, value):
"""Add `value` to sorted list."""
_load = self._load
_lists = self._lists
_mins = self._mins
_list_lens = self._list_lens
self._len += 1
if _lists:
pos, idx = self._loc_right(value)
self._fen_update(pos, 1)
_list = _lists[pos]
_list.insert(idx, value)
_list_lens[pos] += 1
_mins[pos] = _list[0]
if _load + _load < len(_list):
_lists.insert(pos + 1, _list[_load:])
_list_lens.insert(pos + 1, len(_list) - _load)
_mins.insert(pos + 1, _list[_load])
_list_lens[pos] = _load
del _list[_load:]
self._rebuild = True
else:
_lists.append([value])
_mins.append(value)
_list_lens.append(1)
self._rebuild = True
def discard(self, value):
"""Remove `value` from sorted list if it is a member."""
_lists = self._lists
if _lists:
pos, idx = self._loc_right(value)
if idx and _lists[pos][idx - 1] == value:
self._delete(pos, idx - 1)
def remove(self, value):
"""Remove `value` from sorted list; `value` must be a member."""
_len = self._len
self.discard(value)
if _len == self._len:
raise ValueError('{0!r} not in list'.format(value))
def pop(self, index=-1):
"""Remove and return value at `index` in sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
value = self._lists[pos][idx]
self._delete(pos, idx)
return value
def bisect_left(self, value):
"""Return the first index to insert `value` in the sorted list."""
pos, idx = self._loc_left(value)
return self._fen_query(pos) + idx
def bisect_right(self, value):
"""Return the last index to insert `value` in the sorted list."""
pos, idx = self._loc_right(value)
return self._fen_query(pos) + idx
def count(self, value):
"""Return number of occurrences of `value` in the sorted list."""
return self.bisect_right(value) - self.bisect_left(value)
def __len__(self):
"""Return the size of the sorted list."""
return self._len
def __getitem__(self, index):
"""Lookup value at `index` in sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
return self._lists[pos][idx]
def __delitem__(self, index):
"""Remove value at `index` from sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
self._delete(pos, idx)
def __contains__(self, value):
"""Return true if `value` is an element of the sorted list."""
_lists = self._lists
if _lists:
pos, idx = self._loc_left(value)
return idx < len(_lists[pos]) and _lists[pos][idx] == value
return False
def __iter__(self):
"""Return an iterator over the sorted list."""
return (value for _list in self._lists for value in _list)
def __reversed__(self):
"""Return a reverse iterator over the sorted list."""
return (value for _list in reversed(self._lists) for value in reversed(_list))
def __repr__(self):
"""Return string representation of sorted list."""
return 'SortedList({0})'.format(list(self))
# ===============================================================================================
# some shortcuts
mod = 1000000007
def testcase(t):
for p in range(t):
solve()
def pow(A, B, p):
res = 1 # Initialize result
A = A % p # Update A if it is more , than or equal to p
if (A == 0):
return 0
while (B > 0):
if ((B & 1) == 1): # If B is odd, multiply, A with result
res = (res * A) % p
B = B >> 1 # B = B/2
A = (A * A) % p
return res
from functools import reduce
def factors(n):
return set(reduce(list.__add__,
([start, n // start] for start in range(1, int(n ** 0.5) + 1) if n % start == 0)))
def gcd(a, b):
if a == b: return a
while b > 0: a, b = b, a % b
return a
# discrete binary search
# minimise:
# def search():
# l = 0
# r = 10 ** 15
#
# for start in range(200):
# if isvalid(l):
# return l
# if l == r:
# return l
# m = (l + r) // 2
# if isvalid(m) and not isvalid(m - 1):
# return m
# if isvalid(m):
# r = m + 1
# else:
# l = m
# return m
# maximise:
# def search():
# l = 0
# r = 10 ** 15
#
# for start in range(200):
# # print(l,r)
# if isvalid(r):
# return r
# if l == r:
# return l
# m = (l + r) // 2
# if isvalid(m) and not isvalid(m + 1):
# return m
# if isvalid(m):
# l = m
# else:
# r = m - 1
# return m
##############Find sum of product of subsets of size k in a array
# ar=[0,1,2,3]
# k=3
# n=len(ar)-1
# dp=[0]*(n+1)
# dp[0]=1
# for pos in range(1,n+1):
# dp[pos]=0
# l=max(1,k+pos-n-1)
# for j in range(min(pos,k),l-1,-1):
# dp[j]=dp[j]+ar[pos]*dp[j-1]
# print(dp[k])
def prefix_sum(ar): # [1,2,3,4]->[1,3,6,10]
return list(accumulate(ar))
def suffix_sum(ar): # [1,2,3,4]->[10,9,7,4]
return list(accumulate(ar[::-1]))[::-1]
def N():
return int(inp())
dx = [0, 0, 1, -1]
dy = [1, -1, 0, 0]
def YES():
print("YES")
def NO():
print("NO")
def Yes():
print("Yes")
def No():
print("No")
# =========================================================================================
from collections import defaultdict
def numberOfSetBits(start):
start = start - ((start >> 1) & 0x55555555)
start = (start & 0x33333333) + ((start >> 2) & 0x33333333)
return (((start + (start >> 4) & 0xF0F0F0F) * 0x1010101) & 0xffffffff) >> 24
class MergeFind:
def __init__(self, n):
self.parent = list(range(n))
self.size = [1] * n
self.num_sets = n
# self.lista = [[_] for _ in range(n)]
def find(self, a):
to_update = []
while a != self.parent[a]:
to_update.append(a)
a = self.parent[a]
for b in to_update:
self.parent[b] = a
return self.parent[a]
def merge(self, a, b):
a = self.find(a)
b = self.find(b)
if a == b:
return
if self.size[a] < self.size[b]:
a, b = b, a
self.num_sets -= 1
self.parent[b] = a
self.size[a] += self.size[b]
# self.lista[a] += self.lista[b]
# self.lista[b] = []
def set_size(self, a):
return self.size[self.find(a)]
def __len__(self):
return self.num_sets
def lcm(a, b):
return abs((a // gcd(a, b)) * b)
# #
# to find factorial and ncr
# tot = 100005
# mod = 10**9 + 7
# fac = [1, 1]
# finv = [1, 1]
# inv = [0, 1]
#
# for start in range(2, tot + 1):
# fac.append((fac[-1] * start) % mod)
# inv.append(mod - (inv[mod % start] * (mod // start) % mod))
# finv.append(finv[-1] * inv[-1] % mod)
def comb(n, r):
if n < r:
return 0
else:
return fac[n] * (finv[r] * finv[n - r] % mod) % mod
def inp(): return sys.stdin.readline().rstrip("\r\n") # for fast input
def out(var): sys.stdout.write(str(var)) # for fast output, always take string
def lis(): return list(map(int, inp().split()))
def stringlis(): return list(map(str, inp().split()))
def sep(): return map(int, inp().split())
def strsep(): return map(str, inp().split())
def fsep(): return map(float, inp().split())
def nextline(): out("\n") # as stdout.write always print sring.
def arr1d(n, v):
return [v] * n
def arr2d(n, m, v):
return [[v] * m for _ in range(n)]
def arr3d(n, m, p, v):
return [[[v] * p for _ in range(m)] for start in range(n)]
def ceil(a, b):
return (a + b - 1) // b
# co-ordinate compression
# ma={s:idx for idx,s in enumerate(sorted(set(l+r)))}
# mxn=100005
# lrg=[0]*mxn
# for start in range(2,mxn-3):
# if (lrg[start]==0):
# for j in range(start,mxn-3,start):
# lrg[j]=start
def solve():
n=N()
r=lis()
c=lis()
points=[]
for i in range(n):
points.append((r[i],c[i]))
points.append((1,1))
points.sort()
ans=0
n+=1
for i in range(n-1):
x,y=points[i]
nx,ny=points[i+1]
plus1=ny-y
same=nx-x-plus1
# print(same,plus1,"h")
if((x+y) %2 ==1):
o=1
else:
o=0
if(plus1==0):
if(o):
ans+= same//2
ans+=same%2
continue
else:
same-=1
ans += same // 2
ans += same % 2
continue
if(same==0):
if(o):
ans+=0
continue
else:
ans+=plus1
continue
if (o):
ans += same // 2
ans += same % 2
continue
else:
same-=1
ans += same // 2
ans += same % 2
continue
print(ans)
# solve()
testcase(N()) | 1Python2
| {
"input": [
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n2 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 11 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 13 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 4\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000100\n1 1000000000\n4\n3 12 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n6 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 8 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 6 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n3 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 3\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010100\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 2 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 6 8\n2 5 4 4\n",
"4\n3\n1 13 3\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 13 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 6 8\n2 4 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 2 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 10\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 9 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100011000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000100\n1 1000000001\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 21 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 18 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000001\n4\n3 10 5 7\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 20 5 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000100\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n3 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 2 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n2 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000100\n1 1000000000\n4\n3 16 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 6 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 4 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n3 7\n2 2\n2\n1 1101000110\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 17 2 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 2 2\n2\n4 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n2 1000000000\n4\n3 12 5 7\n2 5 2 4\n",
"4\n3\n1 5 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 6 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 8 4 4\n",
"4\n3\n1 6 2\n1 1 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1110000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n2 9 5 8\n2 4 2 4\n",
"4\n3\n1 11 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 7\n1 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 6 3\n1 1 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100001000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 13 3\n1 3 1\n2\n2 5\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 17 5 8\n3 5 3 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 7 4\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 7\n2 4 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 2\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 20 2\n1 2 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000010\n2 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 2\n2\n3 7\n2 2\n2\n1 1101000110\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 4 11\n1 5 2 4\n",
"4\n3\n1 16 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 1 1\n2\n2 4\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n5 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 5 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n1 3\n2\n1 1100000010\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 3 4\n",
"4\n3\n1 10 2\n1 3 2\n2\n3 2\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 16 4 11\n1 5 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 8 4 4\n",
"4\n3\n1 10 2\n1 3 2\n2\n3 2\n2 1\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 17 4 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 8\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 14\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100101000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 2\n1 3 2\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1101000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1110000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 13 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 1\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 13 5 8\n3 5 3 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100010100\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n3 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 9 2\n1 3 1\n2\n2 13\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 3\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 6 8\n2 5 4 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 9\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 5\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n1 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n1 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 2\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 5 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 10 4\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 3 1\n2\n2 4\n2 3\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 11\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 9\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 7\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n3 5 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 2 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 9\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n5 7\n2 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n6 10 5 8\n3 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 2\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 7 2\n1 6 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 2\n2\n2 7\n2 2\n2\n2 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 3 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 4 11\n2 5 2 4\n",
"4\n3\n1 3 2\n1 2 2\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 3\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 3\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 2 1\n2\n4 2\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 7 2\n1 6 1\n2\n8 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n"
],
"output": [
"\n0\n1\n999999999\n2\n",
"0\n1\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"2\n3\n50000000\n3\n",
"2\n3\n50050000\n2\n",
"0\n1\n50005000\n2\n",
"2\n3\n50005000\n2\n",
"0\n2\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"2\n3\n50005000\n3\n",
"0\n2\n50000500\n2\n",
"2\n4\n50050000\n2\n",
"1\n4\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"1\n4\n49999999\n2\n",
"4\n1\n50000000\n2\n",
"5\n3\n50000000\n2\n",
"2\n1\n50005000\n2\n",
"2\n2\n50005000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000050\n3\n",
"0\n2\n50500500\n2\n",
"0\n2\n50000000\n3\n",
"1\n4\n50049999\n2\n",
"2\n1\n50005000\n4\n",
"2\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"2\n2\n50000000\n2\n",
"1\n2\n50000000\n2\n",
"1\n1\n50000000\n4\n",
"2\n3\n50000000\n5\n",
"3\n2\n50000000\n2\n",
"2\n3\n50005000\n4\n",
"1\n8\n50000000\n2\n",
"2\n3\n50000000\n8\n",
"3\n2\n999999999\n2\n",
"1\n8\n50000000\n3\n",
"3\n3\n50000000\n8\n",
"3\n3\n50500000\n8\n",
"3\n3\n50500005\n8\n",
"2\n3\n50500005\n8\n",
"2\n4\n50050000\n4\n",
"1\n1\n50000000\n1\n",
"2\n3\n50500000\n2\n",
"2\n1\n50005050\n2\n",
"2\n2\n50000000\n6\n",
"1\n2\n50000000\n3\n",
"5\n3\n50050000\n2\n",
"5\n3\n50005000\n4\n",
"3\n2\n999999999\n7\n",
"0\n8\n50000000\n3\n",
"2\n4\n50000000\n2\n",
"3\n1\n50000000\n2\n",
"3\n1\n50000001\n2\n",
"2\n6\n50000000\n3\n",
"1\n1\n50005000\n2\n",
"3\n3\n50050000\n2\n",
"1\n3\n50000000\n5\n",
"0\n2\n50005500\n2\n",
"1\n4\n50000049\n2\n",
"9\n3\n50000000\n2\n",
"0\n2\n50000000\n6\n",
"1\n4\n50049999\n3\n",
"1\n2\n50000000\n7\n",
"1\n6\n50000000\n3\n",
"2\n2\n50000000\n3\n",
"1\n8\n50000050\n3\n",
"3\n2\n50500005\n8\n",
"1\n3\n50000000\n3\n",
"4\n1\n50000001\n2\n",
"3\n3\n50500001\n8\n",
"1\n3\n50000050\n5\n",
"1\n6\n50000001\n2\n",
"2\n2\n50000000\n4\n",
"6\n3\n50500000\n8\n",
"3\n2\n50500055\n8\n",
"1\n3\n50000000\n7\n",
"1\n7\n50000000\n3\n",
"1\n6\n50000001\n3\n",
"1\n2\n50000000\n4\n",
"6\n3\n50500000\n6\n",
"2\n1\n50000000\n2\n",
"1\n1\n55000000\n2\n",
"3\n3\n50005000\n3\n",
"5\n1\n50000000\n2\n",
"1\n2\n50000000\n5\n",
"2\n2\n50050000\n2\n",
"2\n1\n50000000\n4\n",
"1\n6\n50500000\n2\n",
"2\n2\n50000500\n2\n",
"5\n2\n50050000\n2\n",
"2\n4\n50050000\n8\n",
"3\n1\n50000001\n3\n",
"2\n3\n50500000\n8\n",
"1\n3\n50000000\n6\n",
"3\n0\n50000000\n2\n",
"1\n5\n50000000\n3\n",
"0\n2\n50000000\n1\n",
"3\n1\n999999999\n7\n",
"9\n1\n50000001\n2\n",
"1\n6\n50000006\n2\n",
"2\n2\n50500055\n8\n",
"2\n3\n50000000\n6\n",
"6\n3\n50000000\n3\n",
"2\n0\n50000000\n4\n",
"3\n2\n999999999\n6\n",
"3\n0\n50000005\n2\n",
"0\n1\n50000000\n1\n",
"4\n1\n999999999\n7\n",
"2\n3\n50005000\n6\n",
"6\n3\n50000000\n6\n",
"4\n0\n999999999\n7\n",
"2\n2\n50500000\n6\n",
"0\n1\n999999999\n2\n",
"2\n7\n50000000\n2\n",
"0\n1\n50000000\n3\n",
"2\n3\n50050500\n2\n",
"3\n4\n50050000\n2\n",
"0\n3\n50500000\n3\n",
"2\n3\n55000000\n2\n",
"2\n1\n5000\n2\n",
"0\n2\n50000000\n4\n",
"2\n2\n50005000\n5\n",
"1\n3\n50500005\n8\n",
"0\n2\n999999999\n2\n",
"2\n4\n50050000\n6\n",
"3\n1\n50005050\n2\n",
"3\n2\n50500000\n8\n",
"3\n6\n50050000\n2\n",
"0\n3\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n2\n",
"0\n1\n50000000\n2\n",
"2\n3\n50050000\n2\n",
"1\n3\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"1\n1\n50000000\n2\n",
"1\n4\n49999999\n2\n",
"0\n3\n50000000\n3\n",
"0\n2\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"0\n2\n50000000\n2\n",
"0\n2\n50000000\n3\n",
"2\n3\n50050000\n2\n",
"2\n3\n50005000\n2\n",
"1\n4\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"2\n2\n50005000\n2\n",
"0\n2\n50000000\n5\n",
"0\n2\n50500500\n2\n",
"2\n3\n50050000\n2\n",
"2\n3\n50000000\n2\n",
"3\n2\n999999999\n2\n",
"0\n2\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"0\n2\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"4\n1\n50000000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"1\n4\n50000000\n2\n",
"3\n3\n50500000\n8\n",
"1\n2\n50000000\n2\n",
"2\n4\n50050000\n4\n",
"3\n2\n999999999\n7\n",
"0\n8\n50000000\n3\n",
"3\n3\n50500000\n8\n",
"3\n3\n50500000\n8\n",
"2\n3\n50005000\n2\n",
"3\n1\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"0\n2\n50000000\n3\n",
"1\n4\n49999999\n2\n",
"2\n1\n50005000\n2\n",
"0\n2\n50500500\n2\n",
"1\n2\n50000000\n2\n",
"2\n1\n50005000\n2\n",
"2\n2\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"0\n3\n50000000\n5\n",
"2\n3\n50050000\n2\n",
"3\n3\n50500000\n8\n",
"0\n2\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"1\n8\n50000000\n3\n",
"3\n1\n50000001\n2\n",
"3\n2\n999999999\n7\n",
"2\n1\n50005000\n2\n",
"3\n2\n50000000\n2\n",
"0\n3\n50000000\n5\n",
"0\n2\n50000000\n2\n"
]
} | 2CODEFORCES
|
1506_F. Triangular Paths_949 | Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The k-th layer of the triangle contains k points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers (r, c) (1 ≤ c ≤ r), where r is the number of the layer, and c is the number of the point in the layer. From each point (r, c) there are two directed edges to the points (r+1, c) and (r+1, c+1), but only one of the edges is activated. If r + c is even, then the edge to the point (r+1, c) is activated, otherwise the edge to the point (r+1, c+1) is activated. Look at the picture for a better understanding.
<image> Activated edges are colored in black. Non-activated edges are colored in gray.
From the point (r_1, c_1) it is possible to reach the point (r_2, c_2), if there is a path between them only from activated edges. For example, in the picture above, there is a path from (1, 1) to (3, 2), but there is no path from (2, 1) to (1, 1).
Initially, you are at the point (1, 1). For each turn, you can:
* Replace activated edge for point (r, c). That is if the edge to the point (r+1, c) is activated, then instead of it, the edge to the point (r+1, c+1) becomes activated, otherwise if the edge to the point (r+1, c+1), then instead if it, the edge to the point (r+1, c) becomes activated. This action increases the cost of the path by 1;
* Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of n points of an infinite triangle (r_1, c_1), (r_2, c_2), …, (r_n, c_n). Find the minimum cost path from (1, 1), passing through all n points in arbitrary order.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) is the number of test cases. Then t test cases follow.
Each test case begins with a line containing one integer n (1 ≤ n ≤ 2 ⋅ 10^5) is the number of points to visit.
The second line contains n numbers r_1, r_2, …, r_n (1 ≤ r_i ≤ 10^9), where r_i is the number of the layer in which i-th point is located.
The third line contains n numbers c_1, c_2, …, c_n (1 ≤ c_i ≤ r_i), where c_i is the number of the i-th point in the r_i layer.
It is guaranteed that all n points are distinct.
It is guaranteed that there is always at least one way to traverse all n points.
It is guaranteed that the sum of n over all test cases does not exceed 2 ⋅ 10^5.
Output
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
Example
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2 | # include <bits/stdc++.h>
using namespace std;
pair<int, int> a[200010];
int calc(int l, int r, int x, int y) {
if (x == l && y == r) {
return 0;
}
int t = ((x + y) % 2) ? 0 : 1;
if(x - l == y - r){
return t * (x - l);
} else {
if((l + r) % 2 == 0){
return (x - l - y + r) / 2 ;
} else {
return (x - l - y + r) / 2 + + (x - l - y + r) % 2;
}
}
}
void solve() {
int n;
cin >> n;
for (int i = 1; i <= n; i++)
cin >> a[i].first;
for (int i = 1; i <= n; i++)
cin >> a[i].second;
sort(a + 1, a + 1 + n);
int l = 1, r = 1;
int ans = 0;
for (int i = 1; i <= n; i++) {
ans += calc(l, r, a[i].first, a[i].second);
l = a[i].first;
r = a[i].second;
}
cout << ans<<'\n';
}
int main() {
std::ios::sync_with_stdio(false);
// cin.tie(0);
// cout.tie(0);
int t;
cin >> t;
for (int tt = 1; tt <= t; tt++) {
solve();
}
}//
// Created by sWX952464 on 3/26/2021.
//
///13 2 10 50 1 28 37 32 30 46 19 47 33 41 24 34 27 42 49 18 9 48 23 35 31 8 7 12 6 5 3 22 43 36 11 40 26 4 44 17 39 38 15 14 25 16 29 20 21 45 | 2C++
| {
"input": [
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n2 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 11 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 13 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 4\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000100\n1 1000000000\n4\n3 12 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n6 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 8 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 6 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n3 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 3\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010100\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 2 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 6 8\n2 5 4 4\n",
"4\n3\n1 13 3\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 13 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 6 8\n2 4 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 2 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 10\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 9 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100011000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000100\n1 1000000001\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 21 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 18 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000001\n4\n3 10 5 7\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 20 5 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000100\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n3 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 2 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n2 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000100\n1 1000000000\n4\n3 16 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 6 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 4 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n3 7\n2 2\n2\n1 1101000110\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 17 2 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 2 2\n2\n4 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n2 1000000000\n4\n3 12 5 7\n2 5 2 4\n",
"4\n3\n1 5 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 6 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 8 4 4\n",
"4\n3\n1 6 2\n1 1 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1110000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n2 9 5 8\n2 4 2 4\n",
"4\n3\n1 11 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 7\n1 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 6 3\n1 1 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100001000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 13 3\n1 3 1\n2\n2 5\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 17 5 8\n3 5 3 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 7 4\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 7\n2 4 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 2\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 20 2\n1 2 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000010\n2 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 2\n2\n3 7\n2 2\n2\n1 1101000110\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 4 11\n1 5 2 4\n",
"4\n3\n1 16 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 1 1\n2\n2 4\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n5 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 5 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n1 3\n2\n1 1100000010\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 3 4\n",
"4\n3\n1 10 2\n1 3 2\n2\n3 2\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 16 4 11\n1 5 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 8 4 4\n",
"4\n3\n1 10 2\n1 3 2\n2\n3 2\n2 1\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 17 4 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 8\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 14\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100101000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 2\n1 3 2\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1101000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1110000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 13 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 1\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 13 5 8\n3 5 3 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100010100\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n3 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 9 2\n1 3 1\n2\n2 13\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 3\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 6 8\n2 5 4 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 9\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 5\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n1 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n1 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 2\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 5 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 10 4\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 3 1\n2\n2 4\n2 3\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 11\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 9\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 7\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n3 5 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 2 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 9\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n5 7\n2 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n6 10 5 8\n3 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 2\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 7 2\n1 6 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 2\n2\n2 7\n2 2\n2\n2 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 3 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 4 11\n2 5 2 4\n",
"4\n3\n1 3 2\n1 2 2\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 3\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 3\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 2 1\n2\n4 2\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 7 2\n1 6 1\n2\n8 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n"
],
"output": [
"\n0\n1\n999999999\n2\n",
"0\n1\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"2\n3\n50000000\n3\n",
"2\n3\n50050000\n2\n",
"0\n1\n50005000\n2\n",
"2\n3\n50005000\n2\n",
"0\n2\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"2\n3\n50005000\n3\n",
"0\n2\n50000500\n2\n",
"2\n4\n50050000\n2\n",
"1\n4\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"1\n4\n49999999\n2\n",
"4\n1\n50000000\n2\n",
"5\n3\n50000000\n2\n",
"2\n1\n50005000\n2\n",
"2\n2\n50005000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000050\n3\n",
"0\n2\n50500500\n2\n",
"0\n2\n50000000\n3\n",
"1\n4\n50049999\n2\n",
"2\n1\n50005000\n4\n",
"2\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"2\n2\n50000000\n2\n",
"1\n2\n50000000\n2\n",
"1\n1\n50000000\n4\n",
"2\n3\n50000000\n5\n",
"3\n2\n50000000\n2\n",
"2\n3\n50005000\n4\n",
"1\n8\n50000000\n2\n",
"2\n3\n50000000\n8\n",
"3\n2\n999999999\n2\n",
"1\n8\n50000000\n3\n",
"3\n3\n50000000\n8\n",
"3\n3\n50500000\n8\n",
"3\n3\n50500005\n8\n",
"2\n3\n50500005\n8\n",
"2\n4\n50050000\n4\n",
"1\n1\n50000000\n1\n",
"2\n3\n50500000\n2\n",
"2\n1\n50005050\n2\n",
"2\n2\n50000000\n6\n",
"1\n2\n50000000\n3\n",
"5\n3\n50050000\n2\n",
"5\n3\n50005000\n4\n",
"3\n2\n999999999\n7\n",
"0\n8\n50000000\n3\n",
"2\n4\n50000000\n2\n",
"3\n1\n50000000\n2\n",
"3\n1\n50000001\n2\n",
"2\n6\n50000000\n3\n",
"1\n1\n50005000\n2\n",
"3\n3\n50050000\n2\n",
"1\n3\n50000000\n5\n",
"0\n2\n50005500\n2\n",
"1\n4\n50000049\n2\n",
"9\n3\n50000000\n2\n",
"0\n2\n50000000\n6\n",
"1\n4\n50049999\n3\n",
"1\n2\n50000000\n7\n",
"1\n6\n50000000\n3\n",
"2\n2\n50000000\n3\n",
"1\n8\n50000050\n3\n",
"3\n2\n50500005\n8\n",
"1\n3\n50000000\n3\n",
"4\n1\n50000001\n2\n",
"3\n3\n50500001\n8\n",
"1\n3\n50000050\n5\n",
"1\n6\n50000001\n2\n",
"2\n2\n50000000\n4\n",
"6\n3\n50500000\n8\n",
"3\n2\n50500055\n8\n",
"1\n3\n50000000\n7\n",
"1\n7\n50000000\n3\n",
"1\n6\n50000001\n3\n",
"1\n2\n50000000\n4\n",
"6\n3\n50500000\n6\n",
"2\n1\n50000000\n2\n",
"1\n1\n55000000\n2\n",
"3\n3\n50005000\n3\n",
"5\n1\n50000000\n2\n",
"1\n2\n50000000\n5\n",
"2\n2\n50050000\n2\n",
"2\n1\n50000000\n4\n",
"1\n6\n50500000\n2\n",
"2\n2\n50000500\n2\n",
"5\n2\n50050000\n2\n",
"2\n4\n50050000\n8\n",
"3\n1\n50000001\n3\n",
"2\n3\n50500000\n8\n",
"1\n3\n50000000\n6\n",
"3\n0\n50000000\n2\n",
"1\n5\n50000000\n3\n",
"0\n2\n50000000\n1\n",
"3\n1\n999999999\n7\n",
"9\n1\n50000001\n2\n",
"1\n6\n50000006\n2\n",
"2\n2\n50500055\n8\n",
"2\n3\n50000000\n6\n",
"6\n3\n50000000\n3\n",
"2\n0\n50000000\n4\n",
"3\n2\n999999999\n6\n",
"3\n0\n50000005\n2\n",
"0\n1\n50000000\n1\n",
"4\n1\n999999999\n7\n",
"2\n3\n50005000\n6\n",
"6\n3\n50000000\n6\n",
"4\n0\n999999999\n7\n",
"2\n2\n50500000\n6\n",
"0\n1\n999999999\n2\n",
"2\n7\n50000000\n2\n",
"0\n1\n50000000\n3\n",
"2\n3\n50050500\n2\n",
"3\n4\n50050000\n2\n",
"0\n3\n50500000\n3\n",
"2\n3\n55000000\n2\n",
"2\n1\n5000\n2\n",
"0\n2\n50000000\n4\n",
"2\n2\n50005000\n5\n",
"1\n3\n50500005\n8\n",
"0\n2\n999999999\n2\n",
"2\n4\n50050000\n6\n",
"3\n1\n50005050\n2\n",
"3\n2\n50500000\n8\n",
"3\n6\n50050000\n2\n",
"0\n3\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n2\n",
"0\n1\n50000000\n2\n",
"2\n3\n50050000\n2\n",
"1\n3\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"1\n1\n50000000\n2\n",
"1\n4\n49999999\n2\n",
"0\n3\n50000000\n3\n",
"0\n2\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"0\n2\n50000000\n2\n",
"0\n2\n50000000\n3\n",
"2\n3\n50050000\n2\n",
"2\n3\n50005000\n2\n",
"1\n4\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"2\n2\n50005000\n2\n",
"0\n2\n50000000\n5\n",
"0\n2\n50500500\n2\n",
"2\n3\n50050000\n2\n",
"2\n3\n50000000\n2\n",
"3\n2\n999999999\n2\n",
"0\n2\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"0\n2\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"4\n1\n50000000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"1\n4\n50000000\n2\n",
"3\n3\n50500000\n8\n",
"1\n2\n50000000\n2\n",
"2\n4\n50050000\n4\n",
"3\n2\n999999999\n7\n",
"0\n8\n50000000\n3\n",
"3\n3\n50500000\n8\n",
"3\n3\n50500000\n8\n",
"2\n3\n50005000\n2\n",
"3\n1\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"0\n2\n50000000\n3\n",
"1\n4\n49999999\n2\n",
"2\n1\n50005000\n2\n",
"0\n2\n50500500\n2\n",
"1\n2\n50000000\n2\n",
"2\n1\n50005000\n2\n",
"2\n2\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"0\n3\n50000000\n5\n",
"2\n3\n50050000\n2\n",
"3\n3\n50500000\n8\n",
"0\n2\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"1\n8\n50000000\n3\n",
"3\n1\n50000001\n2\n",
"3\n2\n999999999\n7\n",
"2\n1\n50005000\n2\n",
"3\n2\n50000000\n2\n",
"0\n3\n50000000\n5\n",
"0\n2\n50000000\n2\n"
]
} | 2CODEFORCES
|
1506_F. Triangular Paths_950 | Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The k-th layer of the triangle contains k points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers (r, c) (1 ≤ c ≤ r), where r is the number of the layer, and c is the number of the point in the layer. From each point (r, c) there are two directed edges to the points (r+1, c) and (r+1, c+1), but only one of the edges is activated. If r + c is even, then the edge to the point (r+1, c) is activated, otherwise the edge to the point (r+1, c+1) is activated. Look at the picture for a better understanding.
<image> Activated edges are colored in black. Non-activated edges are colored in gray.
From the point (r_1, c_1) it is possible to reach the point (r_2, c_2), if there is a path between them only from activated edges. For example, in the picture above, there is a path from (1, 1) to (3, 2), but there is no path from (2, 1) to (1, 1).
Initially, you are at the point (1, 1). For each turn, you can:
* Replace activated edge for point (r, c). That is if the edge to the point (r+1, c) is activated, then instead of it, the edge to the point (r+1, c+1) becomes activated, otherwise if the edge to the point (r+1, c+1), then instead if it, the edge to the point (r+1, c) becomes activated. This action increases the cost of the path by 1;
* Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of n points of an infinite triangle (r_1, c_1), (r_2, c_2), …, (r_n, c_n). Find the minimum cost path from (1, 1), passing through all n points in arbitrary order.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) is the number of test cases. Then t test cases follow.
Each test case begins with a line containing one integer n (1 ≤ n ≤ 2 ⋅ 10^5) is the number of points to visit.
The second line contains n numbers r_1, r_2, …, r_n (1 ≤ r_i ≤ 10^9), where r_i is the number of the layer in which i-th point is located.
The third line contains n numbers c_1, c_2, …, c_n (1 ≤ c_i ≤ r_i), where c_i is the number of the i-th point in the r_i layer.
It is guaranteed that all n points are distinct.
It is guaranteed that there is always at least one way to traverse all n points.
It is guaranteed that the sum of n over all test cases does not exceed 2 ⋅ 10^5.
Output
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
Example
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2 | #!/usr/bin/env python
import os
import sys
from io import BytesIO, IOBase
from collections import deque, Counter, defaultdict
from heapq import heapify, heappush, heappop
def solve(Y, X, N):
points = list(zip(Y, X))
points.sort()
res = 0
y1 = x1 = 1
for y2, x2 in points:
if y1 - x1 == y2 - x2:
if (y1 + x1) % 2 == 0:
res += y2 - y1
else:
y3 = y2 - y1 + 1
x3 = x2 - x1 + 1
if (y1 + x1) % 2 == 0:
res += (y3 - x3) // 2
else:
res += (y3 - x3 + 1) // 2
y1, x1 = y2, x2
return res
def main():
for _ in range(inInt()):
N = inInt()
Y = inLst()
X = inLst()
outInt(solve(Y, X, N))
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
############ ---- Input Functions ---- ############
# Integer inputs
inInt = lambda: int(input())
# List inputs
inLst = lambda: list(map(int,input().split()))
# String input (transforms into list of chars)
inStr = lambda: list(input())
# Space separated integer variable inputs
inVar = lambda: map(int,input().split())
########### ---- Output Functions ---- ############
# Print integer
outInt = lambda n: sys.stdout.write(str(n) + "\n")
# Print integer list
outLst = lambda lst: sys.stdout.write(" ".join(map(str,lst)) + "\n")
# Print string
outStr = lambda s: sys.stdout.write("".join(s) + "\n")
# endregion
if __name__ == "__main__":
main()
| 3Python3
| {
"input": [
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n2 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 11 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 13 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 4\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000100\n1 1000000000\n4\n3 12 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n6 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 8 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 6 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n3 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 3\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010100\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 2 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 6 8\n2 5 4 4\n",
"4\n3\n1 13 3\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 13 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 6 8\n2 4 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 2 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 10\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 9 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100011000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000100\n1 1000000001\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 21 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 18 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000001\n4\n3 10 5 7\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 20 5 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000100\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n3 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 2 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n2 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000100\n1 1000000000\n4\n3 16 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 6 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 4 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n3 7\n2 2\n2\n1 1101000110\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 17 2 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 2 2\n2\n4 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n2 1000000000\n4\n3 12 5 7\n2 5 2 4\n",
"4\n3\n1 5 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 6 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 8 4 4\n",
"4\n3\n1 6 2\n1 1 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1110000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n2 9 5 8\n2 4 2 4\n",
"4\n3\n1 11 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 7\n1 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 6 3\n1 1 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100001000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 13 3\n1 3 1\n2\n2 5\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 17 5 8\n3 5 3 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 7 4\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 7\n2 4 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 2\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 20 2\n1 2 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000010\n2 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 2\n2\n3 7\n2 2\n2\n1 1101000110\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 4 11\n1 5 2 4\n",
"4\n3\n1 16 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 1 1\n2\n2 4\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n5 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 5 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n1 3\n2\n1 1100000010\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 3 4\n",
"4\n3\n1 10 2\n1 3 2\n2\n3 2\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 16 4 11\n1 5 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 8 4 4\n",
"4\n3\n1 10 2\n1 3 2\n2\n3 2\n2 1\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 17 4 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 8\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 14\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100101000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 2\n1 3 2\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1101000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1110000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 13 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 1\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 13 5 8\n3 5 3 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100010100\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n3 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 9 2\n1 3 1\n2\n2 13\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 3\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 6 8\n2 5 4 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 9\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 5\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n1 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n1 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 2\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 5 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 10 4\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 3 1\n2\n2 4\n2 3\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 11\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 9\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 7\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n3 5 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 2 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 9\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n5 7\n2 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n6 10 5 8\n3 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 2\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 7 2\n1 6 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 2\n2\n2 7\n2 2\n2\n2 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 3 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 4 11\n2 5 2 4\n",
"4\n3\n1 3 2\n1 2 2\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 3\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 3\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 2 1\n2\n4 2\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 7 2\n1 6 1\n2\n8 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n"
],
"output": [
"\n0\n1\n999999999\n2\n",
"0\n1\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"2\n3\n50000000\n3\n",
"2\n3\n50050000\n2\n",
"0\n1\n50005000\n2\n",
"2\n3\n50005000\n2\n",
"0\n2\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"2\n3\n50005000\n3\n",
"0\n2\n50000500\n2\n",
"2\n4\n50050000\n2\n",
"1\n4\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"1\n4\n49999999\n2\n",
"4\n1\n50000000\n2\n",
"5\n3\n50000000\n2\n",
"2\n1\n50005000\n2\n",
"2\n2\n50005000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000050\n3\n",
"0\n2\n50500500\n2\n",
"0\n2\n50000000\n3\n",
"1\n4\n50049999\n2\n",
"2\n1\n50005000\n4\n",
"2\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"2\n2\n50000000\n2\n",
"1\n2\n50000000\n2\n",
"1\n1\n50000000\n4\n",
"2\n3\n50000000\n5\n",
"3\n2\n50000000\n2\n",
"2\n3\n50005000\n4\n",
"1\n8\n50000000\n2\n",
"2\n3\n50000000\n8\n",
"3\n2\n999999999\n2\n",
"1\n8\n50000000\n3\n",
"3\n3\n50000000\n8\n",
"3\n3\n50500000\n8\n",
"3\n3\n50500005\n8\n",
"2\n3\n50500005\n8\n",
"2\n4\n50050000\n4\n",
"1\n1\n50000000\n1\n",
"2\n3\n50500000\n2\n",
"2\n1\n50005050\n2\n",
"2\n2\n50000000\n6\n",
"1\n2\n50000000\n3\n",
"5\n3\n50050000\n2\n",
"5\n3\n50005000\n4\n",
"3\n2\n999999999\n7\n",
"0\n8\n50000000\n3\n",
"2\n4\n50000000\n2\n",
"3\n1\n50000000\n2\n",
"3\n1\n50000001\n2\n",
"2\n6\n50000000\n3\n",
"1\n1\n50005000\n2\n",
"3\n3\n50050000\n2\n",
"1\n3\n50000000\n5\n",
"0\n2\n50005500\n2\n",
"1\n4\n50000049\n2\n",
"9\n3\n50000000\n2\n",
"0\n2\n50000000\n6\n",
"1\n4\n50049999\n3\n",
"1\n2\n50000000\n7\n",
"1\n6\n50000000\n3\n",
"2\n2\n50000000\n3\n",
"1\n8\n50000050\n3\n",
"3\n2\n50500005\n8\n",
"1\n3\n50000000\n3\n",
"4\n1\n50000001\n2\n",
"3\n3\n50500001\n8\n",
"1\n3\n50000050\n5\n",
"1\n6\n50000001\n2\n",
"2\n2\n50000000\n4\n",
"6\n3\n50500000\n8\n",
"3\n2\n50500055\n8\n",
"1\n3\n50000000\n7\n",
"1\n7\n50000000\n3\n",
"1\n6\n50000001\n3\n",
"1\n2\n50000000\n4\n",
"6\n3\n50500000\n6\n",
"2\n1\n50000000\n2\n",
"1\n1\n55000000\n2\n",
"3\n3\n50005000\n3\n",
"5\n1\n50000000\n2\n",
"1\n2\n50000000\n5\n",
"2\n2\n50050000\n2\n",
"2\n1\n50000000\n4\n",
"1\n6\n50500000\n2\n",
"2\n2\n50000500\n2\n",
"5\n2\n50050000\n2\n",
"2\n4\n50050000\n8\n",
"3\n1\n50000001\n3\n",
"2\n3\n50500000\n8\n",
"1\n3\n50000000\n6\n",
"3\n0\n50000000\n2\n",
"1\n5\n50000000\n3\n",
"0\n2\n50000000\n1\n",
"3\n1\n999999999\n7\n",
"9\n1\n50000001\n2\n",
"1\n6\n50000006\n2\n",
"2\n2\n50500055\n8\n",
"2\n3\n50000000\n6\n",
"6\n3\n50000000\n3\n",
"2\n0\n50000000\n4\n",
"3\n2\n999999999\n6\n",
"3\n0\n50000005\n2\n",
"0\n1\n50000000\n1\n",
"4\n1\n999999999\n7\n",
"2\n3\n50005000\n6\n",
"6\n3\n50000000\n6\n",
"4\n0\n999999999\n7\n",
"2\n2\n50500000\n6\n",
"0\n1\n999999999\n2\n",
"2\n7\n50000000\n2\n",
"0\n1\n50000000\n3\n",
"2\n3\n50050500\n2\n",
"3\n4\n50050000\n2\n",
"0\n3\n50500000\n3\n",
"2\n3\n55000000\n2\n",
"2\n1\n5000\n2\n",
"0\n2\n50000000\n4\n",
"2\n2\n50005000\n5\n",
"1\n3\n50500005\n8\n",
"0\n2\n999999999\n2\n",
"2\n4\n50050000\n6\n",
"3\n1\n50005050\n2\n",
"3\n2\n50500000\n8\n",
"3\n6\n50050000\n2\n",
"0\n3\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n2\n",
"0\n1\n50000000\n2\n",
"2\n3\n50050000\n2\n",
"1\n3\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"1\n1\n50000000\n2\n",
"1\n4\n49999999\n2\n",
"0\n3\n50000000\n3\n",
"0\n2\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"0\n2\n50000000\n2\n",
"0\n2\n50000000\n3\n",
"2\n3\n50050000\n2\n",
"2\n3\n50005000\n2\n",
"1\n4\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"2\n2\n50005000\n2\n",
"0\n2\n50000000\n5\n",
"0\n2\n50500500\n2\n",
"2\n3\n50050000\n2\n",
"2\n3\n50000000\n2\n",
"3\n2\n999999999\n2\n",
"0\n2\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"0\n2\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"4\n1\n50000000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"1\n4\n50000000\n2\n",
"3\n3\n50500000\n8\n",
"1\n2\n50000000\n2\n",
"2\n4\n50050000\n4\n",
"3\n2\n999999999\n7\n",
"0\n8\n50000000\n3\n",
"3\n3\n50500000\n8\n",
"3\n3\n50500000\n8\n",
"2\n3\n50005000\n2\n",
"3\n1\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"0\n2\n50000000\n3\n",
"1\n4\n49999999\n2\n",
"2\n1\n50005000\n2\n",
"0\n2\n50500500\n2\n",
"1\n2\n50000000\n2\n",
"2\n1\n50005000\n2\n",
"2\n2\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"0\n3\n50000000\n5\n",
"2\n3\n50050000\n2\n",
"3\n3\n50500000\n8\n",
"0\n2\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"1\n8\n50000000\n3\n",
"3\n1\n50000001\n2\n",
"3\n2\n999999999\n7\n",
"2\n1\n50005000\n2\n",
"3\n2\n50000000\n2\n",
"0\n3\n50000000\n5\n",
"0\n2\n50000000\n2\n"
]
} | 2CODEFORCES
|
1506_F. Triangular Paths_951 | Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The k-th layer of the triangle contains k points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers (r, c) (1 ≤ c ≤ r), where r is the number of the layer, and c is the number of the point in the layer. From each point (r, c) there are two directed edges to the points (r+1, c) and (r+1, c+1), but only one of the edges is activated. If r + c is even, then the edge to the point (r+1, c) is activated, otherwise the edge to the point (r+1, c+1) is activated. Look at the picture for a better understanding.
<image> Activated edges are colored in black. Non-activated edges are colored in gray.
From the point (r_1, c_1) it is possible to reach the point (r_2, c_2), if there is a path between them only from activated edges. For example, in the picture above, there is a path from (1, 1) to (3, 2), but there is no path from (2, 1) to (1, 1).
Initially, you are at the point (1, 1). For each turn, you can:
* Replace activated edge for point (r, c). That is if the edge to the point (r+1, c) is activated, then instead of it, the edge to the point (r+1, c+1) becomes activated, otherwise if the edge to the point (r+1, c+1), then instead if it, the edge to the point (r+1, c) becomes activated. This action increases the cost of the path by 1;
* Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of n points of an infinite triangle (r_1, c_1), (r_2, c_2), …, (r_n, c_n). Find the minimum cost path from (1, 1), passing through all n points in arbitrary order.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) is the number of test cases. Then t test cases follow.
Each test case begins with a line containing one integer n (1 ≤ n ≤ 2 ⋅ 10^5) is the number of points to visit.
The second line contains n numbers r_1, r_2, …, r_n (1 ≤ r_i ≤ 10^9), where r_i is the number of the layer in which i-th point is located.
The third line contains n numbers c_1, c_2, …, c_n (1 ≤ c_i ≤ r_i), where c_i is the number of the i-th point in the r_i layer.
It is guaranteed that all n points are distinct.
It is guaranteed that there is always at least one way to traverse all n points.
It is guaranteed that the sum of n over all test cases does not exceed 2 ⋅ 10^5.
Output
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
Example
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2 | //stan hu tao
//join nct ridin by first year culture reps
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import static java.lang.System.out;
import java.util.*;
import java.io.*;
import java.math.*;
public class x1506F
{
public static void main(String hi[]) throws Exception
{
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
int T = Integer.parseInt(st.nextToken());
StringBuilder sb = new StringBuilder();
while(T-->0)
{
st = new StringTokenizer(infile.readLine());
int N = Integer.parseInt(st.nextToken());
int[] input1 = readArr(N, infile, st);
int[] input2 = readArr(N, infile, st);
Pair[] arr = new Pair[N];
for(int i=0; i < N; i++)
arr[i] = new Pair(input1[i], input2[i]);
Arrays.sort(arr);
long res = 0L;
for(int i=0; i < N; i++)
{
Pair prev = new Pair(1, 1);
if(i > 0)
prev = arr[i-1];
if(prev.r == arr[i].r)
continue;
int par1 = (prev.r+prev.c)%2;
int par2 = (arr[i].r+arr[i].c)%2;
if(prev.r+1 == arr[i].r)
{
if(par2 == 0)
res++;
}
else
{
if(par1 == 0)
{
if(prev.r-prev.c == arr[i].r-arr[i].c)
res += arr[i].r-prev.r;
else
{
prev.r++;
long diff = prev.r-prev.c;
long dd = arr[i].r-arr[i].c;
res += (dd-diff+1)/2;
}
}
else
{
long diff = prev.r-prev.c;
long dd = arr[i].r-arr[i].c;
res += (dd-diff+1)/2;
}
}
//System.out.println(res);
}
sb.append(res+"\n");
}
System.out.print(sb);
}
public static int[] readArr(int N, BufferedReader infile, StringTokenizer st) throws Exception
{
int[] arr = new int[N];
st = new StringTokenizer(infile.readLine());
for(int i=0; i < N; i++)
arr[i] = Integer.parseInt(st.nextToken());
return arr;
}
}
/*
1
4
3 10 5 8
2 5 2 4
*/
class Pair implements Comparable<Pair>
{
public int r;
public int c;
public Pair(int a, int b)
{
r = a;
c = b;
}
public int compareTo(Pair oth)
{
return r-oth.r;
}
} | 4JAVA
| {
"input": [
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n2 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 11 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 13 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 4\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000100\n1 1000000000\n4\n3 12 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n6 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 8 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 6 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n3 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 3\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010100\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 2 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 6 8\n2 5 4 4\n",
"4\n3\n1 13 3\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 13 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 6 8\n2 4 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 2 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 10\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 9 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100011000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000100\n1 1000000001\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 21 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 18 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000001\n4\n3 10 5 7\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 20 5 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000100\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n3 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 2 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n2 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000100\n1 1000000000\n4\n3 16 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 6 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 4 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n3 7\n2 2\n2\n1 1101000110\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 17 2 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 2 2\n2\n4 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n2 1000000000\n4\n3 12 5 7\n2 5 2 4\n",
"4\n3\n1 5 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 6 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 8 4 4\n",
"4\n3\n1 6 2\n1 1 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1110000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n2 9 5 8\n2 4 2 4\n",
"4\n3\n1 11 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 7\n1 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 6 3\n1 1 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100001000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 13 3\n1 3 1\n2\n2 5\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 17 5 8\n3 5 3 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 7 4\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 7\n2 4 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 2\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 20 2\n1 2 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000010\n2 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 2\n2\n3 7\n2 2\n2\n1 1101000110\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 4 11\n1 5 2 4\n",
"4\n3\n1 16 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 1 1\n2\n2 4\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n5 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 5 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n1 3\n2\n1 1100000010\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 3 4\n",
"4\n3\n1 10 2\n1 3 2\n2\n3 2\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 16 4 11\n1 5 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 8 4 4\n",
"4\n3\n1 10 2\n1 3 2\n2\n3 2\n2 1\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 17 4 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 8\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 14\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100101000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 2\n1 3 2\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1101000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1110000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 13 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 1\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 13 5 8\n3 5 3 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100010100\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n3 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 9 2\n1 3 1\n2\n2 13\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 3\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 6 8\n2 5 4 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 9\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 5\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n1 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n1 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 2\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 5 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 10 4\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 3 1\n2\n2 4\n2 3\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 11\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 9\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 7\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n3 5 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 2 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 9\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n5 7\n2 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n6 10 5 8\n3 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 2\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 7 2\n1 6 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 2\n2\n2 7\n2 2\n2\n2 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 3 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 4 11\n2 5 2 4\n",
"4\n3\n1 3 2\n1 2 2\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 3\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 3\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 2 1\n2\n4 2\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 7 2\n1 6 1\n2\n8 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n"
],
"output": [
"\n0\n1\n999999999\n2\n",
"0\n1\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"2\n3\n50000000\n3\n",
"2\n3\n50050000\n2\n",
"0\n1\n50005000\n2\n",
"2\n3\n50005000\n2\n",
"0\n2\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"2\n3\n50005000\n3\n",
"0\n2\n50000500\n2\n",
"2\n4\n50050000\n2\n",
"1\n4\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"1\n4\n49999999\n2\n",
"4\n1\n50000000\n2\n",
"5\n3\n50000000\n2\n",
"2\n1\n50005000\n2\n",
"2\n2\n50005000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000050\n3\n",
"0\n2\n50500500\n2\n",
"0\n2\n50000000\n3\n",
"1\n4\n50049999\n2\n",
"2\n1\n50005000\n4\n",
"2\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"2\n2\n50000000\n2\n",
"1\n2\n50000000\n2\n",
"1\n1\n50000000\n4\n",
"2\n3\n50000000\n5\n",
"3\n2\n50000000\n2\n",
"2\n3\n50005000\n4\n",
"1\n8\n50000000\n2\n",
"2\n3\n50000000\n8\n",
"3\n2\n999999999\n2\n",
"1\n8\n50000000\n3\n",
"3\n3\n50000000\n8\n",
"3\n3\n50500000\n8\n",
"3\n3\n50500005\n8\n",
"2\n3\n50500005\n8\n",
"2\n4\n50050000\n4\n",
"1\n1\n50000000\n1\n",
"2\n3\n50500000\n2\n",
"2\n1\n50005050\n2\n",
"2\n2\n50000000\n6\n",
"1\n2\n50000000\n3\n",
"5\n3\n50050000\n2\n",
"5\n3\n50005000\n4\n",
"3\n2\n999999999\n7\n",
"0\n8\n50000000\n3\n",
"2\n4\n50000000\n2\n",
"3\n1\n50000000\n2\n",
"3\n1\n50000001\n2\n",
"2\n6\n50000000\n3\n",
"1\n1\n50005000\n2\n",
"3\n3\n50050000\n2\n",
"1\n3\n50000000\n5\n",
"0\n2\n50005500\n2\n",
"1\n4\n50000049\n2\n",
"9\n3\n50000000\n2\n",
"0\n2\n50000000\n6\n",
"1\n4\n50049999\n3\n",
"1\n2\n50000000\n7\n",
"1\n6\n50000000\n3\n",
"2\n2\n50000000\n3\n",
"1\n8\n50000050\n3\n",
"3\n2\n50500005\n8\n",
"1\n3\n50000000\n3\n",
"4\n1\n50000001\n2\n",
"3\n3\n50500001\n8\n",
"1\n3\n50000050\n5\n",
"1\n6\n50000001\n2\n",
"2\n2\n50000000\n4\n",
"6\n3\n50500000\n8\n",
"3\n2\n50500055\n8\n",
"1\n3\n50000000\n7\n",
"1\n7\n50000000\n3\n",
"1\n6\n50000001\n3\n",
"1\n2\n50000000\n4\n",
"6\n3\n50500000\n6\n",
"2\n1\n50000000\n2\n",
"1\n1\n55000000\n2\n",
"3\n3\n50005000\n3\n",
"5\n1\n50000000\n2\n",
"1\n2\n50000000\n5\n",
"2\n2\n50050000\n2\n",
"2\n1\n50000000\n4\n",
"1\n6\n50500000\n2\n",
"2\n2\n50000500\n2\n",
"5\n2\n50050000\n2\n",
"2\n4\n50050000\n8\n",
"3\n1\n50000001\n3\n",
"2\n3\n50500000\n8\n",
"1\n3\n50000000\n6\n",
"3\n0\n50000000\n2\n",
"1\n5\n50000000\n3\n",
"0\n2\n50000000\n1\n",
"3\n1\n999999999\n7\n",
"9\n1\n50000001\n2\n",
"1\n6\n50000006\n2\n",
"2\n2\n50500055\n8\n",
"2\n3\n50000000\n6\n",
"6\n3\n50000000\n3\n",
"2\n0\n50000000\n4\n",
"3\n2\n999999999\n6\n",
"3\n0\n50000005\n2\n",
"0\n1\n50000000\n1\n",
"4\n1\n999999999\n7\n",
"2\n3\n50005000\n6\n",
"6\n3\n50000000\n6\n",
"4\n0\n999999999\n7\n",
"2\n2\n50500000\n6\n",
"0\n1\n999999999\n2\n",
"2\n7\n50000000\n2\n",
"0\n1\n50000000\n3\n",
"2\n3\n50050500\n2\n",
"3\n4\n50050000\n2\n",
"0\n3\n50500000\n3\n",
"2\n3\n55000000\n2\n",
"2\n1\n5000\n2\n",
"0\n2\n50000000\n4\n",
"2\n2\n50005000\n5\n",
"1\n3\n50500005\n8\n",
"0\n2\n999999999\n2\n",
"2\n4\n50050000\n6\n",
"3\n1\n50005050\n2\n",
"3\n2\n50500000\n8\n",
"3\n6\n50050000\n2\n",
"0\n3\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n2\n",
"0\n1\n50000000\n2\n",
"2\n3\n50050000\n2\n",
"1\n3\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"1\n1\n50000000\n2\n",
"1\n4\n49999999\n2\n",
"0\n3\n50000000\n3\n",
"0\n2\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"0\n2\n50000000\n2\n",
"0\n2\n50000000\n3\n",
"2\n3\n50050000\n2\n",
"2\n3\n50005000\n2\n",
"1\n4\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"2\n2\n50005000\n2\n",
"0\n2\n50000000\n5\n",
"0\n2\n50500500\n2\n",
"2\n3\n50050000\n2\n",
"2\n3\n50000000\n2\n",
"3\n2\n999999999\n2\n",
"0\n2\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"0\n2\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"4\n1\n50000000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"1\n4\n50000000\n2\n",
"3\n3\n50500000\n8\n",
"1\n2\n50000000\n2\n",
"2\n4\n50050000\n4\n",
"3\n2\n999999999\n7\n",
"0\n8\n50000000\n3\n",
"3\n3\n50500000\n8\n",
"3\n3\n50500000\n8\n",
"2\n3\n50005000\n2\n",
"3\n1\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"0\n2\n50000000\n3\n",
"1\n4\n49999999\n2\n",
"2\n1\n50005000\n2\n",
"0\n2\n50500500\n2\n",
"1\n2\n50000000\n2\n",
"2\n1\n50005000\n2\n",
"2\n2\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"0\n3\n50000000\n5\n",
"2\n3\n50050000\n2\n",
"3\n3\n50500000\n8\n",
"0\n2\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"1\n8\n50000000\n3\n",
"3\n1\n50000001\n2\n",
"3\n2\n999999999\n7\n",
"2\n1\n50005000\n2\n",
"3\n2\n50000000\n2\n",
"0\n3\n50000000\n5\n",
"0\n2\n50000000\n2\n"
]
} | 2CODEFORCES
|
152_E. Garden_952 | Vasya has a very beautiful country garden that can be represented as an n × m rectangular field divided into n·m squares. One beautiful day Vasya remembered that he needs to pave roads between k important squares that contain buildings. To pave a road, he can cover some squares of his garden with concrete.
For each garden square we know number aij that represents the number of flowers that grow in the square with coordinates (i, j). When a square is covered with concrete, all flowers that grow in the square die.
Vasya wants to cover some squares with concrete so that the following conditions were fulfilled:
* all k important squares should necessarily be covered with concrete
* from each important square there should be a way to any other important square. The way should go be paved with concrete-covered squares considering that neighboring squares are squares that have a common side
* the total number of dead plants should be minimum
As Vasya has a rather large garden, he asks you to help him.
Input
The first input line contains three integers n, m and k (1 ≤ n, m ≤ 100, n·m ≤ 200, 1 ≤ k ≤ min(n·m, 7)) — the garden's sizes and the number of the important squares. Each of the next n lines contains m numbers aij (1 ≤ aij ≤ 1000) — the numbers of flowers in the squares. Next k lines contain coordinates of important squares written as "x y" (without quotes) (1 ≤ x ≤ n, 1 ≤ y ≤ m). The numbers written on one line are separated by spaces. It is guaranteed that all k important squares have different coordinates.
Output
In the first line print the single integer — the minimum number of plants that die during the road construction. Then print n lines each containing m characters — the garden's plan. In this plan use character "X" (uppercase Latin letter X) to represent a concrete-covered square and use character "." (dot) for a square that isn't covered with concrete. If there are multiple solutions, print any of them.
Examples
Input
3 3 2
1 2 3
1 2 3
1 2 3
1 2
3 3
Output
9
.X.
.X.
.XX
Input
4 5 4
1 4 5 1 2
2 2 2 2 7
2 4 1 4 5
3 2 1 7 1
1 1
1 5
4 1
4 4
Output
26
X..XX
XXXX.
X.X..
X.XX. | #include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const long long MOD = 1000000007;
const long long INF = 0x3f3f3f3f;
int val[111][111];
int n, m, k;
vector<pair<int, int> > pos;
int ddist[111][111], way[10][10], dist[211][10];
int used[111][111];
pair<int, int> pre[211][1 << 8];
int dp[211][1 << 8];
int dx[] = {0, 0, 1, -1};
int dy[] = {1, -1, 0, 0};
queue<pair<int, int> > que;
void bfs(int x, int y, int o) {
int i, j, u, v;
while (!que.empty()) que.pop();
que.push(make_pair(x, y));
for (i = 0; i <= n + 1; i++)
for (j = 0; j <= m + 1; j++) ddist[i][j] = -1;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++) ddist[i][j] = MOD;
ddist[x][y] = val[x][y];
dp[(x - 1) * m + y][1 << o] = val[x][y];
while (!que.empty()) {
u = que.front().first, v = que.front().second;
que.pop();
for (i = 0; i < 4; i++) {
x = u + dx[i];
y = v + dy[i];
if (ddist[x][y] == -1) continue;
if (ddist[x][y] > ddist[u][v] + val[x][y]) {
ddist[x][y] = ddist[u][v] + val[x][y];
dp[(x - 1) * m + y][1 << o] = ddist[x][y];
pre[(x - 1) * m + y][1 << o] = make_pair((u - 1) * m + v, 1 << o);
que.push(make_pair(x, y));
}
}
}
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
dist[(i - 1) * m + j][o] = ddist[i][j];
}
}
}
set<pair<int, int> > S[2];
void doit(int p, int sta) {
int u = (p - 1) / m + 1, v = (p - 1) % m + 1;
used[u][v] = 1;
if (pre[p][sta].first == -1) return;
doit(pre[p][sta].first, pre[p][sta].second);
doit(p, sta - pre[p][sta].second);
}
int main() {
int i, j, l, ll, u, v, w, st, pt;
int x, y, p, q;
while (scanf("%d%d%d", &n, &m, &k) != EOF) {
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
scanf("%d", &val[i][j]);
}
}
pos.clear();
for (i = 0; i < 211; i++)
for (j = 0; j < 1 << 8; j++) pre[i][j] = make_pair(-1, -1);
for (u = 1; u <= n; u++) {
for (v = 1; v <= m; v++) {
i = (u - 1) * m + v;
for (j = 0; j < 1 << k; j++) {
dp[i][j] = MOD;
}
}
}
for (i = 0; i < k; i++) {
scanf("%d%d", &u, &v);
pos.push_back(make_pair(u, v));
dp[(u - 1) * m + v][1 << i] = val[u][v];
}
S[0].clear();
S[1].clear();
for (i = 0; i < k; i++) S[0].insert(make_pair(pos[i].first, pos[i].second));
int uu = 0, vv = 1;
for (j = 1; j <= n * m; j++) {
S[vv].clear();
if (S[uu].size() == 0) break;
while (S[uu].size()) {
u = S[uu].begin()->first;
v = S[uu].begin()->second;
S[uu].erase(S[uu].begin());
p = (u - 1) * m + v;
for (i = 0; i < 4; i++) {
x = u + dx[i];
y = v + dy[i];
if (x < 1 || x > n || y < 1 || y > m) continue;
q = (x - 1) * m + y;
for (l = 0; l < (1 << k); l++) {
if (dp[q][l] > dp[p][l] + val[x][y]) {
dp[q][l] = dp[p][l] + val[x][y];
pre[q][l] = make_pair(p, l);
S[vv].insert(make_pair(x, y));
}
for (ll = 0; ll < (1 << k); ll++) {
if (ll & l) continue;
if (dp[q][ll | l] > dp[p][l] + dp[q][ll]) {
dp[q][ll | l] = dp[p][l] + dp[q][ll];
pre[q][ll | l] = make_pair(p, l);
S[vv].insert(make_pair(x, y));
}
}
}
}
}
swap(uu, vv);
}
int ans = MOD;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++) used[i][j] = 0;
for (i = 1; i <= n * m; i++) {
if (ans > dp[i][((1 << k) - 1)]) {
ans = dp[i][((1 << k) - 1)];
p = i;
}
}
doit(p, ((1 << k) - 1));
printf("%d\n", ans);
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
if (used[i][j])
putchar('X');
else
putchar('.');
}
puts("");
}
}
return 0;
}
| 2C++
| {
"input": [
"3 3 2\n1 2 3\n1 2 3\n1 2 3\n1 2\n3 3\n",
"4 5 4\n1 4 5 1 2\n2 2 2 2 7\n2 4 1 4 5\n3 2 1 7 1\n1 1\n1 5\n4 1\n4 4\n",
"100 1 7\n83\n174\n191\n145\n167\n55\n232\n157\n51\n209\n85\n73\n216\n39\n72\n76\n132\n70\n22\n215\n137\n35\n62\n22\n155\n183\n113\n125\n88\n21\n65\n133\n31\n24\n187\n126\n131\n191\n31\n21\n128\n75\n28\n13\n202\n37\n182\n167\n202\n34\n154\n188\n146\n152\n38\n215\n5\n200\n211\n133\n218\n92\n61\n214\n80\n175\n15\n155\n57\n106\n40\n71\n216\n179\n178\n88\n77\n93\n199\n158\n5\n36\n45\n128\n148\n31\n1\n35\n29\n23\n149\n172\n189\n116\n99\n66\n77\n4\n40\n207\n52 1\n54 1\n64 1\n25 1\n92 1\n62 1\n31 1\n",
"2 3 3\n1 1 3\n3 1 3\n2 2\n1 3\n1 1\n",
"1 1 1\n1\n1 1\n",
"4 5 4\n3 10 9 9 4\n9 3 4 6 9\n10 7 6 4 1\n3 6 3 7 1\n1 5\n4 2\n1 2\n4 3\n",
"5 1 3\n6\n7\n2\n7\n8\n4 1\n3 1\n1 1\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 6 9\n7 7 10 10 6 1 5 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 6 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 10 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 7 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"1 100 7\n14 6 2 9 8 6 1 5 9 19 11 14 2 5 5 16 19 2 6 13 19 7 7 3 4 2 2 4 5 2 1 7 1 20 17 1 3 10 10 6 6 12 11 20 8 8 8 16 13 3 1 9 14 11 1 7 12 1 5 1 20 14 5 16 5 16 4 5 11 11 17 12 16 14 18 13 19 9 16 19 3 9 10 17 10 14 2 10 16 18 8 2 19 4 15 18 18 5 8 5\n1 6\n1 62\n1 86\n1 10\n1 5\n1 49\n1 4\n",
"10 6 4\n4 14 7 8 15 10\n14 10 15 12 10 4\n11 20 13 15 11 9\n6 20 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 17 1\n10 3\n2 6\n4 6\n4 4\n",
"1 100 6\n317 261 251 337 328 305 354 313 270 175 252 55 250 243 270 360 31 277 203 119 332 3 356 128 296 356 268 29 188 355 195 287 144 380 250 329 101 191 113 252 168 174 190 142 88 123 209 294 301 210 218 42 276 266 213 140 39 256 99 199 217 97 130 322 210 23 19 279 184 68 71 310 192 40 38 181 103 27 167 206 314 323 381 134 316 167 137 143 101 283 99 137 165 129 371 19 140 19 128 126\n1 47\n1 4\n1 79\n1 96\n1 57\n1 28\n",
"100 1 7\n83\n174\n191\n145\n167\n55\n232\n157\n51\n209\n85\n73\n216\n39\n72\n76\n132\n70\n22\n215\n137\n35\n62\n22\n155\n183\n113\n125\n88\n21\n65\n133\n31\n24\n187\n126\n131\n191\n31\n21\n128\n75\n28\n13\n202\n37\n182\n167\n202\n34\n154\n188\n146\n152\n38\n215\n5\n200\n211\n133\n218\n92\n61\n214\n80\n256\n15\n155\n57\n106\n40\n71\n216\n179\n178\n88\n77\n93\n199\n158\n5\n36\n45\n128\n148\n31\n1\n35\n29\n23\n149\n172\n189\n116\n99\n66\n77\n4\n40\n207\n52 1\n54 1\n64 1\n25 1\n92 1\n62 1\n31 1\n",
"4 5 4\n3 13 9 9 4\n9 3 4 6 9\n10 7 6 4 1\n3 6 3 7 1\n1 5\n4 2\n1 2\n4 3\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 6 9\n7 7 10 10 6 1 5 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 6 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 10 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"1 100 7\n14 6 2 9 8 6 1 5 9 19 11 14 2 5 5 16 19 2 6 13 19 7 7 3 4 2 2 4 5 2 1 7 1 20 17 1 3 10 10 6 6 12 11 20 8 8 8 16 13 3 1 9 14 11 1 7 12 1 5 1 20 1 5 16 5 16 4 5 11 11 17 12 16 14 18 13 19 9 16 19 3 9 10 17 10 14 2 10 16 18 8 2 19 4 15 18 18 5 8 5\n1 6\n1 62\n1 86\n1 10\n1 5\n1 49\n1 4\n",
"10 6 4\n4 14 7 8 15 10\n14 10 15 12 10 4\n11 20 13 15 11 9\n6 20 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 17 2\n10 3\n2 6\n4 6\n4 4\n",
"1 100 6\n317 261 251 337 328 305 354 313 270 175 252 55 250 243 270 360 31 277 203 119 332 3 356 119 296 356 268 29 188 355 195 287 144 380 250 329 101 191 113 252 168 174 190 142 88 123 209 294 301 210 218 42 276 266 213 140 39 256 99 199 217 97 130 322 210 23 19 279 184 68 71 310 192 40 38 181 103 27 167 206 314 323 381 134 316 167 137 143 101 283 99 137 165 129 371 19 140 19 128 126\n1 47\n1 4\n1 79\n1 96\n1 57\n1 28\n",
"4 5 4\n3 13 9 9 4\n9 3 4 6 9\n10 7 6 4 1\n3 6 3 5 1\n1 5\n4 2\n1 2\n4 3\n",
"1 100 6\n317 261 251 337 328 305 354 313 270 175 252 55 250 243 270 360 31 277 203 119 332 3 356 119 296 356 268 29 188 355 195 287 144 380 250 329 101 191 113 252 287 174 190 142 88 123 209 294 301 210 218 42 276 266 213 140 39 256 99 199 217 97 130 322 210 23 19 279 184 68 71 310 192 40 38 181 103 27 167 206 314 323 381 134 316 167 137 143 101 283 99 137 165 129 371 19 140 19 128 126\n1 47\n1 4\n1 79\n1 96\n1 57\n1 28\n",
"1 100 6\n317 261 251 337 328 305 354 313 270 175 252 55 250 243 270 360 31 277 203 119 332 3 356 119 296 356 268 29 188 355 195 287 144 380 250 329 101 191 113 252 287 174 190 142 88 123 209 294 301 210 218 42 276 266 213 140 39 256 99 199 217 97 130 322 210 23 0 279 184 68 71 310 192 40 38 181 103 27 167 206 314 323 381 134 316 167 137 143 101 283 99 137 165 129 371 19 140 19 128 126\n1 47\n1 4\n1 79\n1 96\n1 57\n1 28\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 6 9\n7 7 10 10 6 1 5 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 10 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"1 100 7\n14 6 2 9 8 6 1 5 9 19 11 14 2 5 5 16 19 2 6 13 19 7 7 3 4 2 2 4 5 2 1 7 1 20 17 1 3 10 10 6 6 12 11 20 8 8 8 16 13 3 1 9 14 11 1 7 12 1 5 1 20 1 5 16 5 16 4 5 11 11 17 12 16 14 18 13 19 9 16 19 3 9 10 17 10 14 2 10 16 18 8 1 19 4 15 18 18 5 8 5\n1 6\n1 62\n1 86\n1 10\n1 5\n1 49\n1 4\n",
"10 6 4\n4 14 7 8 15 10\n14 10 15 12 10 4\n11 20 13 15 11 9\n6 20 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"4 5 4\n3 13 9 9 4\n9 3 4 6 9\n4 7 6 4 1\n3 6 3 5 1\n1 5\n4 2\n1 2\n4 3\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 10 6 1 5 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 10 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n14 10 15 12 10 4\n11 20 13 15 11 9\n6 4 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 10 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 10 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n14 10 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 10 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n12 10 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n12 9 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n12 9 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n3 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n12 9 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n3 7 13 14 12 9\n23 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n12 9 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 31 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n3 7 13 14 12 9\n23 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 10 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 7 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 10 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 7 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 12 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 10 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 4 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 7 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 12 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 10 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 4 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 7 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 12 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 10 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n13 8 6 1 6 7 1 9\n11 3\n11 7\n"
],
"output": [
"9\n.X.\n.X.\n.XX\n",
"26\nX..XX\nXXXX.\nX.X..\nX.XX.\n",
"7409\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\n.\n.\n.\n.\n.\n.\n.\n.\n",
"6\nXXX\n.X.\n",
"1\nX\n",
"50\n.X..X\n.XX.X\n..XXX\n.XX..\n",
"22\nX\nX\nX\nX\n.\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"771\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..............\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"18445\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX....\n",
"7490\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\n.\n.\n.\n.\n.\n.\n.\n.\n",
"53\n.X..X\n.XX.X\n..XXX\n.XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"758\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..............\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"18436\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX....\n",
"52\n.X..X\n.X..X\n.X..X\n.XXXX\n",
"18555\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX....\n",
"18536\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX....\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"758\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..............\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"52\n.X..X\n.X..X\n.X..X\n.XXXX\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n"
]
} | 2CODEFORCES
|
152_E. Garden_953 | Vasya has a very beautiful country garden that can be represented as an n × m rectangular field divided into n·m squares. One beautiful day Vasya remembered that he needs to pave roads between k important squares that contain buildings. To pave a road, he can cover some squares of his garden with concrete.
For each garden square we know number aij that represents the number of flowers that grow in the square with coordinates (i, j). When a square is covered with concrete, all flowers that grow in the square die.
Vasya wants to cover some squares with concrete so that the following conditions were fulfilled:
* all k important squares should necessarily be covered with concrete
* from each important square there should be a way to any other important square. The way should go be paved with concrete-covered squares considering that neighboring squares are squares that have a common side
* the total number of dead plants should be minimum
As Vasya has a rather large garden, he asks you to help him.
Input
The first input line contains three integers n, m and k (1 ≤ n, m ≤ 100, n·m ≤ 200, 1 ≤ k ≤ min(n·m, 7)) — the garden's sizes and the number of the important squares. Each of the next n lines contains m numbers aij (1 ≤ aij ≤ 1000) — the numbers of flowers in the squares. Next k lines contain coordinates of important squares written as "x y" (without quotes) (1 ≤ x ≤ n, 1 ≤ y ≤ m). The numbers written on one line are separated by spaces. It is guaranteed that all k important squares have different coordinates.
Output
In the first line print the single integer — the minimum number of plants that die during the road construction. Then print n lines each containing m characters — the garden's plan. In this plan use character "X" (uppercase Latin letter X) to represent a concrete-covered square and use character "." (dot) for a square that isn't covered with concrete. If there are multiple solutions, print any of them.
Examples
Input
3 3 2
1 2 3
1 2 3
1 2 3
1 2
3 3
Output
9
.X.
.X.
.XX
Input
4 5 4
1 4 5 1 2
2 2 2 2 7
2 4 1 4 5
3 2 1 7 1
1 1
1 5
4 1
4 4
Output
26
X..XX
XXXX.
X.X..
X.XX. | import static java.lang.Math.*;
import static java.math.BigInteger.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
import java.math.*;
import java.util.*;
import java.io.*;
public class E {
public static void main(String[] args) {
new E().run();
}
Scanner in = new Scanner(System.in);
final int INF = 501001001;
int m, n;
int k;
int mn;
int[] weights;
int[] ts;
int[][] dist;
int[][] mid;
int[][] dp;
int[][] prev;
boolean[] pave;
void run() {
for (; in.hasNext(); ) {
m = in.nextInt();
n = in.nextInt();
k = in.nextInt();
mn = m * n;
weights = new int[mn];
for (int u = 0; u < mn; ++u) {
weights[u] = in.nextInt();
}
ts = new int[k];
for (int i = 0; i < k; ++i) {
int x = in.nextInt() - 1, y = in.nextInt() - 1;
ts[i] = x * n + y;
}
int weightsSum = 0;
for (int i = 0; i < k; ++i) {
int u = ts[i];
weightsSum += weights[u];
weights[u] = 0;
}
dist = new int[mn][mn];
mid = new int[mn][mn];
for (int u = 0; u < mn; ++u) for (int v = 0; v < mn; ++v) {
dist[u][v] = INF;
mid[u][v] = -1;
}
for (int u = 0; u < mn; ++u) for (int v = 0; v < mn; ++v) {
if (abs(u / n - v / n) + abs(u % n - v % n) <= 1) {
dist[u][v] = 0;
}
}
for (int w = 0; w < mn; ++w) for (int u = 0; u < mn; ++u) for (int v = 0; v < mn; ++v) {
if (dist[u][v] > dist[u][w] + weights[w] + dist[w][v]) {
dist[u][v] = dist[u][w] + weights[w] + dist[w][v];
mid[u][v] = w;
}
}
// _out(dist);
dp = new int[1 << k][mn];
prev = new int[1 << k][mn];
for (int p = 0; p < 1 << k; ++p) {
fill(dp[p], INF);
fill(prev[p], -1);
}
for (int p = 1; p < 1 << k; ++p) {
if ((p & p - 1) != 0) {
for (int q = p; ; ) {
--q; q &= p; if (q == 0) break;
for (int u = 0; u < mn; ++u) {
if (dp[p][u] > dp[q][u] + dp[p ^ q][u]) {
dp[p][u] = dp[q][u] + dp[p ^ q][u];
prev[p][u] = mn + q;
}
}
}
for (int u = 0; u < mn; ++u) for (int v = 0; v < mn; ++v) {
if (dp[p][u] > dp[p][v] + dist[u][v] + weights[v]) {
dp[p][u] = dp[p][v] + dist[u][v] + weights[v];
prev[p][u] = v;
}
}
} else {
int i = Integer.numberOfTrailingZeros(p);
for (int u = 0; u < mn; ++u) {
dp[p][u] = dist[ts[i]][u];
}
}
// _out("dp",p,":",dp[p]);
}
int opt;
pave = new boolean[mn];
opt = INF;
int pm = (1 << k) - 1, um = -1;
for (int u = 0; u < mn; ++u) {
if (opt > dp[pm][u] + weights[u]) {
opt = dp[pm][u] + weights[u];
um = u;
}
}
// _out("um",um);
// opt = dp[pm][u] + weights[u];
recover(pm, um);
pave[um] = true;
opt += weightsSum;
for (int i = 0; i < k; ++i) {
pave[ts[i]] = true;
}
System.out.println(opt);
for (int x = 0; x < m; ++x) {
for (int y = 0; y < n; ++y) {
int u = x * n + y;
System.out.print(pave[u] ? 'X' : '.');
}
System.out.println();
}
int sum=weightsSum;for(int u=0;u<mn;++u)if(pave[u])sum+=weights[u];
// _out("sum =",sum);
if(sum<opt)for(;;);
if(sum>opt)sum=1/0;
}
}
void recover(int p, int u) {
// _out("recover",p,u);
if (prev[p][u] < 0) {
// dp[p][u] = dist[ts[i]][u];
int i = Integer.numberOfTrailingZeros(p);
recoverPath(ts[i], u);
} else if (prev[p][u] < mn) {
// dp[p][u] = dp[p][v] + dist[u][v] + weights[v];
int v = prev[p][u];
recover(p, v);
recoverPath(u, v);
pave[v] = true;
} else {
// dp[p][u] = dp[q][u] + dp[p ^ q][u];
int q = prev[p][u] - mn;
recover(q, u);
recover(p ^ q, u);
}
}
void recoverPath(int u, int v) {
// _out("recoverPath",u,v);
if (mid[u][v] < 0) {
} else {
// dist[u][v] = dist[u][w] + weights[w] + dist[w][v];
int w = mid[u][v];
recoverPath(u, w);
pave[w] = true;
recoverPath(w, v);
}
}
void _out(Object...os) {
System.out.println(deepToString(os));
}
}
| 4JAVA
| {
"input": [
"3 3 2\n1 2 3\n1 2 3\n1 2 3\n1 2\n3 3\n",
"4 5 4\n1 4 5 1 2\n2 2 2 2 7\n2 4 1 4 5\n3 2 1 7 1\n1 1\n1 5\n4 1\n4 4\n",
"100 1 7\n83\n174\n191\n145\n167\n55\n232\n157\n51\n209\n85\n73\n216\n39\n72\n76\n132\n70\n22\n215\n137\n35\n62\n22\n155\n183\n113\n125\n88\n21\n65\n133\n31\n24\n187\n126\n131\n191\n31\n21\n128\n75\n28\n13\n202\n37\n182\n167\n202\n34\n154\n188\n146\n152\n38\n215\n5\n200\n211\n133\n218\n92\n61\n214\n80\n175\n15\n155\n57\n106\n40\n71\n216\n179\n178\n88\n77\n93\n199\n158\n5\n36\n45\n128\n148\n31\n1\n35\n29\n23\n149\n172\n189\n116\n99\n66\n77\n4\n40\n207\n52 1\n54 1\n64 1\n25 1\n92 1\n62 1\n31 1\n",
"2 3 3\n1 1 3\n3 1 3\n2 2\n1 3\n1 1\n",
"1 1 1\n1\n1 1\n",
"4 5 4\n3 10 9 9 4\n9 3 4 6 9\n10 7 6 4 1\n3 6 3 7 1\n1 5\n4 2\n1 2\n4 3\n",
"5 1 3\n6\n7\n2\n7\n8\n4 1\n3 1\n1 1\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 6 9\n7 7 10 10 6 1 5 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 6 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 10 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 7 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"1 100 7\n14 6 2 9 8 6 1 5 9 19 11 14 2 5 5 16 19 2 6 13 19 7 7 3 4 2 2 4 5 2 1 7 1 20 17 1 3 10 10 6 6 12 11 20 8 8 8 16 13 3 1 9 14 11 1 7 12 1 5 1 20 14 5 16 5 16 4 5 11 11 17 12 16 14 18 13 19 9 16 19 3 9 10 17 10 14 2 10 16 18 8 2 19 4 15 18 18 5 8 5\n1 6\n1 62\n1 86\n1 10\n1 5\n1 49\n1 4\n",
"10 6 4\n4 14 7 8 15 10\n14 10 15 12 10 4\n11 20 13 15 11 9\n6 20 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 17 1\n10 3\n2 6\n4 6\n4 4\n",
"1 100 6\n317 261 251 337 328 305 354 313 270 175 252 55 250 243 270 360 31 277 203 119 332 3 356 128 296 356 268 29 188 355 195 287 144 380 250 329 101 191 113 252 168 174 190 142 88 123 209 294 301 210 218 42 276 266 213 140 39 256 99 199 217 97 130 322 210 23 19 279 184 68 71 310 192 40 38 181 103 27 167 206 314 323 381 134 316 167 137 143 101 283 99 137 165 129 371 19 140 19 128 126\n1 47\n1 4\n1 79\n1 96\n1 57\n1 28\n",
"100 1 7\n83\n174\n191\n145\n167\n55\n232\n157\n51\n209\n85\n73\n216\n39\n72\n76\n132\n70\n22\n215\n137\n35\n62\n22\n155\n183\n113\n125\n88\n21\n65\n133\n31\n24\n187\n126\n131\n191\n31\n21\n128\n75\n28\n13\n202\n37\n182\n167\n202\n34\n154\n188\n146\n152\n38\n215\n5\n200\n211\n133\n218\n92\n61\n214\n80\n256\n15\n155\n57\n106\n40\n71\n216\n179\n178\n88\n77\n93\n199\n158\n5\n36\n45\n128\n148\n31\n1\n35\n29\n23\n149\n172\n189\n116\n99\n66\n77\n4\n40\n207\n52 1\n54 1\n64 1\n25 1\n92 1\n62 1\n31 1\n",
"4 5 4\n3 13 9 9 4\n9 3 4 6 9\n10 7 6 4 1\n3 6 3 7 1\n1 5\n4 2\n1 2\n4 3\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 6 9\n7 7 10 10 6 1 5 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 6 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 10 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"1 100 7\n14 6 2 9 8 6 1 5 9 19 11 14 2 5 5 16 19 2 6 13 19 7 7 3 4 2 2 4 5 2 1 7 1 20 17 1 3 10 10 6 6 12 11 20 8 8 8 16 13 3 1 9 14 11 1 7 12 1 5 1 20 1 5 16 5 16 4 5 11 11 17 12 16 14 18 13 19 9 16 19 3 9 10 17 10 14 2 10 16 18 8 2 19 4 15 18 18 5 8 5\n1 6\n1 62\n1 86\n1 10\n1 5\n1 49\n1 4\n",
"10 6 4\n4 14 7 8 15 10\n14 10 15 12 10 4\n11 20 13 15 11 9\n6 20 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 17 2\n10 3\n2 6\n4 6\n4 4\n",
"1 100 6\n317 261 251 337 328 305 354 313 270 175 252 55 250 243 270 360 31 277 203 119 332 3 356 119 296 356 268 29 188 355 195 287 144 380 250 329 101 191 113 252 168 174 190 142 88 123 209 294 301 210 218 42 276 266 213 140 39 256 99 199 217 97 130 322 210 23 19 279 184 68 71 310 192 40 38 181 103 27 167 206 314 323 381 134 316 167 137 143 101 283 99 137 165 129 371 19 140 19 128 126\n1 47\n1 4\n1 79\n1 96\n1 57\n1 28\n",
"4 5 4\n3 13 9 9 4\n9 3 4 6 9\n10 7 6 4 1\n3 6 3 5 1\n1 5\n4 2\n1 2\n4 3\n",
"1 100 6\n317 261 251 337 328 305 354 313 270 175 252 55 250 243 270 360 31 277 203 119 332 3 356 119 296 356 268 29 188 355 195 287 144 380 250 329 101 191 113 252 287 174 190 142 88 123 209 294 301 210 218 42 276 266 213 140 39 256 99 199 217 97 130 322 210 23 19 279 184 68 71 310 192 40 38 181 103 27 167 206 314 323 381 134 316 167 137 143 101 283 99 137 165 129 371 19 140 19 128 126\n1 47\n1 4\n1 79\n1 96\n1 57\n1 28\n",
"1 100 6\n317 261 251 337 328 305 354 313 270 175 252 55 250 243 270 360 31 277 203 119 332 3 356 119 296 356 268 29 188 355 195 287 144 380 250 329 101 191 113 252 287 174 190 142 88 123 209 294 301 210 218 42 276 266 213 140 39 256 99 199 217 97 130 322 210 23 0 279 184 68 71 310 192 40 38 181 103 27 167 206 314 323 381 134 316 167 137 143 101 283 99 137 165 129 371 19 140 19 128 126\n1 47\n1 4\n1 79\n1 96\n1 57\n1 28\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 6 9\n7 7 10 10 6 1 5 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 10 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"1 100 7\n14 6 2 9 8 6 1 5 9 19 11 14 2 5 5 16 19 2 6 13 19 7 7 3 4 2 2 4 5 2 1 7 1 20 17 1 3 10 10 6 6 12 11 20 8 8 8 16 13 3 1 9 14 11 1 7 12 1 5 1 20 1 5 16 5 16 4 5 11 11 17 12 16 14 18 13 19 9 16 19 3 9 10 17 10 14 2 10 16 18 8 1 19 4 15 18 18 5 8 5\n1 6\n1 62\n1 86\n1 10\n1 5\n1 49\n1 4\n",
"10 6 4\n4 14 7 8 15 10\n14 10 15 12 10 4\n11 20 13 15 11 9\n6 20 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"4 5 4\n3 13 9 9 4\n9 3 4 6 9\n4 7 6 4 1\n3 6 3 5 1\n1 5\n4 2\n1 2\n4 3\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 10 6 1 5 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 10 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n14 10 15 12 10 4\n11 20 13 15 11 9\n6 4 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 10 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 10 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n14 10 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 10 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n12 10 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 3 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n12 9 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n2 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 9 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n12 9 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n3 7 13 14 12 9\n16 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 3 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n12 9 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 17 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n3 7 13 14 12 9\n23 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 2 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"10 6 4\n4 14 7 8 15 10\n12 9 15 12 10 4\n11 20 13 15 11 9\n6 3 2 8 11 13\n16 13 11 1 31 16\n1 7 20 17 3 15\n8 17 12 3 10 10\n3 7 13 14 12 9\n23 4 15 1 14 4\n13 9 13 3 6 2\n10 3\n2 6\n4 6\n4 4\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 7\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 5 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 2 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n7 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 9 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 5 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 10 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 7 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 8 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 10 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 5 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 7 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 12 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 10 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 4 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 7 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 12 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 10 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n8 8 6 1 6 7 1 9\n11 3\n11 7\n",
"25 8 2\n2 10 7 7 3 5 2 3\n3 5 2 10 10 3 1 4\n2 9 9 3 10 4 1 9\n7 7 10 20 6 1 7 6\n6 4 3 7 8 4 1 6\n5 9 9 5 10 10 1 5\n6 5 1 3 6 1 6 4\n2 2 7 8 1 9 3 7\n6 6 2 9 2 3 6 3\n4 2 6 2 8 6 7 4\n7 5 5 2 5 0 7 9\n9 4 4 3 3 4 8 7\n1 1 7 12 3 2 7 9\n5 7 8 6 10 2 1 6\n8 6 9 1 10 2 3 9\n10 3 1 1 3 3 1 7\n3 3 3 9 7 10 6 4\n9 2 6 4 9 2 10 8\n8 7 4 4 4 5 9 5\n4 2 9 10 4 3 1 1\n7 1 5 7 5 4 10 3\n3 6 3 3 2 5 1 10\n8 6 4 4 8 9 2 10\n5 8 7 2 8 9 5 12\n13 8 6 1 6 7 1 9\n11 3\n11 7\n"
],
"output": [
"9\n.X.\n.X.\n.XX\n",
"26\nX..XX\nXXXX.\nX.X..\nX.XX.\n",
"7409\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\n.\n.\n.\n.\n.\n.\n.\n.\n",
"6\nXXX\n.X.\n",
"1\nX\n",
"50\n.X..X\n.XX.X\n..XXX\n.XX..\n",
"22\nX\nX\nX\nX\n.\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"771\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..............\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"18445\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX....\n",
"7490\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\n.\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\nX\n.\n.\n.\n.\n.\n.\n.\n.\n",
"53\n.X..X\n.XX.X\n..XXX\n.XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"758\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..............\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"18436\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX....\n",
"52\n.X..X\n.X..X\n.X..X\n.XXXX\n",
"18555\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX....\n",
"18536\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX....\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"758\n...XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX..............\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"52\n.X..X\n.X..X\n.X..X\n.XXXX\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"97\n......\n.....X\n.....X\n...XXX\n...X..\n...X..\n...X..\n...X..\n...X..\n..XX..\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"21\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n",
"19\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n..XXXXX.\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n........\n"
]
} | 2CODEFORCES
|
161_B. Discounts_954 | One day Polycarpus stopped by a supermarket on his way home. It turns out that the supermarket is having a special offer for stools. The offer is as follows: if a customer's shopping cart contains at least one stool, the customer gets a 50% discount on the cheapest item in the cart (that is, it becomes two times cheaper). If there are several items with the same minimum price, the discount is available for only one of them!
Polycarpus has k carts, and he wants to buy up all stools and pencils from the supermarket. Help him distribute the stools and the pencils among the shopping carts, so that the items' total price (including the discounts) is the least possible.
Polycarpus must use all k carts to purchase the items, no shopping cart can remain empty. Each shopping cart can contain an arbitrary number of stools and/or pencils.
Input
The first input line contains two integers n and k (1 ≤ k ≤ n ≤ 103) — the number of items in the supermarket and the number of carts, correspondingly. Next n lines describe the items as "ci ti" (without the quotes), where ci (1 ≤ ci ≤ 109) is an integer denoting the price of the i-th item, ti (1 ≤ ti ≤ 2) is an integer representing the type of item i (1 for a stool and 2 for a pencil). The numbers in the lines are separated by single spaces.
Output
In the first line print a single real number with exactly one decimal place — the minimum total price of the items, including the discounts.
In the following k lines print the descriptions of the items in the carts. In the i-th line print the description of the i-th cart as "t b1 b2 ... bt" (without the quotes), where t is the number of items in the i-th cart, and the sequence b1, b2, ..., bt (1 ≤ bj ≤ n) gives the indices of items to put in this cart in the optimal distribution. All indices of items in all carts should be pairwise different, each item must belong to exactly one cart. You can print the items in carts and the carts themselves in any order. The items are numbered from 1 to n in the order in which they are specified in the input.
If there are multiple optimal distributions, you are allowed to print any of them.
Examples
Input
3 2
2 1
3 2
3 1
Output
5.5
2 1 2
1 3
Input
4 3
4 1
1 2
2 2
3 2
Output
8.0
1 1
2 4 2
1 3
Note
In the first sample case the first cart should contain the 1st and 2nd items, and the second cart should contain the 3rd item. This way each cart has a stool and each cart has a 50% discount for the cheapest item. The total price of all items will be: 2·0.5 + (3 + 3·0.5) = 1 + 4.5 = 5.5. | from math import *
n,k = map(int,raw_input().split())
it1,it2 = [],[]
for i in range(0,n):
p,t = map(int,raw_input().split())
if t==1: it1 += [[p,i+1]]
else: it2 += [[p,i+1]]
it1.sort(); it1.reverse()
it2.sort(); it2.reverse()
tot = 0
for i in range(0,min(k-1,len(it1))):
tot += it1[i][0]
m = 10**9
for i in range(k-1,len(it1)):
tot += 2*it1[i][0]
m = min(m,it1[i][0])
for i in range(0,len(it2)):
tot += 2*it2[i][0]
m = min(m,it2[i][0])
if len(it1)>=k: tot -= m
print str(tot/2) + (".5" if tot%2==1 else ".0")
for i in range(0,min(k-1,len(it1))):
print 1,it1[i][1]
it2 += (it1[i] for i in range(k-1,len(it1)))
pos = 0
for i in range(len(it1),k-1):
print 1,it2[pos][1]
pos+=1
print n-k+1,
for i in range(pos,len(it2)):
print it2[i][1], | 1Python2
| {
"input": [
"3 2\n2 1\n3 2\n3 1\n",
"4 3\n4 1\n1 2\n2 2\n3 2\n",
"11 11\n6 2\n6 2\n1 2\n2 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 2\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n1 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n15 1\n16 1\n22 1\n20 1\n1 2\n1 2\n",
"1 1\n1 2\n",
"10 1\n1 1\n2 2\n1 1\n23 2\n17 2\n1 1\n1 1\n30 2\n1 1\n9 2\n",
"4 3\n4 1\n1 2\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n28 2\n7 1\n23 2\n",
"5 4\n10 1\n10 1\n10 1\n9 1\n5 2\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n2 1\n5 2\n3 2\n",
"7 5\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"20 3\n28 1\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"21 21\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"11 11\n6 2\n6 2\n1 2\n3 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n2 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n15 1\n8 1\n22 1\n20 1\n1 2\n1 2\n",
"4 3\n4 1\n1 1\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n51 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n6 1\n2 1\n5 2\n3 2\n",
"20 3\n28 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 2\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n4 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n4 1\n",
"4 3\n5 1\n1 1\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n97 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 1\n5 2\n3 2\n",
"20 3\n28 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n5 1\n",
"5 4\n24 2\n19 1\n97 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 1\n10 2\n3 2\n",
"20 3\n50 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n13 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 2\n10 2\n3 2\n",
"20 3\n50 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n27388567 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n17 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n204988757 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n17 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 2\n24 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n25402536 2\n5 1\n24 1\n",
"11 11\n6 2\n6 2\n1 2\n2 2\n3 1\n0 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n40790764 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 2\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n13 1\n16 1\n22 1\n20 1\n1 2\n1 2\n",
"10 1\n1 1\n2 1\n1 1\n23 2\n17 2\n1 1\n1 1\n30 2\n1 1\n9 2\n",
"4 3\n1 1\n1 2\n2 2\n3 2\n",
"5 4\n10 1\n10 1\n10 1\n9 1\n0 2\n",
"7 4\n10 1\n18 1\n10 1\n9 1\n2 1\n5 2\n3 2\n",
"7 5\n10 1\n10 1\n10 1\n9 1\n0 1\n5 2\n3 2\n",
"20 3\n28 1\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n436007055 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n0 2\n",
"11 11\n6 2\n6 2\n2 2\n3 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n5 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"4 3\n4 1\n1 1\n1 2\n3 2\n",
"7 4\n10 1\n10 1\n10 1\n6 1\n3 1\n5 2\n3 2\n",
"7 4\n10 2\n10 1\n10 1\n9 1\n1 1\n5 2\n3 2\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n99465650 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n4 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n12602882 2\n18716193 2\n30 1\n17 1\n24 1\n",
"4 3\n5 1\n2 1\n2 2\n3 2\n",
"1 1\n2 2\n"
],
"output": [
"5.5\n1 3 \n2 1 2 \n",
"8.0\n1 1 \n1 2 \n2 3 4 \n",
"32.5\n1 10\n1 9\n1 5\n1 8\n1 7\n1 11\n1 6\n1 2\n1 1\n1 4\n1 3\n",
"5362337336.5\n1 19 \n1 21 \n1 3 \n1 20 \n1 1 \n1 11 \n15 15 14 13 10 7 4 2 6 8 12 16 5 18 17 9 \n",
"0.5\n1 1 \n",
"105.5\n10 1 7 8 6 5 2 3 4 9 10 \n",
"1.0\n1 1 \n",
"85.5\n10 1 3 6 7 9 2 10 5 4 8 \n",
"8.0\n1 1 \n1 2 \n2 3 4 \n",
"76.0\n1 1 \n1 2 \n1 4 \n2 3 5 \n",
"26.5\n1 3 \n1 2 \n1 1 \n2 4 5 \n",
"33.0\n1 3 \n1 2 \n1 1 \n4 4 5 6 7 \n",
"30.0\n1 3 \n1 2 \n1 1 \n1 4 \n3 5 6 7 \n",
"5354453716.0\n1 1 \n1 16 \n18 5 7 6 3 11 15 20 8 12 14 2 18 4 10 13 9 17 19 \n",
"34.5\n1 3 \n1 2 \n1 1 \n4 4 5 6 7 \n",
"3142600975.0\n1 13\n1 7\n1 6\n1 17\n1 21\n1 10\n1 9\n1 14\n1 20\n1 16\n1 3\n1 2\n1 5\n1 18\n1 4\n1 8\n1 12\n1 19\n1 11\n1 15\n1 1\n",
"33.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 6\n1 11\n1 4\n1 3\n",
"5180602222.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"1.0\n1 1\n",
"97.5\n10 1 7 8 5 6 2 3 4 9 10\n",
"7.5\n1 1\n1 2\n2 4 3\n",
"99.0\n1 1\n1 2\n1 4\n2 3 5\n",
"30.0\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"5354453718.5\n1 16\n1 5\n18 7 6 3 11 15 20 8 12 14 2 18 4 10 13 9 17 19 1\n",
"35.0\n1 2\n1 3\n1 4\n4 5 1 6 7\n",
"3142600975.0\n1 7\n1 13\n1 6\n1 17\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n10 2 5 18 4 8 12 19 11 15 1\n",
"5180602223.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"2.0\n1 1\n",
"8.0\n1 1\n1 2\n2 4 3\n",
"145.0\n1 1\n1 2\n1 4\n2 3 5\n",
"35.0\n1 4\n1 1\n1 2\n4 3 5 6 7\n",
"5354453714.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3142600987.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 18 4 8 12 19 11 15 1 17\n",
"5180602221.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"2.5\n1 1\n",
"157.0\n1 2\n1 4\n1 3\n2 1 5\n",
"40.0\n1 4\n1 1\n1 2\n4 3 5 6 7\n",
"5354453736.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3328975900.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 19 11 15 1 17\n",
"5180602218.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"40.0\n1 4\n1 1\n1 2\n4 3 6 7 5\n",
"5245604062.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3277821177.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 19 11 1 15 17\n",
"5180602221.0\n1 16\n1 19\n1 21\n1 3\n1 11\n1 20\n15 1 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"3373407443.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 19 8 12 11 1 15 17\n",
"5180602222.5\n1 16\n1 19\n1 21\n1 3\n1 11\n1 1\n15 15 14 13 10 7 4 2 6 8 12 5 18 17 9 20\n",
"3193821222.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 11 1 15 19 17\n",
"26.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 11\n1 4\n1 3\n1 6\n",
"5193204587.5\n1 19\n1 21\n1 3\n1 20\n1 1\n1 11\n15 15 14 13 10 7 4 2 6 8 12 16 5 18 17 9\n",
"103.5\n10 1 7 8 6 5 2 3 4 9 10\n",
"85.5\n10 2 1 3 6 7 9 8 4 5 10\n",
"6.5\n1 1\n1 4\n2 3 2\n",
"24.0\n1 1\n1 2\n1 3\n2 4 5\n",
"37.0\n1 2\n1 1\n1 3\n4 4 5 6 7\n",
"27.5\n1 1\n1 2\n1 3\n1 4\n3 5 6 7\n",
"5417915201.0\n1 1\n1 16\n18 5 7 6 3 11 15 20 8 12 14 2 18 4 13 10 9 17 19\n",
"33.0\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"34.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 6\n1 11\n1 4\n1 3\n",
"5180602215.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 14 13 15 10 7 4 2 6 8 12 5 18 17 9\n",
"6.5\n1 1\n1 2\n2 4 3\n",
"30.5\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"33.0\n1 2\n1 3\n1 4\n4 5 1 6 7\n",
"3158207129.0\n1 7\n1 13\n1 6\n1 17\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n10 2 5 18 4 8 12 19 11 15 1\n",
"5183366811.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"8.5\n1 1\n1 2\n2 4 3\n",
"2.0\n1 1\n"
]
} | 2CODEFORCES
|
161_B. Discounts_955 | One day Polycarpus stopped by a supermarket on his way home. It turns out that the supermarket is having a special offer for stools. The offer is as follows: if a customer's shopping cart contains at least one stool, the customer gets a 50% discount on the cheapest item in the cart (that is, it becomes two times cheaper). If there are several items with the same minimum price, the discount is available for only one of them!
Polycarpus has k carts, and he wants to buy up all stools and pencils from the supermarket. Help him distribute the stools and the pencils among the shopping carts, so that the items' total price (including the discounts) is the least possible.
Polycarpus must use all k carts to purchase the items, no shopping cart can remain empty. Each shopping cart can contain an arbitrary number of stools and/or pencils.
Input
The first input line contains two integers n and k (1 ≤ k ≤ n ≤ 103) — the number of items in the supermarket and the number of carts, correspondingly. Next n lines describe the items as "ci ti" (without the quotes), where ci (1 ≤ ci ≤ 109) is an integer denoting the price of the i-th item, ti (1 ≤ ti ≤ 2) is an integer representing the type of item i (1 for a stool and 2 for a pencil). The numbers in the lines are separated by single spaces.
Output
In the first line print a single real number with exactly one decimal place — the minimum total price of the items, including the discounts.
In the following k lines print the descriptions of the items in the carts. In the i-th line print the description of the i-th cart as "t b1 b2 ... bt" (without the quotes), where t is the number of items in the i-th cart, and the sequence b1, b2, ..., bt (1 ≤ bj ≤ n) gives the indices of items to put in this cart in the optimal distribution. All indices of items in all carts should be pairwise different, each item must belong to exactly one cart. You can print the items in carts and the carts themselves in any order. The items are numbered from 1 to n in the order in which they are specified in the input.
If there are multiple optimal distributions, you are allowed to print any of them.
Examples
Input
3 2
2 1
3 2
3 1
Output
5.5
2 1 2
1 3
Input
4 3
4 1
1 2
2 2
3 2
Output
8.0
1 1
2 4 2
1 3
Note
In the first sample case the first cart should contain the 1st and 2nd items, and the second cart should contain the 3rd item. This way each cart has a stool and each cart has a 50% discount for the cheapest item. The total price of all items will be: 2·0.5 + (3 + 3·0.5) = 1 + 4.5 = 5.5. | #include <bits/stdc++.h>
using namespace std;
int ans[1010][1010];
int al[1010];
struct node {
int id;
int v;
} den[1010], qian[1010];
int dl = 0;
int ql = 0;
bool cmp(node a, node b) { return a.v > b.v; }
int main() {
int n;
scanf("%d", &n);
;
int m;
scanf("%d", &m);
;
double cost = 0;
for (int i = 1; i <= n; i++) {
int x;
scanf("%d", &x);
;
int y;
scanf("%d", &y);
;
if (y == 1) {
den[dl].id = i;
den[dl++].v = x;
} else {
qian[ql].id = i;
qian[ql++].v = x;
}
}
sort(den, den + dl, cmp);
int i;
for (i = 0; i < m - 1 && i < dl; i++) {
ans[i][0] = den[i].id;
al[i] = 1;
cost += den[i].v / 2.0;
}
if (i < m - 1) {
int j;
for (j = 0; i < m - 1; i++, j++) {
ans[i][0] = qian[j].id;
al[i] = 1;
cost += qian[j].v;
}
for (; j < ql; j++) {
ans[m - 1][al[m - 1]++] = qian[j].id;
cost += qian[j].v;
}
} else {
int vmin = 0x3FFFFFFF;
for (int j = 0; i < dl; i++, j++) {
ans[m - 1][j] = den[i].id;
al[m - 1]++;
cost += den[i].v;
if (den[i].v < vmin) vmin = den[i].v;
}
for (int j = 0; j < ql; j++) {
ans[m - 1][al[m - 1]++] = qian[j].id;
cost += qian[j].v;
if (vmin != 0x3FFFFFFF && qian[j].v < vmin) vmin = qian[j].v;
}
if (vmin != 0x3FFFFFFF) cost -= vmin / 2.0;
}
printf("%.1lf\n", cost);
for (int i = 0; i < m; i++) {
printf("%d", al[i]);
for (int j = 0; j < al[i]; j++) {
printf(" %d", ans[i][j]);
}
printf("\n");
}
return 0;
}
| 2C++
| {
"input": [
"3 2\n2 1\n3 2\n3 1\n",
"4 3\n4 1\n1 2\n2 2\n3 2\n",
"11 11\n6 2\n6 2\n1 2\n2 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 2\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n1 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n15 1\n16 1\n22 1\n20 1\n1 2\n1 2\n",
"1 1\n1 2\n",
"10 1\n1 1\n2 2\n1 1\n23 2\n17 2\n1 1\n1 1\n30 2\n1 1\n9 2\n",
"4 3\n4 1\n1 2\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n28 2\n7 1\n23 2\n",
"5 4\n10 1\n10 1\n10 1\n9 1\n5 2\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n2 1\n5 2\n3 2\n",
"7 5\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"20 3\n28 1\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"21 21\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"11 11\n6 2\n6 2\n1 2\n3 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n2 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n15 1\n8 1\n22 1\n20 1\n1 2\n1 2\n",
"4 3\n4 1\n1 1\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n51 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n6 1\n2 1\n5 2\n3 2\n",
"20 3\n28 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 2\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n4 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n4 1\n",
"4 3\n5 1\n1 1\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n97 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 1\n5 2\n3 2\n",
"20 3\n28 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n5 1\n",
"5 4\n24 2\n19 1\n97 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 1\n10 2\n3 2\n",
"20 3\n50 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n13 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 2\n10 2\n3 2\n",
"20 3\n50 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n27388567 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n17 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n204988757 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n17 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 2\n24 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n25402536 2\n5 1\n24 1\n",
"11 11\n6 2\n6 2\n1 2\n2 2\n3 1\n0 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n40790764 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 2\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n13 1\n16 1\n22 1\n20 1\n1 2\n1 2\n",
"10 1\n1 1\n2 1\n1 1\n23 2\n17 2\n1 1\n1 1\n30 2\n1 1\n9 2\n",
"4 3\n1 1\n1 2\n2 2\n3 2\n",
"5 4\n10 1\n10 1\n10 1\n9 1\n0 2\n",
"7 4\n10 1\n18 1\n10 1\n9 1\n2 1\n5 2\n3 2\n",
"7 5\n10 1\n10 1\n10 1\n9 1\n0 1\n5 2\n3 2\n",
"20 3\n28 1\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n436007055 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n0 2\n",
"11 11\n6 2\n6 2\n2 2\n3 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n5 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"4 3\n4 1\n1 1\n1 2\n3 2\n",
"7 4\n10 1\n10 1\n10 1\n6 1\n3 1\n5 2\n3 2\n",
"7 4\n10 2\n10 1\n10 1\n9 1\n1 1\n5 2\n3 2\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n99465650 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n4 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n12602882 2\n18716193 2\n30 1\n17 1\n24 1\n",
"4 3\n5 1\n2 1\n2 2\n3 2\n",
"1 1\n2 2\n"
],
"output": [
"5.5\n1 3 \n2 1 2 \n",
"8.0\n1 1 \n1 2 \n2 3 4 \n",
"32.5\n1 10\n1 9\n1 5\n1 8\n1 7\n1 11\n1 6\n1 2\n1 1\n1 4\n1 3\n",
"5362337336.5\n1 19 \n1 21 \n1 3 \n1 20 \n1 1 \n1 11 \n15 15 14 13 10 7 4 2 6 8 12 16 5 18 17 9 \n",
"0.5\n1 1 \n",
"105.5\n10 1 7 8 6 5 2 3 4 9 10 \n",
"1.0\n1 1 \n",
"85.5\n10 1 3 6 7 9 2 10 5 4 8 \n",
"8.0\n1 1 \n1 2 \n2 3 4 \n",
"76.0\n1 1 \n1 2 \n1 4 \n2 3 5 \n",
"26.5\n1 3 \n1 2 \n1 1 \n2 4 5 \n",
"33.0\n1 3 \n1 2 \n1 1 \n4 4 5 6 7 \n",
"30.0\n1 3 \n1 2 \n1 1 \n1 4 \n3 5 6 7 \n",
"5354453716.0\n1 1 \n1 16 \n18 5 7 6 3 11 15 20 8 12 14 2 18 4 10 13 9 17 19 \n",
"34.5\n1 3 \n1 2 \n1 1 \n4 4 5 6 7 \n",
"3142600975.0\n1 13\n1 7\n1 6\n1 17\n1 21\n1 10\n1 9\n1 14\n1 20\n1 16\n1 3\n1 2\n1 5\n1 18\n1 4\n1 8\n1 12\n1 19\n1 11\n1 15\n1 1\n",
"33.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 6\n1 11\n1 4\n1 3\n",
"5180602222.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"1.0\n1 1\n",
"97.5\n10 1 7 8 5 6 2 3 4 9 10\n",
"7.5\n1 1\n1 2\n2 4 3\n",
"99.0\n1 1\n1 2\n1 4\n2 3 5\n",
"30.0\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"5354453718.5\n1 16\n1 5\n18 7 6 3 11 15 20 8 12 14 2 18 4 10 13 9 17 19 1\n",
"35.0\n1 2\n1 3\n1 4\n4 5 1 6 7\n",
"3142600975.0\n1 7\n1 13\n1 6\n1 17\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n10 2 5 18 4 8 12 19 11 15 1\n",
"5180602223.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"2.0\n1 1\n",
"8.0\n1 1\n1 2\n2 4 3\n",
"145.0\n1 1\n1 2\n1 4\n2 3 5\n",
"35.0\n1 4\n1 1\n1 2\n4 3 5 6 7\n",
"5354453714.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3142600987.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 18 4 8 12 19 11 15 1 17\n",
"5180602221.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"2.5\n1 1\n",
"157.0\n1 2\n1 4\n1 3\n2 1 5\n",
"40.0\n1 4\n1 1\n1 2\n4 3 5 6 7\n",
"5354453736.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3328975900.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 19 11 15 1 17\n",
"5180602218.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"40.0\n1 4\n1 1\n1 2\n4 3 6 7 5\n",
"5245604062.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3277821177.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 19 11 1 15 17\n",
"5180602221.0\n1 16\n1 19\n1 21\n1 3\n1 11\n1 20\n15 1 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"3373407443.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 19 8 12 11 1 15 17\n",
"5180602222.5\n1 16\n1 19\n1 21\n1 3\n1 11\n1 1\n15 15 14 13 10 7 4 2 6 8 12 5 18 17 9 20\n",
"3193821222.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 11 1 15 19 17\n",
"26.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 11\n1 4\n1 3\n1 6\n",
"5193204587.5\n1 19\n1 21\n1 3\n1 20\n1 1\n1 11\n15 15 14 13 10 7 4 2 6 8 12 16 5 18 17 9\n",
"103.5\n10 1 7 8 6 5 2 3 4 9 10\n",
"85.5\n10 2 1 3 6 7 9 8 4 5 10\n",
"6.5\n1 1\n1 4\n2 3 2\n",
"24.0\n1 1\n1 2\n1 3\n2 4 5\n",
"37.0\n1 2\n1 1\n1 3\n4 4 5 6 7\n",
"27.5\n1 1\n1 2\n1 3\n1 4\n3 5 6 7\n",
"5417915201.0\n1 1\n1 16\n18 5 7 6 3 11 15 20 8 12 14 2 18 4 13 10 9 17 19\n",
"33.0\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"34.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 6\n1 11\n1 4\n1 3\n",
"5180602215.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 14 13 15 10 7 4 2 6 8 12 5 18 17 9\n",
"6.5\n1 1\n1 2\n2 4 3\n",
"30.5\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"33.0\n1 2\n1 3\n1 4\n4 5 1 6 7\n",
"3158207129.0\n1 7\n1 13\n1 6\n1 17\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n10 2 5 18 4 8 12 19 11 15 1\n",
"5183366811.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"8.5\n1 1\n1 2\n2 4 3\n",
"2.0\n1 1\n"
]
} | 2CODEFORCES
|
161_B. Discounts_956 | One day Polycarpus stopped by a supermarket on his way home. It turns out that the supermarket is having a special offer for stools. The offer is as follows: if a customer's shopping cart contains at least one stool, the customer gets a 50% discount on the cheapest item in the cart (that is, it becomes two times cheaper). If there are several items with the same minimum price, the discount is available for only one of them!
Polycarpus has k carts, and he wants to buy up all stools and pencils from the supermarket. Help him distribute the stools and the pencils among the shopping carts, so that the items' total price (including the discounts) is the least possible.
Polycarpus must use all k carts to purchase the items, no shopping cart can remain empty. Each shopping cart can contain an arbitrary number of stools and/or pencils.
Input
The first input line contains two integers n and k (1 ≤ k ≤ n ≤ 103) — the number of items in the supermarket and the number of carts, correspondingly. Next n lines describe the items as "ci ti" (without the quotes), where ci (1 ≤ ci ≤ 109) is an integer denoting the price of the i-th item, ti (1 ≤ ti ≤ 2) is an integer representing the type of item i (1 for a stool and 2 for a pencil). The numbers in the lines are separated by single spaces.
Output
In the first line print a single real number with exactly one decimal place — the minimum total price of the items, including the discounts.
In the following k lines print the descriptions of the items in the carts. In the i-th line print the description of the i-th cart as "t b1 b2 ... bt" (without the quotes), where t is the number of items in the i-th cart, and the sequence b1, b2, ..., bt (1 ≤ bj ≤ n) gives the indices of items to put in this cart in the optimal distribution. All indices of items in all carts should be pairwise different, each item must belong to exactly one cart. You can print the items in carts and the carts themselves in any order. The items are numbered from 1 to n in the order in which they are specified in the input.
If there are multiple optimal distributions, you are allowed to print any of them.
Examples
Input
3 2
2 1
3 2
3 1
Output
5.5
2 1 2
1 3
Input
4 3
4 1
1 2
2 2
3 2
Output
8.0
1 1
2 4 2
1 3
Note
In the first sample case the first cart should contain the 1st and 2nd items, and the second cart should contain the 3rd item. This way each cart has a stool and each cart has a 50% discount for the cheapest item. The total price of all items will be: 2·0.5 + (3 + 3·0.5) = 1 + 4.5 = 5.5. | n, k = list(map(int, input().split()))
p = [[], []]
for i in range(1, n + 1):
c, t = map(int, input().split())
p[t > 1].append((c, i))
if k > len(p[0]):
l = k - len(p[0]) - 1
print(sum(c for c, i in p[0]) / 2 + sum(c for c, i in p[1]))
print('\n'.join('1 ' + str(i) for c, i in p[0]))
print('\n'.join('1 ' + str(i) for c, i in p[1][: l]))
print(len(p[1]) - l, ' '.join(str(i) for c, i in p[1][l: ]))
else:
p[1].sort()
p[0].sort(reverse = True)
print(sum(c for c, i in p[0][: k - 1]) / 2 + sum(c for c, i in p[0][k - 1: ]) + sum(c for c, i in p[1]) - min(c for c, i in p[1] + p[0][k - 1: ]) / 2)
print('\n'.join('1 ' + str(i) for c, i in p[0][: k - 1]))
print(n - k + 1, ' '.join(str(i) for c, i in p[0][k - 1:]), ' '.join(str(i) for c, i in p[1]))
# Made By Mostafa_Khaled | 3Python3
| {
"input": [
"3 2\n2 1\n3 2\n3 1\n",
"4 3\n4 1\n1 2\n2 2\n3 2\n",
"11 11\n6 2\n6 2\n1 2\n2 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 2\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n1 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n15 1\n16 1\n22 1\n20 1\n1 2\n1 2\n",
"1 1\n1 2\n",
"10 1\n1 1\n2 2\n1 1\n23 2\n17 2\n1 1\n1 1\n30 2\n1 1\n9 2\n",
"4 3\n4 1\n1 2\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n28 2\n7 1\n23 2\n",
"5 4\n10 1\n10 1\n10 1\n9 1\n5 2\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n2 1\n5 2\n3 2\n",
"7 5\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"20 3\n28 1\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"21 21\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"11 11\n6 2\n6 2\n1 2\n3 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n2 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n15 1\n8 1\n22 1\n20 1\n1 2\n1 2\n",
"4 3\n4 1\n1 1\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n51 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n6 1\n2 1\n5 2\n3 2\n",
"20 3\n28 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 2\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n4 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n4 1\n",
"4 3\n5 1\n1 1\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n97 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 1\n5 2\n3 2\n",
"20 3\n28 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n5 1\n",
"5 4\n24 2\n19 1\n97 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 1\n10 2\n3 2\n",
"20 3\n50 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n13 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 2\n10 2\n3 2\n",
"20 3\n50 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n27388567 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n17 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n204988757 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n17 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 2\n24 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n25402536 2\n5 1\n24 1\n",
"11 11\n6 2\n6 2\n1 2\n2 2\n3 1\n0 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n40790764 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 2\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n13 1\n16 1\n22 1\n20 1\n1 2\n1 2\n",
"10 1\n1 1\n2 1\n1 1\n23 2\n17 2\n1 1\n1 1\n30 2\n1 1\n9 2\n",
"4 3\n1 1\n1 2\n2 2\n3 2\n",
"5 4\n10 1\n10 1\n10 1\n9 1\n0 2\n",
"7 4\n10 1\n18 1\n10 1\n9 1\n2 1\n5 2\n3 2\n",
"7 5\n10 1\n10 1\n10 1\n9 1\n0 1\n5 2\n3 2\n",
"20 3\n28 1\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n436007055 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n0 2\n",
"11 11\n6 2\n6 2\n2 2\n3 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n5 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"4 3\n4 1\n1 1\n1 2\n3 2\n",
"7 4\n10 1\n10 1\n10 1\n6 1\n3 1\n5 2\n3 2\n",
"7 4\n10 2\n10 1\n10 1\n9 1\n1 1\n5 2\n3 2\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n99465650 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n4 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n12602882 2\n18716193 2\n30 1\n17 1\n24 1\n",
"4 3\n5 1\n2 1\n2 2\n3 2\n",
"1 1\n2 2\n"
],
"output": [
"5.5\n1 3 \n2 1 2 \n",
"8.0\n1 1 \n1 2 \n2 3 4 \n",
"32.5\n1 10\n1 9\n1 5\n1 8\n1 7\n1 11\n1 6\n1 2\n1 1\n1 4\n1 3\n",
"5362337336.5\n1 19 \n1 21 \n1 3 \n1 20 \n1 1 \n1 11 \n15 15 14 13 10 7 4 2 6 8 12 16 5 18 17 9 \n",
"0.5\n1 1 \n",
"105.5\n10 1 7 8 6 5 2 3 4 9 10 \n",
"1.0\n1 1 \n",
"85.5\n10 1 3 6 7 9 2 10 5 4 8 \n",
"8.0\n1 1 \n1 2 \n2 3 4 \n",
"76.0\n1 1 \n1 2 \n1 4 \n2 3 5 \n",
"26.5\n1 3 \n1 2 \n1 1 \n2 4 5 \n",
"33.0\n1 3 \n1 2 \n1 1 \n4 4 5 6 7 \n",
"30.0\n1 3 \n1 2 \n1 1 \n1 4 \n3 5 6 7 \n",
"5354453716.0\n1 1 \n1 16 \n18 5 7 6 3 11 15 20 8 12 14 2 18 4 10 13 9 17 19 \n",
"34.5\n1 3 \n1 2 \n1 1 \n4 4 5 6 7 \n",
"3142600975.0\n1 13\n1 7\n1 6\n1 17\n1 21\n1 10\n1 9\n1 14\n1 20\n1 16\n1 3\n1 2\n1 5\n1 18\n1 4\n1 8\n1 12\n1 19\n1 11\n1 15\n1 1\n",
"33.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 6\n1 11\n1 4\n1 3\n",
"5180602222.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"1.0\n1 1\n",
"97.5\n10 1 7 8 5 6 2 3 4 9 10\n",
"7.5\n1 1\n1 2\n2 4 3\n",
"99.0\n1 1\n1 2\n1 4\n2 3 5\n",
"30.0\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"5354453718.5\n1 16\n1 5\n18 7 6 3 11 15 20 8 12 14 2 18 4 10 13 9 17 19 1\n",
"35.0\n1 2\n1 3\n1 4\n4 5 1 6 7\n",
"3142600975.0\n1 7\n1 13\n1 6\n1 17\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n10 2 5 18 4 8 12 19 11 15 1\n",
"5180602223.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"2.0\n1 1\n",
"8.0\n1 1\n1 2\n2 4 3\n",
"145.0\n1 1\n1 2\n1 4\n2 3 5\n",
"35.0\n1 4\n1 1\n1 2\n4 3 5 6 7\n",
"5354453714.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3142600987.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 18 4 8 12 19 11 15 1 17\n",
"5180602221.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"2.5\n1 1\n",
"157.0\n1 2\n1 4\n1 3\n2 1 5\n",
"40.0\n1 4\n1 1\n1 2\n4 3 5 6 7\n",
"5354453736.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3328975900.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 19 11 15 1 17\n",
"5180602218.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"40.0\n1 4\n1 1\n1 2\n4 3 6 7 5\n",
"5245604062.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3277821177.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 19 11 1 15 17\n",
"5180602221.0\n1 16\n1 19\n1 21\n1 3\n1 11\n1 20\n15 1 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"3373407443.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 19 8 12 11 1 15 17\n",
"5180602222.5\n1 16\n1 19\n1 21\n1 3\n1 11\n1 1\n15 15 14 13 10 7 4 2 6 8 12 5 18 17 9 20\n",
"3193821222.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 11 1 15 19 17\n",
"26.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 11\n1 4\n1 3\n1 6\n",
"5193204587.5\n1 19\n1 21\n1 3\n1 20\n1 1\n1 11\n15 15 14 13 10 7 4 2 6 8 12 16 5 18 17 9\n",
"103.5\n10 1 7 8 6 5 2 3 4 9 10\n",
"85.5\n10 2 1 3 6 7 9 8 4 5 10\n",
"6.5\n1 1\n1 4\n2 3 2\n",
"24.0\n1 1\n1 2\n1 3\n2 4 5\n",
"37.0\n1 2\n1 1\n1 3\n4 4 5 6 7\n",
"27.5\n1 1\n1 2\n1 3\n1 4\n3 5 6 7\n",
"5417915201.0\n1 1\n1 16\n18 5 7 6 3 11 15 20 8 12 14 2 18 4 13 10 9 17 19\n",
"33.0\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"34.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 6\n1 11\n1 4\n1 3\n",
"5180602215.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 14 13 15 10 7 4 2 6 8 12 5 18 17 9\n",
"6.5\n1 1\n1 2\n2 4 3\n",
"30.5\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"33.0\n1 2\n1 3\n1 4\n4 5 1 6 7\n",
"3158207129.0\n1 7\n1 13\n1 6\n1 17\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n10 2 5 18 4 8 12 19 11 15 1\n",
"5183366811.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"8.5\n1 1\n1 2\n2 4 3\n",
"2.0\n1 1\n"
]
} | 2CODEFORCES
|
161_B. Discounts_957 | One day Polycarpus stopped by a supermarket on his way home. It turns out that the supermarket is having a special offer for stools. The offer is as follows: if a customer's shopping cart contains at least one stool, the customer gets a 50% discount on the cheapest item in the cart (that is, it becomes two times cheaper). If there are several items with the same minimum price, the discount is available for only one of them!
Polycarpus has k carts, and he wants to buy up all stools and pencils from the supermarket. Help him distribute the stools and the pencils among the shopping carts, so that the items' total price (including the discounts) is the least possible.
Polycarpus must use all k carts to purchase the items, no shopping cart can remain empty. Each shopping cart can contain an arbitrary number of stools and/or pencils.
Input
The first input line contains two integers n and k (1 ≤ k ≤ n ≤ 103) — the number of items in the supermarket and the number of carts, correspondingly. Next n lines describe the items as "ci ti" (without the quotes), where ci (1 ≤ ci ≤ 109) is an integer denoting the price of the i-th item, ti (1 ≤ ti ≤ 2) is an integer representing the type of item i (1 for a stool and 2 for a pencil). The numbers in the lines are separated by single spaces.
Output
In the first line print a single real number with exactly one decimal place — the minimum total price of the items, including the discounts.
In the following k lines print the descriptions of the items in the carts. In the i-th line print the description of the i-th cart as "t b1 b2 ... bt" (without the quotes), where t is the number of items in the i-th cart, and the sequence b1, b2, ..., bt (1 ≤ bj ≤ n) gives the indices of items to put in this cart in the optimal distribution. All indices of items in all carts should be pairwise different, each item must belong to exactly one cart. You can print the items in carts and the carts themselves in any order. The items are numbered from 1 to n in the order in which they are specified in the input.
If there are multiple optimal distributions, you are allowed to print any of them.
Examples
Input
3 2
2 1
3 2
3 1
Output
5.5
2 1 2
1 3
Input
4 3
4 1
1 2
2 2
3 2
Output
8.0
1 1
2 4 2
1 3
Note
In the first sample case the first cart should contain the 1st and 2nd items, and the second cart should contain the 3rd item. This way each cart has a stool and each cart has a 50% discount for the cheapest item. The total price of all items will be: 2·0.5 + (3 + 3·0.5) = 1 + 4.5 = 5.5. | import static java.lang.Math.*;
import static java.util.Arrays.*;
import java.io.*;
import java.util.*;
public class B {
Scanner sc = new Scanner(System.in);
void run() {
int n = sc.nextInt(), k = sc.nextInt();
int[] cs = new int[n], ts = new int[n];
for (int i = 0; i < n; i++) {
cs[i] = sc.nextInt() * 2;
ts[i] = sc.nextInt();
}
Entry[] es = new Entry[n];
for (int i = 0; i < n; i++) es[i] = new Entry(cs[i], i);
sort(es);
int n1 = 0;
for (int i = 0; i < n; i++) {
if (ts[i] == 1) n1++;
}
long res = 0;
for (int i = 0; i < n; i++) res += cs[i];
int[] id = new int[n];
if (n1 >= k) {
int p = k;
for (Entry e : es) {
if (ts[e.p] == 1) {
p = max(0, p - 1);
id[e.p] = p;
} else {
id[e.p] = 0;
}
}
for (int i = 0; i < k; i++) {
int min = Integer.MAX_VALUE;
for (int j = 0; j < n; j++) if (id[j] == i) min = min(min, cs[j]);
res -= min / 2;
}
} else {
int p = 0;
for (int i = 0; i < n; i++) if (ts[i] == 1) {
id[i] = p++;
res -= cs[i] / 2;
}
for (int i = 0; i < n; i++) if (ts[i] == 2) {
id[i] = p++;
if (p >= k) p = k - 1;
}
}
System.out.println(res / 2 + "." + (res % 2 == 0 ? "0" : "5"));
for (int i = 0; i < k; i++) {
int m = 0;
for (int j = 0; j < n; j++) if (id[j] == i) m++;
System.out.print(m);
for (int j = 0; j < n; j++) if (id[j] == i) {
System.out.print(" " + (j + 1));
}
System.out.println();
}
}
class Entry implements Comparable<Entry> {
int v, p;
Entry(int v, int p) {
this.v = v;
this.p = p;
}
public int compareTo(Entry o) {
return o.v - v;
}
}
class Scanner {
InputStream in;
byte[] buf = new byte[1 << 10];
int p, m;
boolean[] isSpace = new boolean[128];
Scanner(InputStream in) {
this.in = in;
isSpace[' '] = isSpace['\n'] = isSpace['\r'] = isSpace['\t'] = true;
}
int read() {
if (m == -1) return -1;
if (p >= m) {
p = 0;
try {
m = in.read(buf);
} catch (IOException e) {
throw new RuntimeException(e);
}
if (m <= 0) return -1;
}
return buf[p++];
}
boolean hasNext() {
int c = read();
while (c >= 0 && isSpace[c]) c = read();
if (c == -1) return false;
p--;
return true;
}
String next() {
if (!hasNext()) throw new InputMismatchException();
StringBuilder sb = new StringBuilder();
int c = read();
while (c >= 0 && !isSpace[c]) {
sb.append((char)c);
c = read();
}
return sb.toString();
}
int nextInt() {
if (!hasNext()) throw new InputMismatchException();
int c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (c >= 0 && !isSpace[c]);
return res * sgn;
}
long nextLong() {
if (!hasNext()) throw new InputMismatchException();
int c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (c >= 0 && !isSpace[c]);
return res * sgn;
}
double nextDouble() {
return Double.parseDouble(next());
}
}
void debug(Object...os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
new B().run();
}
}
| 4JAVA
| {
"input": [
"3 2\n2 1\n3 2\n3 1\n",
"4 3\n4 1\n1 2\n2 2\n3 2\n",
"11 11\n6 2\n6 2\n1 2\n2 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 2\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n1 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n15 1\n16 1\n22 1\n20 1\n1 2\n1 2\n",
"1 1\n1 2\n",
"10 1\n1 1\n2 2\n1 1\n23 2\n17 2\n1 1\n1 1\n30 2\n1 1\n9 2\n",
"4 3\n4 1\n1 2\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n28 2\n7 1\n23 2\n",
"5 4\n10 1\n10 1\n10 1\n9 1\n5 2\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n2 1\n5 2\n3 2\n",
"7 5\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"20 3\n28 1\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"21 21\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"11 11\n6 2\n6 2\n1 2\n3 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n2 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n15 1\n8 1\n22 1\n20 1\n1 2\n1 2\n",
"4 3\n4 1\n1 1\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n51 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n6 1\n2 1\n5 2\n3 2\n",
"20 3\n28 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 2\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n4 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n4 1\n",
"4 3\n5 1\n1 1\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n97 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 1\n5 2\n3 2\n",
"20 3\n28 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n5 1\n",
"5 4\n24 2\n19 1\n97 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 1\n10 2\n3 2\n",
"20 3\n50 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n13 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 2\n10 2\n3 2\n",
"20 3\n50 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n27388567 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n17 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n204988757 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n17 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 2\n24 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n25402536 2\n5 1\n24 1\n",
"11 11\n6 2\n6 2\n1 2\n2 2\n3 1\n0 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n40790764 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 2\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n13 1\n16 1\n22 1\n20 1\n1 2\n1 2\n",
"10 1\n1 1\n2 1\n1 1\n23 2\n17 2\n1 1\n1 1\n30 2\n1 1\n9 2\n",
"4 3\n1 1\n1 2\n2 2\n3 2\n",
"5 4\n10 1\n10 1\n10 1\n9 1\n0 2\n",
"7 4\n10 1\n18 1\n10 1\n9 1\n2 1\n5 2\n3 2\n",
"7 5\n10 1\n10 1\n10 1\n9 1\n0 1\n5 2\n3 2\n",
"20 3\n28 1\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n436007055 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n0 2\n",
"11 11\n6 2\n6 2\n2 2\n3 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n5 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"4 3\n4 1\n1 1\n1 2\n3 2\n",
"7 4\n10 1\n10 1\n10 1\n6 1\n3 1\n5 2\n3 2\n",
"7 4\n10 2\n10 1\n10 1\n9 1\n1 1\n5 2\n3 2\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n99465650 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n4 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n12602882 2\n18716193 2\n30 1\n17 1\n24 1\n",
"4 3\n5 1\n2 1\n2 2\n3 2\n",
"1 1\n2 2\n"
],
"output": [
"5.5\n1 3 \n2 1 2 \n",
"8.0\n1 1 \n1 2 \n2 3 4 \n",
"32.5\n1 10\n1 9\n1 5\n1 8\n1 7\n1 11\n1 6\n1 2\n1 1\n1 4\n1 3\n",
"5362337336.5\n1 19 \n1 21 \n1 3 \n1 20 \n1 1 \n1 11 \n15 15 14 13 10 7 4 2 6 8 12 16 5 18 17 9 \n",
"0.5\n1 1 \n",
"105.5\n10 1 7 8 6 5 2 3 4 9 10 \n",
"1.0\n1 1 \n",
"85.5\n10 1 3 6 7 9 2 10 5 4 8 \n",
"8.0\n1 1 \n1 2 \n2 3 4 \n",
"76.0\n1 1 \n1 2 \n1 4 \n2 3 5 \n",
"26.5\n1 3 \n1 2 \n1 1 \n2 4 5 \n",
"33.0\n1 3 \n1 2 \n1 1 \n4 4 5 6 7 \n",
"30.0\n1 3 \n1 2 \n1 1 \n1 4 \n3 5 6 7 \n",
"5354453716.0\n1 1 \n1 16 \n18 5 7 6 3 11 15 20 8 12 14 2 18 4 10 13 9 17 19 \n",
"34.5\n1 3 \n1 2 \n1 1 \n4 4 5 6 7 \n",
"3142600975.0\n1 13\n1 7\n1 6\n1 17\n1 21\n1 10\n1 9\n1 14\n1 20\n1 16\n1 3\n1 2\n1 5\n1 18\n1 4\n1 8\n1 12\n1 19\n1 11\n1 15\n1 1\n",
"33.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 6\n1 11\n1 4\n1 3\n",
"5180602222.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"1.0\n1 1\n",
"97.5\n10 1 7 8 5 6 2 3 4 9 10\n",
"7.5\n1 1\n1 2\n2 4 3\n",
"99.0\n1 1\n1 2\n1 4\n2 3 5\n",
"30.0\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"5354453718.5\n1 16\n1 5\n18 7 6 3 11 15 20 8 12 14 2 18 4 10 13 9 17 19 1\n",
"35.0\n1 2\n1 3\n1 4\n4 5 1 6 7\n",
"3142600975.0\n1 7\n1 13\n1 6\n1 17\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n10 2 5 18 4 8 12 19 11 15 1\n",
"5180602223.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"2.0\n1 1\n",
"8.0\n1 1\n1 2\n2 4 3\n",
"145.0\n1 1\n1 2\n1 4\n2 3 5\n",
"35.0\n1 4\n1 1\n1 2\n4 3 5 6 7\n",
"5354453714.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3142600987.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 18 4 8 12 19 11 15 1 17\n",
"5180602221.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"2.5\n1 1\n",
"157.0\n1 2\n1 4\n1 3\n2 1 5\n",
"40.0\n1 4\n1 1\n1 2\n4 3 5 6 7\n",
"5354453736.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3328975900.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 19 11 15 1 17\n",
"5180602218.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"40.0\n1 4\n1 1\n1 2\n4 3 6 7 5\n",
"5245604062.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3277821177.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 19 11 1 15 17\n",
"5180602221.0\n1 16\n1 19\n1 21\n1 3\n1 11\n1 20\n15 1 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"3373407443.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 19 8 12 11 1 15 17\n",
"5180602222.5\n1 16\n1 19\n1 21\n1 3\n1 11\n1 1\n15 15 14 13 10 7 4 2 6 8 12 5 18 17 9 20\n",
"3193821222.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 11 1 15 19 17\n",
"26.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 11\n1 4\n1 3\n1 6\n",
"5193204587.5\n1 19\n1 21\n1 3\n1 20\n1 1\n1 11\n15 15 14 13 10 7 4 2 6 8 12 16 5 18 17 9\n",
"103.5\n10 1 7 8 6 5 2 3 4 9 10\n",
"85.5\n10 2 1 3 6 7 9 8 4 5 10\n",
"6.5\n1 1\n1 4\n2 3 2\n",
"24.0\n1 1\n1 2\n1 3\n2 4 5\n",
"37.0\n1 2\n1 1\n1 3\n4 4 5 6 7\n",
"27.5\n1 1\n1 2\n1 3\n1 4\n3 5 6 7\n",
"5417915201.0\n1 1\n1 16\n18 5 7 6 3 11 15 20 8 12 14 2 18 4 13 10 9 17 19\n",
"33.0\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"34.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 6\n1 11\n1 4\n1 3\n",
"5180602215.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 14 13 15 10 7 4 2 6 8 12 5 18 17 9\n",
"6.5\n1 1\n1 2\n2 4 3\n",
"30.5\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"33.0\n1 2\n1 3\n1 4\n4 5 1 6 7\n",
"3158207129.0\n1 7\n1 13\n1 6\n1 17\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n10 2 5 18 4 8 12 19 11 15 1\n",
"5183366811.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"8.5\n1 1\n1 2\n2 4 3\n",
"2.0\n1 1\n"
]
} | 2CODEFORCES
|
180_D. Name_958 | Everything got unclear to us in a far away constellation Tau Ceti. Specifically, the Taucetians choose names to their children in a very peculiar manner.
Two young parents abac and bbad think what name to give to their first-born child. They decided that the name will be the permutation of letters of string s. To keep up with the neighbours, they decided to call the baby so that the name was lexicographically strictly larger than the neighbour's son's name t.
On the other hand, they suspect that a name tax will be introduced shortly. According to it, the Taucetians with lexicographically larger names will pay larger taxes. That's the reason abac and bbad want to call the newborn so that the name was lexicographically strictly larger than name t and lexicographically minimum at that.
The lexicographical order of strings is the order we are all used to, the "dictionary" order. Such comparison is used in all modern programming languages to compare strings. Formally, a string p of length n is lexicographically less than string q of length m, if one of the two statements is correct:
* n < m, and p is the beginning (prefix) of string q (for example, "aba" is less than string "abaa"),
* p1 = q1, p2 = q2, ..., pk - 1 = qk - 1, pk < qk for some k (1 ≤ k ≤ min(n, m)), here characters in strings are numbered starting from 1.
Write a program that, given string s and the heighbours' child's name t determines the string that is the result of permutation of letters in s. The string should be lexicographically strictly more than t and also, lexicographically minimum.
Input
The first line contains a non-empty string s (1 ≤ |s| ≤ 5000), where |s| is its length. The second line contains a non-empty string t (1 ≤ |t| ≤ 5000), where |t| is its length. Both strings consist of lowercase Latin letters.
Output
Print the sought name or -1 if it doesn't exist.
Examples
Input
aad
aac
Output
aad
Input
abad
bob
Output
daab
Input
abc
defg
Output
-1
Input
czaaab
abcdef
Output
abczaa
Note
In the first sample the given string s is the sought one, consequently, we do not need to change the letter order there. | a = raw_input()
b = raw_input()
c = {}
for i in xrange(26):
c[chr(i + 97)] = 0
for i in xrange(len(a)):
c[a[i]] += 1
pref = ''
ans = chr(255)
for i in xrange(min(len(a), len(b))):
j = chr(ord(b[i]) + 1)
while j <= 'z' and c[j] == 0:
j = chr(ord(j) + 1)
if j <= 'z':
suff = j
c[j] -= 1
for ch, num in sorted(c.iteritems()):
suff += ch * num
c[j] += 1
ans = pref + suff
if c[b[i]] == 0:
break;
pref += b[i]
c[b[i]] -= 1
if pref == b and len(b) < len(a):
ans = pref
for ch, num in sorted(c.iteritems()):
ans += ch * num
if ans == chr(255):
ans = -1
print ans
| 1Python2
| {
"input": [
"abc\ndefg\n",
"czaaab\nabcdef\n",
"aad\naac\n",
"abad\nbob\n",
"z\na\n",
"abc\naaac\n",
"bcbcdddbbd\nbcbcdbdbbd\n",
"aaabccadac\nacabbbabaa\n",
"a\nb\n",
"acaccaaadz\ncaadccaaaa\n",
"aa\nab\n",
"abacaba\naba\n",
"aabbaa\naaaaaaaaaaaaaaaaaaaa\n",
"ac\na\n",
"a\na\n",
"aabbaa\ncaaaaaaaaa\n",
"aaaaaaaaa\na\n",
"ccc\ncc\n",
"acbdcbacbb\ncbcddabcbdaccdd\n",
"zaaa\naaaw\n",
"bbbaabbaab\nbbbaabbaab\n",
"z\nww\n",
"acaccaaadd\nacaccaaadd\n",
"aabbaa\na\n",
"ccabcaabcc\nbcca\n",
"adbddbccdacbaab\nadaddcbddb\n",
"abc\ncaa\n",
"ab\nb\n",
"aa\naa\n",
"zzzzzzzzzzzz\na\n",
"aa\na\n",
"abc\ncac\n",
"aaaaaaaaz\nwwwwwwwwwwwwwwwwwwww\n",
"ab\naa\n",
"aaa\naa\n",
"aab\naa\n",
"zzzzzzzzzz\naaaaaaaaa\n",
"bbbaabbaaz\nabaabbbbaa\n",
"bbbaabbaab\nababbaaabb\n",
"bcbcdddbbd\nabbbcbdcdc\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaz\nabaaabaabbbbaabbbbaabababbaabaabababbbaabbbaaabbabbabbbbbbbbaabbbbbabababbbbaaabaaaabbbbbbbbabababba\n",
"abab\naaba\n",
"abcabc\naaccba\n",
"bcbcdddbbz\ndbbccbddba\n",
"bbbbaacacb\ncbacbaabb\n",
"adbddbccdacbaab\nadcddbdcda\n",
"abc\nbbb\n",
"z\nanana\n",
"adbddbccdacbaaz\ndacdcaddbb\n",
"abc\naca\n",
"babbaccbab\nb\n",
"abc\nabbc\n",
"aaaaaaaaaaaaaaa\naaaaaaaaaaaaaa\n",
"acaccaaadd\nbabcacbadd\n",
"abacaba\nabababa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nabbabaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaabbbabababbaa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nbbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabababbaabbaaabbbaaaaaaabaabbbb\n",
"aaabccadac\naabbccbdac\n",
"bbbcaabcaa\ncacbababab\n",
"aaabccadaz\nacabcaadaa\n",
"qwertyz\nqwertyuiop\n",
"ab\na\n",
"abc\naabb\n",
"abcabc\nabccaa\n",
"z\nzz\n",
"cba\naaac\n",
"bcbcdddbbd\ndbbdbdcbcb\n",
"cadaccbaaa\nacabbbabaa\n",
"b\nb\n",
"acaccaaadz\naaaaccdaac\n",
"abadaba\naba\n",
"abbbaa\naaaaaaaaaaaaaaaaaaaa\n",
"bc\na\n",
"b\na\n",
"cbc\ncc\n",
"zaaa\nwaaa\n",
"bbbaabbaab\nabbaabbaab\n",
"y\nww\n",
"acaccaaadd\nacaccaaadc\n",
"aabbaa\nb\n",
"ccabcaaccc\nbcca\n",
"adbddaccdacbaab\nadaddcbddb\n",
"zzzzzzzzzzzz\nb\n",
"cba\ncac\n",
"bb\naa\n",
"aab\nab\n",
"zzzzzzzzzz\naaaaa`aaa\n",
"bbbaabbaaz\naabbbbaaba\n",
"bbbaabbaab\nbbaaabbaba\n",
"bcbcdddbcd\nabbbcbdcdc\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaz\nabbabababbbbbbbbaaaabaaabbbbabababbbbbaabbbbbbbbabbabbaaabbbaabbbababaabaabbababaabbbbaabbbbaabaaaba\n",
"bcbcdddbbz\ndbbcdbdcba\n",
"bbbbaaaccb\ncbacbaabb\n",
"adbddbccdacbaab\nadcdbddcda\n",
"acc\nbbb\n",
"z\nanan`\n",
"adbddbccdacbaaz\ndacdcbddbb\n",
"babbaccabb\nb\n",
"abc\nbbac\n",
"acaccaaadd\nddabcacbab\n",
"aaacaba\nabababa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nabbbbaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaaabbabababbaa\n",
"aabbabababbbaabababaababbbbbbabbbbabbbaaaaabbababbbbabbbbbabbbbabbaaaabababababbbbbabbbbaaabaaababba\nbbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabababbaabbaaabbbaaaaaaabaabbbb\n",
"aaabccadac\nbabaccbdac\n",
"bbbcaabcaa\ncacbabbbaa\n",
"aaabcbadaz\nacabcaadaa\n",
"qwertyz\npoiuytrewq\n",
"aac\naabb\n",
"czaaab\ndbcaef\n",
"aad\ncaa\n",
"adab\nbob\n",
"aaaaaaaaa\nb\n",
"abc\ndaa\n",
"ab\nc\n",
"aa\nb\n",
"z\nzy\n",
"cba\ndefg\n"
],
"output": [
"-1\n",
"abczaa\n",
"aad\n",
"daab\n",
"z\n",
"abc\n",
"bcbcdbdbdd\n",
"acabcaaacd\n",
"-1\n",
"caadccaaaz\n",
"-1\n",
"abaaabc\n",
"aaaabb\n",
"ac\n",
"-1\n",
"-1\n",
"aaaaaaaaa\n",
"ccc\n",
"cbdaabbbcc\n",
"aaaz\n",
"bbbaabbaba\n",
"z\n",
"acaccaadad\n",
"aaaabb\n",
"bccaaabccc\n",
"adaddccaabbbbcd\n",
"cab\n",
"ba\n",
"-1\n",
"zzzzzzzzzzzz\n",
"aa\n",
"cba\n",
"zaaaaaaaa\n",
"ab\n",
"aaa\n",
"aab\n",
"zzzzzzzzzz\n",
"abaabbbbaz\n",
"ababbaabbb\n",
"bbbbccdddd\n",
"abaaabaabbbbaabbbbaabababbaabaabababbbaabbbaaabbabbabbbbbbbbaabbbbbabababbbbaaabaaaabbbbbbbbabababbz\n",
"aabb\n",
"aaccbb\n",
"dbbccbddbz\n",
"cbacbaabbb\n",
"adcddcaaabbbbcd\n",
"bca\n",
"z\n",
"dacdcaddbbaabcz\n",
"acb\n",
"baaabbbbcc\n",
"abc\n",
"aaaaaaaaaaaaaaa\n",
"caaaaaccdd\n",
"ababaca\n",
"abbabaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaabbbabababbbb\n",
"bbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbb\n",
"aabcaaaccd\n",
"cacbababba\n",
"acabcaadaz\n",
"qwertyz\n",
"ab\n",
"abc\n",
"abccab\n",
"-1\n",
"abc",
"dbbdbdcbcd",
"acabcaaacd",
"-1",
"aaaaccdacz",
"abaaabd",
"aaabbb",
"bc",
"b",
"ccb",
"zaaa",
"abbaabbabb",
"y",
"acaccaaadd",
"baaaab",
"bccaaacccc",
"adaddccaaabbbcd",
"zzzzzzzzzzzz",
"cba",
"bb",
"aba",
"zzzzzzzzzz",
"aabbbbaabz",
"bbaaabbabb",
"bbbcccdddd",
"abbabababbbbbbbbaaaabaaabbbbabababbbbbaabbbbbbbbabbabbaaabbbaabbbababaabaabbababaabbbbaabbbbaabaaabz",
"dbbcdbdcbz",
"cbacbaabbb",
"adcdcaaabbbbcdd",
"cac",
"z",
"dacdcbddbbaaacz",
"baaabbbbcc",
"bca",
"ddacaaaacc",
"abacaaa",
"abbbbaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaaabbabababbbb",
"bbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
"bacaaaaccd",
"cacbbaaabb",
"acabdaaabz",
"qertwyz",
"aac",
"zaaabc",
"daa",
"daab",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1"
]
} | 2CODEFORCES
|
180_D. Name_959 | Everything got unclear to us in a far away constellation Tau Ceti. Specifically, the Taucetians choose names to their children in a very peculiar manner.
Two young parents abac and bbad think what name to give to their first-born child. They decided that the name will be the permutation of letters of string s. To keep up with the neighbours, they decided to call the baby so that the name was lexicographically strictly larger than the neighbour's son's name t.
On the other hand, they suspect that a name tax will be introduced shortly. According to it, the Taucetians with lexicographically larger names will pay larger taxes. That's the reason abac and bbad want to call the newborn so that the name was lexicographically strictly larger than name t and lexicographically minimum at that.
The lexicographical order of strings is the order we are all used to, the "dictionary" order. Such comparison is used in all modern programming languages to compare strings. Formally, a string p of length n is lexicographically less than string q of length m, if one of the two statements is correct:
* n < m, and p is the beginning (prefix) of string q (for example, "aba" is less than string "abaa"),
* p1 = q1, p2 = q2, ..., pk - 1 = qk - 1, pk < qk for some k (1 ≤ k ≤ min(n, m)), here characters in strings are numbered starting from 1.
Write a program that, given string s and the heighbours' child's name t determines the string that is the result of permutation of letters in s. The string should be lexicographically strictly more than t and also, lexicographically minimum.
Input
The first line contains a non-empty string s (1 ≤ |s| ≤ 5000), where |s| is its length. The second line contains a non-empty string t (1 ≤ |t| ≤ 5000), where |t| is its length. Both strings consist of lowercase Latin letters.
Output
Print the sought name or -1 if it doesn't exist.
Examples
Input
aad
aac
Output
aad
Input
abad
bob
Output
daab
Input
abc
defg
Output
-1
Input
czaaab
abcdef
Output
abczaa
Note
In the first sample the given string s is the sought one, consequently, we do not need to change the letter order there. | #include <bits/stdc++.h>
using namespace std;
const int Maxn = 5005;
const int Maxl = 26;
char a[Maxn], b[Maxn];
int alen, blen;
int freq[Maxl];
bool Possible(int pos) {
int cur = Maxl - 1, tk = 0;
for (int i = pos; i < blen; i++) {
while (cur >= 0 && tk == freq[cur]) {
cur--;
tk = 0;
}
if (cur > b[i] - 'a') return true;
if (cur < b[i] - 'a') return false;
tk++;
}
while (cur >= 0 && tk == freq[cur]) {
cur--;
tk = 0;
}
return cur >= 0;
}
bool getMore(char lim, char &bet) {
for (bet = lim + 1; bet - 'a' < Maxl; bet++)
if (freq[bet - 'a']) return true;
return false;
}
void writeTo(int pos) {
for (int i = 0; i < Maxl; i++)
while (freq[i]--) a[pos++] = 'a' + i;
printf("%s\n", a);
}
int main() {
scanf("%s", a);
alen = strlen(a);
scanf("%s", b);
blen = strlen(b);
for (int i = 0; i < alen; i++) freq[a[i] - 'a']++;
if (!Possible(0))
printf("-1\n");
else {
for (int i = 0; i < blen; i++) {
if (freq[b[i] - 'a']) {
freq[b[i] - 'a']--;
if (Possible(i + 1)) {
a[i] = b[i];
continue;
} else
freq[b[i] - 'a']++;
}
char c;
if (getMore(b[i], c)) {
freq[c - 'a']--;
a[i] = c;
writeTo(i + 1);
return 0;
} else {
printf("-1\n");
return 0;
}
}
writeTo(blen);
}
return 0;
}
| 2C++
| {
"input": [
"abc\ndefg\n",
"czaaab\nabcdef\n",
"aad\naac\n",
"abad\nbob\n",
"z\na\n",
"abc\naaac\n",
"bcbcdddbbd\nbcbcdbdbbd\n",
"aaabccadac\nacabbbabaa\n",
"a\nb\n",
"acaccaaadz\ncaadccaaaa\n",
"aa\nab\n",
"abacaba\naba\n",
"aabbaa\naaaaaaaaaaaaaaaaaaaa\n",
"ac\na\n",
"a\na\n",
"aabbaa\ncaaaaaaaaa\n",
"aaaaaaaaa\na\n",
"ccc\ncc\n",
"acbdcbacbb\ncbcddabcbdaccdd\n",
"zaaa\naaaw\n",
"bbbaabbaab\nbbbaabbaab\n",
"z\nww\n",
"acaccaaadd\nacaccaaadd\n",
"aabbaa\na\n",
"ccabcaabcc\nbcca\n",
"adbddbccdacbaab\nadaddcbddb\n",
"abc\ncaa\n",
"ab\nb\n",
"aa\naa\n",
"zzzzzzzzzzzz\na\n",
"aa\na\n",
"abc\ncac\n",
"aaaaaaaaz\nwwwwwwwwwwwwwwwwwwww\n",
"ab\naa\n",
"aaa\naa\n",
"aab\naa\n",
"zzzzzzzzzz\naaaaaaaaa\n",
"bbbaabbaaz\nabaabbbbaa\n",
"bbbaabbaab\nababbaaabb\n",
"bcbcdddbbd\nabbbcbdcdc\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaz\nabaaabaabbbbaabbbbaabababbaabaabababbbaabbbaaabbabbabbbbbbbbaabbbbbabababbbbaaabaaaabbbbbbbbabababba\n",
"abab\naaba\n",
"abcabc\naaccba\n",
"bcbcdddbbz\ndbbccbddba\n",
"bbbbaacacb\ncbacbaabb\n",
"adbddbccdacbaab\nadcddbdcda\n",
"abc\nbbb\n",
"z\nanana\n",
"adbddbccdacbaaz\ndacdcaddbb\n",
"abc\naca\n",
"babbaccbab\nb\n",
"abc\nabbc\n",
"aaaaaaaaaaaaaaa\naaaaaaaaaaaaaa\n",
"acaccaaadd\nbabcacbadd\n",
"abacaba\nabababa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nabbabaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaabbbabababbaa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nbbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabababbaabbaaabbbaaaaaaabaabbbb\n",
"aaabccadac\naabbccbdac\n",
"bbbcaabcaa\ncacbababab\n",
"aaabccadaz\nacabcaadaa\n",
"qwertyz\nqwertyuiop\n",
"ab\na\n",
"abc\naabb\n",
"abcabc\nabccaa\n",
"z\nzz\n",
"cba\naaac\n",
"bcbcdddbbd\ndbbdbdcbcb\n",
"cadaccbaaa\nacabbbabaa\n",
"b\nb\n",
"acaccaaadz\naaaaccdaac\n",
"abadaba\naba\n",
"abbbaa\naaaaaaaaaaaaaaaaaaaa\n",
"bc\na\n",
"b\na\n",
"cbc\ncc\n",
"zaaa\nwaaa\n",
"bbbaabbaab\nabbaabbaab\n",
"y\nww\n",
"acaccaaadd\nacaccaaadc\n",
"aabbaa\nb\n",
"ccabcaaccc\nbcca\n",
"adbddaccdacbaab\nadaddcbddb\n",
"zzzzzzzzzzzz\nb\n",
"cba\ncac\n",
"bb\naa\n",
"aab\nab\n",
"zzzzzzzzzz\naaaaa`aaa\n",
"bbbaabbaaz\naabbbbaaba\n",
"bbbaabbaab\nbbaaabbaba\n",
"bcbcdddbcd\nabbbcbdcdc\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaz\nabbabababbbbbbbbaaaabaaabbbbabababbbbbaabbbbbbbbabbabbaaabbbaabbbababaabaabbababaabbbbaabbbbaabaaaba\n",
"bcbcdddbbz\ndbbcdbdcba\n",
"bbbbaaaccb\ncbacbaabb\n",
"adbddbccdacbaab\nadcdbddcda\n",
"acc\nbbb\n",
"z\nanan`\n",
"adbddbccdacbaaz\ndacdcbddbb\n",
"babbaccabb\nb\n",
"abc\nbbac\n",
"acaccaaadd\nddabcacbab\n",
"aaacaba\nabababa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nabbbbaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaaabbabababbaa\n",
"aabbabababbbaabababaababbbbbbabbbbabbbaaaaabbababbbbabbbbbabbbbabbaaaabababababbbbbabbbbaaabaaababba\nbbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabababbaabbaaabbbaaaaaaabaabbbb\n",
"aaabccadac\nbabaccbdac\n",
"bbbcaabcaa\ncacbabbbaa\n",
"aaabcbadaz\nacabcaadaa\n",
"qwertyz\npoiuytrewq\n",
"aac\naabb\n",
"czaaab\ndbcaef\n",
"aad\ncaa\n",
"adab\nbob\n",
"aaaaaaaaa\nb\n",
"abc\ndaa\n",
"ab\nc\n",
"aa\nb\n",
"z\nzy\n",
"cba\ndefg\n"
],
"output": [
"-1\n",
"abczaa\n",
"aad\n",
"daab\n",
"z\n",
"abc\n",
"bcbcdbdbdd\n",
"acabcaaacd\n",
"-1\n",
"caadccaaaz\n",
"-1\n",
"abaaabc\n",
"aaaabb\n",
"ac\n",
"-1\n",
"-1\n",
"aaaaaaaaa\n",
"ccc\n",
"cbdaabbbcc\n",
"aaaz\n",
"bbbaabbaba\n",
"z\n",
"acaccaadad\n",
"aaaabb\n",
"bccaaabccc\n",
"adaddccaabbbbcd\n",
"cab\n",
"ba\n",
"-1\n",
"zzzzzzzzzzzz\n",
"aa\n",
"cba\n",
"zaaaaaaaa\n",
"ab\n",
"aaa\n",
"aab\n",
"zzzzzzzzzz\n",
"abaabbbbaz\n",
"ababbaabbb\n",
"bbbbccdddd\n",
"abaaabaabbbbaabbbbaabababbaabaabababbbaabbbaaabbabbabbbbbbbbaabbbbbabababbbbaaabaaaabbbbbbbbabababbz\n",
"aabb\n",
"aaccbb\n",
"dbbccbddbz\n",
"cbacbaabbb\n",
"adcddcaaabbbbcd\n",
"bca\n",
"z\n",
"dacdcaddbbaabcz\n",
"acb\n",
"baaabbbbcc\n",
"abc\n",
"aaaaaaaaaaaaaaa\n",
"caaaaaccdd\n",
"ababaca\n",
"abbabaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaabbbabababbbb\n",
"bbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbb\n",
"aabcaaaccd\n",
"cacbababba\n",
"acabcaadaz\n",
"qwertyz\n",
"ab\n",
"abc\n",
"abccab\n",
"-1\n",
"abc",
"dbbdbdcbcd",
"acabcaaacd",
"-1",
"aaaaccdacz",
"abaaabd",
"aaabbb",
"bc",
"b",
"ccb",
"zaaa",
"abbaabbabb",
"y",
"acaccaaadd",
"baaaab",
"bccaaacccc",
"adaddccaaabbbcd",
"zzzzzzzzzzzz",
"cba",
"bb",
"aba",
"zzzzzzzzzz",
"aabbbbaabz",
"bbaaabbabb",
"bbbcccdddd",
"abbabababbbbbbbbaaaabaaabbbbabababbbbbaabbbbbbbbabbabbaaabbbaabbbababaabaabbababaabbbbaabbbbaabaaabz",
"dbbcdbdcbz",
"cbacbaabbb",
"adcdcaaabbbbcdd",
"cac",
"z",
"dacdcbddbbaaacz",
"baaabbbbcc",
"bca",
"ddacaaaacc",
"abacaaa",
"abbbbaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaaabbabababbbb",
"bbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
"bacaaaaccd",
"cacbbaaabb",
"acabdaaabz",
"qertwyz",
"aac",
"zaaabc",
"daa",
"daab",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1"
]
} | 2CODEFORCES
|
180_D. Name_960 | Everything got unclear to us in a far away constellation Tau Ceti. Specifically, the Taucetians choose names to their children in a very peculiar manner.
Two young parents abac and bbad think what name to give to their first-born child. They decided that the name will be the permutation of letters of string s. To keep up with the neighbours, they decided to call the baby so that the name was lexicographically strictly larger than the neighbour's son's name t.
On the other hand, they suspect that a name tax will be introduced shortly. According to it, the Taucetians with lexicographically larger names will pay larger taxes. That's the reason abac and bbad want to call the newborn so that the name was lexicographically strictly larger than name t and lexicographically minimum at that.
The lexicographical order of strings is the order we are all used to, the "dictionary" order. Such comparison is used in all modern programming languages to compare strings. Formally, a string p of length n is lexicographically less than string q of length m, if one of the two statements is correct:
* n < m, and p is the beginning (prefix) of string q (for example, "aba" is less than string "abaa"),
* p1 = q1, p2 = q2, ..., pk - 1 = qk - 1, pk < qk for some k (1 ≤ k ≤ min(n, m)), here characters in strings are numbered starting from 1.
Write a program that, given string s and the heighbours' child's name t determines the string that is the result of permutation of letters in s. The string should be lexicographically strictly more than t and also, lexicographically minimum.
Input
The first line contains a non-empty string s (1 ≤ |s| ≤ 5000), where |s| is its length. The second line contains a non-empty string t (1 ≤ |t| ≤ 5000), where |t| is its length. Both strings consist of lowercase Latin letters.
Output
Print the sought name or -1 if it doesn't exist.
Examples
Input
aad
aac
Output
aad
Input
abad
bob
Output
daab
Input
abc
defg
Output
-1
Input
czaaab
abcdef
Output
abczaa
Note
In the first sample the given string s is the sought one, consequently, we do not need to change the letter order there. | def findmin(lcopy, toexceed):
toex = ord(toexceed) - 97
for each in lcopy[(toex+1):]:
if each > 0:
return True
return False
def arrange(lcopy, toexceed = None):
if toexceed is None:
ans = ""
for i in range(26):
ans += chr(i+97)*lcopy[i]
return ans
ans = ""
for i in range(ord(toexceed)-97+1, 26):
if lcopy[i] > 0:
ans += chr(i+97)
lcopy[i] -= 1
break
return ans + arrange(lcopy)
def operation(s1, s2):
first_count = [0]*26
for letter in s1:
first_count[ord(letter)-97] += 1
common = 0
lcopy = list(first_count)
for i in range(len(s2)):
letter = s2[i]
num = ord(letter) - 97
if lcopy[num] > 0:
lcopy[num] -= 1
common += 1
else:
break
found = False
ans = ""
#print(common)
for cval in range(common, -1, -1):
#print(cval)
if cval >= len(s1):
lcopy[ord(s2[cval-1])-97] += 1
continue
else:
if cval == len(s2):
found = True
ans = s2[:cval] + arrange(lcopy)
break
else:
#print("yo", s2[cval])
if findmin(lcopy, s2[cval]):
found = True
ans = s2[:cval] + arrange(lcopy, s2[cval])
break
else:
lcopy[ord(s2[cval-1])-97] += 1
if not found:
return -1
else:
return ans
s1 = input()
s2 = input()
print(operation(s1, s2))
| 3Python3
| {
"input": [
"abc\ndefg\n",
"czaaab\nabcdef\n",
"aad\naac\n",
"abad\nbob\n",
"z\na\n",
"abc\naaac\n",
"bcbcdddbbd\nbcbcdbdbbd\n",
"aaabccadac\nacabbbabaa\n",
"a\nb\n",
"acaccaaadz\ncaadccaaaa\n",
"aa\nab\n",
"abacaba\naba\n",
"aabbaa\naaaaaaaaaaaaaaaaaaaa\n",
"ac\na\n",
"a\na\n",
"aabbaa\ncaaaaaaaaa\n",
"aaaaaaaaa\na\n",
"ccc\ncc\n",
"acbdcbacbb\ncbcddabcbdaccdd\n",
"zaaa\naaaw\n",
"bbbaabbaab\nbbbaabbaab\n",
"z\nww\n",
"acaccaaadd\nacaccaaadd\n",
"aabbaa\na\n",
"ccabcaabcc\nbcca\n",
"adbddbccdacbaab\nadaddcbddb\n",
"abc\ncaa\n",
"ab\nb\n",
"aa\naa\n",
"zzzzzzzzzzzz\na\n",
"aa\na\n",
"abc\ncac\n",
"aaaaaaaaz\nwwwwwwwwwwwwwwwwwwww\n",
"ab\naa\n",
"aaa\naa\n",
"aab\naa\n",
"zzzzzzzzzz\naaaaaaaaa\n",
"bbbaabbaaz\nabaabbbbaa\n",
"bbbaabbaab\nababbaaabb\n",
"bcbcdddbbd\nabbbcbdcdc\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaz\nabaaabaabbbbaabbbbaabababbaabaabababbbaabbbaaabbabbabbbbbbbbaabbbbbabababbbbaaabaaaabbbbbbbbabababba\n",
"abab\naaba\n",
"abcabc\naaccba\n",
"bcbcdddbbz\ndbbccbddba\n",
"bbbbaacacb\ncbacbaabb\n",
"adbddbccdacbaab\nadcddbdcda\n",
"abc\nbbb\n",
"z\nanana\n",
"adbddbccdacbaaz\ndacdcaddbb\n",
"abc\naca\n",
"babbaccbab\nb\n",
"abc\nabbc\n",
"aaaaaaaaaaaaaaa\naaaaaaaaaaaaaa\n",
"acaccaaadd\nbabcacbadd\n",
"abacaba\nabababa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nabbabaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaabbbabababbaa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nbbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabababbaabbaaabbbaaaaaaabaabbbb\n",
"aaabccadac\naabbccbdac\n",
"bbbcaabcaa\ncacbababab\n",
"aaabccadaz\nacabcaadaa\n",
"qwertyz\nqwertyuiop\n",
"ab\na\n",
"abc\naabb\n",
"abcabc\nabccaa\n",
"z\nzz\n",
"cba\naaac\n",
"bcbcdddbbd\ndbbdbdcbcb\n",
"cadaccbaaa\nacabbbabaa\n",
"b\nb\n",
"acaccaaadz\naaaaccdaac\n",
"abadaba\naba\n",
"abbbaa\naaaaaaaaaaaaaaaaaaaa\n",
"bc\na\n",
"b\na\n",
"cbc\ncc\n",
"zaaa\nwaaa\n",
"bbbaabbaab\nabbaabbaab\n",
"y\nww\n",
"acaccaaadd\nacaccaaadc\n",
"aabbaa\nb\n",
"ccabcaaccc\nbcca\n",
"adbddaccdacbaab\nadaddcbddb\n",
"zzzzzzzzzzzz\nb\n",
"cba\ncac\n",
"bb\naa\n",
"aab\nab\n",
"zzzzzzzzzz\naaaaa`aaa\n",
"bbbaabbaaz\naabbbbaaba\n",
"bbbaabbaab\nbbaaabbaba\n",
"bcbcdddbcd\nabbbcbdcdc\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaz\nabbabababbbbbbbbaaaabaaabbbbabababbbbbaabbbbbbbbabbabbaaabbbaabbbababaabaabbababaabbbbaabbbbaabaaaba\n",
"bcbcdddbbz\ndbbcdbdcba\n",
"bbbbaaaccb\ncbacbaabb\n",
"adbddbccdacbaab\nadcdbddcda\n",
"acc\nbbb\n",
"z\nanan`\n",
"adbddbccdacbaaz\ndacdcbddbb\n",
"babbaccabb\nb\n",
"abc\nbbac\n",
"acaccaaadd\nddabcacbab\n",
"aaacaba\nabababa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nabbbbaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaaabbabababbaa\n",
"aabbabababbbaabababaababbbbbbabbbbabbbaaaaabbababbbbabbbbbabbbbabbaaaabababababbbbbabbbbaaabaaababba\nbbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabababbaabbaaabbbaaaaaaabaabbbb\n",
"aaabccadac\nbabaccbdac\n",
"bbbcaabcaa\ncacbabbbaa\n",
"aaabcbadaz\nacabcaadaa\n",
"qwertyz\npoiuytrewq\n",
"aac\naabb\n",
"czaaab\ndbcaef\n",
"aad\ncaa\n",
"adab\nbob\n",
"aaaaaaaaa\nb\n",
"abc\ndaa\n",
"ab\nc\n",
"aa\nb\n",
"z\nzy\n",
"cba\ndefg\n"
],
"output": [
"-1\n",
"abczaa\n",
"aad\n",
"daab\n",
"z\n",
"abc\n",
"bcbcdbdbdd\n",
"acabcaaacd\n",
"-1\n",
"caadccaaaz\n",
"-1\n",
"abaaabc\n",
"aaaabb\n",
"ac\n",
"-1\n",
"-1\n",
"aaaaaaaaa\n",
"ccc\n",
"cbdaabbbcc\n",
"aaaz\n",
"bbbaabbaba\n",
"z\n",
"acaccaadad\n",
"aaaabb\n",
"bccaaabccc\n",
"adaddccaabbbbcd\n",
"cab\n",
"ba\n",
"-1\n",
"zzzzzzzzzzzz\n",
"aa\n",
"cba\n",
"zaaaaaaaa\n",
"ab\n",
"aaa\n",
"aab\n",
"zzzzzzzzzz\n",
"abaabbbbaz\n",
"ababbaabbb\n",
"bbbbccdddd\n",
"abaaabaabbbbaabbbbaabababbaabaabababbbaabbbaaabbabbabbbbbbbbaabbbbbabababbbbaaabaaaabbbbbbbbabababbz\n",
"aabb\n",
"aaccbb\n",
"dbbccbddbz\n",
"cbacbaabbb\n",
"adcddcaaabbbbcd\n",
"bca\n",
"z\n",
"dacdcaddbbaabcz\n",
"acb\n",
"baaabbbbcc\n",
"abc\n",
"aaaaaaaaaaaaaaa\n",
"caaaaaccdd\n",
"ababaca\n",
"abbabaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaabbbabababbbb\n",
"bbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbb\n",
"aabcaaaccd\n",
"cacbababba\n",
"acabcaadaz\n",
"qwertyz\n",
"ab\n",
"abc\n",
"abccab\n",
"-1\n",
"abc",
"dbbdbdcbcd",
"acabcaaacd",
"-1",
"aaaaccdacz",
"abaaabd",
"aaabbb",
"bc",
"b",
"ccb",
"zaaa",
"abbaabbabb",
"y",
"acaccaaadd",
"baaaab",
"bccaaacccc",
"adaddccaaabbbcd",
"zzzzzzzzzzzz",
"cba",
"bb",
"aba",
"zzzzzzzzzz",
"aabbbbaabz",
"bbaaabbabb",
"bbbcccdddd",
"abbabababbbbbbbbaaaabaaabbbbabababbbbbaabbbbbbbbabbabbaaabbbaabbbababaabaabbababaabbbbaabbbbaabaaabz",
"dbbcdbdcbz",
"cbacbaabbb",
"adcdcaaabbbbcdd",
"cac",
"z",
"dacdcbddbbaaacz",
"baaabbbbcc",
"bca",
"ddacaaaacc",
"abacaaa",
"abbbbaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaaabbabababbbb",
"bbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
"bacaaaaccd",
"cacbbaaabb",
"acabdaaabz",
"qertwyz",
"aac",
"zaaabc",
"daa",
"daab",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1"
]
} | 2CODEFORCES
|
180_D. Name_961 | Everything got unclear to us in a far away constellation Tau Ceti. Specifically, the Taucetians choose names to their children in a very peculiar manner.
Two young parents abac and bbad think what name to give to their first-born child. They decided that the name will be the permutation of letters of string s. To keep up with the neighbours, they decided to call the baby so that the name was lexicographically strictly larger than the neighbour's son's name t.
On the other hand, they suspect that a name tax will be introduced shortly. According to it, the Taucetians with lexicographically larger names will pay larger taxes. That's the reason abac and bbad want to call the newborn so that the name was lexicographically strictly larger than name t and lexicographically minimum at that.
The lexicographical order of strings is the order we are all used to, the "dictionary" order. Such comparison is used in all modern programming languages to compare strings. Formally, a string p of length n is lexicographically less than string q of length m, if one of the two statements is correct:
* n < m, and p is the beginning (prefix) of string q (for example, "aba" is less than string "abaa"),
* p1 = q1, p2 = q2, ..., pk - 1 = qk - 1, pk < qk for some k (1 ≤ k ≤ min(n, m)), here characters in strings are numbered starting from 1.
Write a program that, given string s and the heighbours' child's name t determines the string that is the result of permutation of letters in s. The string should be lexicographically strictly more than t and also, lexicographically minimum.
Input
The first line contains a non-empty string s (1 ≤ |s| ≤ 5000), where |s| is its length. The second line contains a non-empty string t (1 ≤ |t| ≤ 5000), where |t| is its length. Both strings consist of lowercase Latin letters.
Output
Print the sought name or -1 if it doesn't exist.
Examples
Input
aad
aac
Output
aad
Input
abad
bob
Output
daab
Input
abc
defg
Output
-1
Input
czaaab
abcdef
Output
abczaa
Note
In the first sample the given string s is the sought one, consequently, we do not need to change the letter order there. | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class D {
final int MOD = 1000000007;
final double eps = 1e-12;
public D () throws IOException {
char [] S = sc.nextChars();
char [] T = sc.nextChars();
start();
int [] C = new int [200];
for (char s : S)
++C[s];
int N = Math.min(S.length, T.length);
out: for (int n = N; n >= 0; --n) {
int [] Q = Arrays.copyOf(C, 200);
char [] D = new char [S.length];
for (int i = 0; i < n; ++i) {
char z = T[i];
if (Q[z] > 0) {
--Q[z];
D[i] = z;
} else
continue out;
}
boolean good = false;
if (n == T.length) {
if (S.length > n) good = true;
else continue out;
}
if (n < T.length) {
int y = T[n];
for (int x = (y+1); x < 200; ++x)
if (Q[x] > 0) {
--Q[x];
D[n] = (char)x;
good = true;
break;
}
if (!good) continue out;
++n;
}
for (int i = n, j = 0; i < S.length; ++i) {
while (Q[j] == 0) ++j;
D[i] = (char)j; --Q[j];
}
exit(new String(D));
}
exit(-1);
}
////////////////////////////////////////////////////////////////////////////////////
static MyScanner sc;
static void print (Object... a) {
StringBuffer b = new StringBuffer();
for (Object o : a)
b.append(" ").append(o);
System.out.println(b.toString().trim());
}
static void exit (Object... a) {
print(a);
System.out.flush();
exit();
}
static void exit () {
System.err.println("------------------");
System.err.println("Time: " + (millis() - t) / 1000.0);
System.exit(0);
}
static class MyScanner {
String next() throws IOException {
newLine();
return line[index++];
}
char [] nextChars() throws IOException {
return next().toCharArray();
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
String nextLine() throws IOException {
line = null;
return r.readLine();
}
String [] nextStrings() throws IOException {
line = null;
return r.readLine().split(" ");
}
int [] nextInts() throws IOException {
String [] L = nextStrings();
int [] res = new int [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Integer.parseInt(L[i]);
return res;
}
long [] nextLongs() throws IOException {
String [] L = nextStrings();
long [] res = new long [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Long.parseLong(L[i]);
return res;
}
boolean eol() {
return index == line.length;
}
//////////////////////////////////////////////
private final BufferedReader r;
MyScanner () throws IOException {
this(new BufferedReader(new InputStreamReader(System.in)));
}
MyScanner(BufferedReader r) throws IOException {
this.r = r;
}
private String [] line;
private int index;
private void newLine() throws IOException {
if (line == null || eol()) {
line = r.readLine().split(" ");
index = 0;
}
}
}
////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) throws IOException {
run();
exit();
}
static void start() {
t = millis();
}
static void run () throws IOException {
sc = new MyScanner ();
new D();
}
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
| 4JAVA
| {
"input": [
"abc\ndefg\n",
"czaaab\nabcdef\n",
"aad\naac\n",
"abad\nbob\n",
"z\na\n",
"abc\naaac\n",
"bcbcdddbbd\nbcbcdbdbbd\n",
"aaabccadac\nacabbbabaa\n",
"a\nb\n",
"acaccaaadz\ncaadccaaaa\n",
"aa\nab\n",
"abacaba\naba\n",
"aabbaa\naaaaaaaaaaaaaaaaaaaa\n",
"ac\na\n",
"a\na\n",
"aabbaa\ncaaaaaaaaa\n",
"aaaaaaaaa\na\n",
"ccc\ncc\n",
"acbdcbacbb\ncbcddabcbdaccdd\n",
"zaaa\naaaw\n",
"bbbaabbaab\nbbbaabbaab\n",
"z\nww\n",
"acaccaaadd\nacaccaaadd\n",
"aabbaa\na\n",
"ccabcaabcc\nbcca\n",
"adbddbccdacbaab\nadaddcbddb\n",
"abc\ncaa\n",
"ab\nb\n",
"aa\naa\n",
"zzzzzzzzzzzz\na\n",
"aa\na\n",
"abc\ncac\n",
"aaaaaaaaz\nwwwwwwwwwwwwwwwwwwww\n",
"ab\naa\n",
"aaa\naa\n",
"aab\naa\n",
"zzzzzzzzzz\naaaaaaaaa\n",
"bbbaabbaaz\nabaabbbbaa\n",
"bbbaabbaab\nababbaaabb\n",
"bcbcdddbbd\nabbbcbdcdc\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaz\nabaaabaabbbbaabbbbaabababbaabaabababbbaabbbaaabbabbabbbbbbbbaabbbbbabababbbbaaabaaaabbbbbbbbabababba\n",
"abab\naaba\n",
"abcabc\naaccba\n",
"bcbcdddbbz\ndbbccbddba\n",
"bbbbaacacb\ncbacbaabb\n",
"adbddbccdacbaab\nadcddbdcda\n",
"abc\nbbb\n",
"z\nanana\n",
"adbddbccdacbaaz\ndacdcaddbb\n",
"abc\naca\n",
"babbaccbab\nb\n",
"abc\nabbc\n",
"aaaaaaaaaaaaaaa\naaaaaaaaaaaaaa\n",
"acaccaaadd\nbabcacbadd\n",
"abacaba\nabababa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nabbabaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaabbbabababbaa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nbbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabababbaabbaaabbbaaaaaaabaabbbb\n",
"aaabccadac\naabbccbdac\n",
"bbbcaabcaa\ncacbababab\n",
"aaabccadaz\nacabcaadaa\n",
"qwertyz\nqwertyuiop\n",
"ab\na\n",
"abc\naabb\n",
"abcabc\nabccaa\n",
"z\nzz\n",
"cba\naaac\n",
"bcbcdddbbd\ndbbdbdcbcb\n",
"cadaccbaaa\nacabbbabaa\n",
"b\nb\n",
"acaccaaadz\naaaaccdaac\n",
"abadaba\naba\n",
"abbbaa\naaaaaaaaaaaaaaaaaaaa\n",
"bc\na\n",
"b\na\n",
"cbc\ncc\n",
"zaaa\nwaaa\n",
"bbbaabbaab\nabbaabbaab\n",
"y\nww\n",
"acaccaaadd\nacaccaaadc\n",
"aabbaa\nb\n",
"ccabcaaccc\nbcca\n",
"adbddaccdacbaab\nadaddcbddb\n",
"zzzzzzzzzzzz\nb\n",
"cba\ncac\n",
"bb\naa\n",
"aab\nab\n",
"zzzzzzzzzz\naaaaa`aaa\n",
"bbbaabbaaz\naabbbbaaba\n",
"bbbaabbaab\nbbaaabbaba\n",
"bcbcdddbcd\nabbbcbdcdc\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaz\nabbabababbbbbbbbaaaabaaabbbbabababbbbbaabbbbbbbbabbabbaaabbbaabbbababaabaabbababaabbbbaabbbbaabaaaba\n",
"bcbcdddbbz\ndbbcdbdcba\n",
"bbbbaaaccb\ncbacbaabb\n",
"adbddbccdacbaab\nadcdbddcda\n",
"acc\nbbb\n",
"z\nanan`\n",
"adbddbccdacbaaz\ndacdcbddbb\n",
"babbaccabb\nb\n",
"abc\nbbac\n",
"acaccaaadd\nddabcacbab\n",
"aaacaba\nabababa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nabbbbaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaaabbabababbaa\n",
"aabbabababbbaabababaababbbbbbabbbbabbbaaaaabbababbbbabbbbbabbbbabbaaaabababababbbbbabbbbaaabaaababba\nbbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabababbaabbaaabbbaaaaaaabaabbbb\n",
"aaabccadac\nbabaccbdac\n",
"bbbcaabcaa\ncacbabbbaa\n",
"aaabcbadaz\nacabcaadaa\n",
"qwertyz\npoiuytrewq\n",
"aac\naabb\n",
"czaaab\ndbcaef\n",
"aad\ncaa\n",
"adab\nbob\n",
"aaaaaaaaa\nb\n",
"abc\ndaa\n",
"ab\nc\n",
"aa\nb\n",
"z\nzy\n",
"cba\ndefg\n"
],
"output": [
"-1\n",
"abczaa\n",
"aad\n",
"daab\n",
"z\n",
"abc\n",
"bcbcdbdbdd\n",
"acabcaaacd\n",
"-1\n",
"caadccaaaz\n",
"-1\n",
"abaaabc\n",
"aaaabb\n",
"ac\n",
"-1\n",
"-1\n",
"aaaaaaaaa\n",
"ccc\n",
"cbdaabbbcc\n",
"aaaz\n",
"bbbaabbaba\n",
"z\n",
"acaccaadad\n",
"aaaabb\n",
"bccaaabccc\n",
"adaddccaabbbbcd\n",
"cab\n",
"ba\n",
"-1\n",
"zzzzzzzzzzzz\n",
"aa\n",
"cba\n",
"zaaaaaaaa\n",
"ab\n",
"aaa\n",
"aab\n",
"zzzzzzzzzz\n",
"abaabbbbaz\n",
"ababbaabbb\n",
"bbbbccdddd\n",
"abaaabaabbbbaabbbbaabababbaabaabababbbaabbbaaabbabbabbbbbbbbaabbbbbabababbbbaaabaaaabbbbbbbbabababbz\n",
"aabb\n",
"aaccbb\n",
"dbbccbddbz\n",
"cbacbaabbb\n",
"adcddcaaabbbbcd\n",
"bca\n",
"z\n",
"dacdcaddbbaabcz\n",
"acb\n",
"baaabbbbcc\n",
"abc\n",
"aaaaaaaaaaaaaaa\n",
"caaaaaccdd\n",
"ababaca\n",
"abbabaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaabbbabababbbb\n",
"bbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbb\n",
"aabcaaaccd\n",
"cacbababba\n",
"acabcaadaz\n",
"qwertyz\n",
"ab\n",
"abc\n",
"abccab\n",
"-1\n",
"abc",
"dbbdbdcbcd",
"acabcaaacd",
"-1",
"aaaaccdacz",
"abaaabd",
"aaabbb",
"bc",
"b",
"ccb",
"zaaa",
"abbaabbabb",
"y",
"acaccaaadd",
"baaaab",
"bccaaacccc",
"adaddccaaabbbcd",
"zzzzzzzzzzzz",
"cba",
"bb",
"aba",
"zzzzzzzzzz",
"aabbbbaabz",
"bbaaabbabb",
"bbbcccdddd",
"abbabababbbbbbbbaaaabaaabbbbabababbbbbaabbbbbbbbabbabbaaabbbaabbbababaabaabbababaabbbbaabbbbaabaaabz",
"dbbcdbdcbz",
"cbacbaabbb",
"adcdcaaabbbbcdd",
"cac",
"z",
"dacdcbddbbaaacz",
"baaabbbbcc",
"bca",
"ddacaaaacc",
"abacaaa",
"abbbbaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaaabbabababbbb",
"bbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
"bacaaaaccd",
"cacbbaaabb",
"acabdaaabz",
"qertwyz",
"aac",
"zaaabc",
"daa",
"daab",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1"
]
} | 2CODEFORCES
|
203_E. Transportation_962 | Valera came to Japan and bought many robots for his research. He's already at the airport, the plane will fly very soon and Valera urgently needs to bring all robots to the luggage compartment.
The robots are self-propelled (they can potentially move on their own), some of them even have compartments to carry other robots. More precisely, for the i-th robot we know value ci — the number of robots it can carry. In this case, each of ci transported robots can additionally carry other robots.
However, the robots need to be filled with fuel to go, so Valera spent all his last money and bought S liters of fuel. He learned that each robot has a restriction on travel distances. Thus, in addition to features ci, the i-th robot has two features fi and li — the amount of fuel (in liters) needed to move the i-th robot, and the maximum distance that the robot can go.
Due to the limited amount of time and fuel, Valera wants to move the maximum number of robots to the luggage compartment. He operates as follows.
* First Valera selects some robots that will travel to the luggage compartment on their own. In this case the total amount of fuel required to move all these robots must not exceed S.
* Then Valera seats the robots into the compartments, so as to transport as many robots as possible. Note that if a robot doesn't move by itself, you can put it in another not moving robot that is moved directly or indirectly by a moving robot.
* After that all selected and seated robots along with Valera go to the luggage compartment and the rest robots will be lost.
There are d meters to the luggage compartment. Therefore, the robots that will carry the rest, must have feature li of not less than d. During the moving Valera cannot stop or change the location of the robots in any way.
Help Valera calculate the maximum number of robots that he will be able to take home, and the minimum amount of fuel he will have to spend, because the remaining fuel will come in handy in Valera's research.
Input
The first line contains three space-separated integers n, d, S (1 ≤ n ≤ 105, 1 ≤ d, S ≤ 109). The first number represents the number of robots, the second one — the distance to the luggage compartment and the third one — the amount of available fuel.
Next n lines specify the robots. The i-th line contains three space-separated integers ci, fi, li (0 ≤ ci, fi, li ≤ 109) — the i-th robot's features. The first number is the number of robots the i-th robot can carry, the second number is the amount of fuel needed for the i-th robot to move and the third one shows the maximum distance the i-th robot can go.
Output
Print two space-separated integers — the maximum number of robots Valera can transport to the luggage compartment and the minimum amount of fuel he will need for that. If Valera won't manage to get any robots to the luggage compartment, print two zeroes.
Examples
Input
3 10 10
0 12 10
1 6 10
0 1 1
Output
2 6
Input
2 7 10
3 12 10
5 16 8
Output
0 0
Input
4 8 10
0 12 3
1 1 0
0 3 11
1 6 9
Output
4 9 | n,d,S=map(int,raw_input().split())
c0=[]
c1=[]
c2=1
for i in range(n):
c,f,l=map(int,raw_input().split())
c2+=c
if c>0:
c1.append([f,l])
else:
c0.append([f,l])
c2=n if c2>n else c2
def solc0(N,T):
res=0;ct=0
c0.sort()
for a in c0:
if ct<N and a[1]>=d and res+a[0]<=T: res+=a[0];ct+=1
return ct,res
def solc1():
res=-1;i=0
c1.sort()
for a in c1:
i+=1
if a[0]<=S and a[1]>=d:
res=a[0];c0.extend(c1[i:])
break
if res<0 :
return 0,0
else:
tc,tr=solc0(n-c2,S-res)
ct=tc+c2;res+=tr
return ct,res
ct,res=solc0(n,S)
ct2,res2=solc1()
if ct<ct2 or (ct==ct2 and res>res2):ct,res=ct2,res2
print ct,res
| 1Python2
| {
"input": [
"2 7 10\n3 12 10\n5 16 8\n",
"4 8 10\n0 12 3\n1 1 0\n0 3 11\n1 6 9\n",
"3 10 10\n0 12 10\n1 6 10\n0 1 1\n",
"6 4 3\n0 1 2\n1 3 0\n0 4 5\n1 4 4\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 57\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n89 52 11\n77 89 71\n68 93 50\n47 95 26\n58 95 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"11 1 10\n1 10 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n",
"5 1 7\n0 4 1\n6 10 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 300\n0 195 14\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 204 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n0 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 8\n3 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n30 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n20 4 11\n25 36 13\n39 38 6\n",
"5 10 6\n0 2 2\n0 11 8\n2 3 8\n0 3 0\n1 2 8\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 2 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 2\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 8\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 9 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n3 1 7\n1 16 8\n5 10 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 5\n1 4 4\n1 2 2\n0 4 2\n",
"5 1 7\n0 4 1\n0 10 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 300\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 204 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n0 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 8\n6 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n30 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n20 4 11\n25 36 13\n39 21 6\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 2 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 0\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 8\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 9 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 10 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"4 8 12\n0 12 3\n1 1 0\n0 3 11\n1 6 9\n",
"3 10 10\n0 12 10\n2 6 10\n0 1 1\n",
"4 8 12\n0 12 3\n1 1 0\n0 2 11\n1 6 9\n",
"3 10 10\n0 12 10\n0 6 10\n0 1 1\n",
"4 8 12\n0 12 3\n1 1 0\n0 2 11\n0 6 9\n",
"8 6 3\n1 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 12\n6 8 3\n3 1 0\n0 5 7\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n89 52 11\n77 89 71\n68 93 50\n47 95 26\n58 95 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 10 6\n0 2 2\n0 11 8\n2 3 8\n0 3 0\n2 2 8\n",
"2 7 10\n3 12 10\n5 16 2\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 10\n1 4 4\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n89 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 1 7\n0 4 1\n0 19 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 300\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 93 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n0 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 12\n6 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n30 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n24 4 11\n25 36 13\n39 21 6\n",
"5 10 6\n1 2 2\n0 11 8\n2 3 8\n0 3 0\n2 2 8\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 2 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 0\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 10\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 9 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 19 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"2 7 10\n4 12 10\n5 16 2\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 10\n1 4 7\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n77 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 1 7\n0 1 1\n0 19 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 361\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 93 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n1 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 12\n6 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n16 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n24 4 11\n25 36 13\n39 21 6\n",
"5 10 6\n1 2 2\n0 11 8\n2 1 8\n0 3 0\n2 2 8\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 0 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 0\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 10\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 16 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 19 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"2 7 10\n4 12 15\n5 16 2\n",
"3 10 10\n0 12 10\n0 6 10\n0 0 1\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 11\n1 4 7\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n3 6 11\n2 12 55\n58 87 94\n99 45 48\n77 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 1 7\n0 1 1\n0 19 5\n9 0 2\n8 0 0\n9 1 4\n",
"10 18 361\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 93 15\n0 166 17\n0 207 20\n-1 195 11\n",
"11 2 21\n10 22 6\n19 3 5\n16 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 0\n24 4 11\n25 36 13\n39 21 6\n",
"5 10 6\n1 2 2\n0 11 10\n2 1 8\n0 3 0\n2 2 8\n",
"20 10 7\n3 17 0\n3 1 5\n0 16 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 30 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"2 7 10\n4 12 15\n5 16 4\n",
"4 8 12\n0 12 3\n0 1 0\n0 2 11\n0 6 9\n",
"3 10 10\n0 12 1\n0 6 10\n0 0 1\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 11\n1 4 7\n1 2 2\n0 4 3\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n3 6 11\n2 12 55\n58 87 94\n99 45 48\n77 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n98 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n"
],
"output": [
"0 0\n",
"4 9\n",
"2 6\n",
"0 0\n",
"0 0\n",
"10 10\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"0 0\n",
"50 5\n",
"20 2\n",
"0 0\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"50 5\n",
"20 2\n",
"4 9\n",
"3 6\n",
"4 8\n",
"1 6\n",
"2 8\n",
"8 2\n",
"0 0\n",
"0 0\n",
"0 0\n",
"0 0\n",
"0 0\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"0 0\n",
"50 5\n",
"20 2\n",
"0 0\n",
"0 0\n",
"0 0\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"0 0\n",
"50 5\n",
"20 2\n",
"0 0\n",
"1 6\n",
"0 0\n",
"0 0\n",
"5 0\n",
"1 207\n",
"11 3\n",
"0 0\n",
"20 2\n",
"0 0\n",
"2 8\n",
"1 6\n",
"0 0\n",
"0 0\n"
]
} | 2CODEFORCES
|
203_E. Transportation_963 | Valera came to Japan and bought many robots for his research. He's already at the airport, the plane will fly very soon and Valera urgently needs to bring all robots to the luggage compartment.
The robots are self-propelled (they can potentially move on their own), some of them even have compartments to carry other robots. More precisely, for the i-th robot we know value ci — the number of robots it can carry. In this case, each of ci transported robots can additionally carry other robots.
However, the robots need to be filled with fuel to go, so Valera spent all his last money and bought S liters of fuel. He learned that each robot has a restriction on travel distances. Thus, in addition to features ci, the i-th robot has two features fi and li — the amount of fuel (in liters) needed to move the i-th robot, and the maximum distance that the robot can go.
Due to the limited amount of time and fuel, Valera wants to move the maximum number of robots to the luggage compartment. He operates as follows.
* First Valera selects some robots that will travel to the luggage compartment on their own. In this case the total amount of fuel required to move all these robots must not exceed S.
* Then Valera seats the robots into the compartments, so as to transport as many robots as possible. Note that if a robot doesn't move by itself, you can put it in another not moving robot that is moved directly or indirectly by a moving robot.
* After that all selected and seated robots along with Valera go to the luggage compartment and the rest robots will be lost.
There are d meters to the luggage compartment. Therefore, the robots that will carry the rest, must have feature li of not less than d. During the moving Valera cannot stop or change the location of the robots in any way.
Help Valera calculate the maximum number of robots that he will be able to take home, and the minimum amount of fuel he will have to spend, because the remaining fuel will come in handy in Valera's research.
Input
The first line contains three space-separated integers n, d, S (1 ≤ n ≤ 105, 1 ≤ d, S ≤ 109). The first number represents the number of robots, the second one — the distance to the luggage compartment and the third one — the amount of available fuel.
Next n lines specify the robots. The i-th line contains three space-separated integers ci, fi, li (0 ≤ ci, fi, li ≤ 109) — the i-th robot's features. The first number is the number of robots the i-th robot can carry, the second number is the amount of fuel needed for the i-th robot to move and the third one shows the maximum distance the i-th robot can go.
Output
Print two space-separated integers — the maximum number of robots Valera can transport to the luggage compartment and the minimum amount of fuel he will need for that. If Valera won't manage to get any robots to the luggage compartment, print two zeroes.
Examples
Input
3 10 10
0 12 10
1 6 10
0 1 1
Output
2 6
Input
2 7 10
3 12 10
5 16 8
Output
0 0
Input
4 8 10
0 12 3
1 1 0
0 3 11
1 6 9
Output
4 9 | #include <bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:200000000")
const double EPS = 1E-9;
const int INF = 1000000000;
const long long INF64 = (long long)1E18;
const double PI = 3.1415926535897932384626433832795;
struct robot {
int c, f, l;
};
int d;
inline bool operator<(const robot &a, const robot &b) {
if (a.l != b.l) return a.l < b.l;
if (!a.l) return false;
return a.f > b.f;
}
int sz, bad, ans1, ans2;
long long t[110000];
void take(int t1, int f1, int t2, int f2) {
t1 += t2;
t2 -= min(t2, bad);
int n = sz - t2;
int pos = int(upper_bound(t, t + n, f2) - t);
t1 += pos;
if (pos) f1 += (int)t[pos - 1];
if (t1 > ans1 || t1 == ans1 && f1 < ans2) {
ans1 = t1;
ans2 = f1;
}
}
int main() {
int n, s;
cin >> n >> d >> s;
vector<robot> a, b;
for (int i = 0; i < (int)(n); i++) {
robot x;
scanf("%d%d%d", &x.c, &x.f, &x.l);
x.l = x.l >= d;
if (x.c)
a.push_back(x);
else
b.push_back(x);
}
sort(a.begin(), a.end());
sort(b.begin(), b.end());
sz = 0;
long long sum = 0;
for (int i = (int)(b.size()) - 1; i >= 0; i--)
if (b[i].l) {
sum += b[i].f;
t[sz++] = sum;
} else
bad++;
take(0, 0, 0, s);
long long free = 0;
for (int i = 0; i < (int)(a.size()); i++) free += a[i].c;
free -= (int)a.size();
sum = 0;
for (int i = (int)(a.size()) - 1; i >= 0; i--)
if (a[i].l && s >= a[i].f) {
sum += a[i].f;
s -= a[i].f;
free++;
take((int)a.size(), (int)sum, (int)min(free, (long long)b.size()), s);
}
cout << ans1 << ' ' << ans2 << endl;
return 0;
}
| 2C++
| {
"input": [
"2 7 10\n3 12 10\n5 16 8\n",
"4 8 10\n0 12 3\n1 1 0\n0 3 11\n1 6 9\n",
"3 10 10\n0 12 10\n1 6 10\n0 1 1\n",
"6 4 3\n0 1 2\n1 3 0\n0 4 5\n1 4 4\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 57\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n89 52 11\n77 89 71\n68 93 50\n47 95 26\n58 95 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"11 1 10\n1 10 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n",
"5 1 7\n0 4 1\n6 10 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 300\n0 195 14\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 204 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n0 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 8\n3 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n30 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n20 4 11\n25 36 13\n39 38 6\n",
"5 10 6\n0 2 2\n0 11 8\n2 3 8\n0 3 0\n1 2 8\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 2 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 2\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 8\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 9 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n3 1 7\n1 16 8\n5 10 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 5\n1 4 4\n1 2 2\n0 4 2\n",
"5 1 7\n0 4 1\n0 10 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 300\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 204 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n0 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 8\n6 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n30 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n20 4 11\n25 36 13\n39 21 6\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 2 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 0\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 8\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 9 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 10 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"4 8 12\n0 12 3\n1 1 0\n0 3 11\n1 6 9\n",
"3 10 10\n0 12 10\n2 6 10\n0 1 1\n",
"4 8 12\n0 12 3\n1 1 0\n0 2 11\n1 6 9\n",
"3 10 10\n0 12 10\n0 6 10\n0 1 1\n",
"4 8 12\n0 12 3\n1 1 0\n0 2 11\n0 6 9\n",
"8 6 3\n1 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 12\n6 8 3\n3 1 0\n0 5 7\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n89 52 11\n77 89 71\n68 93 50\n47 95 26\n58 95 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 10 6\n0 2 2\n0 11 8\n2 3 8\n0 3 0\n2 2 8\n",
"2 7 10\n3 12 10\n5 16 2\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 10\n1 4 4\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n89 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 1 7\n0 4 1\n0 19 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 300\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 93 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n0 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 12\n6 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n30 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n24 4 11\n25 36 13\n39 21 6\n",
"5 10 6\n1 2 2\n0 11 8\n2 3 8\n0 3 0\n2 2 8\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 2 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 0\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 10\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 9 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 19 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"2 7 10\n4 12 10\n5 16 2\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 10\n1 4 7\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n77 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 1 7\n0 1 1\n0 19 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 361\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 93 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n1 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 12\n6 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n16 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n24 4 11\n25 36 13\n39 21 6\n",
"5 10 6\n1 2 2\n0 11 8\n2 1 8\n0 3 0\n2 2 8\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 0 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 0\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 10\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 16 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 19 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"2 7 10\n4 12 15\n5 16 2\n",
"3 10 10\n0 12 10\n0 6 10\n0 0 1\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 11\n1 4 7\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n3 6 11\n2 12 55\n58 87 94\n99 45 48\n77 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 1 7\n0 1 1\n0 19 5\n9 0 2\n8 0 0\n9 1 4\n",
"10 18 361\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 93 15\n0 166 17\n0 207 20\n-1 195 11\n",
"11 2 21\n10 22 6\n19 3 5\n16 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 0\n24 4 11\n25 36 13\n39 21 6\n",
"5 10 6\n1 2 2\n0 11 10\n2 1 8\n0 3 0\n2 2 8\n",
"20 10 7\n3 17 0\n3 1 5\n0 16 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 30 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"2 7 10\n4 12 15\n5 16 4\n",
"4 8 12\n0 12 3\n0 1 0\n0 2 11\n0 6 9\n",
"3 10 10\n0 12 1\n0 6 10\n0 0 1\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 11\n1 4 7\n1 2 2\n0 4 3\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n3 6 11\n2 12 55\n58 87 94\n99 45 48\n77 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n98 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n"
],
"output": [
"0 0\n",
"4 9\n",
"2 6\n",
"0 0\n",
"0 0\n",
"10 10\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"0 0\n",
"50 5\n",
"20 2\n",
"0 0\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"50 5\n",
"20 2\n",
"4 9\n",
"3 6\n",
"4 8\n",
"1 6\n",
"2 8\n",
"8 2\n",
"0 0\n",
"0 0\n",
"0 0\n",
"0 0\n",
"0 0\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"0 0\n",
"50 5\n",
"20 2\n",
"0 0\n",
"0 0\n",
"0 0\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"0 0\n",
"50 5\n",
"20 2\n",
"0 0\n",
"1 6\n",
"0 0\n",
"0 0\n",
"5 0\n",
"1 207\n",
"11 3\n",
"0 0\n",
"20 2\n",
"0 0\n",
"2 8\n",
"1 6\n",
"0 0\n",
"0 0\n"
]
} | 2CODEFORCES
|
203_E. Transportation_964 | Valera came to Japan and bought many robots for his research. He's already at the airport, the plane will fly very soon and Valera urgently needs to bring all robots to the luggage compartment.
The robots are self-propelled (they can potentially move on their own), some of them even have compartments to carry other robots. More precisely, for the i-th robot we know value ci — the number of robots it can carry. In this case, each of ci transported robots can additionally carry other robots.
However, the robots need to be filled with fuel to go, so Valera spent all his last money and bought S liters of fuel. He learned that each robot has a restriction on travel distances. Thus, in addition to features ci, the i-th robot has two features fi and li — the amount of fuel (in liters) needed to move the i-th robot, and the maximum distance that the robot can go.
Due to the limited amount of time and fuel, Valera wants to move the maximum number of robots to the luggage compartment. He operates as follows.
* First Valera selects some robots that will travel to the luggage compartment on their own. In this case the total amount of fuel required to move all these robots must not exceed S.
* Then Valera seats the robots into the compartments, so as to transport as many robots as possible. Note that if a robot doesn't move by itself, you can put it in another not moving robot that is moved directly or indirectly by a moving robot.
* After that all selected and seated robots along with Valera go to the luggage compartment and the rest robots will be lost.
There are d meters to the luggage compartment. Therefore, the robots that will carry the rest, must have feature li of not less than d. During the moving Valera cannot stop or change the location of the robots in any way.
Help Valera calculate the maximum number of robots that he will be able to take home, and the minimum amount of fuel he will have to spend, because the remaining fuel will come in handy in Valera's research.
Input
The first line contains three space-separated integers n, d, S (1 ≤ n ≤ 105, 1 ≤ d, S ≤ 109). The first number represents the number of robots, the second one — the distance to the luggage compartment and the third one — the amount of available fuel.
Next n lines specify the robots. The i-th line contains three space-separated integers ci, fi, li (0 ≤ ci, fi, li ≤ 109) — the i-th robot's features. The first number is the number of robots the i-th robot can carry, the second number is the amount of fuel needed for the i-th robot to move and the third one shows the maximum distance the i-th robot can go.
Output
Print two space-separated integers — the maximum number of robots Valera can transport to the luggage compartment and the minimum amount of fuel he will need for that. If Valera won't manage to get any robots to the luggage compartment, print two zeroes.
Examples
Input
3 10 10
0 12 10
1 6 10
0 1 1
Output
2 6
Input
2 7 10
3 12 10
5 16 8
Output
0 0
Input
4 8 10
0 12 3
1 1 0
0 3 11
1 6 9
Output
4 9 | //package round128;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Comparator;
public class E3 {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni(), d = ni();
long s = ni();
int[][] a = new int[n][];
for(int i = 0;i < n;i++){
a[i] = new int[]{ni(), ni(), ni()};
}
// c f l
int[][] can = new int[n][];
int[][] not = new int[n][];
int cp = 0, np = 0;
int ncan = 0;
long zeroall = 0;
for(int i = 0;i < n;i++){
zeroall += a[i][0];
if(a[i][0] > 0){
ncan++;
if(a[i][2] >= d){
can[cp++] = a[i];
}
}else if(a[i][2] >= d){
not[np++] = a[i];
}
}
int maxnum = 0;
long optfu = 0;
Arrays.sort(a, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[1] - b[1];
}
});
{
int num = 0;
long fu = 0;
for(int i = 0;i < n;i++){
if(a[i][2] >= d && fu + a[i][1] <= s){
num++;
fu += a[i][1];
}
}
maxnum = num;
optfu = fu;
}
if(cp > 0){
can = Arrays.copyOf(can, cp);
not = Arrays.copyOf(not, np);
Arrays.sort(can, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[1] - b[1];
}
});
Arrays.sort(not, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[1] - b[1];
}
});
long[] notsum = new long[np+1];
for(int i = 0;i < np;i++){
notsum[i+1] = notsum[i] + 2*not[i][1];
}
long fu = 0;
for(int i = 0;i < cp;i++){
fu += can[i][1];
if(fu > s)break;
long canride = zeroall - ncan + (i+1);
long left = n-ncan-canride;
int num;
long v;
if(left <= 0){
num = n;
v = fu;
}else{
int ind = Arrays.binarySearch(notsum, 2*(s-fu)+1);
if(ind < 0)ind = -ind-2;
num = ncan + (int)canride + (int)Math.min(ind, left);
v = fu + notsum[ind]/2;
}
if(num > maxnum){
maxnum = num;
optfu = v;
}else if(num == maxnum && v < optfu){
optfu = v;
}
}
}
out.println(maxnum + " " + optfu);
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception
{
new E3().run();
}
public int ni()
{
try {
int num = 0;
boolean minus = false;
while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-'));
if(num == '-'){
num = 0;
minus = true;
}else{
num -= '0';
}
while(true){
int b = is.read();
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
} catch (IOException e) {
}
return -1;
}
public long nl()
{
try {
long num = 0;
boolean minus = false;
while((num = is.read()) != -1 && !((num >= '0' && num <= '9') || num == '-'));
if(num == '-'){
num = 0;
minus = true;
}else{
num -= '0';
}
while(true){
int b = is.read();
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
} catch (IOException e) {
}
return -1;
}
public String ns()
{
try{
int b = 0;
StringBuilder sb = new StringBuilder();
while((b = is.read()) != -1 && (b == '\r' || b == '\n' || b == ' '));
if(b == -1)return "";
sb.append((char)b);
while(true){
b = is.read();
if(b == -1)return sb.toString();
if(b == '\r' || b == '\n' || b == ' ')return sb.toString();
sb.append((char)b);
}
} catch (IOException e) {
}
return "";
}
public char[] ns(int n)
{
char[] buf = new char[n];
try{
int b = 0, p = 0;
while((b = is.read()) != -1 && (b == ' ' || b == '\r' || b == '\n'));
if(b == -1)return null;
buf[p++] = (char)b;
while(p < n){
b = is.read();
if(b == -1 || b == ' ' || b == '\r' || b == '\n')break;
buf[p++] = (char)b;
}
return Arrays.copyOf(buf, p);
} catch (IOException e) {
}
return null;
}
double nd() { return Double.parseDouble(ns()); }
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
| 4JAVA
| {
"input": [
"2 7 10\n3 12 10\n5 16 8\n",
"4 8 10\n0 12 3\n1 1 0\n0 3 11\n1 6 9\n",
"3 10 10\n0 12 10\n1 6 10\n0 1 1\n",
"6 4 3\n0 1 2\n1 3 0\n0 4 5\n1 4 4\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 57\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n89 52 11\n77 89 71\n68 93 50\n47 95 26\n58 95 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"11 1 10\n1 10 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n0 1 1\n",
"5 1 7\n0 4 1\n6 10 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 300\n0 195 14\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 204 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n0 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 8\n3 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n30 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n20 4 11\n25 36 13\n39 38 6\n",
"5 10 6\n0 2 2\n0 11 8\n2 3 8\n0 3 0\n1 2 8\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 2 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 2\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 8\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 9 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n3 1 7\n1 16 8\n5 10 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 5\n1 4 4\n1 2 2\n0 4 2\n",
"5 1 7\n0 4 1\n0 10 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 300\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 204 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n0 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 8\n6 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n30 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n20 4 11\n25 36 13\n39 21 6\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 2 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 0\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 8\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 9 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 10 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"4 8 12\n0 12 3\n1 1 0\n0 3 11\n1 6 9\n",
"3 10 10\n0 12 10\n2 6 10\n0 1 1\n",
"4 8 12\n0 12 3\n1 1 0\n0 2 11\n1 6 9\n",
"3 10 10\n0 12 10\n0 6 10\n0 1 1\n",
"4 8 12\n0 12 3\n1 1 0\n0 2 11\n0 6 9\n",
"8 6 3\n1 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 12\n6 8 3\n3 1 0\n0 5 7\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n89 52 11\n77 89 71\n68 93 50\n47 95 26\n58 95 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 10 6\n0 2 2\n0 11 8\n2 3 8\n0 3 0\n2 2 8\n",
"2 7 10\n3 12 10\n5 16 2\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 10\n1 4 4\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n89 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 1 7\n0 4 1\n0 19 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 300\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 93 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n0 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 12\n6 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n30 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n24 4 11\n25 36 13\n39 21 6\n",
"5 10 6\n1 2 2\n0 11 8\n2 3 8\n0 3 0\n2 2 8\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 2 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 0\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 10\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 9 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 19 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"2 7 10\n4 12 10\n5 16 2\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 10\n1 4 7\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n16 6 11\n2 12 55\n58 87 94\n99 45 48\n77 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 1 7\n0 1 1\n0 19 5\n9 0 2\n9 0 0\n9 1 4\n",
"10 18 361\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 93 15\n0 166 17\n0 207 20\n0 195 11\n",
"8 9 3\n1 3 4\n0 15 14\n1 2 7\n0 1 14\n3 5 12\n6 8 3\n3 1 0\n0 5 7\n",
"11 2 21\n10 22 6\n19 3 5\n16 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 5\n24 4 11\n25 36 13\n39 21 6\n",
"5 10 6\n1 2 2\n0 11 8\n2 1 8\n0 3 0\n2 2 8\n",
"50 7 13\n2 16 4\n1 24 5\n1 29 9\n0 8 1\n2 8 8\n3 7 6\n2 10 0\n3 21 9\n3 5 9\n1 7 1\n1 17 4\n3 18 6\n2 22 10\n2 10 4\n2 15 4\n1 12 2\n2 0 1\n0 28 0\n3 1 5\n3 20 3\n3 23 8\n1 20 1\n2 4 1\n1 11 0\n0 1 1\n3 1 2\n0 4 8\n2 18 8\n1 12 0\n1 5 2\n1 20 0\n0 30 10\n2 18 7\n1 9 10\n1 11 5\n3 15 6\n3 10 7\n1 13 10\n3 18 4\n3 29 2\n2 12 4\n2 15 10\n1 17 8\n2 18 1\n0 5 1\n1 10 3\n1 11 1\n0 6 6\n1 18 10\n1 14 5\n",
"20 10 7\n3 17 0\n3 1 5\n0 16 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 19 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"2 7 10\n4 12 15\n5 16 2\n",
"3 10 10\n0 12 10\n0 6 10\n0 0 1\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 11\n1 4 7\n1 2 2\n0 4 2\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n3 6 11\n2 12 55\n58 87 94\n99 45 48\n77 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n75 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n",
"5 1 7\n0 1 1\n0 19 5\n9 0 2\n8 0 0\n9 1 4\n",
"10 18 361\n0 195 15\n0 283 20\n0 167 13\n0 167 17\n0 150 14\n0 83 10\n0 93 15\n0 166 17\n0 207 20\n-1 195 11\n",
"11 2 21\n10 22 6\n19 3 5\n16 40 5\n21 25 17\n36 3 4\n25 46 5\n23 42 13\n24 30 0\n24 4 11\n25 36 13\n39 21 6\n",
"5 10 6\n1 2 2\n0 11 10\n2 1 8\n0 3 0\n2 2 8\n",
"20 10 7\n3 17 0\n3 1 5\n0 16 11\n3 22 13\n4 2 14\n1 5 12\n0 19 6\n0 8 15\n4 12 8\n3 27 7\n3 24 6\n1 8 9\n3 18 10\n0 1 7\n1 16 8\n5 30 5\n0 0 5\n2 10 14\n0 22 14\n4 10 13\n",
"2 7 10\n4 12 15\n5 16 4\n",
"4 8 12\n0 12 3\n0 1 0\n0 2 11\n0 6 9\n",
"3 10 10\n0 12 1\n0 6 10\n0 0 1\n",
"6 4 3\n0 1 2\n2 3 0\n0 4 11\n1 4 7\n1 2 2\n0 4 3\n",
"50 69 6\n62 91 5\n35 35 53\n85 26 1\n86 37 99\n2 87 57\n39 56 22\n72 75 78\n10 91 81\n2 13 35\n46 27 88\n82 99 75\n51 6 45\n24 76 55\n3 6 11\n2 12 55\n58 87 94\n99 45 48\n77 52 11\n77 89 71\n68 93 50\n47 95 26\n58 154 5\n76 43 18\n87 76 27\n27 50 3\n98 14 15\n56 14 93\n27 10 39\n71 22 57\n39 30 66\n63 67 68\n45 35 77\n11 53 75\n52 57 29\n20 36 77\n72 26 70\n11 55 63\n23 97 25\n28 92 40\n57 54 63\n6 80 61\n10 60 34\n43 3 16\n28 33 36\n75 31 36\n80 43 15\n89 5 32\n12 97 68\n49 81 28\n20 26 19\n"
],
"output": [
"0 0\n",
"4 9\n",
"2 6\n",
"0 0\n",
"0 0\n",
"10 10\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"0 0\n",
"50 5\n",
"20 2\n",
"0 0\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"50 5\n",
"20 2\n",
"4 9\n",
"3 6\n",
"4 8\n",
"1 6\n",
"2 8\n",
"8 2\n",
"0 0\n",
"0 0\n",
"0 0\n",
"0 0\n",
"0 0\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"0 0\n",
"50 5\n",
"20 2\n",
"0 0\n",
"0 0\n",
"0 0\n",
"5 0\n",
"1 207\n",
"1 1\n",
"11 3\n",
"0 0\n",
"50 5\n",
"20 2\n",
"0 0\n",
"1 6\n",
"0 0\n",
"0 0\n",
"5 0\n",
"1 207\n",
"11 3\n",
"0 0\n",
"20 2\n",
"0 0\n",
"2 8\n",
"1 6\n",
"0 0\n",
"0 0\n"
]
} | 2CODEFORCES
|
228_D. Zigzag_965 | The court wizard Zigzag wants to become a famous mathematician. For that, he needs his own theorem, like the Cauchy theorem, or his sum, like the Minkowski sum. But most of all he wants to have his sequence, like the Fibonacci sequence, and his function, like the Euler's totient function.
The Zigag's sequence with the zigzag factor z is an infinite sequence Siz (i ≥ 1; z ≥ 2), that is determined as follows:
* Siz = 2, when <image>;
* <image>, when <image>;
* <image>, when <image>.
Operation <image> means taking the remainder from dividing number x by number y. For example, the beginning of sequence Si3 (zigzag factor 3) looks as follows: 1, 2, 3, 2, 1, 2, 3, 2, 1.
Let's assume that we are given an array a, consisting of n integers. Let's define element number i (1 ≤ i ≤ n) of the array as ai. The Zigzag function is function <image>, where l, r, z satisfy the inequalities 1 ≤ l ≤ r ≤ n, z ≥ 2.
To become better acquainted with the Zigzag sequence and the Zigzag function, the wizard offers you to implement the following operations on the given array a.
1. The assignment operation. The operation parameters are (p, v). The operation denotes assigning value v to the p-th array element. After the operation is applied, the value of the array element ap equals v.
2. The Zigzag operation. The operation parameters are (l, r, z). The operation denotes calculating the Zigzag function Z(l, r, z).
Explore the magical powers of zigzags, implement the described operations.
Input
The first line contains integer n (1 ≤ n ≤ 105) — The number of elements in array a. The second line contains n space-separated integers: a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.
The third line contains integer m (1 ≤ m ≤ 105) — the number of operations. Next m lines contain the operations' descriptions. An operation's description starts with integer ti (1 ≤ ti ≤ 2) — the operation type.
* If ti = 1 (assignment operation), then on the line follow two space-separated integers: pi, vi (1 ≤ pi ≤ n; 1 ≤ vi ≤ 109) — the parameters of the assigning operation.
* If ti = 2 (Zigzag operation), then on the line follow three space-separated integers: li, ri, zi (1 ≤ li ≤ ri ≤ n; 2 ≤ zi ≤ 6) — the parameters of the Zigzag operation.
You should execute the operations in the order, in which they are given in the input.
Output
For each Zigzag operation print the calculated value of the Zigzag function on a single line. Print the values for Zigzag functions in the order, in which they are given in the input.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
Examples
Input
5
2 3 1 5 5
4
2 2 3 2
2 1 5 3
1 3 5
2 1 5 3
Output
5
26
38
Note
Explanation of the sample test:
* Result of the first operation is Z(2, 3, 2) = 3·1 + 1·2 = 5.
* Result of the second operation is Z(1, 5, 3) = 2·1 + 3·2 + 1·3 + 5·2 + 5·1 = 26.
* After the third operation array a is equal to 2, 3, 5, 5, 5.
* Result of the forth operation is Z(1, 5, 3) = 2·1 + 3·2 + 5·3 + 5·2 + 5·1 = 38. | #include <bits/stdc++.h>
using namespace std;
void swap(int &x, int &y) {
int t = x;
x = y;
y = t;
}
int max(int x, int y) { return x > y ? x : y; }
int min(int x, int y) { return x < y ? x : y; }
const int inf = 0x3F3F3F3F;
const int M = 100000 + 5;
int T, cas;
int n, m;
long long a, sum[M << 2][5][11], s[5][M];
long long cf[5] = {2, 4, 6, 8, 10};
void preSof() {
for (long long z = 2; z <= 6; z++) {
long long md = (z - 1) << 1;
for (long long i = 1; i < 13; i++) {
long long j = i % md;
if (!j)
s[z - 2][i - 1] = 2;
else if (j <= z)
s[z - 2][i - 1] = j;
else
s[z - 2][i - 1] = (z << 1) - j;
}
}
return;
}
void pushUp(int llen, int rt) {
for (long long z = 2; z <= 6; z++)
for (long long i = 0; i < cf[z - 2]; i++)
sum[rt][z - 2][i] = sum[rt << 1][z - 2][i] +
sum[rt << 1 | 1][z - 2][(i + llen) % cf[z - 2]];
}
void build(int l, int r, int rt) {
if (l == r) {
scanf("%I64d", &a);
for (long long z = 2; z <= 6; z++)
for (long long i = 0; i < cf[z - 2]; i++)
sum[rt][z - 2][i] = a * s[z - 2][i];
return;
}
int mid = l + r >> 1;
build(l, mid, rt << 1), build(mid + 1, r, rt << 1 | 1);
pushUp(mid - l + 1, rt);
}
void update(int l, int r, int rt, int p, long long c) {
if (l == r) {
for (long long z = 2; z <= 6; z++)
for (long long i = 0; i < cf[z - 2]; i++)
sum[rt][z - 2][i] = c * s[z - 2][i];
return;
}
int mid = l + r >> 1;
if (p <= mid)
update(l, mid, rt << 1, p, c);
else
update(mid + 1, r, rt << 1 | 1, p, c);
pushUp(mid - l + 1, rt);
}
long long query(int l, int r, int rt, int L, int R, int z, int i) {
if (L == l && r == R) {
return sum[rt][z][i];
}
int mid = l + r >> 1;
if (R <= mid) return query(l, mid, rt << 1, L, R, z, i);
if (mid < L) return query(mid + 1, r, rt << 1 | 1, L, R, z, i);
return query(l, mid, rt << 1, L, mid, z, i) +
query(mid + 1, r, rt << 1 | 1, mid + 1, R, z,
(i + mid - L + 1) % cf[z]);
}
void run() {
int i, j, t, p, v, l, r, z;
build(1, n, 1);
scanf("%d", &m);
while (m--) {
scanf("%d", &t);
if (t == 1) {
scanf("%d%d", &p, &v);
update(1, n, 1, p, (long long)v);
} else {
scanf("%d%d%d", &l, &r, &z);
printf("%I64d\n", query(1, n, 1, l, r, z - 2, 0));
}
}
}
int main() {
preSof();
while (~scanf("%d", &n)) run();
return 0;
}
| 2C++
| {
"input": [
"5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 3\n1 3 5\n2 1 5 3\n",
"5\n42665793 142698407 856080769 176604645 248258165\n10\n1 5 141156007\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 3 5\n1 5 556830122\n1 3 542486819\n2 4 4 5\n1 2 650599782\n2 1 5 2\n2 2 4 2\n1 4 384265705\n",
"5\n798491505 143876925 714252070 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 5 882369084\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 4 4 2\n",
"5\n581807377 848812048 848166364 134821971 713647858\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 467786083\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n42665793 93310343 856080769 176604645 248258165\n10\n1 5 141156007\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n581807377 848812048 848166364 134821971 713647858\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 6\n1 3 5\n2 1 5 3\n",
"5\n42665793 93310343 856080769 176604645 248258165\n10\n1 5 221958704\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n581807377 848812048 848166364 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 6\n1 3 5\n2 1 5 6\n",
"5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 6\n1 3 5\n2 2 5 6\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 3 4\n1 5 556830122\n1 3 542486819\n2 4 4 5\n1 2 650599782\n2 1 5 2\n2 2 4 2\n1 4 384265705\n",
"5\n798491505 143876925 714252070 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 3 882369084\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 4 4 2\n",
"5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 3\n1 3 10\n2 1 5 3\n",
"5\n42665793 93310343 856080769 176604645 248258165\n10\n1 5 141156007\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 33148892\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n581807377 848812048 1270742390 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 5\n4\n2 1 3 2\n2 1 5 6\n1 3 5\n2 1 5 6\n",
"5\n2 3 1 5 5\n4\n2 3 3 2\n2 1 5 6\n1 3 5\n2 2 5 6\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 3 4\n1 5 556830122\n1 3 1030644543\n2 4 4 5\n1 2 650599782\n2 1 5 2\n2 2 4 2\n1 4 384265705\n",
"5\n2 3 1 0 5\n4\n2 2 3 2\n2 1 5 3\n1 3 10\n2 1 5 3\n",
"5\n286100739 848812048 848166364 134821971 713647858\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 5 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n581807377 848812048 1270742390 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 166164037\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 1\n4\n2 1 3 2\n2 1 5 6\n1 3 5\n2 1 5 6\n",
"5\n798491505 143876925 974371952 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 3 1124492503\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 4 4 2\n",
"5\n2 3 1 0 5\n4\n2 2 3 2\n2 1 3 3\n1 3 10\n2 1 5 3\n",
"5\n581807377 848812048 1270742390 134821971 265963952\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 166164037\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n42665793 142698407 856080769 176604645 248258165\n10\n1 5 184137183\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 3 5\n1 5 556830122\n1 3 542486819\n2 4 4 5\n1 2 650599782\n2 1 5 4\n2 2 4 2\n1 4 384265705\n",
"5\n798491505 143876925 714252070 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 5 882369084\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 3 4 2\n",
"5\n42665793 93310343 856080769 26067825 248258165\n10\n1 5 221958704\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n581807377 848812048 848166364 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 3\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 5\n4\n2 2 5 2\n2 1 5 6\n1 3 5\n2 1 5 6\n",
"5\n2 3 0 5 5\n4\n2 2 3 2\n2 1 5 6\n1 3 5\n2 2 5 6\n",
"5\n42665793 93310343 856080769 176604645 248258165\n10\n1 5 141156007\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 4 942795810\n2 5 5 3\n1 3 33148892\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n581807377 848812048 1270742390 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 370682373\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 1 5\n4\n2 1 3 2\n2 1 5 6\n1 3 5\n2 1 5 6\n",
"5\n2 3 1 10 5\n4\n2 3 3 2\n2 1 5 6\n1 3 5\n2 2 5 6\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 2 4\n1 5 556830122\n1 3 1030644543\n2 4 4 5\n1 2 650599782\n2 1 5 2\n2 2 4 2\n1 4 384265705\n",
"5\n286100739 848812048 1179738561 134821971 713647858\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 5 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 1\n4\n2 1 3 2\n2 1 5 6\n1 5 5\n2 1 5 6\n",
"5\n2 3 1 0 6\n4\n2 2 3 2\n2 1 3 3\n1 3 10\n2 1 5 3\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 3 5\n1 5 556830122\n1 3 542486819\n2 4 4 5\n1 2 975669385\n2 1 5 4\n2 2 4 2\n1 4 384265705\n",
"5\n2 3 0 5 5\n4\n2 2 3 2\n2 1 5 6\n1 5 5\n2 2 5 6\n",
"5\n2 3 1 1 5\n4\n2 1 3 2\n2 1 5 6\n1 5 5\n2 1 5 6\n",
"5\n2 3 1 10 5\n4\n2 3 3 2\n2 1 5 6\n1 3 2\n2 2 5 6\n",
"5\n42665793 142698407 856080769 176604645 248258165\n10\n1 5 184137183\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 540838076\n1 2 602158126\n2 4 4 2\n",
"5\n2 3 1 0 6\n4\n2 2 3 2\n2 1 3 6\n1 3 4\n2 1 5 3\n",
"5\n42665793 142698407 856080769 176604645 248258165\n10\n1 5 184137183\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 1 5 3\n1 3 195194439\n1 2 540838076\n1 2 602158126\n2 4 4 2\n",
"5\n286100739 848812048 848166364 134821971 713647858\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n798491505 143876925 714252070 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 3 1124492503\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 4 4 2\n",
"5\n2 3 1 5 5\n4\n2 3 3 2\n2 1 5 6\n1 3 5\n2 2 5 5\n",
"5\n286100739 848812048 848166364 134821971 713647858\n10\n2 2 3 4\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n118571120 143876925 714252070 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 3 1124492503\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 4 4 2\n",
"5\n42665793 142698407 856080769 176604645 248258165\n10\n1 5 184137183\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 540838076\n1 2 602158126\n2 2 4 2\n",
"5\n16257913 848812048 848166364 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 3\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 0 6\n4\n2 2 3 2\n2 1 3 6\n1 3 10\n2 1 5 3\n"
],
"output": [
"5\n26\n38\n",
"141156007\n176604645\n2666985894\n141156007\n1169151649\n",
"4098673490\n1742859645\n407653643\n3475173712\n2143227063\n",
"2697106095\n2021833251\n257095083\n",
"2545144776\n713647858\n713647858\n1562117687\n4132016977\n146097986\n",
"141156007\n176604645\n2617597830\n141156007\n1169151649\n",
"2545144776\n713647858\n713647858\n1562117687\n4466663398\n146097986\n",
"5\n56\n38\n",
"221958704\n176604645\n2779203224\n221958704\n1169151649\n",
"2545144776\n211489258\n211489258\n557800487\n4466663398\n146097986\n",
"5\n56\n68\n",
"5\n56\n48\n",
"4098673490\n1742859645\n407653643\n3475173712\n2143227063\n",
"2697106095\n408247707\n257095083\n",
"5\n26\n53\n",
"141156007\n176604645\n2617597830\n141156007\n845060555\n",
"3390296828\n211489258\n211489258\n557800487\n4466663398\n146097986\n",
"9\n56\n68\n",
"1\n56\n48\n",
"4098673490\n1742859645\n407653643\n3963331436\n3119542511\n",
"5\n16\n43\n",
"2545144776\n713647858\n713647858\n1562117687\n6314333506\n146097986\n",
"3390296828\n211489258\n211489258\n557800487\n4566993653\n166164037\n",
"9\n36\n48\n",
"3217345859\n408247707\n257095083\n",
"5\n11\n43\n",
"3390296828\n265963952\n265963952\n666749875\n4566993653\n166164037\n",
"184137183\n176604645\n2752948246\n184137183\n1169151649\n",
"4098673490\n1742859645\n407653643\n6489114880\n2143227063\n",
"2697106095\n2021833251\n1228442236\n",
"221958704\n26067825\n2327592764\n221958704\n1018614829\n",
"2545144776\n211489258\n211489258\n557800487\n3612627512\n146097986\n",
"20\n56\n68\n",
"3\n53\n48\n",
"141156007\n176604645\n2617597830\n141156007\n1611251720\n",
"3390296828\n211489258\n211489258\n557800487\n4881881533\n146097986\n",
"9\n40\n52\n",
"1\n76\n63\n",
"4098673490\n585246931\n407653643\n3963331436\n3119542511\n",
"3208289170\n713647858\n713647858\n1562117687\n7309050097\n146097986\n",
"9\n36\n56\n",
"5\n11\n44\n",
"4098673490\n1742859645\n407653643\n7139254086\n2468296666\n",
"3\n53\n38\n",
"9\n40\n40\n",
"1\n76\n57\n",
"184137183\n176604645\n2752948246\n184137183\n176604645\n",
"5\n11\n26\n",
"184137183\n176604645\n2752948246\n5033846193\n176604645\n",
"2545144776\n713647858\n713647858\n1562117687\n4466663398\n146097986\n",
"2697106095\n408247707\n257095083\n",
"1\n56\n48\n",
"2545144776\n713647858\n713647858\n1562117687\n4466663398\n146097986\n",
"2697106095\n408247707\n257095083\n",
"184137183\n176604645\n2752948246\n184137183\n1169151649\n",
"2545144776\n211489258\n211489258\n557800487\n3612627512\n146097986\n",
"5\n11\n44\n"
]
} | 2CODEFORCES
|
228_D. Zigzag_966 | The court wizard Zigzag wants to become a famous mathematician. For that, he needs his own theorem, like the Cauchy theorem, or his sum, like the Minkowski sum. But most of all he wants to have his sequence, like the Fibonacci sequence, and his function, like the Euler's totient function.
The Zigag's sequence with the zigzag factor z is an infinite sequence Siz (i ≥ 1; z ≥ 2), that is determined as follows:
* Siz = 2, when <image>;
* <image>, when <image>;
* <image>, when <image>.
Operation <image> means taking the remainder from dividing number x by number y. For example, the beginning of sequence Si3 (zigzag factor 3) looks as follows: 1, 2, 3, 2, 1, 2, 3, 2, 1.
Let's assume that we are given an array a, consisting of n integers. Let's define element number i (1 ≤ i ≤ n) of the array as ai. The Zigzag function is function <image>, where l, r, z satisfy the inequalities 1 ≤ l ≤ r ≤ n, z ≥ 2.
To become better acquainted with the Zigzag sequence and the Zigzag function, the wizard offers you to implement the following operations on the given array a.
1. The assignment operation. The operation parameters are (p, v). The operation denotes assigning value v to the p-th array element. After the operation is applied, the value of the array element ap equals v.
2. The Zigzag operation. The operation parameters are (l, r, z). The operation denotes calculating the Zigzag function Z(l, r, z).
Explore the magical powers of zigzags, implement the described operations.
Input
The first line contains integer n (1 ≤ n ≤ 105) — The number of elements in array a. The second line contains n space-separated integers: a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.
The third line contains integer m (1 ≤ m ≤ 105) — the number of operations. Next m lines contain the operations' descriptions. An operation's description starts with integer ti (1 ≤ ti ≤ 2) — the operation type.
* If ti = 1 (assignment operation), then on the line follow two space-separated integers: pi, vi (1 ≤ pi ≤ n; 1 ≤ vi ≤ 109) — the parameters of the assigning operation.
* If ti = 2 (Zigzag operation), then on the line follow three space-separated integers: li, ri, zi (1 ≤ li ≤ ri ≤ n; 2 ≤ zi ≤ 6) — the parameters of the Zigzag operation.
You should execute the operations in the order, in which they are given in the input.
Output
For each Zigzag operation print the calculated value of the Zigzag function on a single line. Print the values for Zigzag functions in the order, in which they are given in the input.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
Examples
Input
5
2 3 1 5 5
4
2 2 3 2
2 1 5 3
1 3 5
2 1 5 3
Output
5
26
38
Note
Explanation of the sample test:
* Result of the first operation is Z(2, 3, 2) = 3·1 + 1·2 = 5.
* Result of the second operation is Z(1, 5, 3) = 2·1 + 3·2 + 1·3 + 5·2 + 5·1 = 26.
* After the third operation array a is equal to 2, 3, 5, 5, 5.
* Result of the forth operation is Z(1, 5, 3) = 2·1 + 3·2 + 5·3 + 5·2 + 5·1 = 38. | import java.io.*;
import java.util.*;
public class ProblemD {
InputReader in; PrintWriter out;
class FenwickTree {
List<Long> tree;
int n;
FenwickTree(int len) {
tree = new ArrayList<Long>(len);
for (int i = 0; i < len; i++)
tree.add(0L);
n = len;
}
void inc(int pos, Long el) {
for (int i = pos; i < n; i = (i | (i + 1)))
tree.set(i, tree.get(i) + el);
}
Long sum (int r) {
Long result = 0L;
for (int j = r; j >= 0; j = (j & (j + 1)) - 1)
result = result + tree.get(j);
return result;
}
Long sum(int l, int r) {
return sum(r) - sum(l - 1);
}
}
long[][] zg = new long[12][7];
Long zig(int i, int z) {
i++;
int mod = i % (2 * (z - 1));
if (mod == 0)
return 2L;
else if (mod <= z)
return (long)mod;
else
return (long)2 * z - mod;
}
void solve() {
for (int i = 0; i < 12; i++)
for (int j = 2; j < 7; j++)
zg[i][j] = zig(i, j);
int n = in.nextInt();
FenwickTree[][] t = new FenwickTree[7][12];
for (int j = 0; j < 7; j++)
for (int j2 = 0; j2 < 12; j2++)
t[j][j2] = new FenwickTree(n + 1);
for (int i = 0; i < n; i++) {
long cur = in.nextLong();
for (int j = 2; j < 7; j++) {
int j2 = i % (2 * j - 2);
t[j][j2].inc(i, cur);
}
}
int m = in.nextInt();
for (int j = 0; j < m; j++) {
int op = in.nextInt();
if (op == 2) {
int left = in.nextInt();
int right = in.nextInt();
left--;
right--;
int z = in.nextInt();
long ans = 0;
for (int z2 = 0; z2 < (2 * z - 2); z2++) {
ans += t[z][(z2 + left) % (2 * z - 2)].sum(left, right) * zg[z2][z];
// out.println(ans);
}
out.println(ans);
}
else
{
int pos = in.nextInt();
long zn = in.nextLong();
pos--;
for (int z = 2; z < 7; z++) {
int z2 = pos % (2 * z - 2);
t[z][z2].inc(pos, zn - t[z][z2].sum(pos, pos));
}
}
}
}
ProblemD(){
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
try {
if (oj) {
in = new InputReader(System.in);
out = new PrintWriter(System.out);
}
else {
Writer w = new FileWriter("output.txt");
in = new InputReader(new FileReader("input.txt"));
out = new PrintWriter(w);
}
} catch(Exception e) {
throw new RuntimeException(e);
}
solve();
out.close();
}
public static void main(String[] args){
new ProblemD();
}
}
class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public InputReader(FileReader fr) {
reader = new BufferedReader(fr);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
} | 4JAVA
| {
"input": [
"5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 3\n1 3 5\n2 1 5 3\n",
"5\n42665793 142698407 856080769 176604645 248258165\n10\n1 5 141156007\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 3 5\n1 5 556830122\n1 3 542486819\n2 4 4 5\n1 2 650599782\n2 1 5 2\n2 2 4 2\n1 4 384265705\n",
"5\n798491505 143876925 714252070 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 5 882369084\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 4 4 2\n",
"5\n581807377 848812048 848166364 134821971 713647858\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 467786083\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n42665793 93310343 856080769 176604645 248258165\n10\n1 5 141156007\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n581807377 848812048 848166364 134821971 713647858\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 6\n1 3 5\n2 1 5 3\n",
"5\n42665793 93310343 856080769 176604645 248258165\n10\n1 5 221958704\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n581807377 848812048 848166364 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 6\n1 3 5\n2 1 5 6\n",
"5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 6\n1 3 5\n2 2 5 6\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 3 4\n1 5 556830122\n1 3 542486819\n2 4 4 5\n1 2 650599782\n2 1 5 2\n2 2 4 2\n1 4 384265705\n",
"5\n798491505 143876925 714252070 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 3 882369084\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 4 4 2\n",
"5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 3\n1 3 10\n2 1 5 3\n",
"5\n42665793 93310343 856080769 176604645 248258165\n10\n1 5 141156007\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 33148892\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n581807377 848812048 1270742390 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 5\n4\n2 1 3 2\n2 1 5 6\n1 3 5\n2 1 5 6\n",
"5\n2 3 1 5 5\n4\n2 3 3 2\n2 1 5 6\n1 3 5\n2 2 5 6\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 3 4\n1 5 556830122\n1 3 1030644543\n2 4 4 5\n1 2 650599782\n2 1 5 2\n2 2 4 2\n1 4 384265705\n",
"5\n2 3 1 0 5\n4\n2 2 3 2\n2 1 5 3\n1 3 10\n2 1 5 3\n",
"5\n286100739 848812048 848166364 134821971 713647858\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 5 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n581807377 848812048 1270742390 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 166164037\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 1\n4\n2 1 3 2\n2 1 5 6\n1 3 5\n2 1 5 6\n",
"5\n798491505 143876925 974371952 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 3 1124492503\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 4 4 2\n",
"5\n2 3 1 0 5\n4\n2 2 3 2\n2 1 3 3\n1 3 10\n2 1 5 3\n",
"5\n581807377 848812048 1270742390 134821971 265963952\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 166164037\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n42665793 142698407 856080769 176604645 248258165\n10\n1 5 184137183\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 3 5\n1 5 556830122\n1 3 542486819\n2 4 4 5\n1 2 650599782\n2 1 5 4\n2 2 4 2\n1 4 384265705\n",
"5\n798491505 143876925 714252070 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 5 882369084\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 3 4 2\n",
"5\n42665793 93310343 856080769 26067825 248258165\n10\n1 5 221958704\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n581807377 848812048 848166364 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 3\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 5\n4\n2 2 5 2\n2 1 5 6\n1 3 5\n2 1 5 6\n",
"5\n2 3 0 5 5\n4\n2 2 3 2\n2 1 5 6\n1 3 5\n2 2 5 6\n",
"5\n42665793 93310343 856080769 176604645 248258165\n10\n1 5 141156007\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 4 942795810\n2 5 5 3\n1 3 33148892\n1 2 698674322\n1 2 602158126\n2 2 4 2\n",
"5\n581807377 848812048 1270742390 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 370682373\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 1 5\n4\n2 1 3 2\n2 1 5 6\n1 3 5\n2 1 5 6\n",
"5\n2 3 1 10 5\n4\n2 3 3 2\n2 1 5 6\n1 3 5\n2 2 5 6\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 2 4\n1 5 556830122\n1 3 1030644543\n2 4 4 5\n1 2 650599782\n2 1 5 2\n2 2 4 2\n1 4 384265705\n",
"5\n286100739 848812048 1179738561 134821971 713647858\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 5 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 5 1\n4\n2 1 3 2\n2 1 5 6\n1 5 5\n2 1 5 6\n",
"5\n2 3 1 0 6\n4\n2 2 3 2\n2 1 3 3\n1 3 10\n2 1 5 3\n",
"5\n259349921 585246931 574682827 407653643 902894459\n10\n2 3 5 5\n1 3 578806357\n2 2 3 5\n1 5 556830122\n1 3 542486819\n2 4 4 5\n1 2 975669385\n2 1 5 4\n2 2 4 2\n1 4 384265705\n",
"5\n2 3 0 5 5\n4\n2 2 3 2\n2 1 5 6\n1 5 5\n2 2 5 6\n",
"5\n2 3 1 1 5\n4\n2 1 3 2\n2 1 5 6\n1 5 5\n2 1 5 6\n",
"5\n2 3 1 10 5\n4\n2 3 3 2\n2 1 5 6\n1 3 2\n2 2 5 6\n",
"5\n42665793 142698407 856080769 176604645 248258165\n10\n1 5 184137183\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 540838076\n1 2 602158126\n2 4 4 2\n",
"5\n2 3 1 0 6\n4\n2 2 3 2\n2 1 3 6\n1 3 4\n2 1 5 3\n",
"5\n42665793 142698407 856080769 176604645 248258165\n10\n1 5 184137183\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 1 5 3\n1 3 195194439\n1 2 540838076\n1 2 602158126\n2 4 4 2\n",
"5\n286100739 848812048 848166364 134821971 713647858\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n798491505 143876925 714252070 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 3 1124492503\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 4 4 2\n",
"5\n2 3 1 5 5\n4\n2 3 3 2\n2 1 5 6\n1 3 5\n2 2 5 5\n",
"5\n286100739 848812048 848166364 134821971 713647858\n10\n2 2 3 4\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 6\n2 5 5 3\n1 3 143011686\n",
"5\n118571120 143876925 714252070 70903672 75576312\n10\n1 4 894875534\n1 2 547197376\n1 4 190083985\n2 2 5 3\n1 3 1124492503\n1 4 257095083\n2 4 5 6\n1 5 313038735\n1 5 338812312\n2 4 4 2\n",
"5\n42665793 142698407 856080769 176604645 248258165\n10\n1 5 184137183\n2 5 5 3\n2 4 4 2\n2 2 5 3\n1 2 942795810\n2 5 5 3\n1 3 195194439\n1 2 540838076\n1 2 602158126\n2 2 4 2\n",
"5\n16257913 848812048 848166364 134821971 211489258\n10\n2 2 3 5\n2 5 5 5\n2 5 5 2\n1 1 802432504\n2 4 5 5\n1 3 232276328\n1 5 146097986\n2 1 5 3\n2 5 5 3\n1 3 143011686\n",
"5\n2 3 1 0 6\n4\n2 2 3 2\n2 1 3 6\n1 3 10\n2 1 5 3\n"
],
"output": [
"5\n26\n38\n",
"141156007\n176604645\n2666985894\n141156007\n1169151649\n",
"4098673490\n1742859645\n407653643\n3475173712\n2143227063\n",
"2697106095\n2021833251\n257095083\n",
"2545144776\n713647858\n713647858\n1562117687\n4132016977\n146097986\n",
"141156007\n176604645\n2617597830\n141156007\n1169151649\n",
"2545144776\n713647858\n713647858\n1562117687\n4466663398\n146097986\n",
"5\n56\n38\n",
"221958704\n176604645\n2779203224\n221958704\n1169151649\n",
"2545144776\n211489258\n211489258\n557800487\n4466663398\n146097986\n",
"5\n56\n68\n",
"5\n56\n48\n",
"4098673490\n1742859645\n407653643\n3475173712\n2143227063\n",
"2697106095\n408247707\n257095083\n",
"5\n26\n53\n",
"141156007\n176604645\n2617597830\n141156007\n845060555\n",
"3390296828\n211489258\n211489258\n557800487\n4466663398\n146097986\n",
"9\n56\n68\n",
"1\n56\n48\n",
"4098673490\n1742859645\n407653643\n3963331436\n3119542511\n",
"5\n16\n43\n",
"2545144776\n713647858\n713647858\n1562117687\n6314333506\n146097986\n",
"3390296828\n211489258\n211489258\n557800487\n4566993653\n166164037\n",
"9\n36\n48\n",
"3217345859\n408247707\n257095083\n",
"5\n11\n43\n",
"3390296828\n265963952\n265963952\n666749875\n4566993653\n166164037\n",
"184137183\n176604645\n2752948246\n184137183\n1169151649\n",
"4098673490\n1742859645\n407653643\n6489114880\n2143227063\n",
"2697106095\n2021833251\n1228442236\n",
"221958704\n26067825\n2327592764\n221958704\n1018614829\n",
"2545144776\n211489258\n211489258\n557800487\n3612627512\n146097986\n",
"20\n56\n68\n",
"3\n53\n48\n",
"141156007\n176604645\n2617597830\n141156007\n1611251720\n",
"3390296828\n211489258\n211489258\n557800487\n4881881533\n146097986\n",
"9\n40\n52\n",
"1\n76\n63\n",
"4098673490\n585246931\n407653643\n3963331436\n3119542511\n",
"3208289170\n713647858\n713647858\n1562117687\n7309050097\n146097986\n",
"9\n36\n56\n",
"5\n11\n44\n",
"4098673490\n1742859645\n407653643\n7139254086\n2468296666\n",
"3\n53\n38\n",
"9\n40\n40\n",
"1\n76\n57\n",
"184137183\n176604645\n2752948246\n184137183\n176604645\n",
"5\n11\n26\n",
"184137183\n176604645\n2752948246\n5033846193\n176604645\n",
"2545144776\n713647858\n713647858\n1562117687\n4466663398\n146097986\n",
"2697106095\n408247707\n257095083\n",
"1\n56\n48\n",
"2545144776\n713647858\n713647858\n1562117687\n4466663398\n146097986\n",
"2697106095\n408247707\n257095083\n",
"184137183\n176604645\n2752948246\n184137183\n1169151649\n",
"2545144776\n211489258\n211489258\n557800487\n3612627512\n146097986\n",
"5\n11\n44\n"
]
} | 2CODEFORCES
|
252_B. Unsorting Array_967 | Little Petya likes arrays of integers a lot. Recently his mother has presented him one such array consisting of n elements. Petya is now wondering whether he can swap any two distinct integers in the array so that the array got unsorted. Please note that Petya can not swap equal integers even if they are in distinct positions in the array. Also note that Petya must swap some two integers even if the original array meets all requirements.
Array a (the array elements are indexed from 1) consisting of n elements is called sorted if it meets at least one of the following two conditions:
1. a1 ≤ a2 ≤ ... ≤ an;
2. a1 ≥ a2 ≥ ... ≥ an.
Help Petya find the two required positions to swap or else say that they do not exist.
Input
The first line contains a single integer n (1 ≤ n ≤ 105). The second line contains n non-negative space-separated integers a1, a2, ..., an — the elements of the array that Petya's mother presented him. All integers in the input do not exceed 109.
Output
If there is a pair of positions that make the array unsorted if swapped, then print the numbers of these positions separated by a space. If there are several pairs of positions, print any of them. If such pair does not exist, print -1. The positions in the array are numbered with integers from 1 to n.
Examples
Input
1
1
Output
-1
Input
2
1 2
Output
-1
Input
4
1 2 3 4
Output
1 2
Input
3
1 1 1
Output
-1
Note
In the first two samples the required pairs obviously don't exist.
In the third sample you can swap the first two elements. After that the array will look like this: 2 1 3 4. This array is unsorted. | n = input()
array = [int(x) for x in raw_input().split()]
if n < 3:
print -1
exit()
s = set(array)
if len(s) == 1:
print -1
elif len(s) == 2:
if len(array) <= 2:
print -1
elif len(array) == 3:
if array[0] == array[1]:
print 2, 3
elif array[1] == array[2]:
print 1, 2
else: # a b a
print -1
else: # len(array) >= 4:
s = list(s)
if s[0] == array[0] == array[1]:
print 2, (array.index(s[1])+1)
elif s[1] == array[0] == array[1]:
print 2, (array.index(s[0])+1)
elif array[1] in array[2:]:
print 1, 2
else:
print 2, 3
else: # len(s) >= 3:
cnt = [0]
j = k = 0
a0 = a1 = array[0]
for i in range(1, n):
if a0 != array[i] and a1 != array[i]:
if j == 0:
j = i
a1 = array[j]
else:
k = i
a2 = array[k]
break
if a0 == max(a0, a1, a2) or a0 == min(a0, a1, a2):
print 1, j+1
else:
print j+1, k+1
| 1Python2
| {
"input": [
"3\n1 1 1\n",
"1\n1\n",
"2\n1 2\n",
"4\n1 2 3 4\n",
"3\n3 2 3\n",
"3\n1 3 1\n",
"5\n1 1 2 1 1\n",
"5\n1 1 1 1 2\n",
"4\n562617869 562617869 562617869 562617869\n",
"6\n1 2 3 3 2 1\n",
"4\n562617869 961148050 961148050 961148050\n",
"4\n961148050 951133776 596819899 0\n",
"4\n961148050 961148050 562617869 961148050\n",
"3\n1 2 2\n",
"4\n562617869 562617869 961148050 562617869\n",
"3\n2 1 3\n",
"4\n596819899 562617869 951133776 961148050\n",
"4\n951133776 961148050 596819899 562617869\n",
"7\n6 5 4 3 2 1 0\n",
"10\n1 2 1 2 1 2 1 2 1 2\n",
"4\n562617869 596819899 951133776 961148050\n",
"4\n961148050 961148050 961148050 562617869\n",
"4\n961148050 562617869 562617869 562617869\n",
"4\n562617869 562617869 562617869 961148050\n",
"4\n2 1 3 4\n",
"4\n961148050 951133776 596819899 562617869\n",
"4\n562617869 961148050 562617869 562617869\n",
"4\n961148050 562617869 961148050 961148050\n",
"3\n1 3 2\n",
"4\n562617869 961148050 596819899 951133776\n",
"3\n2 1 2\n",
"11\n1 1 1 1 1 2 2 2 2 2 1\n",
"4\n562617869 596819899 951133776 0\n",
"3\n1 2 1\n",
"3\n3 2 0\n",
"3\n1 2 0\n",
"3\n2 0 2\n",
"11\n1 1 1 1 1 2 4 2 2 2 1\n",
"5\n1 1 2 1 2\n",
"5\n1 2 1 1 2\n",
"4\n51494667 562617869 562617869 562617869\n",
"6\n1 2 3 4 2 1\n",
"4\n562617869 961148050 466952598 961148050\n",
"4\n961148050 951133776 596819899 -1\n",
"4\n961148050 961148050 846344935 961148050\n",
"3\n1 1 2\n",
"4\n562617869 562617869 961148050 948615588\n",
"3\n2 0 3\n",
"4\n596819899 562617869 951133776 1194323154\n",
"4\n951133776 961148050 596819899 851347656\n",
"7\n6 5 4 3 2 2 0\n",
"10\n1 2 1 2 1 2 1 2 1 4\n",
"4\n533365788 596819899 951133776 961148050\n",
"4\n961148050 961148050 533895588 562617869\n",
"4\n961148050 562617869 752859342 562617869\n",
"4\n562617869 931474507 562617869 961148050\n",
"4\n3 1 3 4\n",
"4\n961148050 323990683 596819899 562617869\n",
"4\n1074778641 961148050 562617869 562617869\n",
"4\n961148050 486387685 961148050 961148050\n",
"3\n1 3 0\n",
"4\n562617869 961148050 365668276 951133776\n",
"4\n562617869 934529793 951133776 0\n",
"3\n1 0 1\n",
"3\n1 0 2\n",
"1\n2\n",
"2\n1 0\n",
"4\n1 2 3 8\n",
"3\n0 2 0\n",
"3\n2 2 1\n",
"5\n1 1 4 1 2\n",
"5\n1 2 1 2 2\n",
"4\n51494667 562617869 430653872 562617869\n",
"6\n1 0 3 4 2 1\n",
"4\n721711859 961148050 466952598 961148050\n",
"4\n1368582447 951133776 596819899 -1\n",
"4\n961148050 961148050 1051256782 961148050\n",
"3\n1 4 1\n",
"4\n562617869 258145437 961148050 948615588\n",
"4\n596819899 45016748 951133776 1194323154\n",
"4\n951133776 1700261825 596819899 851347656\n",
"7\n6 5 4 3 4 2 0\n",
"10\n1 2 1 2 1 1 1 2 1 4\n",
"4\n533365788 1160839207 951133776 961148050\n",
"4\n961148050 961148050 533895588 696554579\n",
"4\n961148050 562617869 1099356787 562617869\n",
"4\n562617869 48823784 562617869 961148050\n",
"4\n6 1 3 4\n",
"4\n961148050 58491082 596819899 562617869\n",
"4\n1357020387 961148050 562617869 562617869\n",
"4\n961148050 486387685 961148050 1179498630\n",
"3\n2 2 0\n",
"4\n562617869 961148050 365668276 401570620\n",
"3\n2 0 1\n",
"11\n1 1 1 1 1 2 4 2 2 1 1\n",
"4\n562617869 934529793 951133776 -1\n",
"3\n1 0 0\n",
"1\n4\n"
],
"output": [
"-1\n",
"-1\n",
"-1\n",
"1 2\n",
"-1\n",
"-1\n",
"2 3\n",
"4 5\n",
"-1\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"3 4\n",
"1 2\n",
"3 4\n",
"2 3\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"-1\n",
"5 6\n",
"1 2\n",
"-1\n",
"1 2\n",
"2 3\n",
"-1\n",
"5 6\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"-1\n",
"2 3\n",
"-1\n",
"-1\n",
"1 2\n",
"-1\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"-1\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"5 6\n",
"1 2\n",
"1 2\n",
"-1\n"
]
} | 2CODEFORCES
|
252_B. Unsorting Array_968 | Little Petya likes arrays of integers a lot. Recently his mother has presented him one such array consisting of n elements. Petya is now wondering whether he can swap any two distinct integers in the array so that the array got unsorted. Please note that Petya can not swap equal integers even if they are in distinct positions in the array. Also note that Petya must swap some two integers even if the original array meets all requirements.
Array a (the array elements are indexed from 1) consisting of n elements is called sorted if it meets at least one of the following two conditions:
1. a1 ≤ a2 ≤ ... ≤ an;
2. a1 ≥ a2 ≥ ... ≥ an.
Help Petya find the two required positions to swap or else say that they do not exist.
Input
The first line contains a single integer n (1 ≤ n ≤ 105). The second line contains n non-negative space-separated integers a1, a2, ..., an — the elements of the array that Petya's mother presented him. All integers in the input do not exceed 109.
Output
If there is a pair of positions that make the array unsorted if swapped, then print the numbers of these positions separated by a space. If there are several pairs of positions, print any of them. If such pair does not exist, print -1. The positions in the array are numbered with integers from 1 to n.
Examples
Input
1
1
Output
-1
Input
2
1 2
Output
-1
Input
4
1 2 3 4
Output
1 2
Input
3
1 1 1
Output
-1
Note
In the first two samples the required pairs obviously don't exist.
In the third sample you can swap the first two elements. After that the array will look like this: 2 1 3 4. This array is unsorted. | #include <bits/stdc++.h>
using namespace std;
long long int modpow(long long int a, long long int n, long long int temp) {
long long int res = 1, y = a;
while (n > 0) {
if (n & 1) res = (res * y) % temp;
y = (y * y) % temp;
n /= 2;
}
return res % temp;
}
vector<int> arr;
int track[1000006], cnt[3];
int findval(int a, int b) {
if (a == b)
return 0;
else if (a > b)
return 1;
else
return 2;
}
int main() {
int c1, c2, n, i, flag = 1, val;
scanf("%d", &n);
for (i = 0; i < n; ++i) {
scanf("%d", &val);
arr.push_back(val);
}
if (n == 1 || n == 2) {
printf("-1\n");
return 0;
}
for (i = 1; i < n; ++i) {
if (arr[i] == arr[i - 1])
track[i] = 0;
else if (arr[i] > arr[i - 1])
track[i] = 1;
else
track[i] = 2;
}
for (i = 1; i < n; ++i) cnt[track[i]]++;
for (i = 1; i < n - 1; ++i) {
cnt[track[i]]--;
cnt[track[i + 1]]--;
if (arr[i] != arr[i - 1]) {
c1 = findval(arr[i - 1], arr[i]);
c2 = findval(arr[i + 1], arr[i - 1]);
cnt[c1]++;
cnt[c2]++;
if (!(cnt[1] == 0 || cnt[2] == 0)) {
printf("%d %d\n", i + 1, i);
return 0;
}
cnt[c1]--;
cnt[c2]--;
}
if (arr[i] != arr[i + 1]) {
c1 = findval(arr[i + 1], arr[i - 1]);
c2 = findval(arr[i], arr[i + 1]);
cnt[c1]++;
cnt[c2]++;
if (!(cnt[1] == 0 || cnt[2] == 0)) {
printf("%d %d\n", i + 2, i + 1);
return 0;
}
cnt[c1]--;
cnt[c2]--;
}
cnt[track[i]]++;
cnt[track[i + 1]]++;
}
printf("-1\n");
return 0;
}
| 2C++
| {
"input": [
"3\n1 1 1\n",
"1\n1\n",
"2\n1 2\n",
"4\n1 2 3 4\n",
"3\n3 2 3\n",
"3\n1 3 1\n",
"5\n1 1 2 1 1\n",
"5\n1 1 1 1 2\n",
"4\n562617869 562617869 562617869 562617869\n",
"6\n1 2 3 3 2 1\n",
"4\n562617869 961148050 961148050 961148050\n",
"4\n961148050 951133776 596819899 0\n",
"4\n961148050 961148050 562617869 961148050\n",
"3\n1 2 2\n",
"4\n562617869 562617869 961148050 562617869\n",
"3\n2 1 3\n",
"4\n596819899 562617869 951133776 961148050\n",
"4\n951133776 961148050 596819899 562617869\n",
"7\n6 5 4 3 2 1 0\n",
"10\n1 2 1 2 1 2 1 2 1 2\n",
"4\n562617869 596819899 951133776 961148050\n",
"4\n961148050 961148050 961148050 562617869\n",
"4\n961148050 562617869 562617869 562617869\n",
"4\n562617869 562617869 562617869 961148050\n",
"4\n2 1 3 4\n",
"4\n961148050 951133776 596819899 562617869\n",
"4\n562617869 961148050 562617869 562617869\n",
"4\n961148050 562617869 961148050 961148050\n",
"3\n1 3 2\n",
"4\n562617869 961148050 596819899 951133776\n",
"3\n2 1 2\n",
"11\n1 1 1 1 1 2 2 2 2 2 1\n",
"4\n562617869 596819899 951133776 0\n",
"3\n1 2 1\n",
"3\n3 2 0\n",
"3\n1 2 0\n",
"3\n2 0 2\n",
"11\n1 1 1 1 1 2 4 2 2 2 1\n",
"5\n1 1 2 1 2\n",
"5\n1 2 1 1 2\n",
"4\n51494667 562617869 562617869 562617869\n",
"6\n1 2 3 4 2 1\n",
"4\n562617869 961148050 466952598 961148050\n",
"4\n961148050 951133776 596819899 -1\n",
"4\n961148050 961148050 846344935 961148050\n",
"3\n1 1 2\n",
"4\n562617869 562617869 961148050 948615588\n",
"3\n2 0 3\n",
"4\n596819899 562617869 951133776 1194323154\n",
"4\n951133776 961148050 596819899 851347656\n",
"7\n6 5 4 3 2 2 0\n",
"10\n1 2 1 2 1 2 1 2 1 4\n",
"4\n533365788 596819899 951133776 961148050\n",
"4\n961148050 961148050 533895588 562617869\n",
"4\n961148050 562617869 752859342 562617869\n",
"4\n562617869 931474507 562617869 961148050\n",
"4\n3 1 3 4\n",
"4\n961148050 323990683 596819899 562617869\n",
"4\n1074778641 961148050 562617869 562617869\n",
"4\n961148050 486387685 961148050 961148050\n",
"3\n1 3 0\n",
"4\n562617869 961148050 365668276 951133776\n",
"4\n562617869 934529793 951133776 0\n",
"3\n1 0 1\n",
"3\n1 0 2\n",
"1\n2\n",
"2\n1 0\n",
"4\n1 2 3 8\n",
"3\n0 2 0\n",
"3\n2 2 1\n",
"5\n1 1 4 1 2\n",
"5\n1 2 1 2 2\n",
"4\n51494667 562617869 430653872 562617869\n",
"6\n1 0 3 4 2 1\n",
"4\n721711859 961148050 466952598 961148050\n",
"4\n1368582447 951133776 596819899 -1\n",
"4\n961148050 961148050 1051256782 961148050\n",
"3\n1 4 1\n",
"4\n562617869 258145437 961148050 948615588\n",
"4\n596819899 45016748 951133776 1194323154\n",
"4\n951133776 1700261825 596819899 851347656\n",
"7\n6 5 4 3 4 2 0\n",
"10\n1 2 1 2 1 1 1 2 1 4\n",
"4\n533365788 1160839207 951133776 961148050\n",
"4\n961148050 961148050 533895588 696554579\n",
"4\n961148050 562617869 1099356787 562617869\n",
"4\n562617869 48823784 562617869 961148050\n",
"4\n6 1 3 4\n",
"4\n961148050 58491082 596819899 562617869\n",
"4\n1357020387 961148050 562617869 562617869\n",
"4\n961148050 486387685 961148050 1179498630\n",
"3\n2 2 0\n",
"4\n562617869 961148050 365668276 401570620\n",
"3\n2 0 1\n",
"11\n1 1 1 1 1 2 4 2 2 1 1\n",
"4\n562617869 934529793 951133776 -1\n",
"3\n1 0 0\n",
"1\n4\n"
],
"output": [
"-1\n",
"-1\n",
"-1\n",
"1 2\n",
"-1\n",
"-1\n",
"2 3\n",
"4 5\n",
"-1\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"3 4\n",
"1 2\n",
"3 4\n",
"2 3\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"-1\n",
"5 6\n",
"1 2\n",
"-1\n",
"1 2\n",
"2 3\n",
"-1\n",
"5 6\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"-1\n",
"2 3\n",
"-1\n",
"-1\n",
"1 2\n",
"-1\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"-1\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"5 6\n",
"1 2\n",
"1 2\n",
"-1\n"
]
} | 2CODEFORCES
|
252_B. Unsorting Array_969 | Little Petya likes arrays of integers a lot. Recently his mother has presented him one such array consisting of n elements. Petya is now wondering whether he can swap any two distinct integers in the array so that the array got unsorted. Please note that Petya can not swap equal integers even if they are in distinct positions in the array. Also note that Petya must swap some two integers even if the original array meets all requirements.
Array a (the array elements are indexed from 1) consisting of n elements is called sorted if it meets at least one of the following two conditions:
1. a1 ≤ a2 ≤ ... ≤ an;
2. a1 ≥ a2 ≥ ... ≥ an.
Help Petya find the two required positions to swap or else say that they do not exist.
Input
The first line contains a single integer n (1 ≤ n ≤ 105). The second line contains n non-negative space-separated integers a1, a2, ..., an — the elements of the array that Petya's mother presented him. All integers in the input do not exceed 109.
Output
If there is a pair of positions that make the array unsorted if swapped, then print the numbers of these positions separated by a space. If there are several pairs of positions, print any of them. If such pair does not exist, print -1. The positions in the array are numbered with integers from 1 to n.
Examples
Input
1
1
Output
-1
Input
2
1 2
Output
-1
Input
4
1 2 3 4
Output
1 2
Input
3
1 1 1
Output
-1
Note
In the first two samples the required pairs obviously don't exist.
In the third sample you can swap the first two elements. After that the array will look like this: 2 1 3 4. This array is unsorted. | n=int(input())
a=[int(i) for i in input().split()]
b=len(set(a))
c=sorted(a,reverse=True)
if n==1 or n==2 or b==1:
print("-1")
elif n==3:
if b==2:
if a[0]==a[2]:
print("-1")
elif a[0]==a[1]:
print("2 3")
else:
print("1 2")
elif a[1]!=max(a[0],a[1],a[2]):
print(a.index(c[0])+1,"2")
else:
print(a.index(c[2])+1,"2")
elif n==4:
if b==2:
if a[0]==a[3]:
if a[0]==a[1] or a[0]==a[2]:
print("2 3")
else:
print("1 2")
elif a[0]==a[1]:
if a[0]==a[2]:
print("4 3")
else:
print("2 3")
elif a[0]==a[2]:
print("1 2")
elif a[1]==a[2]:
print("1 2")
elif a[1]==a[3]:
print("1 2")
else:
print("2 3")
elif b==3:
if c[0]==c[1]:
if a.index(c[3])!=2:
print(a.index(c[3])+1,"3")
elif a.index(c[3])!=1:
print(a.index(c[3])+1,"2")
else:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2")
elif b==4:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2")
elif n>4:
i=0
while(a[i]==a[0]):
i+=1
if i>3:
print(i+1,"2")
else:
d=list(a)
for i in range (n-4):
a.pop()
c=sorted(a,reverse=True)
b=len(set(c))
if b==2:
if a[0]==a[3]:
if a[0]==a[1] or a[0]==a[2]:
print("2 3")
else:
print("1 2")
elif a[0]==a[1]:
if a[0]==a[2]:
print("4 3")
else:
print("2 3")
elif a[0]==a[2]:
print("1 2")
elif a[1]==a[2]:
print("1 2")
elif a[1]==a[3]:
print("1 2")
else:
print("2 3")
elif b==3:
if c[0]==c[1]:
if a.index(c[3])!=2:
print(a.index(c[3])+1,"3")
elif a.index(c[3])!=1:
print(a.index(c[3])+1,"2")
else:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2")
elif b==4:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2") | 3Python3
| {
"input": [
"3\n1 1 1\n",
"1\n1\n",
"2\n1 2\n",
"4\n1 2 3 4\n",
"3\n3 2 3\n",
"3\n1 3 1\n",
"5\n1 1 2 1 1\n",
"5\n1 1 1 1 2\n",
"4\n562617869 562617869 562617869 562617869\n",
"6\n1 2 3 3 2 1\n",
"4\n562617869 961148050 961148050 961148050\n",
"4\n961148050 951133776 596819899 0\n",
"4\n961148050 961148050 562617869 961148050\n",
"3\n1 2 2\n",
"4\n562617869 562617869 961148050 562617869\n",
"3\n2 1 3\n",
"4\n596819899 562617869 951133776 961148050\n",
"4\n951133776 961148050 596819899 562617869\n",
"7\n6 5 4 3 2 1 0\n",
"10\n1 2 1 2 1 2 1 2 1 2\n",
"4\n562617869 596819899 951133776 961148050\n",
"4\n961148050 961148050 961148050 562617869\n",
"4\n961148050 562617869 562617869 562617869\n",
"4\n562617869 562617869 562617869 961148050\n",
"4\n2 1 3 4\n",
"4\n961148050 951133776 596819899 562617869\n",
"4\n562617869 961148050 562617869 562617869\n",
"4\n961148050 562617869 961148050 961148050\n",
"3\n1 3 2\n",
"4\n562617869 961148050 596819899 951133776\n",
"3\n2 1 2\n",
"11\n1 1 1 1 1 2 2 2 2 2 1\n",
"4\n562617869 596819899 951133776 0\n",
"3\n1 2 1\n",
"3\n3 2 0\n",
"3\n1 2 0\n",
"3\n2 0 2\n",
"11\n1 1 1 1 1 2 4 2 2 2 1\n",
"5\n1 1 2 1 2\n",
"5\n1 2 1 1 2\n",
"4\n51494667 562617869 562617869 562617869\n",
"6\n1 2 3 4 2 1\n",
"4\n562617869 961148050 466952598 961148050\n",
"4\n961148050 951133776 596819899 -1\n",
"4\n961148050 961148050 846344935 961148050\n",
"3\n1 1 2\n",
"4\n562617869 562617869 961148050 948615588\n",
"3\n2 0 3\n",
"4\n596819899 562617869 951133776 1194323154\n",
"4\n951133776 961148050 596819899 851347656\n",
"7\n6 5 4 3 2 2 0\n",
"10\n1 2 1 2 1 2 1 2 1 4\n",
"4\n533365788 596819899 951133776 961148050\n",
"4\n961148050 961148050 533895588 562617869\n",
"4\n961148050 562617869 752859342 562617869\n",
"4\n562617869 931474507 562617869 961148050\n",
"4\n3 1 3 4\n",
"4\n961148050 323990683 596819899 562617869\n",
"4\n1074778641 961148050 562617869 562617869\n",
"4\n961148050 486387685 961148050 961148050\n",
"3\n1 3 0\n",
"4\n562617869 961148050 365668276 951133776\n",
"4\n562617869 934529793 951133776 0\n",
"3\n1 0 1\n",
"3\n1 0 2\n",
"1\n2\n",
"2\n1 0\n",
"4\n1 2 3 8\n",
"3\n0 2 0\n",
"3\n2 2 1\n",
"5\n1 1 4 1 2\n",
"5\n1 2 1 2 2\n",
"4\n51494667 562617869 430653872 562617869\n",
"6\n1 0 3 4 2 1\n",
"4\n721711859 961148050 466952598 961148050\n",
"4\n1368582447 951133776 596819899 -1\n",
"4\n961148050 961148050 1051256782 961148050\n",
"3\n1 4 1\n",
"4\n562617869 258145437 961148050 948615588\n",
"4\n596819899 45016748 951133776 1194323154\n",
"4\n951133776 1700261825 596819899 851347656\n",
"7\n6 5 4 3 4 2 0\n",
"10\n1 2 1 2 1 1 1 2 1 4\n",
"4\n533365788 1160839207 951133776 961148050\n",
"4\n961148050 961148050 533895588 696554579\n",
"4\n961148050 562617869 1099356787 562617869\n",
"4\n562617869 48823784 562617869 961148050\n",
"4\n6 1 3 4\n",
"4\n961148050 58491082 596819899 562617869\n",
"4\n1357020387 961148050 562617869 562617869\n",
"4\n961148050 486387685 961148050 1179498630\n",
"3\n2 2 0\n",
"4\n562617869 961148050 365668276 401570620\n",
"3\n2 0 1\n",
"11\n1 1 1 1 1 2 4 2 2 1 1\n",
"4\n562617869 934529793 951133776 -1\n",
"3\n1 0 0\n",
"1\n4\n"
],
"output": [
"-1\n",
"-1\n",
"-1\n",
"1 2\n",
"-1\n",
"-1\n",
"2 3\n",
"4 5\n",
"-1\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"3 4\n",
"1 2\n",
"3 4\n",
"2 3\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"-1\n",
"5 6\n",
"1 2\n",
"-1\n",
"1 2\n",
"2 3\n",
"-1\n",
"5 6\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"-1\n",
"2 3\n",
"-1\n",
"-1\n",
"1 2\n",
"-1\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"-1\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"5 6\n",
"1 2\n",
"1 2\n",
"-1\n"
]
} | 2CODEFORCES
|
252_B. Unsorting Array_970 | Little Petya likes arrays of integers a lot. Recently his mother has presented him one such array consisting of n elements. Petya is now wondering whether he can swap any two distinct integers in the array so that the array got unsorted. Please note that Petya can not swap equal integers even if they are in distinct positions in the array. Also note that Petya must swap some two integers even if the original array meets all requirements.
Array a (the array elements are indexed from 1) consisting of n elements is called sorted if it meets at least one of the following two conditions:
1. a1 ≤ a2 ≤ ... ≤ an;
2. a1 ≥ a2 ≥ ... ≥ an.
Help Petya find the two required positions to swap or else say that they do not exist.
Input
The first line contains a single integer n (1 ≤ n ≤ 105). The second line contains n non-negative space-separated integers a1, a2, ..., an — the elements of the array that Petya's mother presented him. All integers in the input do not exceed 109.
Output
If there is a pair of positions that make the array unsorted if swapped, then print the numbers of these positions separated by a space. If there are several pairs of positions, print any of them. If such pair does not exist, print -1. The positions in the array are numbered with integers from 1 to n.
Examples
Input
1
1
Output
-1
Input
2
1 2
Output
-1
Input
4
1 2 3 4
Output
1 2
Input
3
1 1 1
Output
-1
Note
In the first two samples the required pairs obviously don't exist.
In the third sample you can swap the first two elements. After that the array will look like this: 2 1 3 4. This array is unsorted. | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author P Marecki
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
boolean isSorted(int[] b) {
boolean ook = true;
boolean koo = true;
for (int i = 0; i < b.length - 1; i++) {
ook &= (b[i] <= b[i + 1]);
koo &= (b[i] >= b[i + 1]);
}
return ook || koo;
}
void swap(int i, int j, int[] b) {
int t = b[i];
b[i] = b[j];
b[j] = t;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = in.nextInt();
boolean ok = true;
for (int i = 0; i < n - 1; i++) ok &= (a[i] == a[i + 1]); //equal
if (ok || n <= 2) {
out.println(-1);
return;
}
if (n <= 15) {
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (a[i] == a[j]) continue;
swap(i, j, a);
if (!isSorted(a)) {
out.println((i + 1) + " " + (j + 1));
return;
}
swap(i, j, a);
}
}
}
//forward
int at = 0;
while (at < n - 1) {
if (a[at + 1] > a[at]) {
swap(at, at + 1, a);
if (!isSorted(a)) {
out.println((at + 1) + " " + (at + 2));
return;
}
swap(at, at + 1, a);
break;
}
++at;
}
at = 0;
//reverse
while (at < n - 1) {
if (a[at + 1] < a[at]) {
swap(at, at + 1, a);
if (!isSorted(a)) {
out.println((at + 1) + " " + (at + 2));
return;
}
swap(at, at + 1, a);
break;
}
++at;
}
System.out.println(-1);
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
| 4JAVA
| {
"input": [
"3\n1 1 1\n",
"1\n1\n",
"2\n1 2\n",
"4\n1 2 3 4\n",
"3\n3 2 3\n",
"3\n1 3 1\n",
"5\n1 1 2 1 1\n",
"5\n1 1 1 1 2\n",
"4\n562617869 562617869 562617869 562617869\n",
"6\n1 2 3 3 2 1\n",
"4\n562617869 961148050 961148050 961148050\n",
"4\n961148050 951133776 596819899 0\n",
"4\n961148050 961148050 562617869 961148050\n",
"3\n1 2 2\n",
"4\n562617869 562617869 961148050 562617869\n",
"3\n2 1 3\n",
"4\n596819899 562617869 951133776 961148050\n",
"4\n951133776 961148050 596819899 562617869\n",
"7\n6 5 4 3 2 1 0\n",
"10\n1 2 1 2 1 2 1 2 1 2\n",
"4\n562617869 596819899 951133776 961148050\n",
"4\n961148050 961148050 961148050 562617869\n",
"4\n961148050 562617869 562617869 562617869\n",
"4\n562617869 562617869 562617869 961148050\n",
"4\n2 1 3 4\n",
"4\n961148050 951133776 596819899 562617869\n",
"4\n562617869 961148050 562617869 562617869\n",
"4\n961148050 562617869 961148050 961148050\n",
"3\n1 3 2\n",
"4\n562617869 961148050 596819899 951133776\n",
"3\n2 1 2\n",
"11\n1 1 1 1 1 2 2 2 2 2 1\n",
"4\n562617869 596819899 951133776 0\n",
"3\n1 2 1\n",
"3\n3 2 0\n",
"3\n1 2 0\n",
"3\n2 0 2\n",
"11\n1 1 1 1 1 2 4 2 2 2 1\n",
"5\n1 1 2 1 2\n",
"5\n1 2 1 1 2\n",
"4\n51494667 562617869 562617869 562617869\n",
"6\n1 2 3 4 2 1\n",
"4\n562617869 961148050 466952598 961148050\n",
"4\n961148050 951133776 596819899 -1\n",
"4\n961148050 961148050 846344935 961148050\n",
"3\n1 1 2\n",
"4\n562617869 562617869 961148050 948615588\n",
"3\n2 0 3\n",
"4\n596819899 562617869 951133776 1194323154\n",
"4\n951133776 961148050 596819899 851347656\n",
"7\n6 5 4 3 2 2 0\n",
"10\n1 2 1 2 1 2 1 2 1 4\n",
"4\n533365788 596819899 951133776 961148050\n",
"4\n961148050 961148050 533895588 562617869\n",
"4\n961148050 562617869 752859342 562617869\n",
"4\n562617869 931474507 562617869 961148050\n",
"4\n3 1 3 4\n",
"4\n961148050 323990683 596819899 562617869\n",
"4\n1074778641 961148050 562617869 562617869\n",
"4\n961148050 486387685 961148050 961148050\n",
"3\n1 3 0\n",
"4\n562617869 961148050 365668276 951133776\n",
"4\n562617869 934529793 951133776 0\n",
"3\n1 0 1\n",
"3\n1 0 2\n",
"1\n2\n",
"2\n1 0\n",
"4\n1 2 3 8\n",
"3\n0 2 0\n",
"3\n2 2 1\n",
"5\n1 1 4 1 2\n",
"5\n1 2 1 2 2\n",
"4\n51494667 562617869 430653872 562617869\n",
"6\n1 0 3 4 2 1\n",
"4\n721711859 961148050 466952598 961148050\n",
"4\n1368582447 951133776 596819899 -1\n",
"4\n961148050 961148050 1051256782 961148050\n",
"3\n1 4 1\n",
"4\n562617869 258145437 961148050 948615588\n",
"4\n596819899 45016748 951133776 1194323154\n",
"4\n951133776 1700261825 596819899 851347656\n",
"7\n6 5 4 3 4 2 0\n",
"10\n1 2 1 2 1 1 1 2 1 4\n",
"4\n533365788 1160839207 951133776 961148050\n",
"4\n961148050 961148050 533895588 696554579\n",
"4\n961148050 562617869 1099356787 562617869\n",
"4\n562617869 48823784 562617869 961148050\n",
"4\n6 1 3 4\n",
"4\n961148050 58491082 596819899 562617869\n",
"4\n1357020387 961148050 562617869 562617869\n",
"4\n961148050 486387685 961148050 1179498630\n",
"3\n2 2 0\n",
"4\n562617869 961148050 365668276 401570620\n",
"3\n2 0 1\n",
"11\n1 1 1 1 1 2 4 2 2 1 1\n",
"4\n562617869 934529793 951133776 -1\n",
"3\n1 0 0\n",
"1\n4\n"
],
"output": [
"-1\n",
"-1\n",
"-1\n",
"1 2\n",
"-1\n",
"-1\n",
"2 3\n",
"4 5\n",
"-1\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"3 4\n",
"1 2\n",
"3 4\n",
"2 3\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"-1\n",
"5 6\n",
"1 2\n",
"-1\n",
"1 2\n",
"2 3\n",
"-1\n",
"5 6\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"-1\n",
"2 3\n",
"-1\n",
"-1\n",
"1 2\n",
"-1\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"-1\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"5 6\n",
"1 2\n",
"1 2\n",
"-1\n"
]
} | 2CODEFORCES
|
277_C. Game_971 | Two players play the following game. Initially, the players have a knife and a rectangular sheet of paper, divided into equal square grid cells of unit size. The players make moves in turn, the player who can't make a move loses. In one move, a player can take the knife and cut the paper along any segment of the grid line (not necessarily from border to border). The part of the paper, that touches the knife at least once, is considered cut. There is one limit not to turn the game into an infinite cycle: each move has to cut the paper, that is the knife has to touch the part of the paper that is not cut before.
Obviously, the game ends when the entire sheet is cut into 1 × 1 blocks. During the game, the pieces of the sheet are not allowed to move. It is also prohibited to cut along the border. The coordinates of the ends of each cut must be integers.
You are given an n × m piece of paper, somebody has already made k cuts there. Your task is to determine who will win if the players start to play on this sheet. You can consider that both players play optimally well. If the first player wins, you also need to find the winning first move.
Input
The first line contains three integers n, m, k (1 ≤ n, m ≤ 109, 0 ≤ k ≤ 105) — the sizes of the piece of paper and the number of cuts. Then follow k lines, each containing 4 integers xbi, ybi, xei, yei (0 ≤ xbi, xei ≤ n, 0 ≤ ybi, yei ≤ m) — the coordinates of the ends of the existing cuts.
It is guaranteed that each cut has a non-zero length, is either vertical or horizontal and doesn't go along the sheet border.
The cuts may intersect, overlap and even be the same. That is, it is not guaranteed that the cuts were obtained during any correct game.
Output
If the second player wins, print "SECOND". Otherwise, in the first line print "FIRST", and in the second line print any winning move of the first player (the coordinates of the cut ends, follow input format to print them).
Examples
Input
2 1 0
Output
FIRST
1 0 1 1
Input
2 2 4
0 1 2 1
0 1 2 1
1 2 1 0
1 1 1 2
Output
SECOND | from sys import stdin
from collections import defaultdict
def emp(l, a):
cnt = pos = x = 0
for y in a:
if y[1]:
cnt -= 1
else:
if not cnt:
x += y[0] - pos
cnt += 1
pos = y[0]
x += l - pos
return x
def check(x, b):
return x ^ b < x
def f(x, b):
return x - (x ^ b)
def main():
n, m, k = map(int, stdin.readline().split())
xcut = defaultdict(list)
ycut = defaultdict(list)
for i in xrange(k):
xb, yb, xe, ye = map(int, stdin.readline().split())
if xb == xe:
xcut[xb].extend([(min(yb, ye), 0), (max(yb, ye), 1)])
else:
ycut[yb].extend([(min(xb, xe), 0), (max(xb, xe), 1)])
b = 0
xb = dict()
yb = dict()
for t in xcut.keys():
xcut[t].sort()
xb[t] = emp(m, xcut[t])
b ^= xb[t]
if (n - 1 - len(xcut)) % 2:
b ^= m
for t in ycut.keys():
ycut[t].sort()
yb[t] = emp(n, ycut[t])
b ^= yb[t]
if (m - 1 - len(ycut)) % 2:
b ^= n
if b == 0:
print "SECOND"
return
else:
print "FIRST"
if n - 1 - len(xcut) and check(m, b):
for i in xrange(1, n):
if i not in xcut:
print i, 0, i, f(m, b)
return
if m - 1 - len(ycut) and check(n, b):
for i in xrange(1, m):
if i not in ycut:
print 0, i, f(n, b), i
return
for t, a in xcut.items():
if not check(xb[t], b): continue
c = f(xb[t], b)
cnt = pos = x = 0
for y in a:
if y[1] == 0:
if cnt == 0:
if x <= c <= x + y[0] - pos:
print t, 0, t, pos + c - x
return
x += y[0] - pos
cnt += 1
else:
cnt -= 1
pos = y[0]
print t, 0, t, pos + c - x
return
for t, a in ycut.items():
if not check(yb[t], b): continue
c = f(yb[t], b)
cnt = pos = x = 0
for y in a:
if y[1] == 0:
if cnt == 0:
if x <= c <= x + y[0] - pos:
print 0, t, pos + c - x, t
return
x += y[0] - pos
cnt += 1
else:
cnt -= 1
pos = y[0]
print 0, t, pos + c - x, t
return
main()
| 1Python2
| {
"input": [
"2 1 0\n",
"2 2 4\n0 1 2 1\n0 1 2 1\n1 2 1 0\n1 1 1 2\n",
"2 2 1\n0 1 1 1\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 3 3 4\n1 3 3 3\n2 5 2 1\n0 2 1 2\n2 1 0 1\n4 3 5 3\n1 4 1 5\n",
"5 5 46\n3 5 3 1\n2 1 2 0\n1 2 1 0\n4 1 0 1\n4 3 4 1\n0 4 5 4\n3 0 3 4\n3 2 0 2\n4 5 4 3\n4 1 3 1\n1 4 1 1\n1 1 2 1\n3 2 1 2\n3 2 3 4\n2 0 2 2\n1 0 1 2\n1 1 4 1\n0 4 3 4\n3 0 3 3\n3 1 3 4\n5 1 3 1\n3 0 3 5\n4 1 1 1\n2 5 2 3\n4 2 4 1\n1 3 1 5\n1 2 1 4\n4 2 4 1\n3 2 3 0\n0 4 3 4\n1 3 2 3\n4 5 4 3\n1 2 1 1\n4 3 3 3\n2 0 2 1\n3 0 3 2\n3 1 3 0\n2 4 2 0\n2 5 2 3\n1 3 1 2\n0 2 5 2\n0 4 2 4\n3 4 3 2\n4 3 4 2\n4 2 3 2\n2 1 1 1\n",
"5 5 17\n4 4 4 1\n3 2 1 2\n1 3 3 3\n4 4 4 3\n4 4 4 5\n5 4 4 4\n5 3 2 3\n1 5 1 4\n4 0 4 4\n2 3 2 4\n1 0 1 5\n3 2 3 0\n3 1 4 1\n1 4 4 4\n1 2 1 1\n3 1 3 5\n1 3 4 3\n",
"2 2 0\n",
"1000000000 1000000000 0\n",
"5 5 3\n1 2 1 0\n0 2 3 2\n2 1 0 1\n",
"999999999 999999999 0\n",
"5 5 44\n4 0 4 4\n4 4 4 1\n3 0 3 4\n1 5 1 4\n1 4 1 1\n1 5 1 4\n4 4 4 5\n2 0 2 2\n1 2 0 2\n1 1 1 0\n1 1 2 1\n2 1 2 0\n4 3 4 0\n4 4 4 3\n1 0 1 5\n1 4 3 4\n1 2 1 3\n4 2 1 2\n3 1 3 3\n0 1 3 1\n2 1 0 1\n0 3 1 3\n5 1 2 1\n4 4 4 5\n1 3 1 0\n4 3 0 3\n5 2 2 2\n2 2 0 2\n1 1 0 1\n3 4 2 4\n1 5 1 1\n4 3 4 1\n2 3 2 5\n1 3 1 5\n3 4 3 5\n1 2 4 2\n4 4 4 3\n3 3 2 3\n4 0 4 4\n3 5 3 4\n0 2 1 2\n3 0 3 1\n4 0 4 3\n3 4 1 4\n",
"1 2 1\n0 1 1 1\n",
"1 1 0\n",
"3 4 2\n1 0 1 4\n2 0 2 4\n",
"5 5 42\n4 2 1 2\n2 4 2 3\n3 4 5 4\n3 5 3 4\n3 4 3 1\n1 4 1 0\n3 3 3 4\n3 3 4 3\n1 4 1 5\n2 2 4 2\n1 2 1 5\n5 2 1 2\n4 2 3 2\n4 3 2 3\n5 4 3 4\n3 1 3 4\n2 1 2 3\n1 1 1 5\n1 0 1 4\n4 4 4 1\n4 1 1 1\n4 4 0 4\n1 3 1 0\n4 3 4 5\n2 3 2 5\n2 5 2 4\n1 3 1 0\n3 4 3 3\n3 1 4 1\n3 4 5 4\n2 2 2 0\n2 0 2 4\n0 1 5 1\n3 2 3 0\n5 2 4 2\n1 4 4 4\n2 2 2 0\n4 4 5 4\n2 2 2 3\n2 3 2 2\n4 1 0 1\n3 3 3 2\n",
"1 1000000000 0\n",
"5 5 10\n4 3 4 0\n3 5 3 4\n2 4 2 3\n3 3 3 0\n4 4 5 4\n1 2 0 2\n4 3 1 3\n1 1 1 3\n2 3 4 3\n4 1 1 1\n",
"4 4 10\n3 0 3 1\n2 1 4 1\n1 1 2 1\n3 1 2 1\n3 1 2 1\n3 3 4 3\n2 3 2 0\n4 2 0 2\n3 2 2 2\n2 2 2 1\n",
"5 5 2\n4 3 4 0\n5 4 1 4\n",
"1000000000 999999999 1\n314159265 0 314159265 999999999\n",
"4 3 10\n1 0 1 1\n0 1 1 1\n0 2 1 2\n1 3 1 2\n2 0 2 1\n2 3 2 2\n4 1 3 1\n3 0 3 1\n4 2 3 2\n3 3 3 2\n",
"5 5 19\n4 0 4 1\n3 2 2 2\n0 3 3 3\n4 1 4 0\n5 4 2 4\n2 5 2 0\n5 3 2 3\n5 1 4 1\n4 0 4 5\n1 4 5 4\n3 0 3 1\n2 1 2 3\n1 1 1 3\n2 2 2 0\n4 5 4 1\n0 3 5 3\n5 3 1 3\n3 2 3 4\n5 1 1 1\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 2 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n10 3 3 3\n7 10 3 10\n2 1 2 4\n",
"1000000000 999999999 0\n",
"4 1 0\n",
"5 5 38\n4 5 4 4\n5 1 0 1\n0 2 2 2\n4 3 2 3\n5 3 1 3\n2 2 2 4\n1 2 0 2\n0 2 4 2\n3 3 3 2\n3 1 3 0\n4 3 3 3\n0 1 1 1\n2 4 2 5\n2 5 2 2\n1 3 1 0\n2 5 2 1\n5 2 1 2\n0 1 4 1\n2 4 3 4\n3 3 4 3\n2 3 2 0\n2 3 2 5\n1 3 3 3\n4 1 2 1\n4 3 4 2\n3 1 5 1\n4 4 4 2\n0 2 1 2\n2 2 2 5\n4 2 4 3\n3 3 2 3\n4 0 4 5\n4 2 0 2\n3 1 3 3\n2 5 2 0\n1 1 1 0\n1 3 2 3\n4 0 4 3\n",
"5 5 0\n",
"2 2 1\n1 1 1 1\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n0 2 1 2\n2 1 0 1\n4 3 5 3\n1 4 1 5\n",
"1000000010 1000000000 0\n",
"5 5 44\n4 0 4 4\n4 4 4 1\n3 0 3 4\n1 5 1 4\n1 4 1 1\n1 5 1 4\n4 4 4 5\n2 0 2 2\n1 2 0 2\n1 1 1 0\n0 1 2 1\n2 1 2 0\n4 3 4 0\n4 4 4 3\n1 0 1 5\n1 4 3 4\n1 2 1 3\n4 2 1 2\n3 1 3 3\n0 1 3 1\n2 1 0 1\n0 3 1 3\n5 1 2 1\n4 4 4 5\n1 3 1 0\n4 3 0 3\n5 2 2 2\n2 2 0 2\n1 1 0 1\n3 4 2 4\n1 5 1 1\n4 3 4 1\n2 3 2 5\n1 3 1 5\n3 4 3 5\n1 2 4 2\n4 4 4 3\n3 3 2 3\n4 0 4 4\n3 5 3 4\n0 2 1 2\n3 0 3 1\n4 0 4 3\n3 4 1 4\n",
"5 5 42\n4 2 1 2\n2 4 2 3\n3 4 5 4\n3 0 3 4\n3 4 3 1\n1 4 1 0\n3 3 3 4\n3 3 4 3\n1 4 1 5\n2 2 4 2\n1 2 1 5\n5 2 1 2\n4 2 3 2\n4 3 2 3\n5 4 3 4\n3 1 3 4\n2 1 2 3\n1 1 1 5\n1 0 1 4\n4 4 4 1\n4 1 1 1\n4 4 0 4\n1 3 1 0\n4 3 4 5\n2 3 2 5\n2 5 2 4\n1 3 1 0\n3 4 3 3\n3 1 4 1\n3 4 5 4\n2 2 2 0\n2 0 2 4\n0 1 5 1\n3 2 3 0\n5 2 4 2\n1 4 4 4\n2 2 2 0\n4 4 5 4\n2 2 2 3\n2 3 2 2\n4 1 0 1\n3 3 3 2\n",
"1 1000000010 0\n",
"5 5 2\n4 2 4 0\n5 4 1 4\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 2 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n9 3 3 3\n7 10 3 10\n2 1 2 4\n",
"1000000000 1408513288 0\n",
"5 5 17\n4 4 4 1\n3 2 1 2\n1 3 3 3\n4 4 4 3\n4 4 4 5\n5 4 4 4\n5 3 2 3\n1 5 1 4\n4 0 4 4\n2 3 2 4\n1 0 1 5\n3 2 3 0\n4 1 4 1\n1 4 4 4\n1 2 1 1\n3 1 3 5\n1 3 4 3\n",
"1000001000 1000000000 0\n",
"999999999 489723892 0\n",
"1000000000 421532670 0\n",
"4 2 0\n",
"5 5 38\n4 5 4 4\n5 1 0 1\n0 2 2 2\n4 3 2 3\n5 3 1 3\n2 2 2 4\n1 2 0 2\n0 2 4 2\n3 3 3 2\n3 1 3 0\n4 3 3 3\n0 1 1 1\n2 4 2 5\n2 5 2 2\n1 3 1 0\n2 5 2 1\n5 2 1 2\n0 1 4 1\n1 4 3 4\n3 3 4 3\n2 3 2 0\n2 3 2 5\n1 3 3 3\n4 1 2 1\n4 3 4 2\n3 1 5 1\n4 4 4 2\n0 2 1 2\n2 2 2 5\n4 2 4 3\n3 3 2 3\n4 0 4 5\n4 2 0 2\n3 1 3 3\n2 5 2 0\n1 1 1 0\n1 3 2 3\n4 0 4 3\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 3 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n9 3 3 3\n7 10 3 10\n2 1 2 4\n",
"4 3 0\n",
"109719154 27476149 0\n",
"109719154 8675507 0\n",
"2 2 4\n0 1 2 1\n0 1 2 1\n1 2 1 0\n1 0 1 2\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n0 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"1 1010000010 0\n",
"2 2 4\n0 1 2 1\n0 1 1 1\n1 2 1 0\n1 0 1 2\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n1 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"1 1010000110 0\n",
"1 1000000110 0\n",
"1 1000001010 0\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 2 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n10 3 3 3\n7 10 2 10\n2 1 2 4\n",
"5 5 44\n4 0 4 4\n4 4 4 0\n3 0 3 4\n1 5 1 4\n1 4 1 1\n1 5 1 4\n4 4 4 5\n2 0 2 2\n1 2 0 2\n1 1 1 0\n0 1 2 1\n2 1 2 0\n4 3 4 0\n4 4 4 3\n1 0 1 5\n1 4 3 4\n1 2 1 3\n4 2 1 2\n3 1 3 3\n0 1 3 1\n2 1 0 1\n0 3 1 3\n5 1 2 1\n4 4 4 5\n1 3 1 0\n4 3 0 3\n5 2 2 2\n2 2 0 2\n1 1 0 1\n3 4 2 4\n1 5 1 1\n4 3 4 1\n2 3 2 5\n1 3 1 5\n3 4 3 5\n1 2 4 2\n4 4 4 3\n3 3 2 3\n4 0 4 4\n3 5 3 4\n0 2 1 2\n3 0 3 1\n4 0 4 3\n3 4 1 4\n",
"5 5 42\n4 2 1 2\n2 4 2 3\n3 4 5 4\n3 0 3 4\n3 4 3 0\n1 4 1 0\n3 3 3 4\n3 3 4 3\n1 4 1 5\n2 2 4 2\n1 2 1 5\n5 2 1 2\n4 2 3 2\n4 3 2 3\n5 4 3 4\n3 1 3 4\n2 1 2 3\n1 1 1 5\n1 0 1 4\n4 4 4 1\n4 1 1 1\n4 4 0 4\n1 3 1 0\n4 3 4 5\n2 3 2 5\n2 5 2 4\n1 3 1 0\n3 4 3 3\n3 1 4 1\n3 4 5 4\n2 2 2 0\n2 0 2 4\n0 1 5 1\n3 2 3 0\n5 2 4 2\n1 4 4 4\n2 2 2 0\n4 4 5 4\n2 2 2 3\n2 3 2 2\n4 1 0 1\n3 3 3 2\n",
"5 5 20\n3 1 3 3\n1 2 0 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n1 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"1 1010000011 0\n",
"999999999 27476149 0\n",
"5 5 38\n4 5 4 4\n5 1 0 1\n0 2 2 2\n4 3 2 3\n5 3 1 3\n2 2 2 4\n1 2 0 2\n0 2 4 2\n3 3 3 2\n3 1 3 0\n4 3 3 3\n0 1 1 1\n2 4 2 5\n2 5 2 2\n1 3 1 0\n2 5 2 1\n5 2 1 2\n0 1 4 1\n1 4 3 4\n3 3 4 3\n2 3 2 0\n2 3 2 5\n1 3 3 3\n4 1 1 1\n4 3 4 2\n3 1 5 1\n4 4 4 2\n0 2 1 2\n2 2 2 5\n4 2 4 3\n3 3 2 3\n4 0 4 5\n4 2 0 2\n3 1 3 3\n2 5 2 0\n1 1 1 0\n1 3 2 3\n4 0 4 3\n",
"5 5 20\n3 1 3 3\n1 2 0 2\n4 3 4 2\n3 2 3 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n1 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"4 4 0\n"
],
"output": [
"FIRST\n1 0 1 1\n",
"SECOND\n",
"FIRST\n1 0 1 1\n",
"FIRST\n0 4 4 4\n",
"FIRST\n0 3 3 3\n",
"FIRST\n0 2 5 2\n",
"SECOND\n",
"SECOND\n",
"FIRST\n2 0 2 3\n",
"SECOND\n",
"FIRST\n0 4 5 4\n",
"SECOND\n",
"SECOND\n",
"FIRST\n0 1 3 1\n",
"FIRST\n0 3 5 3\n",
"FIRST\n0 1 1 1\n",
"FIRST\n2 0 2 5\n",
"FIRST\n1 0 1 4\n",
"FIRST\n4 0 4 4\n",
"SECOND\n",
"FIRST\n1 0 1 2\n",
"FIRST\n0 2 4 2\n",
"FIRST\n1 0 1 11\n",
"FIRST\n1 0 1 999999999\n",
"FIRST\n1 0 1 1\n",
"FIRST\n0 4 4 4\n",
"SECOND\n",
"SECOND\n",
"FIRST\n0 4 4 4\n",
"FIRST\n0 1 10 1\n",
"FIRST\n0 4 5 4\n",
"FIRST\n0 3 2 3\n",
"FIRST\n0 1 1 1\n",
"FIRST\n4 0 4 4\n",
"FIRST\n0 3 10 3\n",
"FIRST\n1 0 1 408513288\n",
"FIRST\n0 2 4 2\n",
"FIRST\n0 1 1000 1\n",
"FIRST\n0 1 999999999 1\n",
"FIRST\n0 1 578467330 1\n",
"FIRST\n0 1 2 1\n",
"FIRST\n1 0 1 5\n",
"FIRST\n0 3 1 3\n",
"FIRST\n1 0 1 3\n",
"FIRST\n1 0 1 27476149\n",
"FIRST\n1 0 1 8675507\n",
"SECOND\n",
"FIRST\n0 4 4 4\n",
"FIRST\n0 1 1 1\n",
"SECOND\n",
"FIRST\n0 4 5 4\n",
"FIRST\n0 1 1 1\n",
"FIRST\n0 1 1 1\n",
"FIRST\n0 1 1 1\n",
"SECOND\n",
"FIRST\n0 4 5 4\n",
"FIRST\n0 3 2 3\n",
"FIRST\n0 4 5 4\n",
"SECOND\n",
"SECOND\n",
"FIRST\n1 0 1 5\n",
"FIRST\n0 3 1 3\n",
"SECOND\n"
]
} | 2CODEFORCES
|
277_C. Game_972 | Two players play the following game. Initially, the players have a knife and a rectangular sheet of paper, divided into equal square grid cells of unit size. The players make moves in turn, the player who can't make a move loses. In one move, a player can take the knife and cut the paper along any segment of the grid line (not necessarily from border to border). The part of the paper, that touches the knife at least once, is considered cut. There is one limit not to turn the game into an infinite cycle: each move has to cut the paper, that is the knife has to touch the part of the paper that is not cut before.
Obviously, the game ends when the entire sheet is cut into 1 × 1 blocks. During the game, the pieces of the sheet are not allowed to move. It is also prohibited to cut along the border. The coordinates of the ends of each cut must be integers.
You are given an n × m piece of paper, somebody has already made k cuts there. Your task is to determine who will win if the players start to play on this sheet. You can consider that both players play optimally well. If the first player wins, you also need to find the winning first move.
Input
The first line contains three integers n, m, k (1 ≤ n, m ≤ 109, 0 ≤ k ≤ 105) — the sizes of the piece of paper and the number of cuts. Then follow k lines, each containing 4 integers xbi, ybi, xei, yei (0 ≤ xbi, xei ≤ n, 0 ≤ ybi, yei ≤ m) — the coordinates of the ends of the existing cuts.
It is guaranteed that each cut has a non-zero length, is either vertical or horizontal and doesn't go along the sheet border.
The cuts may intersect, overlap and even be the same. That is, it is not guaranteed that the cuts were obtained during any correct game.
Output
If the second player wins, print "SECOND". Otherwise, in the first line print "FIRST", and in the second line print any winning move of the first player (the coordinates of the cut ends, follow input format to print them).
Examples
Input
2 1 0
Output
FIRST
1 0 1 1
Input
2 2 4
0 1 2 1
0 1 2 1
1 2 1 0
1 1 1 2
Output
SECOND | #include <bits/stdc++.h>
#pragma comment(linker, "/STACK:32000000")
using namespace std;
const int MAX = 200000;
const int INF = 100000000;
const int MOD = 1000000007;
const double EPS = 1E-7;
const int IT = 10024;
map<int, vector<pair<int, int> > > r;
map<int, vector<pair<int, int> > > c;
map<int, int> R;
map<int, int> C;
int main() {
int n, m;
cin >> n >> m;
int k;
cin >> k;
for (long long(i) = (0); i < k; i++) {
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
if (x1 == x2) {
r[x1].push_back(make_pair(min(y1, y2), max(y1, y2)));
} else {
c[y1].push_back(make_pair(min(x1, x2), max(x1, x2)));
}
}
int dr = n - 1 - r.size();
int dc = m - 1 - c.size();
int res = 0;
if (dr & 1) res ^= m;
if (dc & 1) res ^= n;
for (map<int, vector<pair<int, int> > >::iterator it = r.begin();
it != r.end(); ++it) {
int cnt = 0;
sort(it->second.begin(), it->second.end());
cnt += it->second[0].first;
int rigth = it->second[0].second;
for (long long(i) = (1); i < it->second.size(); i++) {
cnt += max(0, it->second[i].first - rigth);
rigth = max(rigth, it->second[i].second);
}
cnt += m - rigth;
R[it->first] = cnt;
res ^= cnt;
}
for (map<int, vector<pair<int, int> > >::iterator it = c.begin();
it != c.end(); ++it) {
int cnt = 0;
sort(it->second.begin(), it->second.end());
cnt += it->second[0].first;
int rigth = it->second[0].second;
for (long long(i) = (1); i < it->second.size(); i++) {
cnt += max(0, it->second[i].first - rigth);
rigth = max(rigth, it->second[i].second);
}
cnt += n - rigth;
C[it->first] = cnt;
res ^= cnt;
}
if (res == 0) {
cout << "SECOND\n";
return 0;
} else {
cout << "FIRST\n";
}
if (dr && (res ^ m) <= m) {
int cut = m - (res ^ m);
int X;
for (long long(i) = (1); i < 100007; i++)
if (!R.count(i)) {
X = i;
break;
}
cout << X << ' ' << 0 << ' ' << X << ' ' << cut << endl;
return 0;
}
if (dc && (res ^ n) <= n) {
int cut = n - (res ^ n);
int X;
for (long long(i) = (1); i < 100007; i++)
if (!C.count(i)) {
X = i;
break;
}
cout << 0 << ' ' << X << ' ' << cut << ' ' << X << endl;
return 0;
}
for (map<int, int>::iterator it = R.begin(); it != R.end(); ++it) {
if ((res ^ it->second) <= it->second) {
int cut = it->second - (res ^ it->second);
int x = it->first;
vector<pair<int, int> > temp = r[x];
int cnt = 0;
cnt += temp[0].first;
if (cut <= temp[0].first) {
cout << x << ' ' << 0 << ' ' << x << ' ' << cut << endl;
return 0;
}
int rigth = temp[0].second;
for (long long(i) = (1); i < temp.size(); i++) {
int add = max(0, temp[i].first - rigth);
if (cnt + add >= cut) {
cout << x << ' ' << 0 << ' ' << x << ' ' << rigth + cut - cnt << endl;
return 0;
}
cnt += add;
rigth = max(rigth, temp[i].second);
}
cout << x << ' ' << 0 << ' ' << x << ' ' << rigth + cut - cnt << endl;
return 0;
}
}
for (map<int, int>::iterator it = C.begin(); it != C.end(); ++it) {
if ((res ^ it->second) <= it->second) {
int cut = it->second - (res ^ it->second);
int x = it->first;
vector<pair<int, int> > temp = c[x];
int cnt = 0;
if (cut <= temp[0].first) {
cout << 0 << ' ' << x << ' ' << cut << ' ' << x << endl;
return 0;
}
cnt += temp[0].first;
int rigth = temp[0].second;
for (long long(i) = (1); i < temp.size(); i++) {
int add = max(0, temp[i].first - rigth);
if (cnt + add >= cut) {
cout << 0 << ' ' << x << ' ' << rigth + cut - cnt << ' ' << x << endl;
return 0;
}
cnt += add;
rigth = max(rigth, temp[i].second);
}
cout << 0 << ' ' << x << ' ' << rigth + cut - cnt << ' ' << x << endl;
return 0;
}
}
}
| 2C++
| {
"input": [
"2 1 0\n",
"2 2 4\n0 1 2 1\n0 1 2 1\n1 2 1 0\n1 1 1 2\n",
"2 2 1\n0 1 1 1\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 3 3 4\n1 3 3 3\n2 5 2 1\n0 2 1 2\n2 1 0 1\n4 3 5 3\n1 4 1 5\n",
"5 5 46\n3 5 3 1\n2 1 2 0\n1 2 1 0\n4 1 0 1\n4 3 4 1\n0 4 5 4\n3 0 3 4\n3 2 0 2\n4 5 4 3\n4 1 3 1\n1 4 1 1\n1 1 2 1\n3 2 1 2\n3 2 3 4\n2 0 2 2\n1 0 1 2\n1 1 4 1\n0 4 3 4\n3 0 3 3\n3 1 3 4\n5 1 3 1\n3 0 3 5\n4 1 1 1\n2 5 2 3\n4 2 4 1\n1 3 1 5\n1 2 1 4\n4 2 4 1\n3 2 3 0\n0 4 3 4\n1 3 2 3\n4 5 4 3\n1 2 1 1\n4 3 3 3\n2 0 2 1\n3 0 3 2\n3 1 3 0\n2 4 2 0\n2 5 2 3\n1 3 1 2\n0 2 5 2\n0 4 2 4\n3 4 3 2\n4 3 4 2\n4 2 3 2\n2 1 1 1\n",
"5 5 17\n4 4 4 1\n3 2 1 2\n1 3 3 3\n4 4 4 3\n4 4 4 5\n5 4 4 4\n5 3 2 3\n1 5 1 4\n4 0 4 4\n2 3 2 4\n1 0 1 5\n3 2 3 0\n3 1 4 1\n1 4 4 4\n1 2 1 1\n3 1 3 5\n1 3 4 3\n",
"2 2 0\n",
"1000000000 1000000000 0\n",
"5 5 3\n1 2 1 0\n0 2 3 2\n2 1 0 1\n",
"999999999 999999999 0\n",
"5 5 44\n4 0 4 4\n4 4 4 1\n3 0 3 4\n1 5 1 4\n1 4 1 1\n1 5 1 4\n4 4 4 5\n2 0 2 2\n1 2 0 2\n1 1 1 0\n1 1 2 1\n2 1 2 0\n4 3 4 0\n4 4 4 3\n1 0 1 5\n1 4 3 4\n1 2 1 3\n4 2 1 2\n3 1 3 3\n0 1 3 1\n2 1 0 1\n0 3 1 3\n5 1 2 1\n4 4 4 5\n1 3 1 0\n4 3 0 3\n5 2 2 2\n2 2 0 2\n1 1 0 1\n3 4 2 4\n1 5 1 1\n4 3 4 1\n2 3 2 5\n1 3 1 5\n3 4 3 5\n1 2 4 2\n4 4 4 3\n3 3 2 3\n4 0 4 4\n3 5 3 4\n0 2 1 2\n3 0 3 1\n4 0 4 3\n3 4 1 4\n",
"1 2 1\n0 1 1 1\n",
"1 1 0\n",
"3 4 2\n1 0 1 4\n2 0 2 4\n",
"5 5 42\n4 2 1 2\n2 4 2 3\n3 4 5 4\n3 5 3 4\n3 4 3 1\n1 4 1 0\n3 3 3 4\n3 3 4 3\n1 4 1 5\n2 2 4 2\n1 2 1 5\n5 2 1 2\n4 2 3 2\n4 3 2 3\n5 4 3 4\n3 1 3 4\n2 1 2 3\n1 1 1 5\n1 0 1 4\n4 4 4 1\n4 1 1 1\n4 4 0 4\n1 3 1 0\n4 3 4 5\n2 3 2 5\n2 5 2 4\n1 3 1 0\n3 4 3 3\n3 1 4 1\n3 4 5 4\n2 2 2 0\n2 0 2 4\n0 1 5 1\n3 2 3 0\n5 2 4 2\n1 4 4 4\n2 2 2 0\n4 4 5 4\n2 2 2 3\n2 3 2 2\n4 1 0 1\n3 3 3 2\n",
"1 1000000000 0\n",
"5 5 10\n4 3 4 0\n3 5 3 4\n2 4 2 3\n3 3 3 0\n4 4 5 4\n1 2 0 2\n4 3 1 3\n1 1 1 3\n2 3 4 3\n4 1 1 1\n",
"4 4 10\n3 0 3 1\n2 1 4 1\n1 1 2 1\n3 1 2 1\n3 1 2 1\n3 3 4 3\n2 3 2 0\n4 2 0 2\n3 2 2 2\n2 2 2 1\n",
"5 5 2\n4 3 4 0\n5 4 1 4\n",
"1000000000 999999999 1\n314159265 0 314159265 999999999\n",
"4 3 10\n1 0 1 1\n0 1 1 1\n0 2 1 2\n1 3 1 2\n2 0 2 1\n2 3 2 2\n4 1 3 1\n3 0 3 1\n4 2 3 2\n3 3 3 2\n",
"5 5 19\n4 0 4 1\n3 2 2 2\n0 3 3 3\n4 1 4 0\n5 4 2 4\n2 5 2 0\n5 3 2 3\n5 1 4 1\n4 0 4 5\n1 4 5 4\n3 0 3 1\n2 1 2 3\n1 1 1 3\n2 2 2 0\n4 5 4 1\n0 3 5 3\n5 3 1 3\n3 2 3 4\n5 1 1 1\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 2 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n10 3 3 3\n7 10 3 10\n2 1 2 4\n",
"1000000000 999999999 0\n",
"4 1 0\n",
"5 5 38\n4 5 4 4\n5 1 0 1\n0 2 2 2\n4 3 2 3\n5 3 1 3\n2 2 2 4\n1 2 0 2\n0 2 4 2\n3 3 3 2\n3 1 3 0\n4 3 3 3\n0 1 1 1\n2 4 2 5\n2 5 2 2\n1 3 1 0\n2 5 2 1\n5 2 1 2\n0 1 4 1\n2 4 3 4\n3 3 4 3\n2 3 2 0\n2 3 2 5\n1 3 3 3\n4 1 2 1\n4 3 4 2\n3 1 5 1\n4 4 4 2\n0 2 1 2\n2 2 2 5\n4 2 4 3\n3 3 2 3\n4 0 4 5\n4 2 0 2\n3 1 3 3\n2 5 2 0\n1 1 1 0\n1 3 2 3\n4 0 4 3\n",
"5 5 0\n",
"2 2 1\n1 1 1 1\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n0 2 1 2\n2 1 0 1\n4 3 5 3\n1 4 1 5\n",
"1000000010 1000000000 0\n",
"5 5 44\n4 0 4 4\n4 4 4 1\n3 0 3 4\n1 5 1 4\n1 4 1 1\n1 5 1 4\n4 4 4 5\n2 0 2 2\n1 2 0 2\n1 1 1 0\n0 1 2 1\n2 1 2 0\n4 3 4 0\n4 4 4 3\n1 0 1 5\n1 4 3 4\n1 2 1 3\n4 2 1 2\n3 1 3 3\n0 1 3 1\n2 1 0 1\n0 3 1 3\n5 1 2 1\n4 4 4 5\n1 3 1 0\n4 3 0 3\n5 2 2 2\n2 2 0 2\n1 1 0 1\n3 4 2 4\n1 5 1 1\n4 3 4 1\n2 3 2 5\n1 3 1 5\n3 4 3 5\n1 2 4 2\n4 4 4 3\n3 3 2 3\n4 0 4 4\n3 5 3 4\n0 2 1 2\n3 0 3 1\n4 0 4 3\n3 4 1 4\n",
"5 5 42\n4 2 1 2\n2 4 2 3\n3 4 5 4\n3 0 3 4\n3 4 3 1\n1 4 1 0\n3 3 3 4\n3 3 4 3\n1 4 1 5\n2 2 4 2\n1 2 1 5\n5 2 1 2\n4 2 3 2\n4 3 2 3\n5 4 3 4\n3 1 3 4\n2 1 2 3\n1 1 1 5\n1 0 1 4\n4 4 4 1\n4 1 1 1\n4 4 0 4\n1 3 1 0\n4 3 4 5\n2 3 2 5\n2 5 2 4\n1 3 1 0\n3 4 3 3\n3 1 4 1\n3 4 5 4\n2 2 2 0\n2 0 2 4\n0 1 5 1\n3 2 3 0\n5 2 4 2\n1 4 4 4\n2 2 2 0\n4 4 5 4\n2 2 2 3\n2 3 2 2\n4 1 0 1\n3 3 3 2\n",
"1 1000000010 0\n",
"5 5 2\n4 2 4 0\n5 4 1 4\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 2 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n9 3 3 3\n7 10 3 10\n2 1 2 4\n",
"1000000000 1408513288 0\n",
"5 5 17\n4 4 4 1\n3 2 1 2\n1 3 3 3\n4 4 4 3\n4 4 4 5\n5 4 4 4\n5 3 2 3\n1 5 1 4\n4 0 4 4\n2 3 2 4\n1 0 1 5\n3 2 3 0\n4 1 4 1\n1 4 4 4\n1 2 1 1\n3 1 3 5\n1 3 4 3\n",
"1000001000 1000000000 0\n",
"999999999 489723892 0\n",
"1000000000 421532670 0\n",
"4 2 0\n",
"5 5 38\n4 5 4 4\n5 1 0 1\n0 2 2 2\n4 3 2 3\n5 3 1 3\n2 2 2 4\n1 2 0 2\n0 2 4 2\n3 3 3 2\n3 1 3 0\n4 3 3 3\n0 1 1 1\n2 4 2 5\n2 5 2 2\n1 3 1 0\n2 5 2 1\n5 2 1 2\n0 1 4 1\n1 4 3 4\n3 3 4 3\n2 3 2 0\n2 3 2 5\n1 3 3 3\n4 1 2 1\n4 3 4 2\n3 1 5 1\n4 4 4 2\n0 2 1 2\n2 2 2 5\n4 2 4 3\n3 3 2 3\n4 0 4 5\n4 2 0 2\n3 1 3 3\n2 5 2 0\n1 1 1 0\n1 3 2 3\n4 0 4 3\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 3 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n9 3 3 3\n7 10 3 10\n2 1 2 4\n",
"4 3 0\n",
"109719154 27476149 0\n",
"109719154 8675507 0\n",
"2 2 4\n0 1 2 1\n0 1 2 1\n1 2 1 0\n1 0 1 2\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n0 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"1 1010000010 0\n",
"2 2 4\n0 1 2 1\n0 1 1 1\n1 2 1 0\n1 0 1 2\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n1 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"1 1010000110 0\n",
"1 1000000110 0\n",
"1 1000001010 0\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 2 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n10 3 3 3\n7 10 2 10\n2 1 2 4\n",
"5 5 44\n4 0 4 4\n4 4 4 0\n3 0 3 4\n1 5 1 4\n1 4 1 1\n1 5 1 4\n4 4 4 5\n2 0 2 2\n1 2 0 2\n1 1 1 0\n0 1 2 1\n2 1 2 0\n4 3 4 0\n4 4 4 3\n1 0 1 5\n1 4 3 4\n1 2 1 3\n4 2 1 2\n3 1 3 3\n0 1 3 1\n2 1 0 1\n0 3 1 3\n5 1 2 1\n4 4 4 5\n1 3 1 0\n4 3 0 3\n5 2 2 2\n2 2 0 2\n1 1 0 1\n3 4 2 4\n1 5 1 1\n4 3 4 1\n2 3 2 5\n1 3 1 5\n3 4 3 5\n1 2 4 2\n4 4 4 3\n3 3 2 3\n4 0 4 4\n3 5 3 4\n0 2 1 2\n3 0 3 1\n4 0 4 3\n3 4 1 4\n",
"5 5 42\n4 2 1 2\n2 4 2 3\n3 4 5 4\n3 0 3 4\n3 4 3 0\n1 4 1 0\n3 3 3 4\n3 3 4 3\n1 4 1 5\n2 2 4 2\n1 2 1 5\n5 2 1 2\n4 2 3 2\n4 3 2 3\n5 4 3 4\n3 1 3 4\n2 1 2 3\n1 1 1 5\n1 0 1 4\n4 4 4 1\n4 1 1 1\n4 4 0 4\n1 3 1 0\n4 3 4 5\n2 3 2 5\n2 5 2 4\n1 3 1 0\n3 4 3 3\n3 1 4 1\n3 4 5 4\n2 2 2 0\n2 0 2 4\n0 1 5 1\n3 2 3 0\n5 2 4 2\n1 4 4 4\n2 2 2 0\n4 4 5 4\n2 2 2 3\n2 3 2 2\n4 1 0 1\n3 3 3 2\n",
"5 5 20\n3 1 3 3\n1 2 0 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n1 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"1 1010000011 0\n",
"999999999 27476149 0\n",
"5 5 38\n4 5 4 4\n5 1 0 1\n0 2 2 2\n4 3 2 3\n5 3 1 3\n2 2 2 4\n1 2 0 2\n0 2 4 2\n3 3 3 2\n3 1 3 0\n4 3 3 3\n0 1 1 1\n2 4 2 5\n2 5 2 2\n1 3 1 0\n2 5 2 1\n5 2 1 2\n0 1 4 1\n1 4 3 4\n3 3 4 3\n2 3 2 0\n2 3 2 5\n1 3 3 3\n4 1 1 1\n4 3 4 2\n3 1 5 1\n4 4 4 2\n0 2 1 2\n2 2 2 5\n4 2 4 3\n3 3 2 3\n4 0 4 5\n4 2 0 2\n3 1 3 3\n2 5 2 0\n1 1 1 0\n1 3 2 3\n4 0 4 3\n",
"5 5 20\n3 1 3 3\n1 2 0 2\n4 3 4 2\n3 2 3 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n1 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"4 4 0\n"
],
"output": [
"FIRST\n1 0 1 1\n",
"SECOND\n",
"FIRST\n1 0 1 1\n",
"FIRST\n0 4 4 4\n",
"FIRST\n0 3 3 3\n",
"FIRST\n0 2 5 2\n",
"SECOND\n",
"SECOND\n",
"FIRST\n2 0 2 3\n",
"SECOND\n",
"FIRST\n0 4 5 4\n",
"SECOND\n",
"SECOND\n",
"FIRST\n0 1 3 1\n",
"FIRST\n0 3 5 3\n",
"FIRST\n0 1 1 1\n",
"FIRST\n2 0 2 5\n",
"FIRST\n1 0 1 4\n",
"FIRST\n4 0 4 4\n",
"SECOND\n",
"FIRST\n1 0 1 2\n",
"FIRST\n0 2 4 2\n",
"FIRST\n1 0 1 11\n",
"FIRST\n1 0 1 999999999\n",
"FIRST\n1 0 1 1\n",
"FIRST\n0 4 4 4\n",
"SECOND\n",
"SECOND\n",
"FIRST\n0 4 4 4\n",
"FIRST\n0 1 10 1\n",
"FIRST\n0 4 5 4\n",
"FIRST\n0 3 2 3\n",
"FIRST\n0 1 1 1\n",
"FIRST\n4 0 4 4\n",
"FIRST\n0 3 10 3\n",
"FIRST\n1 0 1 408513288\n",
"FIRST\n0 2 4 2\n",
"FIRST\n0 1 1000 1\n",
"FIRST\n0 1 999999999 1\n",
"FIRST\n0 1 578467330 1\n",
"FIRST\n0 1 2 1\n",
"FIRST\n1 0 1 5\n",
"FIRST\n0 3 1 3\n",
"FIRST\n1 0 1 3\n",
"FIRST\n1 0 1 27476149\n",
"FIRST\n1 0 1 8675507\n",
"SECOND\n",
"FIRST\n0 4 4 4\n",
"FIRST\n0 1 1 1\n",
"SECOND\n",
"FIRST\n0 4 5 4\n",
"FIRST\n0 1 1 1\n",
"FIRST\n0 1 1 1\n",
"FIRST\n0 1 1 1\n",
"SECOND\n",
"FIRST\n0 4 5 4\n",
"FIRST\n0 3 2 3\n",
"FIRST\n0 4 5 4\n",
"SECOND\n",
"SECOND\n",
"FIRST\n1 0 1 5\n",
"FIRST\n0 3 1 3\n",
"SECOND\n"
]
} | 2CODEFORCES
|
277_C. Game_973 | Two players play the following game. Initially, the players have a knife and a rectangular sheet of paper, divided into equal square grid cells of unit size. The players make moves in turn, the player who can't make a move loses. In one move, a player can take the knife and cut the paper along any segment of the grid line (not necessarily from border to border). The part of the paper, that touches the knife at least once, is considered cut. There is one limit not to turn the game into an infinite cycle: each move has to cut the paper, that is the knife has to touch the part of the paper that is not cut before.
Obviously, the game ends when the entire sheet is cut into 1 × 1 blocks. During the game, the pieces of the sheet are not allowed to move. It is also prohibited to cut along the border. The coordinates of the ends of each cut must be integers.
You are given an n × m piece of paper, somebody has already made k cuts there. Your task is to determine who will win if the players start to play on this sheet. You can consider that both players play optimally well. If the first player wins, you also need to find the winning first move.
Input
The first line contains three integers n, m, k (1 ≤ n, m ≤ 109, 0 ≤ k ≤ 105) — the sizes of the piece of paper and the number of cuts. Then follow k lines, each containing 4 integers xbi, ybi, xei, yei (0 ≤ xbi, xei ≤ n, 0 ≤ ybi, yei ≤ m) — the coordinates of the ends of the existing cuts.
It is guaranteed that each cut has a non-zero length, is either vertical or horizontal and doesn't go along the sheet border.
The cuts may intersect, overlap and even be the same. That is, it is not guaranteed that the cuts were obtained during any correct game.
Output
If the second player wins, print "SECOND". Otherwise, in the first line print "FIRST", and in the second line print any winning move of the first player (the coordinates of the cut ends, follow input format to print them).
Examples
Input
2 1 0
Output
FIRST
1 0 1 1
Input
2 2 4
0 1 2 1
0 1 2 1
1 2 1 0
1 1 1 2
Output
SECOND | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
public class E {
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter out;
public class Cut{
int start;
int end;
public Cut(int start, int end){
this.start = start;
this.end = end;
}
}
public void solve() throws IOException {
int N = nextInt(); int M = nextInt(); int K = nextInt();
int xcuts_size = 0;
int ycuts_size = 0;
int[][] xcuts = new int[K][];
int[][] ycuts = new int[K][];
for(int i = 0; i < K; i++){
int xb = nextInt(); int yb = nextInt(); int xe = nextInt(); int ye = nextInt();
if( xb == xe )
ycuts[ycuts_size++] = new int[]{xb, Math.min(yb, ye), Math.max(yb, ye)};
else
xcuts[xcuts_size++] = new int[]{yb, Math.min(xb, xe), Math.max(xb, xe)};
}
xcuts = Arrays.copyOf(xcuts, xcuts_size);
ycuts = Arrays.copyOf(ycuts, ycuts_size);
Comparator<int[]> cmp = new Comparator<int[]>(){
public int compare(int[] a, int[] b) {
if(a[0] != b[0])return a[0] - b[0];
return a[1] - b[1];
}
};
Arrays.sort(xcuts, cmp);
Arrays.sort(ycuts, cmp);
int nim1 = getNim(xcuts, M, N);
int nim2 = getNim(ycuts, N, M);
int nim = nim1 ^ nim2;
if( nim == 0){
out.println("SECOND");
}
else{
out.println("FIRST");
if( !firstMove(xcuts, M, N, nim, true) ){
firstMove(ycuts, N, M, nim, false);
}
}
}
public boolean firstMove(int[][] xcuts, int N, int M, int nim, boolean isX){
int i = 0;
int cut_count = 0;
while(i < xcuts.length){
int j = i;
while(j < xcuts.length-1 && xcuts[j+1][0] == xcuts[i][0]) j++;
int len = 0;
int last = 0;
for(int k = i; k <= j; k++){
int real_start = Math.max( last, xcuts[k][1] );
len += Math.max(0, xcuts[k][2] - real_start);
last = Math.max(last, xcuts[k][2]);
}
len = M - len;
if( len >= (len ^ nim) ){
int cut_need = len - (len ^ nim);
int cut_till = 0;
int cut_len = 0;
int unfirst = 0;
for(int k = i; k <= j; k++){
int cur_len = Math.max(0, xcuts[k][1] - unfirst);
if(cur_len > 0){
if( cut_len + cur_len <= cut_need ){
cut_len += cur_len;
cut_till = xcuts[k][1];
if(cut_len == cut_need)
break;
}
else{
cut_till = unfirst + (cut_need-cut_len);
break;
}
}
unfirst = Math.max(unfirst, xcuts[k][2]);
if( k == j && cut_len < cut_need ){
cut_till = unfirst + (cut_need - cut_len);
}
}
if( isX )
out.println( 0 + " " + xcuts[i][0] + " " + cut_till + " " + xcuts[i][0] );
else
out.println( xcuts[i][0] + " " + 0 + " " + xcuts[i][0] + " " + cut_till );
return true;
}
i = j+1;
cut_count++;
}
// out.println( "conditions: " + nim + ", " + M + ", " + (M^nim) + ", " + isX);
if( N-1 > cut_count) {
if( M >= (M ^ nim) ){
int cut_need = M - (M ^ nim);
int current_m = 1;
for(int k = 0; k < xcuts.length; k++){
if( xcuts[k][0] > current_m){
break;
}
else if( xcuts[k][0] == current_m ){
current_m++;
}
}
// out.println( (N-1) + ": " + cut_count + ", " + xcuts.length + ": " + isX );
if( isX )
out.println( 0 + " " + current_m + " " + cut_need + " " + current_m );
else
out.println( current_m + " " + 0 + " " + current_m + " " + cut_need );
return true;
}
}
return false;
}
public int getNim(int[][] xcuts, int N, int M){
int nim = 0;
int i = 0;
int cut_count = 0;
while(i < xcuts.length){
int j = i;
while(j < xcuts.length-1 && xcuts[j+1][0] == xcuts[i][0]) j++;
int len = 0;
int last = 0;
for(int k = i; k <= j; k++){
int real_start = Math.max( last, xcuts[k][1] );
len += Math.max(0, xcuts[k][2] - real_start);
last = Math.max(last, xcuts[k][2]);
}
len = M - len;
nim = nim ^ len;
i = j+1;
cut_count++;
}
if( (N-1-cut_count) % 2 == 1){
nim = nim ^ M;
}
return nim;
}
/**
* @param args
*/
public static void main(String[] args) {
new E().run();
}
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
out = new PrintWriter(System.out);
solve();
reader.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
| 4JAVA
| {
"input": [
"2 1 0\n",
"2 2 4\n0 1 2 1\n0 1 2 1\n1 2 1 0\n1 1 1 2\n",
"2 2 1\n0 1 1 1\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 3 3 4\n1 3 3 3\n2 5 2 1\n0 2 1 2\n2 1 0 1\n4 3 5 3\n1 4 1 5\n",
"5 5 46\n3 5 3 1\n2 1 2 0\n1 2 1 0\n4 1 0 1\n4 3 4 1\n0 4 5 4\n3 0 3 4\n3 2 0 2\n4 5 4 3\n4 1 3 1\n1 4 1 1\n1 1 2 1\n3 2 1 2\n3 2 3 4\n2 0 2 2\n1 0 1 2\n1 1 4 1\n0 4 3 4\n3 0 3 3\n3 1 3 4\n5 1 3 1\n3 0 3 5\n4 1 1 1\n2 5 2 3\n4 2 4 1\n1 3 1 5\n1 2 1 4\n4 2 4 1\n3 2 3 0\n0 4 3 4\n1 3 2 3\n4 5 4 3\n1 2 1 1\n4 3 3 3\n2 0 2 1\n3 0 3 2\n3 1 3 0\n2 4 2 0\n2 5 2 3\n1 3 1 2\n0 2 5 2\n0 4 2 4\n3 4 3 2\n4 3 4 2\n4 2 3 2\n2 1 1 1\n",
"5 5 17\n4 4 4 1\n3 2 1 2\n1 3 3 3\n4 4 4 3\n4 4 4 5\n5 4 4 4\n5 3 2 3\n1 5 1 4\n4 0 4 4\n2 3 2 4\n1 0 1 5\n3 2 3 0\n3 1 4 1\n1 4 4 4\n1 2 1 1\n3 1 3 5\n1 3 4 3\n",
"2 2 0\n",
"1000000000 1000000000 0\n",
"5 5 3\n1 2 1 0\n0 2 3 2\n2 1 0 1\n",
"999999999 999999999 0\n",
"5 5 44\n4 0 4 4\n4 4 4 1\n3 0 3 4\n1 5 1 4\n1 4 1 1\n1 5 1 4\n4 4 4 5\n2 0 2 2\n1 2 0 2\n1 1 1 0\n1 1 2 1\n2 1 2 0\n4 3 4 0\n4 4 4 3\n1 0 1 5\n1 4 3 4\n1 2 1 3\n4 2 1 2\n3 1 3 3\n0 1 3 1\n2 1 0 1\n0 3 1 3\n5 1 2 1\n4 4 4 5\n1 3 1 0\n4 3 0 3\n5 2 2 2\n2 2 0 2\n1 1 0 1\n3 4 2 4\n1 5 1 1\n4 3 4 1\n2 3 2 5\n1 3 1 5\n3 4 3 5\n1 2 4 2\n4 4 4 3\n3 3 2 3\n4 0 4 4\n3 5 3 4\n0 2 1 2\n3 0 3 1\n4 0 4 3\n3 4 1 4\n",
"1 2 1\n0 1 1 1\n",
"1 1 0\n",
"3 4 2\n1 0 1 4\n2 0 2 4\n",
"5 5 42\n4 2 1 2\n2 4 2 3\n3 4 5 4\n3 5 3 4\n3 4 3 1\n1 4 1 0\n3 3 3 4\n3 3 4 3\n1 4 1 5\n2 2 4 2\n1 2 1 5\n5 2 1 2\n4 2 3 2\n4 3 2 3\n5 4 3 4\n3 1 3 4\n2 1 2 3\n1 1 1 5\n1 0 1 4\n4 4 4 1\n4 1 1 1\n4 4 0 4\n1 3 1 0\n4 3 4 5\n2 3 2 5\n2 5 2 4\n1 3 1 0\n3 4 3 3\n3 1 4 1\n3 4 5 4\n2 2 2 0\n2 0 2 4\n0 1 5 1\n3 2 3 0\n5 2 4 2\n1 4 4 4\n2 2 2 0\n4 4 5 4\n2 2 2 3\n2 3 2 2\n4 1 0 1\n3 3 3 2\n",
"1 1000000000 0\n",
"5 5 10\n4 3 4 0\n3 5 3 4\n2 4 2 3\n3 3 3 0\n4 4 5 4\n1 2 0 2\n4 3 1 3\n1 1 1 3\n2 3 4 3\n4 1 1 1\n",
"4 4 10\n3 0 3 1\n2 1 4 1\n1 1 2 1\n3 1 2 1\n3 1 2 1\n3 3 4 3\n2 3 2 0\n4 2 0 2\n3 2 2 2\n2 2 2 1\n",
"5 5 2\n4 3 4 0\n5 4 1 4\n",
"1000000000 999999999 1\n314159265 0 314159265 999999999\n",
"4 3 10\n1 0 1 1\n0 1 1 1\n0 2 1 2\n1 3 1 2\n2 0 2 1\n2 3 2 2\n4 1 3 1\n3 0 3 1\n4 2 3 2\n3 3 3 2\n",
"5 5 19\n4 0 4 1\n3 2 2 2\n0 3 3 3\n4 1 4 0\n5 4 2 4\n2 5 2 0\n5 3 2 3\n5 1 4 1\n4 0 4 5\n1 4 5 4\n3 0 3 1\n2 1 2 3\n1 1 1 3\n2 2 2 0\n4 5 4 1\n0 3 5 3\n5 3 1 3\n3 2 3 4\n5 1 1 1\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 2 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n10 3 3 3\n7 10 3 10\n2 1 2 4\n",
"1000000000 999999999 0\n",
"4 1 0\n",
"5 5 38\n4 5 4 4\n5 1 0 1\n0 2 2 2\n4 3 2 3\n5 3 1 3\n2 2 2 4\n1 2 0 2\n0 2 4 2\n3 3 3 2\n3 1 3 0\n4 3 3 3\n0 1 1 1\n2 4 2 5\n2 5 2 2\n1 3 1 0\n2 5 2 1\n5 2 1 2\n0 1 4 1\n2 4 3 4\n3 3 4 3\n2 3 2 0\n2 3 2 5\n1 3 3 3\n4 1 2 1\n4 3 4 2\n3 1 5 1\n4 4 4 2\n0 2 1 2\n2 2 2 5\n4 2 4 3\n3 3 2 3\n4 0 4 5\n4 2 0 2\n3 1 3 3\n2 5 2 0\n1 1 1 0\n1 3 2 3\n4 0 4 3\n",
"5 5 0\n",
"2 2 1\n1 1 1 1\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n0 2 1 2\n2 1 0 1\n4 3 5 3\n1 4 1 5\n",
"1000000010 1000000000 0\n",
"5 5 44\n4 0 4 4\n4 4 4 1\n3 0 3 4\n1 5 1 4\n1 4 1 1\n1 5 1 4\n4 4 4 5\n2 0 2 2\n1 2 0 2\n1 1 1 0\n0 1 2 1\n2 1 2 0\n4 3 4 0\n4 4 4 3\n1 0 1 5\n1 4 3 4\n1 2 1 3\n4 2 1 2\n3 1 3 3\n0 1 3 1\n2 1 0 1\n0 3 1 3\n5 1 2 1\n4 4 4 5\n1 3 1 0\n4 3 0 3\n5 2 2 2\n2 2 0 2\n1 1 0 1\n3 4 2 4\n1 5 1 1\n4 3 4 1\n2 3 2 5\n1 3 1 5\n3 4 3 5\n1 2 4 2\n4 4 4 3\n3 3 2 3\n4 0 4 4\n3 5 3 4\n0 2 1 2\n3 0 3 1\n4 0 4 3\n3 4 1 4\n",
"5 5 42\n4 2 1 2\n2 4 2 3\n3 4 5 4\n3 0 3 4\n3 4 3 1\n1 4 1 0\n3 3 3 4\n3 3 4 3\n1 4 1 5\n2 2 4 2\n1 2 1 5\n5 2 1 2\n4 2 3 2\n4 3 2 3\n5 4 3 4\n3 1 3 4\n2 1 2 3\n1 1 1 5\n1 0 1 4\n4 4 4 1\n4 1 1 1\n4 4 0 4\n1 3 1 0\n4 3 4 5\n2 3 2 5\n2 5 2 4\n1 3 1 0\n3 4 3 3\n3 1 4 1\n3 4 5 4\n2 2 2 0\n2 0 2 4\n0 1 5 1\n3 2 3 0\n5 2 4 2\n1 4 4 4\n2 2 2 0\n4 4 5 4\n2 2 2 3\n2 3 2 2\n4 1 0 1\n3 3 3 2\n",
"1 1000000010 0\n",
"5 5 2\n4 2 4 0\n5 4 1 4\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 2 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n9 3 3 3\n7 10 3 10\n2 1 2 4\n",
"1000000000 1408513288 0\n",
"5 5 17\n4 4 4 1\n3 2 1 2\n1 3 3 3\n4 4 4 3\n4 4 4 5\n5 4 4 4\n5 3 2 3\n1 5 1 4\n4 0 4 4\n2 3 2 4\n1 0 1 5\n3 2 3 0\n4 1 4 1\n1 4 4 4\n1 2 1 1\n3 1 3 5\n1 3 4 3\n",
"1000001000 1000000000 0\n",
"999999999 489723892 0\n",
"1000000000 421532670 0\n",
"4 2 0\n",
"5 5 38\n4 5 4 4\n5 1 0 1\n0 2 2 2\n4 3 2 3\n5 3 1 3\n2 2 2 4\n1 2 0 2\n0 2 4 2\n3 3 3 2\n3 1 3 0\n4 3 3 3\n0 1 1 1\n2 4 2 5\n2 5 2 2\n1 3 1 0\n2 5 2 1\n5 2 1 2\n0 1 4 1\n1 4 3 4\n3 3 4 3\n2 3 2 0\n2 3 2 5\n1 3 3 3\n4 1 2 1\n4 3 4 2\n3 1 5 1\n4 4 4 2\n0 2 1 2\n2 2 2 5\n4 2 4 3\n3 3 2 3\n4 0 4 5\n4 2 0 2\n3 1 3 3\n2 5 2 0\n1 1 1 0\n1 3 2 3\n4 0 4 3\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 3 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n9 3 3 3\n7 10 3 10\n2 1 2 4\n",
"4 3 0\n",
"109719154 27476149 0\n",
"109719154 8675507 0\n",
"2 2 4\n0 1 2 1\n0 1 2 1\n1 2 1 0\n1 0 1 2\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n0 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"1 1010000010 0\n",
"2 2 4\n0 1 2 1\n0 1 1 1\n1 2 1 0\n1 0 1 2\n",
"5 5 20\n3 1 3 3\n1 2 2 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n1 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"1 1010000110 0\n",
"1 1000000110 0\n",
"1 1000001010 0\n",
"10 11 13\n0 4 1 4\n2 8 2 10\n10 4 5 4\n2 4 10 4\n9 6 8 6\n10 9 7 9\n3 2 3 1\n1 8 1 0\n2 10 2 5\n8 1 1 1\n10 3 3 3\n7 10 2 10\n2 1 2 4\n",
"5 5 44\n4 0 4 4\n4 4 4 0\n3 0 3 4\n1 5 1 4\n1 4 1 1\n1 5 1 4\n4 4 4 5\n2 0 2 2\n1 2 0 2\n1 1 1 0\n0 1 2 1\n2 1 2 0\n4 3 4 0\n4 4 4 3\n1 0 1 5\n1 4 3 4\n1 2 1 3\n4 2 1 2\n3 1 3 3\n0 1 3 1\n2 1 0 1\n0 3 1 3\n5 1 2 1\n4 4 4 5\n1 3 1 0\n4 3 0 3\n5 2 2 2\n2 2 0 2\n1 1 0 1\n3 4 2 4\n1 5 1 1\n4 3 4 1\n2 3 2 5\n1 3 1 5\n3 4 3 5\n1 2 4 2\n4 4 4 3\n3 3 2 3\n4 0 4 4\n3 5 3 4\n0 2 1 2\n3 0 3 1\n4 0 4 3\n3 4 1 4\n",
"5 5 42\n4 2 1 2\n2 4 2 3\n3 4 5 4\n3 0 3 4\n3 4 3 0\n1 4 1 0\n3 3 3 4\n3 3 4 3\n1 4 1 5\n2 2 4 2\n1 2 1 5\n5 2 1 2\n4 2 3 2\n4 3 2 3\n5 4 3 4\n3 1 3 4\n2 1 2 3\n1 1 1 5\n1 0 1 4\n4 4 4 1\n4 1 1 1\n4 4 0 4\n1 3 1 0\n4 3 4 5\n2 3 2 5\n2 5 2 4\n1 3 1 0\n3 4 3 3\n3 1 4 1\n3 4 5 4\n2 2 2 0\n2 0 2 4\n0 1 5 1\n3 2 3 0\n5 2 4 2\n1 4 4 4\n2 2 2 0\n4 4 5 4\n2 2 2 3\n2 3 2 2\n4 1 0 1\n3 3 3 2\n",
"5 5 20\n3 1 3 3\n1 2 0 2\n4 3 4 2\n3 2 2 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n1 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"1 1010000011 0\n",
"999999999 27476149 0\n",
"5 5 38\n4 5 4 4\n5 1 0 1\n0 2 2 2\n4 3 2 3\n5 3 1 3\n2 2 2 4\n1 2 0 2\n0 2 4 2\n3 3 3 2\n3 1 3 0\n4 3 3 3\n0 1 1 1\n2 4 2 5\n2 5 2 2\n1 3 1 0\n2 5 2 1\n5 2 1 2\n0 1 4 1\n1 4 3 4\n3 3 4 3\n2 3 2 0\n2 3 2 5\n1 3 3 3\n4 1 1 1\n4 3 4 2\n3 1 5 1\n4 4 4 2\n0 2 1 2\n2 2 2 5\n4 2 4 3\n3 3 2 3\n4 0 4 5\n4 2 0 2\n3 1 3 3\n2 5 2 0\n1 1 1 0\n1 3 2 3\n4 0 4 3\n",
"5 5 20\n3 1 3 3\n1 2 0 2\n4 3 4 2\n3 2 3 2\n3 4 2 4\n4 1 4 5\n4 3 5 3\n5 1 0 1\n0 1 5 1\n3 5 3 1\n3 1 3 2\n1 5 1 0\n3 4 3 3\n3 1 3 4\n1 3 3 3\n2 5 2 1\n1 2 1 2\n2 1 0 1\n4 3 5 3\n1 0 1 5\n",
"4 4 0\n"
],
"output": [
"FIRST\n1 0 1 1\n",
"SECOND\n",
"FIRST\n1 0 1 1\n",
"FIRST\n0 4 4 4\n",
"FIRST\n0 3 3 3\n",
"FIRST\n0 2 5 2\n",
"SECOND\n",
"SECOND\n",
"FIRST\n2 0 2 3\n",
"SECOND\n",
"FIRST\n0 4 5 4\n",
"SECOND\n",
"SECOND\n",
"FIRST\n0 1 3 1\n",
"FIRST\n0 3 5 3\n",
"FIRST\n0 1 1 1\n",
"FIRST\n2 0 2 5\n",
"FIRST\n1 0 1 4\n",
"FIRST\n4 0 4 4\n",
"SECOND\n",
"FIRST\n1 0 1 2\n",
"FIRST\n0 2 4 2\n",
"FIRST\n1 0 1 11\n",
"FIRST\n1 0 1 999999999\n",
"FIRST\n1 0 1 1\n",
"FIRST\n0 4 4 4\n",
"SECOND\n",
"SECOND\n",
"FIRST\n0 4 4 4\n",
"FIRST\n0 1 10 1\n",
"FIRST\n0 4 5 4\n",
"FIRST\n0 3 2 3\n",
"FIRST\n0 1 1 1\n",
"FIRST\n4 0 4 4\n",
"FIRST\n0 3 10 3\n",
"FIRST\n1 0 1 408513288\n",
"FIRST\n0 2 4 2\n",
"FIRST\n0 1 1000 1\n",
"FIRST\n0 1 999999999 1\n",
"FIRST\n0 1 578467330 1\n",
"FIRST\n0 1 2 1\n",
"FIRST\n1 0 1 5\n",
"FIRST\n0 3 1 3\n",
"FIRST\n1 0 1 3\n",
"FIRST\n1 0 1 27476149\n",
"FIRST\n1 0 1 8675507\n",
"SECOND\n",
"FIRST\n0 4 4 4\n",
"FIRST\n0 1 1 1\n",
"SECOND\n",
"FIRST\n0 4 5 4\n",
"FIRST\n0 1 1 1\n",
"FIRST\n0 1 1 1\n",
"FIRST\n0 1 1 1\n",
"SECOND\n",
"FIRST\n0 4 5 4\n",
"FIRST\n0 3 2 3\n",
"FIRST\n0 4 5 4\n",
"SECOND\n",
"SECOND\n",
"FIRST\n1 0 1 5\n",
"FIRST\n0 3 1 3\n",
"SECOND\n"
]
} | 2CODEFORCES
|
29_E. Quarrel_974 | Friends Alex and Bob live in Bertown. In this town there are n crossroads, some of them are connected by bidirectional roads of equal length. Bob lives in a house at the crossroads number 1, Alex — in a house at the crossroads number n.
One day Alex and Bob had a big quarrel, and they refused to see each other. It occurred that today Bob needs to get from his house to the crossroads n and Alex needs to get from his house to the crossroads 1. And they don't want to meet at any of the crossroads, but they can meet in the middle of the street, when passing it in opposite directions. Alex and Bob asked you, as their mutual friend, to help them with this difficult task.
Find for Alex and Bob such routes with equal number of streets that the guys can follow these routes and never appear at the same crossroads at the same time. They are allowed to meet in the middle of the street when moving toward each other (see Sample 1). Among all possible routes, select such that the number of streets in it is the least possible. Until both guys reach their destinations, none of them can stay without moving.
The guys are moving simultaneously with equal speeds, i.e. it is possible that when one of them reaches some of the crossroads, the other one leaves it. For example, Alex can move from crossroad 1 to crossroad 2, while Bob moves from crossroad 2 to crossroad 3.
If the required routes don't exist, your program should output -1.
Input
The first line contains two integers n and m (2 ≤ n ≤ 500, 1 ≤ m ≤ 10000) — the amount of crossroads and the amount of roads. Each of the following m lines contains two integers — the numbers of crossroads connected by the road. It is guaranteed that no road connects a crossroads with itself and no two crossroads are connected by more than one road.
Output
If the required routes don't exist, output -1. Otherwise, the first line should contain integer k — the length of shortest routes (the length of the route is the amount of roads in it). The next line should contain k + 1 integers — Bob's route, i.e. the numbers of k + 1 crossroads passed by Bob. The last line should contain Alex's route in the same format. If there are several optimal solutions, output any of them.
Examples
Input
2 1
1 2
Output
1
1 2
2 1
Input
7 5
1 2
2 7
7 6
2 3
3 4
Output
-1
Input
7 6
1 2
2 7
7 6
2 3
3 4
1 5
Output
6
1 2 3 4 3 2 7
7 6 7 2 1 5 1 | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 500 + 17, inf = 1e9 + 17;
int n, m, dp[MAXN][MAXN];
pair<int, int> par[MAXN][MAXN];
vector<int> adj[MAXN], ans1, ans2;
void bfs() {
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) dp[i][j] = inf;
dp[1][n] = 0;
queue<pair<int, int> > q;
q.push({1, n});
while (q.size()) {
pair<int, int> fr = q.front();
q.pop();
for (auto i : adj[fr.first])
for (auto j : adj[fr.second])
if (i != j && dp[fr.first][fr.second] + 1 < dp[i][j]) {
dp[i][j] = dp[fr.first][fr.second] + 1;
par[i][j] = {fr.first, fr.second};
q.push({i, j});
}
}
}
void pp(int i = n, int j = 1) {
ans1.push_back(i);
ans2.push_back(j);
if (i == 1 && j == n) return;
pp(par[i][j].first, par[i][j].second);
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> n >> m;
for (int i = 1; i <= m; i++) {
int v, u;
cin >> v >> u;
adj[v].push_back(u);
adj[u].push_back(v);
}
bfs();
if (dp[n][1] == inf) return cout << -1 << endl, 0;
cout << dp[n][1] << endl;
pp();
reverse(ans1.begin(), ans1.end());
reverse(ans2.begin(), ans2.end());
for (auto i : ans1) cout << i << ' ';
cout << endl;
for (auto i : ans2) cout << i << ' ';
cout << endl;
return 0;
}
| 2C++
| {
"input": [
"7 5\n1 2\n2 7\n7 6\n2 3\n3 4\n",
"2 1\n1 2\n",
"7 6\n1 2\n2 7\n7 6\n2 3\n3 4\n1 5\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n8 2\n3 7\n4 9\n5 7\n10 3\n10 9\n7 8\n",
"5 7\n5 2\n1 3\n4 2\n3 4\n5 3\n2 3\n4 1\n",
"6 10\n3 6\n3 5\n1 3\n2 6\n5 4\n6 4\n6 5\n5 1\n2 3\n1 2\n",
"10 7\n3 4\n8 6\n4 8\n3 1\n9 10\n10 6\n9 4\n",
"10 7\n3 4\n8 6\n7 8\n3 1\n9 10\n10 6\n9 4\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n8 1\n3 7\n4 9\n5 7\n10 3\n10 9\n7 8\n",
"5 7\n5 2\n1 3\n4 2\n3 1\n5 3\n2 3\n4 1\n",
"5 7\n5 2\n1 3\n4 2\n3 1\n5 3\n2 3\n5 1\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n5 1\n3 3\n4 9\n5 7\n10 3\n5 9\n7 8\n",
"7 5\n2 2\n2 7\n7 6\n2 3\n3 4\n",
"10 7\n3 4\n8 6\n7 8\n1 1\n9 10\n10 6\n9 4\n",
"10 5\n2 2\n2 7\n7 6\n2 3\n3 4\n",
"10 7\n3 4\n8 6\n7 8\n1 1\n9 10\n10 6\n9 7\n",
"10 5\n2 2\n2 7\n7 6\n2 3\n3 6\n",
"10 7\n3 4\n8 6\n7 8\n1 1\n9 2\n10 6\n9 7\n",
"10 5\n2 2\n2 7\n7 6\n2 3\n1 6\n",
"10 5\n2 2\n2 7\n7 7\n2 3\n1 6\n",
"10 5\n2 2\n2 7\n7 8\n2 3\n1 6\n",
"10 7\n4 4\n8 6\n4 8\n3 1\n9 10\n10 6\n9 4\n",
"10 5\n2 2\n2 7\n7 6\n2 3\n5 4\n",
"10 7\n3 2\n8 6\n7 8\n1 1\n9 2\n10 6\n9 7\n",
"10 5\n4 2\n2 7\n7 6\n2 3\n1 6\n",
"11 5\n2 2\n2 7\n7 7\n2 3\n1 6\n",
"10 5\n2 2\n2 7\n7 8\n2 3\n2 6\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n8 1\n3 3\n4 9\n5 7\n10 3\n10 9\n7 8\n",
"10 7\n4 4\n8 6\n4 8\n3 1\n9 10\n10 6\n10 4\n",
"12 5\n2 2\n2 7\n7 6\n2 3\n5 4\n",
"10 7\n3 2\n8 6\n7 8\n1 1\n9 2\n10 6\n10 7\n",
"10 5\n4 2\n2 7\n7 6\n2 3\n1 8\n",
"10 5\n2 2\n3 7\n7 8\n2 3\n2 6\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n5 1\n3 3\n4 9\n5 7\n10 3\n10 9\n7 8\n",
"12 5\n1 2\n2 7\n7 6\n2 3\n5 4\n",
"10 7\n3 2\n8 6\n7 8\n2 1\n9 2\n10 6\n10 7\n",
"13 5\n2 2\n3 7\n7 8\n2 3\n2 6\n",
"13 5\n2 2\n3 7\n7 8\n2 4\n2 6\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n5 1\n3 3\n4 7\n5 7\n10 3\n5 9\n7 8\n",
"13 5\n2 4\n3 7\n7 8\n2 4\n2 6\n"
],
"output": [
"-1\n",
"1\n1 2 \n2 1 \n",
"6\n1 2 3 4 3 2 7 \n7 6 7 2 1 5 1 \n",
"3\n1 2 9 10 \n10 3 2 1 \n",
"3\n1 3 2 5 \n5 2 4 1 \n",
"2\n1 3 6 \n6 2 1 \n",
"5\n1 3 4 8 6 10 \n10 6 8 4 3 1 \n",
"-1\n",
"3\n1 2 9 10 \n10 3 2 1 \n",
"3\n1 3 2 5 \n5 2 4 1 \n",
"1\n1 5 \n5 1 \n",
"3\n1 2 3 10 \n10 3 2 1 \n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"3\n1 2 9 10 \n10 3 2 1 \n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"3\n1 2 9 10 \n10 3 2 1 \n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"3\n1 2 3 10 \n10 3 2 1 \n",
"-1\n"
]
} | 2CODEFORCES
|
29_E. Quarrel_975 | Friends Alex and Bob live in Bertown. In this town there are n crossroads, some of them are connected by bidirectional roads of equal length. Bob lives in a house at the crossroads number 1, Alex — in a house at the crossroads number n.
One day Alex and Bob had a big quarrel, and they refused to see each other. It occurred that today Bob needs to get from his house to the crossroads n and Alex needs to get from his house to the crossroads 1. And they don't want to meet at any of the crossroads, but they can meet in the middle of the street, when passing it in opposite directions. Alex and Bob asked you, as their mutual friend, to help them with this difficult task.
Find for Alex and Bob such routes with equal number of streets that the guys can follow these routes and never appear at the same crossroads at the same time. They are allowed to meet in the middle of the street when moving toward each other (see Sample 1). Among all possible routes, select such that the number of streets in it is the least possible. Until both guys reach their destinations, none of them can stay without moving.
The guys are moving simultaneously with equal speeds, i.e. it is possible that when one of them reaches some of the crossroads, the other one leaves it. For example, Alex can move from crossroad 1 to crossroad 2, while Bob moves from crossroad 2 to crossroad 3.
If the required routes don't exist, your program should output -1.
Input
The first line contains two integers n and m (2 ≤ n ≤ 500, 1 ≤ m ≤ 10000) — the amount of crossroads and the amount of roads. Each of the following m lines contains two integers — the numbers of crossroads connected by the road. It is guaranteed that no road connects a crossroads with itself and no two crossroads are connected by more than one road.
Output
If the required routes don't exist, output -1. Otherwise, the first line should contain integer k — the length of shortest routes (the length of the route is the amount of roads in it). The next line should contain k + 1 integers — Bob's route, i.e. the numbers of k + 1 crossroads passed by Bob. The last line should contain Alex's route in the same format. If there are several optimal solutions, output any of them.
Examples
Input
2 1
1 2
Output
1
1 2
2 1
Input
7 5
1 2
2 7
7 6
2 3
3 4
Output
-1
Input
7 6
1 2
2 7
7 6
2 3
3 4
1 5
Output
6
1 2 3 4 3 2 7
7 6 7 2 1 5 1 | import static java.util.Arrays.deepToString;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main {
void solve() {
int n = sc.nextInt();
int m = sc.nextInt();
int[][] ns = new int[n+1][n+1];
for (int i = 0; i < m; i++) {
int a = sc.nextInt() - 1;
int b = sc.nextInt() - 1;
ns[a][++ns[a][0]] = b;
ns[b][++ns[b][0]] = a;
}
int[][][] memo = new int[n][n][2];
int[][] trA = new int[n][n];
int[][] trB = new int[n][n];
fill(memo, -1);
memo[0][n-1][0] = 0;
int[] q = new int[6 * n * n];
int qt = 0;
int qh = 0;
q[qt++] = 0;
q[qt++] = n-1;
q[qt++] = 0;
while (qt - qh > 0) {
int a = q[qh++];
int b = q[qh++];
int turn = q[qh++];
if (a == n-1 && b == 0 && turn == 0) break;
int d = memo[a][b][turn];
int nt = 1 - turn;
if (turn == 0) {
for (int i = 1; i <= ns[a][0]; i++) {
int na = ns[a][i];
if (memo[na][b][nt] == -1) {
memo[na][b][nt] = d + 1;
q[qt++] = na;
q[qt++] = b;
q[qt++] = nt;
trA[na][b] = a;
}
}
} else {
for (int i = 1; i <= ns[b][0]; i++) {
int nb = ns[b][i];
if (nb == a) continue;
if (memo[a][nb][nt] == -1) {
memo[a][nb][nt] = d + 1;
q[qt++] = a;
q[qt++] = nb;
q[qt++] = nt;
trB[a][nb] = b;
}
}
}
}
if (memo[n-1][0][0] == -1) {
out.println(-1);
} else {
int len = memo[n-1][0][0] / 2;
int a = n-1;
int b = 0;
int[] pathA = new int[len + 1];
int[] pathB = new int[len + 1];
for (int p = len; p > 0; p--) {
pathA[p] = a + 1;
pathB[p] = b + 1;
b = trB[a][b];
a = trA[a][b];
}
pathA[0] = 1;
pathB[0] = n;
out.println(pathA.length - 1);
print(pathA);
print(pathB);
}
}
void print(int[] a) {
out.print(a[0]);
for (int i = 1; i < a.length; i++) out.print(" " + a[i]);
out.println();
}
static void fill(int[][] a, int val) {
for(int i = 0; i < a.length; i++) Arrays.fill(a[i], val);
}
static void fill(int[][][] a, int val) {
for(int i = 0; i < a.length; i++) fill(a[i], val);
}
static void tr(Object... os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) throws Exception {
new Main().run();
}
MyScanner sc = null;
PrintWriter out = null;
public void run() throws Exception {
sc = new MyScanner(System.in);
out = new PrintWriter(System.out);
for (;sc.hasNext();) {
solve();
out.flush();
}
out.close();
}
class MyScanner {
String line;
BufferedReader reader;
StringTokenizer tokenizer;
public MyScanner(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public void eat() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
line = reader.readLine();
if (line == null) {
tokenizer = null;
return;
}
tokenizer = new StringTokenizer(line);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
public String next() {
eat();
return tokenizer.nextToken();
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public boolean hasNext() {
eat();
return (tokenizer != null && tokenizer.hasMoreElements());
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
}
}
| 4JAVA
| {
"input": [
"7 5\n1 2\n2 7\n7 6\n2 3\n3 4\n",
"2 1\n1 2\n",
"7 6\n1 2\n2 7\n7 6\n2 3\n3 4\n1 5\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n8 2\n3 7\n4 9\n5 7\n10 3\n10 9\n7 8\n",
"5 7\n5 2\n1 3\n4 2\n3 4\n5 3\n2 3\n4 1\n",
"6 10\n3 6\n3 5\n1 3\n2 6\n5 4\n6 4\n6 5\n5 1\n2 3\n1 2\n",
"10 7\n3 4\n8 6\n4 8\n3 1\n9 10\n10 6\n9 4\n",
"10 7\n3 4\n8 6\n7 8\n3 1\n9 10\n10 6\n9 4\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n8 1\n3 7\n4 9\n5 7\n10 3\n10 9\n7 8\n",
"5 7\n5 2\n1 3\n4 2\n3 1\n5 3\n2 3\n4 1\n",
"5 7\n5 2\n1 3\n4 2\n3 1\n5 3\n2 3\n5 1\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n5 1\n3 3\n4 9\n5 7\n10 3\n5 9\n7 8\n",
"7 5\n2 2\n2 7\n7 6\n2 3\n3 4\n",
"10 7\n3 4\n8 6\n7 8\n1 1\n9 10\n10 6\n9 4\n",
"10 5\n2 2\n2 7\n7 6\n2 3\n3 4\n",
"10 7\n3 4\n8 6\n7 8\n1 1\n9 10\n10 6\n9 7\n",
"10 5\n2 2\n2 7\n7 6\n2 3\n3 6\n",
"10 7\n3 4\n8 6\n7 8\n1 1\n9 2\n10 6\n9 7\n",
"10 5\n2 2\n2 7\n7 6\n2 3\n1 6\n",
"10 5\n2 2\n2 7\n7 7\n2 3\n1 6\n",
"10 5\n2 2\n2 7\n7 8\n2 3\n1 6\n",
"10 7\n4 4\n8 6\n4 8\n3 1\n9 10\n10 6\n9 4\n",
"10 5\n2 2\n2 7\n7 6\n2 3\n5 4\n",
"10 7\n3 2\n8 6\n7 8\n1 1\n9 2\n10 6\n9 7\n",
"10 5\n4 2\n2 7\n7 6\n2 3\n1 6\n",
"11 5\n2 2\n2 7\n7 7\n2 3\n1 6\n",
"10 5\n2 2\n2 7\n7 8\n2 3\n2 6\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n8 1\n3 3\n4 9\n5 7\n10 3\n10 9\n7 8\n",
"10 7\n4 4\n8 6\n4 8\n3 1\n9 10\n10 6\n10 4\n",
"12 5\n2 2\n2 7\n7 6\n2 3\n5 4\n",
"10 7\n3 2\n8 6\n7 8\n1 1\n9 2\n10 6\n10 7\n",
"10 5\n4 2\n2 7\n7 6\n2 3\n1 8\n",
"10 5\n2 2\n3 7\n7 8\n2 3\n2 6\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n5 1\n3 3\n4 9\n5 7\n10 3\n10 9\n7 8\n",
"12 5\n1 2\n2 7\n7 6\n2 3\n5 4\n",
"10 7\n3 2\n8 6\n7 8\n2 1\n9 2\n10 6\n10 7\n",
"13 5\n2 2\n3 7\n7 8\n2 3\n2 6\n",
"13 5\n2 2\n3 7\n7 8\n2 4\n2 6\n",
"10 16\n9 8\n1 2\n9 5\n5 4\n9 2\n3 2\n1 6\n5 10\n7 2\n5 1\n3 3\n4 7\n5 7\n10 3\n5 9\n7 8\n",
"13 5\n2 4\n3 7\n7 8\n2 4\n2 6\n"
],
"output": [
"-1\n",
"1\n1 2 \n2 1 \n",
"6\n1 2 3 4 3 2 7 \n7 6 7 2 1 5 1 \n",
"3\n1 2 9 10 \n10 3 2 1 \n",
"3\n1 3 2 5 \n5 2 4 1 \n",
"2\n1 3 6 \n6 2 1 \n",
"5\n1 3 4 8 6 10 \n10 6 8 4 3 1 \n",
"-1\n",
"3\n1 2 9 10 \n10 3 2 1 \n",
"3\n1 3 2 5 \n5 2 4 1 \n",
"1\n1 5 \n5 1 \n",
"3\n1 2 3 10 \n10 3 2 1 \n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"3\n1 2 9 10 \n10 3 2 1 \n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"3\n1 2 9 10 \n10 3 2 1 \n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"3\n1 2 3 10 \n10 3 2 1 \n",
"-1\n"
]
} | 2CODEFORCES
|
323_C. Two permutations_976 | You are given two permutations p and q, consisting of n elements, and m queries of the form: l1, r1, l2, r2 (l1 ≤ r1; l2 ≤ r2). The response for the query is the number of such integers from 1 to n, that their position in the first permutation is in segment [l1, r1] (borders included), and position in the second permutation is in segment [l2, r2] (borders included too).
A permutation of n elements is the sequence of n distinct integers, each not less than 1 and not greater than n.
Position of number v (1 ≤ v ≤ n) in permutation g1, g2, ..., gn is such number i, that gi = v.
Input
The first line contains one integer n (1 ≤ n ≤ 106), the number of elements in both permutations. The following line contains n integers, separated with spaces: p1, p2, ..., pn (1 ≤ pi ≤ n). These are elements of the first permutation. The next line contains the second permutation q1, q2, ..., qn in same format.
The following line contains an integer m (1 ≤ m ≤ 2·105), that is the number of queries.
The following m lines contain descriptions of queries one in a line. The description of the i-th query consists of four integers: a, b, c, d (1 ≤ a, b, c, d ≤ n). Query parameters l1, r1, l2, r2 are obtained from the numbers a, b, c, d using the following algorithm:
1. Introduce variable x. If it is the first query, then the variable equals 0, else it equals the response for the previous query plus one.
2. Introduce function f(z) = ((z - 1 + x) mod n) + 1.
3. Suppose l1 = min(f(a), f(b)), r1 = max(f(a), f(b)), l2 = min(f(c), f(d)), r2 = max(f(c), f(d)).
Output
Print a response for each query in a separate line.
Examples
Input
3
3 1 2
3 2 1
1
1 2 3 3
Output
1
Input
4
4 3 2 1
2 3 4 1
3
1 2 3 4
1 3 2 1
1 4 2 3
Output
1
1
2 | #include <bits/stdc++.h>
using namespace std;
const int MOD = 998244353;
struct tnode {
int sum;
tnode *lson, *rson;
tnode(int x = 0) {
sum = x;
lson = rson = NULL;
}
};
void pushup(tnode* cur) {
cur->sum = (cur->lson == NULL ? 0 : cur->lson->sum) +
(cur->rson == NULL ? 0 : cur->rson->sum);
}
tnode* modify(tnode* cur, int id, int val, int cl = 0, int cr = 1048575) {
if (cl == cr) return new tnode(val);
int mid = (cl + cr) >> 1;
tnode* ret = new tnode();
tnode *ls = cur == NULL ? NULL : cur->lson,
*rs = cur == NULL ? NULL : cur->rson;
ret->lson = id <= mid ? modify(ls, id, val, cl, mid) : ls;
ret->rson = id > mid ? modify(rs, id, val, mid + 1, cr) : rs;
pushup(ret);
return ret;
}
int query(tnode* cur, int l, int r, int cl = 0, int cr = 1048575) {
if (cur == NULL) return 0;
if (l == cl && r == cr) return cur->sum;
int mid = (cl + cr) >> 1;
if (r <= mid)
return query(cur->lson, l, r, cl, mid);
else if (l > mid)
return query(cur->rson, l, r, mid + 1, cr);
else
return query(cur->lson, l, mid, cl, mid) +
query(cur->rson, mid + 1, r, mid + 1, cr);
}
int n, q, p0[1000005], occ[1000005], p1[1000005];
tnode* tre[1000005];
int x;
int f(int z) { return (z - 1 + x) % n + 1; }
int main() {
scanf("%d", &n);
for (int i = 1; i <= (int)(n); i++) {
scanf("%d", &p0[i]);
occ[p0[i]] = i;
}
for (int i = 1; i <= (int)(n); i++) scanf("%d", &p1[i]);
for (int i = 1; i <= (int)(n); i++)
tre[i] = modify(tre[i - 1], occ[p1[i]], 1);
scanf("%d", &q);
x = 0;
for (int i = 0; i < (int)(q); i++) {
int a, b, c, d;
scanf("%d%d%d%d", &a, &b, &c, &d);
a = f(a);
b = f(b);
c = f(c);
d = f(d);
if (a > b) swap(a, b);
if (c > d) swap(c, d);
x = query(tre[d], a, b) - query(tre[c - 1], a, b) + 1;
printf("%d\n", x - 1);
}
return 0;
}
| 2C++
| {
"input": [
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n1 4 2 3\n",
"3\n3 1 2\n3 2 1\n1\n1 2 3 3\n",
"1\n1\n1\n1\n1 1 1 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 3 1\n2 4 2 3\n",
"3\n3 1 2\n3 2 1\n1\n2 2 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 0 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n1 3 2 4\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 2 1\n1 3 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 4 1\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n2 4 2 1\n",
"3\n3 1 2\n3 2 1\n1\n2 2 5 4\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 5\n1 3 3 1\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 2 0\n1 3 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n2 2 3 4\n1 3 3 1\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 2 1\n0 3 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 2 0\n1 1 2 3\n",
"3\n3 1 2\n3 2 1\n1\n2 3 3 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n2 2 3 4\n1 3 3 2\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 3 0\n1 1 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n2 2 3 4\n1 3 3 4\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 3 0\n1 1 2 0\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 2 3 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n1 3 2 3\n",
"3\n3 1 2\n3 2 1\n1\n2 2 3 4\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 3 1\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 2 3 1\n2 4 4 3\n",
"3\n3 1 2\n3 2 1\n1\n4 2 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n0 3 2 1\n1 3 2 4\n",
"3\n3 1 2\n3 2 1\n1\n8 2 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 7\n0 3 2 1\n1 3 2 4\n",
"1\n1\n1\n1\n1 1 2 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n2 3 3 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 2 3 1\n2 1 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 8\n1 2 3 1\n2 4 4 3\n",
"3\n3 1 2\n3 2 1\n1\n8 2 6 3\n",
"1\n1\n1\n1\n1 1 0 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n2 5 3 1\n2 4 2 3\n",
"3\n3 1 2\n6 2 1\n1\n2 2 5 4\n",
"1\n1\n1\n1\n1 2 1 1\n",
"3\n3 1 2\n3 2 1\n1\n1 4 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 3 1\n2 4 4 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 2 3 1\n2 4 2 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 7\n1 3 2 1\n1 3 2 3\n",
"3\n3 1 2\n3 2 1\n1\n2 2 3 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 0 1\n2 4 4 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n1 3 1 4\n",
"3\n3 1 2\n3 2 1\n1\n4 2 3 5\n",
"3\n3 1 2\n3 2 1\n1\n10 2 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 7\n1 3 2 1\n1 3 2 4\n",
"1\n1\n1\n1\n1 1 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n2 4 3 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n2 1 3 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 8\n1 2 3 1\n2 4 7 3\n",
"1\n1\n1\n1\n1 0 0 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 3 3 4\n2 5 3 1\n2 4 2 3\n",
"1\n1\n1\n1\n1 0 1 1\n",
"3\n3 1 2\n3 2 1\n1\n1 3 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 7\n0 3 2 1\n1 3 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 2 1\n0 3 3 3\n",
"3\n3 1 2\n3 2 1\n1\n4 2 3 2\n",
"1\n1\n1\n1\n2 1 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n2 4 0 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 3 3 4\n2 1 3 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 5 8\n1 2 3 1\n2 4 7 3\n",
"1\n1\n1\n1\n0 0 0 1\n",
"1\n1\n1\n1\n1 0 2 1\n",
"3\n3 1 2\n3 2 1\n1\n1 3 3 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n2 4 0 0\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 5 8\n1 2 3 1\n3 4 7 3\n",
"1\n1\n1\n1\n0 1 0 1\n",
"3\n3 1 2\n6 2 1\n1\n1 3 3 2\n"
],
"output": [
"1\n1\n2\n",
"1\n",
"1\n",
"1\n1\n3\n",
"1\n3\n1\n",
"1\n",
"1\n2\n2\n",
"1\n1\n2\n",
"2\n3\n2\n",
"1\n2\n1\n",
"1\n1\n1\n",
"0\n",
"2\n2\n1\n",
"2\n2\n2\n",
"0\n2\n1\n",
"2\n3\n0\n",
"2\n2\n0\n",
"2\n",
"0\n1\n1\n",
"2\n1\n1\n",
"0\n3\n1\n",
"2\n1\n0\n",
"1\n1\n3\n",
"1\n1\n3\n",
"1\n",
"1\n3\n1\n",
"1\n1\n2\n",
"1\n",
"1\n1\n2\n",
"1\n",
"1\n1\n2\n",
"1\n",
"1\n3\n1\n",
"1\n1\n2\n",
"1\n1\n2\n",
"1\n",
"1\n",
"1\n1\n3\n",
"0\n",
"1\n",
"0\n",
"1\n3\n1\n",
"1\n1\n1\n",
"1\n1\n3\n",
"1\n",
"1\n2\n2\n",
"1\n1\n2\n",
"1\n",
"1\n",
"1\n1\n2\n",
"1\n",
"1\n1\n2\n",
"1\n1\n3\n",
"1\n1\n1\n",
"1\n",
"1\n1\n3\n",
"1\n",
"1\n",
"1\n1\n3\n",
"2\n3\n0\n",
"1\n",
"1\n",
"1\n1\n1\n",
"1\n1\n3\n",
"2\n3\n0\n",
"1\n",
"1\n",
"2\n",
"1\n1\n1\n",
"2\n3\n0\n",
"1\n",
"2\n"
]
} | 2CODEFORCES
|
323_C. Two permutations_977 | You are given two permutations p and q, consisting of n elements, and m queries of the form: l1, r1, l2, r2 (l1 ≤ r1; l2 ≤ r2). The response for the query is the number of such integers from 1 to n, that their position in the first permutation is in segment [l1, r1] (borders included), and position in the second permutation is in segment [l2, r2] (borders included too).
A permutation of n elements is the sequence of n distinct integers, each not less than 1 and not greater than n.
Position of number v (1 ≤ v ≤ n) in permutation g1, g2, ..., gn is such number i, that gi = v.
Input
The first line contains one integer n (1 ≤ n ≤ 106), the number of elements in both permutations. The following line contains n integers, separated with spaces: p1, p2, ..., pn (1 ≤ pi ≤ n). These are elements of the first permutation. The next line contains the second permutation q1, q2, ..., qn in same format.
The following line contains an integer m (1 ≤ m ≤ 2·105), that is the number of queries.
The following m lines contain descriptions of queries one in a line. The description of the i-th query consists of four integers: a, b, c, d (1 ≤ a, b, c, d ≤ n). Query parameters l1, r1, l2, r2 are obtained from the numbers a, b, c, d using the following algorithm:
1. Introduce variable x. If it is the first query, then the variable equals 0, else it equals the response for the previous query plus one.
2. Introduce function f(z) = ((z - 1 + x) mod n) + 1.
3. Suppose l1 = min(f(a), f(b)), r1 = max(f(a), f(b)), l2 = min(f(c), f(d)), r2 = max(f(c), f(d)).
Output
Print a response for each query in a separate line.
Examples
Input
3
3 1 2
3 2 1
1
1 2 3 3
Output
1
Input
4
4 3 2 1
2 3 4 1
3
1 2 3 4
1 3 2 1
1 4 2 3
Output
1
1
2 | import static java.util.Arrays.fill;
import java.io.*;
import java.util.*;
public class C {
static void solve() throws IOException {
int n = nextInt();
int[] p = new int[n];
int[] inQ = new int[n];
for (int i = 0; i < n; i++) {
p[i] = nextInt() - 1;
}
for (int i = 0; i < n; i++) {
inQ[nextInt() - 1] = i;
}
int x = 0;
int queries = nextInt();
Tree tree = new Tree(p, inQ);
while (queries-- > 0) {
int a = nextInt(), b = nextInt(), c = nextInt(), d = nextInt();
int fa = (a - 1 + x)%n+1;
int fb = (b - 1 + x)%n+1;
int fc = (c - 1 + x)%n+1;
int fd = (d - 1 + x)%n+1;
if (fa > fb) {
int t = fa;
fa = fb;
fb = t;
}
if (fc > fd) {
int t = fc;
fc = fd;
fd = t;
}
// System.err.println(fa+" "+fb+", "+fc+" "+fd);
x = tree.query(fa, fb, fc, fd);
out.println(x);
++x;
}
}
static class Tree {
int[][] list;
Tree(int[] p, int[] inQ) {
int n = p.length;
int size = Integer.highestOneBit(2 * n - 1);
list = new int[2 * size][];
fill(list, new int[0]);
for (int i = size; i < size + n; i++) {
list[i] = new int[] { inQ[p[i - size]] };
}
for (int i = size - 1; i > 0; --i) {
int[] l1 = list[2 * i];
int[] l2 = list[2 * i + 1];
int[] l = Arrays.copyOf(l1, l1.length + l2.length);
System.arraycopy(l2, 0, l, l1.length, l2.length);
Arrays.sort(l);
list[i] = l;
}
// for (int i = 1; i < list.length; i++) {
// System.err.println(Arrays.toString(list[i]));
// }
}
int left1, right1;
int left2, right2;
int queryAnswer;
int query(int l1, int r1, int l2, int r2) {
left1 = l1 - 1;
left2 = l2 - 1;
right1 = r1;
right2 = r2;
queryAnswer = 0;
go(1, 0, list.length / 2);
return queryAnswer;
}
private void go(int i, int from, int to) {
if (to <= left1 || from >= right1) {
return;
}
if (from >= left1 && to <= right1) {
queryAnswer += count(list[i], left2, right2);
return;
}
int mid = from + to >> 1;
go(2 * i, from, mid);
go(2 * i + 1, mid, to);
}
private static int count(int[] array, int from, int to) {
return binarySearch(array, to) - binarySearch(array, from);
}
private static int binarySearch(int[] array, int value) {
int left = -1, right = array.length;
while (right - left > 1) {
int mid = left + right >>> 1;
if (array[mid] < value) {
left = mid;
} else {
right = mid;
}
}
return right;
}
}
static BufferedReader br;
static PrintWriter out;
public static void main(String[] args) throws IOException {
InputStream input = System.in;
PrintStream output = System.out;
File file = new File("c.in");
if (file.exists() && file.canRead()) {
input = new FileInputStream(file);
}
br = new BufferedReader(new InputStreamReader(input));
out = new PrintWriter(output);
solve();
out.close();
}
public static int nextInt() throws IOException {
int c = br.read();
while ((c < '0' || c > '9') && c != '-')
c = br.read();
boolean negative = false;
if (c == '-') {
negative = true;
c = br.read();
}
int m = 0;
while (c >= '0' && c <= '9') {
m = m * 10 + c - '0';
c = br.read();
}
return negative ? -m : m;
}
}
| 4JAVA
| {
"input": [
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n1 4 2 3\n",
"3\n3 1 2\n3 2 1\n1\n1 2 3 3\n",
"1\n1\n1\n1\n1 1 1 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 3 1\n2 4 2 3\n",
"3\n3 1 2\n3 2 1\n1\n2 2 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 0 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n1 3 2 4\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 2 1\n1 3 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 4 1\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n2 4 2 1\n",
"3\n3 1 2\n3 2 1\n1\n2 2 5 4\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 5\n1 3 3 1\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 2 0\n1 3 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n2 2 3 4\n1 3 3 1\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 2 1\n0 3 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 2 0\n1 1 2 3\n",
"3\n3 1 2\n3 2 1\n1\n2 3 3 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n2 2 3 4\n1 3 3 2\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 3 0\n1 1 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n2 2 3 4\n1 3 3 4\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 3 0\n1 1 2 0\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 2 3 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n1 3 2 3\n",
"3\n3 1 2\n3 2 1\n1\n2 2 3 4\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 3 1\n2 4 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 2 3 1\n2 4 4 3\n",
"3\n3 1 2\n3 2 1\n1\n4 2 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n0 3 2 1\n1 3 2 4\n",
"3\n3 1 2\n3 2 1\n1\n8 2 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 7\n0 3 2 1\n1 3 2 4\n",
"1\n1\n1\n1\n1 1 2 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n2 3 3 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 2 3 1\n2 1 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 8\n1 2 3 1\n2 4 4 3\n",
"3\n3 1 2\n3 2 1\n1\n8 2 6 3\n",
"1\n1\n1\n1\n1 1 0 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n2 5 3 1\n2 4 2 3\n",
"3\n3 1 2\n6 2 1\n1\n2 2 5 4\n",
"1\n1\n1\n1\n1 2 1 1\n",
"3\n3 1 2\n3 2 1\n1\n1 4 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 3 1\n2 4 4 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 2 3 1\n2 4 2 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 7\n1 3 2 1\n1 3 2 3\n",
"3\n3 1 2\n3 2 1\n1\n2 2 3 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 0 1\n2 4 4 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n1 3 1 4\n",
"3\n3 1 2\n3 2 1\n1\n4 2 3 5\n",
"3\n3 1 2\n3 2 1\n1\n10 2 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 7\n1 3 2 1\n1 3 2 4\n",
"1\n1\n1\n1\n1 1 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n2 4 3 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n2 1 3 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 8\n1 2 3 1\n2 4 7 3\n",
"1\n1\n1\n1\n1 0 0 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 3 3 4\n2 5 3 1\n2 4 2 3\n",
"1\n1\n1\n1\n1 0 1 1\n",
"3\n3 1 2\n3 2 1\n1\n1 3 3 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 7\n0 3 2 1\n1 3 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 4 3 4\n1 3 2 1\n0 3 3 3\n",
"3\n3 1 2\n3 2 1\n1\n4 2 3 2\n",
"1\n1\n1\n1\n2 1 2 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n2 4 0 1\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 3 3 4\n2 1 3 1\n2 4 2 3\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 5 8\n1 2 3 1\n2 4 7 3\n",
"1\n1\n1\n1\n0 0 0 1\n",
"1\n1\n1\n1\n1 0 2 1\n",
"3\n3 1 2\n3 2 1\n1\n1 3 3 2\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 3 4\n1 3 2 1\n2 4 0 0\n",
"4\n4 3 2 1\n2 3 4 1\n3\n1 2 5 8\n1 2 3 1\n3 4 7 3\n",
"1\n1\n1\n1\n0 1 0 1\n",
"3\n3 1 2\n6 2 1\n1\n1 3 3 2\n"
],
"output": [
"1\n1\n2\n",
"1\n",
"1\n",
"1\n1\n3\n",
"1\n3\n1\n",
"1\n",
"1\n2\n2\n",
"1\n1\n2\n",
"2\n3\n2\n",
"1\n2\n1\n",
"1\n1\n1\n",
"0\n",
"2\n2\n1\n",
"2\n2\n2\n",
"0\n2\n1\n",
"2\n3\n0\n",
"2\n2\n0\n",
"2\n",
"0\n1\n1\n",
"2\n1\n1\n",
"0\n3\n1\n",
"2\n1\n0\n",
"1\n1\n3\n",
"1\n1\n3\n",
"1\n",
"1\n3\n1\n",
"1\n1\n2\n",
"1\n",
"1\n1\n2\n",
"1\n",
"1\n1\n2\n",
"1\n",
"1\n3\n1\n",
"1\n1\n2\n",
"1\n1\n2\n",
"1\n",
"1\n",
"1\n1\n3\n",
"0\n",
"1\n",
"0\n",
"1\n3\n1\n",
"1\n1\n1\n",
"1\n1\n3\n",
"1\n",
"1\n2\n2\n",
"1\n1\n2\n",
"1\n",
"1\n",
"1\n1\n2\n",
"1\n",
"1\n1\n2\n",
"1\n1\n3\n",
"1\n1\n1\n",
"1\n",
"1\n1\n3\n",
"1\n",
"1\n",
"1\n1\n3\n",
"2\n3\n0\n",
"1\n",
"1\n",
"1\n1\n1\n",
"1\n1\n3\n",
"2\n3\n0\n",
"1\n",
"1\n",
"2\n",
"1\n1\n1\n",
"2\n3\n0\n",
"1\n",
"2\n"
]
} | 2CODEFORCES
|
348_A. Mafia_978 | One day n friends gathered together to play "Mafia". During each round of the game some player must be the supervisor and other n - 1 people take part in the game. For each person we know in how many rounds he wants to be a player, not the supervisor: the i-th person wants to play ai rounds. What is the minimum number of rounds of the "Mafia" game they need to play to let each person play at least as many rounds as they want?
Input
The first line contains integer n (3 ≤ n ≤ 105). The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the i-th number in the list is the number of rounds the i-th person wants to play.
Output
In a single line print a single integer — the minimum number of game rounds the friends need to let the i-th person play at least ai rounds.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Examples
Input
3
3 2 2
Output
4
Input
4
2 2 2 2
Output
3
Note
You don't need to know the rules of "Mafia" to solve this problem. If you're curious, it's a game Russia got from the Soviet times: http://en.wikipedia.org/wiki/Mafia_(party_game). | n = int(raw_input())
L=map(int,raw_input().split(' '))
mx = max(L)
n-=1
sm=sum(L)-1
res = sm/n+1
print max(mx,res)
| 1Python2
| {
"input": [
"3\n3 2 2\n",
"4\n2 2 2 2\n",
"3\n1000000000 1000000000 10000000\n",
"3\n1 2 1\n",
"3\n4 10 11\n",
"5\n1000000000 5 5 4 4\n",
"5\n1000000000 1000000000 1000000000 1000000000 1000000000\n",
"10\n94 96 91 95 99 94 96 92 95 99\n",
"7\n9 7 7 8 8 7 8\n",
"3\n1 1 1\n",
"3\n677876423 834056477 553175531\n",
"10\n13 12 10 13 13 14 10 10 12 12\n",
"5\n1000000000 1 1 1 1\n",
"100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 102 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 3 4\n",
"3\n2 1 1\n",
"4\n1000000000 1000000000 1000000000 1000000000\n",
"30\n94 93 90 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"3\n1000000000 1000000000 11000000\n",
"3\n2 2 1\n",
"3\n2 10 11\n",
"5\n1000010000 5 5 4 4\n",
"5\n1000000000 1000000000 1000000000 1000010000 1000000000\n",
"10\n94 96 91 95 2 94 96 92 95 99\n",
"7\n9 7 7 11 8 7 8\n",
"3\n677876423 1252386450 553175531\n",
"5\n1000000100 1 1 1 1\n",
"100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 1 4\n",
"4\n1000000001 1000000000 1000000000 1000000000\n",
"30\n94 93 77 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"4\n2 2 2 0\n",
"3\n1000000000 1000000000 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000000000\n",
"3\n677876423 1252386450 854741007\n",
"4\n1000000001 1100000000 1000000000 1000000000\n",
"30\n94 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"3\n1000000000 1000000010 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000000100\n",
"5\n1010000100 1 1 1 0\n",
"4\n1000000001 1100100000 1000000000 1000000000\n",
"30\n94 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 164 95 97 91 91 95 98 96\n",
"3\n5 2 0\n",
"3\n1100000000 1000000010 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000010100\n",
"10\n145 96 91 95 1 94 2 92 95 99\n",
"4\n0000000001 1100100000 1000000000 1000000000\n",
"3\n8 2 0\n",
"5\n1010000000 1000000000 1000000000 1000010010 1000010100\n",
"3\n198491773 1966171011 220670744\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 91 95 98 96\n",
"3\n1100000001 1000000000 01000000\n",
"5\n1001010000 5 3 7 0\n",
"5\n1010000000 1000000000 1000000000 1100010010 1000010100\n",
"4\n0000000001 1100100100 1000000000 1001000000\n",
"3\n7 2 0\n",
"3\n1100010001 1000000000 01000000\n",
"5\n1010100000 1000000000 1000000000 1100010010 1000010100\n",
"10\n145 96 91 95 0 94 2 147 95 73\n",
"5\n1010100000 1000000000 1000000000 1100010010 1000010000\n",
"3\n1100110001 1000100000 01000000\n",
"5\n1010100000 1000000010 1000000000 1100010010 1000010000\n",
"5\n1010100000 1001000010 1000000000 1100010010 1000010000\n",
"5\n1010100000 1101000010 1000000000 1100010010 1000010000\n",
"10\n145 96 74 95 1 157 2 147 25 73\n",
"3\n2 1 2\n",
"3\n3 2 3\n",
"3\n0 2 1\n",
"3\n3 10 11\n",
"5\n1000010000 5 5 4 1\n",
"10\n94 96 91 95 1 94 96 92 95 99\n",
"7\n9 7 3 11 8 7 8\n",
"3\n2 0 2\n",
"5\n1000000100 1 1 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 0 4\n",
"3\n3 2 0\n",
"3\n0 2 2\n",
"5\n1000010000 5 5 7 1\n",
"10\n94 96 91 95 1 94 2 92 95 99\n",
"7\n9 8 3 11 8 7 8\n",
"3\n198491773 1252386450 854741007\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"3\n0 2 3\n",
"5\n1000010000 5 3 7 1\n",
"7\n9 8 5 11 8 7 8\n",
"3\n198491773 1252386450 220670744\n",
"5\n1010000100 1 0 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 164 95 97 91 91 95 98 96\n",
"3\n1100000000 1000000000 01000000\n",
"3\n0 4 3\n",
"5\n1000010000 5 3 7 0\n",
"10\n145 96 91 95 1 94 2 92 95 73\n",
"7\n9 8 5 11 8 7 5\n",
"5\n1010000100 0 0 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"4\n0000000001 1100100000 1000000000 1001000000\n",
"3\n8 1 0\n",
"3\n0 4 0\n",
"10\n145 96 91 95 0 94 2 92 95 73\n",
"7\n9 12 5 11 8 7 5\n",
"3\n172905557 1966171011 220670744\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 160 95 98 96\n",
"3\n0 5 0\n",
"5\n1001010000 5 3 3 0\n",
"7\n9 12 5 10 8 7 5\n",
"3\n27098762 1966171011 220670744\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 453 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"4\n0000000001 1100100100 1000000000 0001000000\n",
"30\n1 93 77 94 115 91 93 91 93 94 23 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 160 95 98 96\n",
"3\n1100010001 1000100000 01000000\n",
"5\n1001010000 5 3 6 0\n",
"10\n145 96 74 95 0 94 2 147 95 73\n",
"7\n9 12 5 10 8 7 3\n",
"3\n27098762 1966171011 358335902\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 754 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 453 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n"
],
"output": [
"4\n",
"3\n",
"1005000000\n",
"2\n",
"13\n",
"1000000000\n",
"1250000000\n",
"106\n",
"9\n",
"2\n",
"1032554216\n",
"14\n",
"1000000000\n",
"1000\n",
"4\n",
"2\n",
"1333333334\n",
"100\n",
"1005500000\n",
"3\n",
"12\n",
"1000010000\n",
"1250002500\n",
"99\n",
"11\n",
"1252386450\n",
"1000000100\n",
"1000\n",
"4\n",
"1333333334\n",
"100\n",
"2\n",
"1000500000\n",
"1252502500\n",
"1392501940\n",
"1366666667\n",
"115\n",
"1000500005\n",
"1252502525\n",
"1010000100\n",
"1366700001\n",
"164\n",
"5\n",
"1100000000\n",
"1252505025\n",
"145\n",
"1100100000\n",
"8\n",
"1252505028\n",
"1966171011\n",
"223\n",
"1100000001\n",
"1001010000\n",
"1277505028\n",
"1100100100\n",
"7\n",
"1100010001\n",
"1277530028\n",
"147\n",
"1277530003\n",
"1100110001\n",
"1277530005\n",
"1277780005\n",
"1302780005\n",
"157\n",
"3\n",
"4\n",
"2\n",
"12\n",
"1000010000\n",
"99\n",
"11\n",
"2\n",
"1000000100\n",
"1000\n",
"4\n",
"3\n",
"2\n",
"1000010000\n",
"99\n",
"11\n",
"1252386450\n",
"1000\n",
"3\n",
"1000010000\n",
"11\n",
"1252386450\n",
"1010000100\n",
"1000\n",
"164\n",
"1100000000\n",
"4\n",
"1000010000\n",
"145\n",
"11\n",
"1010000100\n",
"1000\n",
"1100100000\n",
"8\n",
"4\n",
"145\n",
"12\n",
"1966171011\n",
"1000\n",
"223\n",
"5\n",
"1001010000\n",
"12\n",
"1966171011\n",
"1000\n",
"1100100100\n",
"223\n",
"1100010001\n",
"1001010000\n",
"147\n",
"12\n",
"1966171011\n",
"1000\n"
]
} | 2CODEFORCES
|
348_A. Mafia_979 | One day n friends gathered together to play "Mafia". During each round of the game some player must be the supervisor and other n - 1 people take part in the game. For each person we know in how many rounds he wants to be a player, not the supervisor: the i-th person wants to play ai rounds. What is the minimum number of rounds of the "Mafia" game they need to play to let each person play at least as many rounds as they want?
Input
The first line contains integer n (3 ≤ n ≤ 105). The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the i-th number in the list is the number of rounds the i-th person wants to play.
Output
In a single line print a single integer — the minimum number of game rounds the friends need to let the i-th person play at least ai rounds.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Examples
Input
3
3 2 2
Output
4
Input
4
2 2 2 2
Output
3
Note
You don't need to know the rules of "Mafia" to solve this problem. If you're curious, it's a game Russia got from the Soviet times: http://en.wikipedia.org/wiki/Mafia_(party_game). | #include <bits/stdc++.h>
using namespace std;
class sort_map {
public:
int num;
int val;
};
bool myfunc(int a, int b) { return a > b; }
int main() {
long long n;
cin >> n;
vector<long long> input;
long long mmax = 0, sum = 0;
for (int i = 0; i < n; i++) {
long long temp;
cin >> temp;
input.push_back(temp);
sum += temp;
if (temp > mmax) mmax = temp;
}
int e = ceil(sum / (n - 1.0));
if (e < mmax) e = mmax;
cout << e;
return 0;
}
| 2C++
| {
"input": [
"3\n3 2 2\n",
"4\n2 2 2 2\n",
"3\n1000000000 1000000000 10000000\n",
"3\n1 2 1\n",
"3\n4 10 11\n",
"5\n1000000000 5 5 4 4\n",
"5\n1000000000 1000000000 1000000000 1000000000 1000000000\n",
"10\n94 96 91 95 99 94 96 92 95 99\n",
"7\n9 7 7 8 8 7 8\n",
"3\n1 1 1\n",
"3\n677876423 834056477 553175531\n",
"10\n13 12 10 13 13 14 10 10 12 12\n",
"5\n1000000000 1 1 1 1\n",
"100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 102 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 3 4\n",
"3\n2 1 1\n",
"4\n1000000000 1000000000 1000000000 1000000000\n",
"30\n94 93 90 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"3\n1000000000 1000000000 11000000\n",
"3\n2 2 1\n",
"3\n2 10 11\n",
"5\n1000010000 5 5 4 4\n",
"5\n1000000000 1000000000 1000000000 1000010000 1000000000\n",
"10\n94 96 91 95 2 94 96 92 95 99\n",
"7\n9 7 7 11 8 7 8\n",
"3\n677876423 1252386450 553175531\n",
"5\n1000000100 1 1 1 1\n",
"100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 1 4\n",
"4\n1000000001 1000000000 1000000000 1000000000\n",
"30\n94 93 77 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"4\n2 2 2 0\n",
"3\n1000000000 1000000000 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000000000\n",
"3\n677876423 1252386450 854741007\n",
"4\n1000000001 1100000000 1000000000 1000000000\n",
"30\n94 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"3\n1000000000 1000000010 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000000100\n",
"5\n1010000100 1 1 1 0\n",
"4\n1000000001 1100100000 1000000000 1000000000\n",
"30\n94 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 164 95 97 91 91 95 98 96\n",
"3\n5 2 0\n",
"3\n1100000000 1000000010 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000010100\n",
"10\n145 96 91 95 1 94 2 92 95 99\n",
"4\n0000000001 1100100000 1000000000 1000000000\n",
"3\n8 2 0\n",
"5\n1010000000 1000000000 1000000000 1000010010 1000010100\n",
"3\n198491773 1966171011 220670744\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 91 95 98 96\n",
"3\n1100000001 1000000000 01000000\n",
"5\n1001010000 5 3 7 0\n",
"5\n1010000000 1000000000 1000000000 1100010010 1000010100\n",
"4\n0000000001 1100100100 1000000000 1001000000\n",
"3\n7 2 0\n",
"3\n1100010001 1000000000 01000000\n",
"5\n1010100000 1000000000 1000000000 1100010010 1000010100\n",
"10\n145 96 91 95 0 94 2 147 95 73\n",
"5\n1010100000 1000000000 1000000000 1100010010 1000010000\n",
"3\n1100110001 1000100000 01000000\n",
"5\n1010100000 1000000010 1000000000 1100010010 1000010000\n",
"5\n1010100000 1001000010 1000000000 1100010010 1000010000\n",
"5\n1010100000 1101000010 1000000000 1100010010 1000010000\n",
"10\n145 96 74 95 1 157 2 147 25 73\n",
"3\n2 1 2\n",
"3\n3 2 3\n",
"3\n0 2 1\n",
"3\n3 10 11\n",
"5\n1000010000 5 5 4 1\n",
"10\n94 96 91 95 1 94 96 92 95 99\n",
"7\n9 7 3 11 8 7 8\n",
"3\n2 0 2\n",
"5\n1000000100 1 1 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 0 4\n",
"3\n3 2 0\n",
"3\n0 2 2\n",
"5\n1000010000 5 5 7 1\n",
"10\n94 96 91 95 1 94 2 92 95 99\n",
"7\n9 8 3 11 8 7 8\n",
"3\n198491773 1252386450 854741007\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"3\n0 2 3\n",
"5\n1000010000 5 3 7 1\n",
"7\n9 8 5 11 8 7 8\n",
"3\n198491773 1252386450 220670744\n",
"5\n1010000100 1 0 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 164 95 97 91 91 95 98 96\n",
"3\n1100000000 1000000000 01000000\n",
"3\n0 4 3\n",
"5\n1000010000 5 3 7 0\n",
"10\n145 96 91 95 1 94 2 92 95 73\n",
"7\n9 8 5 11 8 7 5\n",
"5\n1010000100 0 0 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"4\n0000000001 1100100000 1000000000 1001000000\n",
"3\n8 1 0\n",
"3\n0 4 0\n",
"10\n145 96 91 95 0 94 2 92 95 73\n",
"7\n9 12 5 11 8 7 5\n",
"3\n172905557 1966171011 220670744\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 160 95 98 96\n",
"3\n0 5 0\n",
"5\n1001010000 5 3 3 0\n",
"7\n9 12 5 10 8 7 5\n",
"3\n27098762 1966171011 220670744\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 453 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"4\n0000000001 1100100100 1000000000 0001000000\n",
"30\n1 93 77 94 115 91 93 91 93 94 23 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 160 95 98 96\n",
"3\n1100010001 1000100000 01000000\n",
"5\n1001010000 5 3 6 0\n",
"10\n145 96 74 95 0 94 2 147 95 73\n",
"7\n9 12 5 10 8 7 3\n",
"3\n27098762 1966171011 358335902\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 754 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 453 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n"
],
"output": [
"4\n",
"3\n",
"1005000000\n",
"2\n",
"13\n",
"1000000000\n",
"1250000000\n",
"106\n",
"9\n",
"2\n",
"1032554216\n",
"14\n",
"1000000000\n",
"1000\n",
"4\n",
"2\n",
"1333333334\n",
"100\n",
"1005500000\n",
"3\n",
"12\n",
"1000010000\n",
"1250002500\n",
"99\n",
"11\n",
"1252386450\n",
"1000000100\n",
"1000\n",
"4\n",
"1333333334\n",
"100\n",
"2\n",
"1000500000\n",
"1252502500\n",
"1392501940\n",
"1366666667\n",
"115\n",
"1000500005\n",
"1252502525\n",
"1010000100\n",
"1366700001\n",
"164\n",
"5\n",
"1100000000\n",
"1252505025\n",
"145\n",
"1100100000\n",
"8\n",
"1252505028\n",
"1966171011\n",
"223\n",
"1100000001\n",
"1001010000\n",
"1277505028\n",
"1100100100\n",
"7\n",
"1100010001\n",
"1277530028\n",
"147\n",
"1277530003\n",
"1100110001\n",
"1277530005\n",
"1277780005\n",
"1302780005\n",
"157\n",
"3\n",
"4\n",
"2\n",
"12\n",
"1000010000\n",
"99\n",
"11\n",
"2\n",
"1000000100\n",
"1000\n",
"4\n",
"3\n",
"2\n",
"1000010000\n",
"99\n",
"11\n",
"1252386450\n",
"1000\n",
"3\n",
"1000010000\n",
"11\n",
"1252386450\n",
"1010000100\n",
"1000\n",
"164\n",
"1100000000\n",
"4\n",
"1000010000\n",
"145\n",
"11\n",
"1010000100\n",
"1000\n",
"1100100000\n",
"8\n",
"4\n",
"145\n",
"12\n",
"1966171011\n",
"1000\n",
"223\n",
"5\n",
"1001010000\n",
"12\n",
"1966171011\n",
"1000\n",
"1100100100\n",
"223\n",
"1100010001\n",
"1001010000\n",
"147\n",
"12\n",
"1966171011\n",
"1000\n"
]
} | 2CODEFORCES
|
348_A. Mafia_980 | One day n friends gathered together to play "Mafia". During each round of the game some player must be the supervisor and other n - 1 people take part in the game. For each person we know in how many rounds he wants to be a player, not the supervisor: the i-th person wants to play ai rounds. What is the minimum number of rounds of the "Mafia" game they need to play to let each person play at least as many rounds as they want?
Input
The first line contains integer n (3 ≤ n ≤ 105). The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the i-th number in the list is the number of rounds the i-th person wants to play.
Output
In a single line print a single integer — the minimum number of game rounds the friends need to let the i-th person play at least ai rounds.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Examples
Input
3
3 2 2
Output
4
Input
4
2 2 2 2
Output
3
Note
You don't need to know the rules of "Mafia" to solve this problem. If you're curious, it's a game Russia got from the Soviet times: http://en.wikipedia.org/wiki/Mafia_(party_game). | # mafia
N=int(input())
a=list(map(int,input().split()))
def isok(X):
sums=0
for num in a:
if X<num:
return False
sums+=max(0,X-num)
if sums>=X:
return True
return False
l=0
r=10**12
#l -- case_impossible
#r --case_possible
while r-l>1:
m=(l+r)//2
if isok(m):
r=m
else:
l=m
print(r)
| 3Python3
| {
"input": [
"3\n3 2 2\n",
"4\n2 2 2 2\n",
"3\n1000000000 1000000000 10000000\n",
"3\n1 2 1\n",
"3\n4 10 11\n",
"5\n1000000000 5 5 4 4\n",
"5\n1000000000 1000000000 1000000000 1000000000 1000000000\n",
"10\n94 96 91 95 99 94 96 92 95 99\n",
"7\n9 7 7 8 8 7 8\n",
"3\n1 1 1\n",
"3\n677876423 834056477 553175531\n",
"10\n13 12 10 13 13 14 10 10 12 12\n",
"5\n1000000000 1 1 1 1\n",
"100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 102 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 3 4\n",
"3\n2 1 1\n",
"4\n1000000000 1000000000 1000000000 1000000000\n",
"30\n94 93 90 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"3\n1000000000 1000000000 11000000\n",
"3\n2 2 1\n",
"3\n2 10 11\n",
"5\n1000010000 5 5 4 4\n",
"5\n1000000000 1000000000 1000000000 1000010000 1000000000\n",
"10\n94 96 91 95 2 94 96 92 95 99\n",
"7\n9 7 7 11 8 7 8\n",
"3\n677876423 1252386450 553175531\n",
"5\n1000000100 1 1 1 1\n",
"100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 1 4\n",
"4\n1000000001 1000000000 1000000000 1000000000\n",
"30\n94 93 77 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"4\n2 2 2 0\n",
"3\n1000000000 1000000000 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000000000\n",
"3\n677876423 1252386450 854741007\n",
"4\n1000000001 1100000000 1000000000 1000000000\n",
"30\n94 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"3\n1000000000 1000000010 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000000100\n",
"5\n1010000100 1 1 1 0\n",
"4\n1000000001 1100100000 1000000000 1000000000\n",
"30\n94 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 164 95 97 91 91 95 98 96\n",
"3\n5 2 0\n",
"3\n1100000000 1000000010 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000010100\n",
"10\n145 96 91 95 1 94 2 92 95 99\n",
"4\n0000000001 1100100000 1000000000 1000000000\n",
"3\n8 2 0\n",
"5\n1010000000 1000000000 1000000000 1000010010 1000010100\n",
"3\n198491773 1966171011 220670744\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 91 95 98 96\n",
"3\n1100000001 1000000000 01000000\n",
"5\n1001010000 5 3 7 0\n",
"5\n1010000000 1000000000 1000000000 1100010010 1000010100\n",
"4\n0000000001 1100100100 1000000000 1001000000\n",
"3\n7 2 0\n",
"3\n1100010001 1000000000 01000000\n",
"5\n1010100000 1000000000 1000000000 1100010010 1000010100\n",
"10\n145 96 91 95 0 94 2 147 95 73\n",
"5\n1010100000 1000000000 1000000000 1100010010 1000010000\n",
"3\n1100110001 1000100000 01000000\n",
"5\n1010100000 1000000010 1000000000 1100010010 1000010000\n",
"5\n1010100000 1001000010 1000000000 1100010010 1000010000\n",
"5\n1010100000 1101000010 1000000000 1100010010 1000010000\n",
"10\n145 96 74 95 1 157 2 147 25 73\n",
"3\n2 1 2\n",
"3\n3 2 3\n",
"3\n0 2 1\n",
"3\n3 10 11\n",
"5\n1000010000 5 5 4 1\n",
"10\n94 96 91 95 1 94 96 92 95 99\n",
"7\n9 7 3 11 8 7 8\n",
"3\n2 0 2\n",
"5\n1000000100 1 1 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 0 4\n",
"3\n3 2 0\n",
"3\n0 2 2\n",
"5\n1000010000 5 5 7 1\n",
"10\n94 96 91 95 1 94 2 92 95 99\n",
"7\n9 8 3 11 8 7 8\n",
"3\n198491773 1252386450 854741007\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"3\n0 2 3\n",
"5\n1000010000 5 3 7 1\n",
"7\n9 8 5 11 8 7 8\n",
"3\n198491773 1252386450 220670744\n",
"5\n1010000100 1 0 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 164 95 97 91 91 95 98 96\n",
"3\n1100000000 1000000000 01000000\n",
"3\n0 4 3\n",
"5\n1000010000 5 3 7 0\n",
"10\n145 96 91 95 1 94 2 92 95 73\n",
"7\n9 8 5 11 8 7 5\n",
"5\n1010000100 0 0 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"4\n0000000001 1100100000 1000000000 1001000000\n",
"3\n8 1 0\n",
"3\n0 4 0\n",
"10\n145 96 91 95 0 94 2 92 95 73\n",
"7\n9 12 5 11 8 7 5\n",
"3\n172905557 1966171011 220670744\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 160 95 98 96\n",
"3\n0 5 0\n",
"5\n1001010000 5 3 3 0\n",
"7\n9 12 5 10 8 7 5\n",
"3\n27098762 1966171011 220670744\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 453 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"4\n0000000001 1100100100 1000000000 0001000000\n",
"30\n1 93 77 94 115 91 93 91 93 94 23 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 160 95 98 96\n",
"3\n1100010001 1000100000 01000000\n",
"5\n1001010000 5 3 6 0\n",
"10\n145 96 74 95 0 94 2 147 95 73\n",
"7\n9 12 5 10 8 7 3\n",
"3\n27098762 1966171011 358335902\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 754 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 453 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n"
],
"output": [
"4\n",
"3\n",
"1005000000\n",
"2\n",
"13\n",
"1000000000\n",
"1250000000\n",
"106\n",
"9\n",
"2\n",
"1032554216\n",
"14\n",
"1000000000\n",
"1000\n",
"4\n",
"2\n",
"1333333334\n",
"100\n",
"1005500000\n",
"3\n",
"12\n",
"1000010000\n",
"1250002500\n",
"99\n",
"11\n",
"1252386450\n",
"1000000100\n",
"1000\n",
"4\n",
"1333333334\n",
"100\n",
"2\n",
"1000500000\n",
"1252502500\n",
"1392501940\n",
"1366666667\n",
"115\n",
"1000500005\n",
"1252502525\n",
"1010000100\n",
"1366700001\n",
"164\n",
"5\n",
"1100000000\n",
"1252505025\n",
"145\n",
"1100100000\n",
"8\n",
"1252505028\n",
"1966171011\n",
"223\n",
"1100000001\n",
"1001010000\n",
"1277505028\n",
"1100100100\n",
"7\n",
"1100010001\n",
"1277530028\n",
"147\n",
"1277530003\n",
"1100110001\n",
"1277530005\n",
"1277780005\n",
"1302780005\n",
"157\n",
"3\n",
"4\n",
"2\n",
"12\n",
"1000010000\n",
"99\n",
"11\n",
"2\n",
"1000000100\n",
"1000\n",
"4\n",
"3\n",
"2\n",
"1000010000\n",
"99\n",
"11\n",
"1252386450\n",
"1000\n",
"3\n",
"1000010000\n",
"11\n",
"1252386450\n",
"1010000100\n",
"1000\n",
"164\n",
"1100000000\n",
"4\n",
"1000010000\n",
"145\n",
"11\n",
"1010000100\n",
"1000\n",
"1100100000\n",
"8\n",
"4\n",
"145\n",
"12\n",
"1966171011\n",
"1000\n",
"223\n",
"5\n",
"1001010000\n",
"12\n",
"1966171011\n",
"1000\n",
"1100100100\n",
"223\n",
"1100010001\n",
"1001010000\n",
"147\n",
"12\n",
"1966171011\n",
"1000\n"
]
} | 2CODEFORCES
|
348_A. Mafia_981 | One day n friends gathered together to play "Mafia". During each round of the game some player must be the supervisor and other n - 1 people take part in the game. For each person we know in how many rounds he wants to be a player, not the supervisor: the i-th person wants to play ai rounds. What is the minimum number of rounds of the "Mafia" game they need to play to let each person play at least as many rounds as they want?
Input
The first line contains integer n (3 ≤ n ≤ 105). The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the i-th number in the list is the number of rounds the i-th person wants to play.
Output
In a single line print a single integer — the minimum number of game rounds the friends need to let the i-th person play at least ai rounds.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Examples
Input
3
3 2 2
Output
4
Input
4
2 2 2 2
Output
3
Note
You don't need to know the rules of "Mafia" to solve this problem. If you're curious, it's a game Russia got from the Soviet times: http://en.wikipedia.org/wiki/Mafia_(party_game). | import java.util.*;
public class Study{
public static boolean ispossible(long mid,long arr[]) {
long supervisor=0;
for(int i=0;i<arr.length;i++) {
if(mid-arr[i]<0)
return false;
supervisor+=mid-arr[i];}
if(supervisor>=mid)
return true;
return false;
}
public static long bsearch(long arr[],long sum) {
long l=0;
long r=sum;
long answer=sum;
while(l<=r){
long mid=(l+r)/2;
if(ispossible(mid,arr)) {
answer=mid;
r=mid-1;}
else
l=mid+1;
}
return answer;
}
public static void main(String args[]) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
long arr[]=new long[n];
long sum=0;
for(int i=0;i<arr.length;i++) {
arr[i]=in.nextInt();
sum+=arr[i];}
long ans=bsearch(arr,sum);
System.out.println(ans);
}
} | 4JAVA
| {
"input": [
"3\n3 2 2\n",
"4\n2 2 2 2\n",
"3\n1000000000 1000000000 10000000\n",
"3\n1 2 1\n",
"3\n4 10 11\n",
"5\n1000000000 5 5 4 4\n",
"5\n1000000000 1000000000 1000000000 1000000000 1000000000\n",
"10\n94 96 91 95 99 94 96 92 95 99\n",
"7\n9 7 7 8 8 7 8\n",
"3\n1 1 1\n",
"3\n677876423 834056477 553175531\n",
"10\n13 12 10 13 13 14 10 10 12 12\n",
"5\n1000000000 1 1 1 1\n",
"100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 102 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 3 4\n",
"3\n2 1 1\n",
"4\n1000000000 1000000000 1000000000 1000000000\n",
"30\n94 93 90 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"3\n1000000000 1000000000 11000000\n",
"3\n2 2 1\n",
"3\n2 10 11\n",
"5\n1000010000 5 5 4 4\n",
"5\n1000000000 1000000000 1000000000 1000010000 1000000000\n",
"10\n94 96 91 95 2 94 96 92 95 99\n",
"7\n9 7 7 11 8 7 8\n",
"3\n677876423 1252386450 553175531\n",
"5\n1000000100 1 1 1 1\n",
"100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 1 4\n",
"4\n1000000001 1000000000 1000000000 1000000000\n",
"30\n94 93 77 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"4\n2 2 2 0\n",
"3\n1000000000 1000000000 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000000000\n",
"3\n677876423 1252386450 854741007\n",
"4\n1000000001 1100000000 1000000000 1000000000\n",
"30\n94 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"3\n1000000000 1000000010 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000000100\n",
"5\n1010000100 1 1 1 0\n",
"4\n1000000001 1100100000 1000000000 1000000000\n",
"30\n94 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 164 95 97 91 91 95 98 96\n",
"3\n5 2 0\n",
"3\n1100000000 1000000010 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000010100\n",
"10\n145 96 91 95 1 94 2 92 95 99\n",
"4\n0000000001 1100100000 1000000000 1000000000\n",
"3\n8 2 0\n",
"5\n1010000000 1000000000 1000000000 1000010010 1000010100\n",
"3\n198491773 1966171011 220670744\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 91 95 98 96\n",
"3\n1100000001 1000000000 01000000\n",
"5\n1001010000 5 3 7 0\n",
"5\n1010000000 1000000000 1000000000 1100010010 1000010100\n",
"4\n0000000001 1100100100 1000000000 1001000000\n",
"3\n7 2 0\n",
"3\n1100010001 1000000000 01000000\n",
"5\n1010100000 1000000000 1000000000 1100010010 1000010100\n",
"10\n145 96 91 95 0 94 2 147 95 73\n",
"5\n1010100000 1000000000 1000000000 1100010010 1000010000\n",
"3\n1100110001 1000100000 01000000\n",
"5\n1010100000 1000000010 1000000000 1100010010 1000010000\n",
"5\n1010100000 1001000010 1000000000 1100010010 1000010000\n",
"5\n1010100000 1101000010 1000000000 1100010010 1000010000\n",
"10\n145 96 74 95 1 157 2 147 25 73\n",
"3\n2 1 2\n",
"3\n3 2 3\n",
"3\n0 2 1\n",
"3\n3 10 11\n",
"5\n1000010000 5 5 4 1\n",
"10\n94 96 91 95 1 94 96 92 95 99\n",
"7\n9 7 3 11 8 7 8\n",
"3\n2 0 2\n",
"5\n1000000100 1 1 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 0 4\n",
"3\n3 2 0\n",
"3\n0 2 2\n",
"5\n1000010000 5 5 7 1\n",
"10\n94 96 91 95 1 94 2 92 95 99\n",
"7\n9 8 3 11 8 7 8\n",
"3\n198491773 1252386450 854741007\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"3\n0 2 3\n",
"5\n1000010000 5 3 7 1\n",
"7\n9 8 5 11 8 7 8\n",
"3\n198491773 1252386450 220670744\n",
"5\n1010000100 1 0 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 164 95 97 91 91 95 98 96\n",
"3\n1100000000 1000000000 01000000\n",
"3\n0 4 3\n",
"5\n1000010000 5 3 7 0\n",
"10\n145 96 91 95 1 94 2 92 95 73\n",
"7\n9 8 5 11 8 7 5\n",
"5\n1010000100 0 0 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"4\n0000000001 1100100000 1000000000 1001000000\n",
"3\n8 1 0\n",
"3\n0 4 0\n",
"10\n145 96 91 95 0 94 2 92 95 73\n",
"7\n9 12 5 11 8 7 5\n",
"3\n172905557 1966171011 220670744\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 160 95 98 96\n",
"3\n0 5 0\n",
"5\n1001010000 5 3 3 0\n",
"7\n9 12 5 10 8 7 5\n",
"3\n27098762 1966171011 220670744\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 453 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"4\n0000000001 1100100100 1000000000 0001000000\n",
"30\n1 93 77 94 115 91 93 91 93 94 23 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 160 95 98 96\n",
"3\n1100010001 1000100000 01000000\n",
"5\n1001010000 5 3 6 0\n",
"10\n145 96 74 95 0 94 2 147 95 73\n",
"7\n9 12 5 10 8 7 3\n",
"3\n27098762 1966171011 358335902\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 754 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 453 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n"
],
"output": [
"4\n",
"3\n",
"1005000000\n",
"2\n",
"13\n",
"1000000000\n",
"1250000000\n",
"106\n",
"9\n",
"2\n",
"1032554216\n",
"14\n",
"1000000000\n",
"1000\n",
"4\n",
"2\n",
"1333333334\n",
"100\n",
"1005500000\n",
"3\n",
"12\n",
"1000010000\n",
"1250002500\n",
"99\n",
"11\n",
"1252386450\n",
"1000000100\n",
"1000\n",
"4\n",
"1333333334\n",
"100\n",
"2\n",
"1000500000\n",
"1252502500\n",
"1392501940\n",
"1366666667\n",
"115\n",
"1000500005\n",
"1252502525\n",
"1010000100\n",
"1366700001\n",
"164\n",
"5\n",
"1100000000\n",
"1252505025\n",
"145\n",
"1100100000\n",
"8\n",
"1252505028\n",
"1966171011\n",
"223\n",
"1100000001\n",
"1001010000\n",
"1277505028\n",
"1100100100\n",
"7\n",
"1100010001\n",
"1277530028\n",
"147\n",
"1277530003\n",
"1100110001\n",
"1277530005\n",
"1277780005\n",
"1302780005\n",
"157\n",
"3\n",
"4\n",
"2\n",
"12\n",
"1000010000\n",
"99\n",
"11\n",
"2\n",
"1000000100\n",
"1000\n",
"4\n",
"3\n",
"2\n",
"1000010000\n",
"99\n",
"11\n",
"1252386450\n",
"1000\n",
"3\n",
"1000010000\n",
"11\n",
"1252386450\n",
"1010000100\n",
"1000\n",
"164\n",
"1100000000\n",
"4\n",
"1000010000\n",
"145\n",
"11\n",
"1010000100\n",
"1000\n",
"1100100000\n",
"8\n",
"4\n",
"145\n",
"12\n",
"1966171011\n",
"1000\n",
"223\n",
"5\n",
"1001010000\n",
"12\n",
"1966171011\n",
"1000\n",
"1100100100\n",
"223\n",
"1100010001\n",
"1001010000\n",
"147\n",
"12\n",
"1966171011\n",
"1000\n"
]
} | 2CODEFORCES
|
371_B. Fox Dividing Cheese_982 | Two little greedy bears have found two pieces of cheese in the forest of weight a and b grams, correspondingly. The bears are so greedy that they are ready to fight for the larger piece. That's where the fox comes in and starts the dialog: "Little bears, wait a little, I want to make your pieces equal" "Come off it fox, how are you going to do that?", the curious bears asked. "It's easy", said the fox. "If the mass of a certain piece is divisible by two, then I can eat exactly a half of the piece. If the mass of a certain piece is divisible by three, then I can eat exactly two-thirds, and if the mass is divisible by five, then I can eat four-fifths. I'll eat a little here and there and make the pieces equal".
The little bears realize that the fox's proposal contains a catch. But at the same time they realize that they can not make the two pieces equal themselves. So they agreed to her proposal, but on one condition: the fox should make the pieces equal as quickly as possible. Find the minimum number of operations the fox needs to make pieces equal.
Input
The first line contains two space-separated integers a and b (1 ≤ a, b ≤ 109).
Output
If the fox is lying to the little bears and it is impossible to make the pieces equal, print -1. Otherwise, print the required minimum number of operations. If the pieces of the cheese are initially equal, the required number is 0.
Examples
Input
15 20
Output
3
Input
14 8
Output
-1
Input
6 6
Output
0 | import sys
data = raw_input().split()
a = int(data[0])
b = int(data[1])
def gcd(a, b):
if b==0: return a
else: return gcd(b, a%b)
ans=0
aa=a/gcd(a, b)
bb=b/gcd(a, b)
def deal(x):
global ans
while x%2==0:
x=x/2
ans+=1
while x%3==0:
x=x/3
ans+=1
while x%5==0:
x=x/5
ans+=1
return x!=1
if deal(aa) or deal(bb):
print -1
else:
print ans
| 1Python2
| {
"input": [
"15 20\n",
"14 8\n",
"6 6\n",
"919536000 993098880\n",
"691200 583200\n",
"5 1000000000\n",
"100 10\n",
"537814642 537814642\n",
"21 35\n",
"800000 729000\n",
"881280 765000\n",
"864000000 607500000\n",
"648293430 540244525\n",
"445906944 528482304\n",
"820125000 874800000\n",
"509607936 306110016\n",
"792000 792000\n",
"513600 513600\n",
"1000000000 1\n",
"673067520 807681024\n",
"1 1\n",
"7920 9900\n",
"689147136 861433920\n",
"1024 1048576\n",
"36 30\n",
"119144448 423624704\n",
"576000 972000\n",
"1000000000 7\n",
"1 22\n",
"609120000 913680000\n",
"720212000 864254400\n",
"21751200 43502400\n",
"900000011 800000011\n",
"607500 506250\n",
"1024 729\n",
"3303936 3097440\n",
"1 1000000000\n",
"19500000 140400000\n",
"847500 610200\n",
"536870912 387420489\n",
"100000007 800000011\n",
"1000000000 3\n",
"900000011 999900017\n",
"2208870 122715\n",
"1000000000 2\n",
"1000000000 5\n",
"10332160 476643528\n",
"1 1024\n",
"3 1000000000\n",
"9900 7128\n",
"4812500 7577955\n",
"55404 147744\n",
"522784320 784176480\n",
"2 1000000000\n",
"924896439 993098880\n",
"1 2\n",
"1 24\n",
"1000000000 4\n",
"396 7128\n",
"9 6\n",
"32 30\n",
"691200 438115\n",
"5 1100000000\n",
"110 10\n",
"708145209 537814642\n",
"5 35\n",
"800000 1215134\n",
"881280 752759\n",
"1488496828 607500000\n",
"1183431925 540244525\n",
"371318978 528482304\n",
"908784 792000\n",
"513600 248319\n",
"1000000001 2\n",
"897945222 807681024\n",
"7920 16691\n",
"513923703 861433920\n",
"1024 2051344\n",
"31 30\n",
"103288268 423624704\n",
"657401 972000\n",
"1000010000 7\n",
"232561154 913680000\n",
"25731138 43502400\n",
"671771637 800000011\n",
"533201 506250\n",
"1024 666\n",
"3303936 2817250\n",
"1 1000001000\n",
"847500 533407\n",
"935924067 387420489\n",
"195518386 800000011\n",
"1000010000 3\n",
"900000011 991865743\n",
"1491963 122715\n",
"1100000000 2\n",
"10332160 84989538\n",
"3 1100000000\n",
"5678790 7577955\n",
"67651 147744\n",
"2 1000100000\n",
"17 20\n",
"17 8\n",
"924896439 998299650\n",
"691200 179926\n",
"5 1100000001\n",
"111 10\n",
"897033693 537814642\n",
"5 34\n",
"846029 1215134\n",
"711976880 607500000\n",
"371318978 121822012\n",
"908784 1175872\n",
"995783 248319\n",
"1000000001 1\n",
"5222 16691\n",
"463351059 861433920\n",
"1031 2051344\n",
"103288268 705866301\n",
"1182172 972000\n",
"1000010000 4\n",
"2 22\n",
"232561154 689605800\n",
"25731138 45565213\n",
"471384248 800000011\n",
"533201 831372\n",
"1024 1324\n",
"43729 2817250\n",
"847500 563553\n",
"1270836736 387420489\n",
"195518386 251572851\n",
"1000010000 5\n",
"1491963 130132\n",
"1100000010 2\n",
"1000000000 13\n",
"10332160 112355773\n",
"3 1100000100\n",
"680 7128\n",
"9151662 7577955\n",
"67651 178107\n",
"1 1000100000\n",
"31 20\n",
"17 11\n",
"10 6\n",
"924896439 839890701\n"
],
"output": [
"3\n",
"-1\n",
"0\n",
"5\n",
"8\n",
"17\n",
"2\n",
"0\n",
"2\n",
"13\n",
"9\n",
"9\n",
"3\n",
"8\n",
"6\n",
"24\n",
"0\n",
"0\n",
"18\n",
"3\n",
"0\n",
"3\n",
"3\n",
"10\n",
"3\n",
"7\n",
"7\n",
"-1\n",
"-1\n",
"2\n",
"3\n",
"1\n",
"-1\n",
"3\n",
"16\n",
"6\n",
"18\n",
"5\n",
"5\n",
"47\n",
"-1\n",
"19\n",
"-1\n",
"3\n",
"17\n",
"17\n",
"19\n",
"10\n",
"19\n",
"5\n",
"16\n",
"4\n",
"2\n",
"17\n",
"-1\n",
"1\n",
"4\n",
"16\n",
"3\n",
"2\n",
"6\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"2\n",
"-1\n"
]
} | 2CODEFORCES
|
371_B. Fox Dividing Cheese_983 | Two little greedy bears have found two pieces of cheese in the forest of weight a and b grams, correspondingly. The bears are so greedy that they are ready to fight for the larger piece. That's where the fox comes in and starts the dialog: "Little bears, wait a little, I want to make your pieces equal" "Come off it fox, how are you going to do that?", the curious bears asked. "It's easy", said the fox. "If the mass of a certain piece is divisible by two, then I can eat exactly a half of the piece. If the mass of a certain piece is divisible by three, then I can eat exactly two-thirds, and if the mass is divisible by five, then I can eat four-fifths. I'll eat a little here and there and make the pieces equal".
The little bears realize that the fox's proposal contains a catch. But at the same time they realize that they can not make the two pieces equal themselves. So they agreed to her proposal, but on one condition: the fox should make the pieces equal as quickly as possible. Find the minimum number of operations the fox needs to make pieces equal.
Input
The first line contains two space-separated integers a and b (1 ≤ a, b ≤ 109).
Output
If the fox is lying to the little bears and it is impossible to make the pieces equal, print -1. Otherwise, print the required minimum number of operations. If the pieces of the cheese are initially equal, the required number is 0.
Examples
Input
15 20
Output
3
Input
14 8
Output
-1
Input
6 6
Output
0 | #include <bits/stdc++.h>
using namespace std;
bool isPrime(long long int n) {
if (n <= 1) return 0;
if (n <= 3) return 1;
if (n % 2 == 0 || n % 3 == 0) return 0;
for (long long int i = 5; i * i <= n; i += 6)
if (n % i == 0 || n % (i + 2) == 0) return 0;
return 1;
}
long long int gcd(long long int a, long long int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
long long int lcm(long long int a, long long int b) {
return (a * b) / (gcd(a, b));
}
void swap(int& a, int& b) {
a = a ^ b;
b = a ^ b;
a = a ^ b;
}
inline void solve() {
long long int a, b;
cin >> a >> b;
int x = 0, y = 0, z = 0;
while (a % 2 == 0) {
a = a / 2;
x++;
}
while (a % 3 == 0) {
a = a / 3;
y++;
}
while (a % 5 == 0) {
a = a / 5;
z++;
}
while (b % 2 == 0) {
b = b / 2;
x--;
}
while (b % 3 == 0) {
b = b / 3;
y--;
}
while (b % 5 == 0) {
b = b / 5;
z--;
}
if (a != b)
cout << -1 << '\n';
else
cout << abs(x) + abs(y) + abs(z) << '\n';
}
signed main() {
auto start_time = clock();
cerr << setprecision(3) << fixed;
cout << setprecision(15) << fixed;
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
solve();
auto end_time = clock();
cerr << "Execution time: "
<< (end_time - start_time) * (int)1e3 / CLOCKS_PER_SEC << " ms\n";
return 0;
}
| 2C++
| {
"input": [
"15 20\n",
"14 8\n",
"6 6\n",
"919536000 993098880\n",
"691200 583200\n",
"5 1000000000\n",
"100 10\n",
"537814642 537814642\n",
"21 35\n",
"800000 729000\n",
"881280 765000\n",
"864000000 607500000\n",
"648293430 540244525\n",
"445906944 528482304\n",
"820125000 874800000\n",
"509607936 306110016\n",
"792000 792000\n",
"513600 513600\n",
"1000000000 1\n",
"673067520 807681024\n",
"1 1\n",
"7920 9900\n",
"689147136 861433920\n",
"1024 1048576\n",
"36 30\n",
"119144448 423624704\n",
"576000 972000\n",
"1000000000 7\n",
"1 22\n",
"609120000 913680000\n",
"720212000 864254400\n",
"21751200 43502400\n",
"900000011 800000011\n",
"607500 506250\n",
"1024 729\n",
"3303936 3097440\n",
"1 1000000000\n",
"19500000 140400000\n",
"847500 610200\n",
"536870912 387420489\n",
"100000007 800000011\n",
"1000000000 3\n",
"900000011 999900017\n",
"2208870 122715\n",
"1000000000 2\n",
"1000000000 5\n",
"10332160 476643528\n",
"1 1024\n",
"3 1000000000\n",
"9900 7128\n",
"4812500 7577955\n",
"55404 147744\n",
"522784320 784176480\n",
"2 1000000000\n",
"924896439 993098880\n",
"1 2\n",
"1 24\n",
"1000000000 4\n",
"396 7128\n",
"9 6\n",
"32 30\n",
"691200 438115\n",
"5 1100000000\n",
"110 10\n",
"708145209 537814642\n",
"5 35\n",
"800000 1215134\n",
"881280 752759\n",
"1488496828 607500000\n",
"1183431925 540244525\n",
"371318978 528482304\n",
"908784 792000\n",
"513600 248319\n",
"1000000001 2\n",
"897945222 807681024\n",
"7920 16691\n",
"513923703 861433920\n",
"1024 2051344\n",
"31 30\n",
"103288268 423624704\n",
"657401 972000\n",
"1000010000 7\n",
"232561154 913680000\n",
"25731138 43502400\n",
"671771637 800000011\n",
"533201 506250\n",
"1024 666\n",
"3303936 2817250\n",
"1 1000001000\n",
"847500 533407\n",
"935924067 387420489\n",
"195518386 800000011\n",
"1000010000 3\n",
"900000011 991865743\n",
"1491963 122715\n",
"1100000000 2\n",
"10332160 84989538\n",
"3 1100000000\n",
"5678790 7577955\n",
"67651 147744\n",
"2 1000100000\n",
"17 20\n",
"17 8\n",
"924896439 998299650\n",
"691200 179926\n",
"5 1100000001\n",
"111 10\n",
"897033693 537814642\n",
"5 34\n",
"846029 1215134\n",
"711976880 607500000\n",
"371318978 121822012\n",
"908784 1175872\n",
"995783 248319\n",
"1000000001 1\n",
"5222 16691\n",
"463351059 861433920\n",
"1031 2051344\n",
"103288268 705866301\n",
"1182172 972000\n",
"1000010000 4\n",
"2 22\n",
"232561154 689605800\n",
"25731138 45565213\n",
"471384248 800000011\n",
"533201 831372\n",
"1024 1324\n",
"43729 2817250\n",
"847500 563553\n",
"1270836736 387420489\n",
"195518386 251572851\n",
"1000010000 5\n",
"1491963 130132\n",
"1100000010 2\n",
"1000000000 13\n",
"10332160 112355773\n",
"3 1100000100\n",
"680 7128\n",
"9151662 7577955\n",
"67651 178107\n",
"1 1000100000\n",
"31 20\n",
"17 11\n",
"10 6\n",
"924896439 839890701\n"
],
"output": [
"3\n",
"-1\n",
"0\n",
"5\n",
"8\n",
"17\n",
"2\n",
"0\n",
"2\n",
"13\n",
"9\n",
"9\n",
"3\n",
"8\n",
"6\n",
"24\n",
"0\n",
"0\n",
"18\n",
"3\n",
"0\n",
"3\n",
"3\n",
"10\n",
"3\n",
"7\n",
"7\n",
"-1\n",
"-1\n",
"2\n",
"3\n",
"1\n",
"-1\n",
"3\n",
"16\n",
"6\n",
"18\n",
"5\n",
"5\n",
"47\n",
"-1\n",
"19\n",
"-1\n",
"3\n",
"17\n",
"17\n",
"19\n",
"10\n",
"19\n",
"5\n",
"16\n",
"4\n",
"2\n",
"17\n",
"-1\n",
"1\n",
"4\n",
"16\n",
"3\n",
"2\n",
"6\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"2\n",
"-1\n"
]
} | 2CODEFORCES
|
371_B. Fox Dividing Cheese_984 | Two little greedy bears have found two pieces of cheese in the forest of weight a and b grams, correspondingly. The bears are so greedy that they are ready to fight for the larger piece. That's where the fox comes in and starts the dialog: "Little bears, wait a little, I want to make your pieces equal" "Come off it fox, how are you going to do that?", the curious bears asked. "It's easy", said the fox. "If the mass of a certain piece is divisible by two, then I can eat exactly a half of the piece. If the mass of a certain piece is divisible by three, then I can eat exactly two-thirds, and if the mass is divisible by five, then I can eat four-fifths. I'll eat a little here and there and make the pieces equal".
The little bears realize that the fox's proposal contains a catch. But at the same time they realize that they can not make the two pieces equal themselves. So they agreed to her proposal, but on one condition: the fox should make the pieces equal as quickly as possible. Find the minimum number of operations the fox needs to make pieces equal.
Input
The first line contains two space-separated integers a and b (1 ≤ a, b ≤ 109).
Output
If the fox is lying to the little bears and it is impossible to make the pieces equal, print -1. Otherwise, print the required minimum number of operations. If the pieces of the cheese are initially equal, the required number is 0.
Examples
Input
15 20
Output
3
Input
14 8
Output
-1
Input
6 6
Output
0 | from math import pow
def take_input(s): #for integer inputs
if s == 1: return int(input())
return map(int, input().split())
def factor(n,k):
i = 0
while(n%k==0):
i += 1
n //= k
return i
a, b = take_input(2)
count = 0
if a == b:
print(0)
exit()
a_fac_2 = factor(a,2); a_fac_3 = factor(a,3); a_fac_5 = factor(a,5)
b_fac_2 = factor(b,2); b_fac_3 = factor(b,3); b_fac_5 = factor(b,5)
x = a
if a_fac_2>0: x //= pow(2,a_fac_2)
if a_fac_3>0: x //= pow(3,a_fac_3)
if a_fac_5>0: x //= pow(5,a_fac_5)
y = b
if b_fac_2>0: y //= pow(2,b_fac_2)
if b_fac_3>0: y //= pow(3,b_fac_3)
if b_fac_5>0: y //= pow(5,b_fac_5)
if x != y:
print(-1)
else:
print(abs(a_fac_2 - b_fac_2) + abs(a_fac_3 - b_fac_3) + abs(a_fac_5 - b_fac_5))
| 3Python3
| {
"input": [
"15 20\n",
"14 8\n",
"6 6\n",
"919536000 993098880\n",
"691200 583200\n",
"5 1000000000\n",
"100 10\n",
"537814642 537814642\n",
"21 35\n",
"800000 729000\n",
"881280 765000\n",
"864000000 607500000\n",
"648293430 540244525\n",
"445906944 528482304\n",
"820125000 874800000\n",
"509607936 306110016\n",
"792000 792000\n",
"513600 513600\n",
"1000000000 1\n",
"673067520 807681024\n",
"1 1\n",
"7920 9900\n",
"689147136 861433920\n",
"1024 1048576\n",
"36 30\n",
"119144448 423624704\n",
"576000 972000\n",
"1000000000 7\n",
"1 22\n",
"609120000 913680000\n",
"720212000 864254400\n",
"21751200 43502400\n",
"900000011 800000011\n",
"607500 506250\n",
"1024 729\n",
"3303936 3097440\n",
"1 1000000000\n",
"19500000 140400000\n",
"847500 610200\n",
"536870912 387420489\n",
"100000007 800000011\n",
"1000000000 3\n",
"900000011 999900017\n",
"2208870 122715\n",
"1000000000 2\n",
"1000000000 5\n",
"10332160 476643528\n",
"1 1024\n",
"3 1000000000\n",
"9900 7128\n",
"4812500 7577955\n",
"55404 147744\n",
"522784320 784176480\n",
"2 1000000000\n",
"924896439 993098880\n",
"1 2\n",
"1 24\n",
"1000000000 4\n",
"396 7128\n",
"9 6\n",
"32 30\n",
"691200 438115\n",
"5 1100000000\n",
"110 10\n",
"708145209 537814642\n",
"5 35\n",
"800000 1215134\n",
"881280 752759\n",
"1488496828 607500000\n",
"1183431925 540244525\n",
"371318978 528482304\n",
"908784 792000\n",
"513600 248319\n",
"1000000001 2\n",
"897945222 807681024\n",
"7920 16691\n",
"513923703 861433920\n",
"1024 2051344\n",
"31 30\n",
"103288268 423624704\n",
"657401 972000\n",
"1000010000 7\n",
"232561154 913680000\n",
"25731138 43502400\n",
"671771637 800000011\n",
"533201 506250\n",
"1024 666\n",
"3303936 2817250\n",
"1 1000001000\n",
"847500 533407\n",
"935924067 387420489\n",
"195518386 800000011\n",
"1000010000 3\n",
"900000011 991865743\n",
"1491963 122715\n",
"1100000000 2\n",
"10332160 84989538\n",
"3 1100000000\n",
"5678790 7577955\n",
"67651 147744\n",
"2 1000100000\n",
"17 20\n",
"17 8\n",
"924896439 998299650\n",
"691200 179926\n",
"5 1100000001\n",
"111 10\n",
"897033693 537814642\n",
"5 34\n",
"846029 1215134\n",
"711976880 607500000\n",
"371318978 121822012\n",
"908784 1175872\n",
"995783 248319\n",
"1000000001 1\n",
"5222 16691\n",
"463351059 861433920\n",
"1031 2051344\n",
"103288268 705866301\n",
"1182172 972000\n",
"1000010000 4\n",
"2 22\n",
"232561154 689605800\n",
"25731138 45565213\n",
"471384248 800000011\n",
"533201 831372\n",
"1024 1324\n",
"43729 2817250\n",
"847500 563553\n",
"1270836736 387420489\n",
"195518386 251572851\n",
"1000010000 5\n",
"1491963 130132\n",
"1100000010 2\n",
"1000000000 13\n",
"10332160 112355773\n",
"3 1100000100\n",
"680 7128\n",
"9151662 7577955\n",
"67651 178107\n",
"1 1000100000\n",
"31 20\n",
"17 11\n",
"10 6\n",
"924896439 839890701\n"
],
"output": [
"3\n",
"-1\n",
"0\n",
"5\n",
"8\n",
"17\n",
"2\n",
"0\n",
"2\n",
"13\n",
"9\n",
"9\n",
"3\n",
"8\n",
"6\n",
"24\n",
"0\n",
"0\n",
"18\n",
"3\n",
"0\n",
"3\n",
"3\n",
"10\n",
"3\n",
"7\n",
"7\n",
"-1\n",
"-1\n",
"2\n",
"3\n",
"1\n",
"-1\n",
"3\n",
"16\n",
"6\n",
"18\n",
"5\n",
"5\n",
"47\n",
"-1\n",
"19\n",
"-1\n",
"3\n",
"17\n",
"17\n",
"19\n",
"10\n",
"19\n",
"5\n",
"16\n",
"4\n",
"2\n",
"17\n",
"-1\n",
"1\n",
"4\n",
"16\n",
"3\n",
"2\n",
"6\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"2\n",
"-1\n"
]
} | 2CODEFORCES
|
371_B. Fox Dividing Cheese_985 | Two little greedy bears have found two pieces of cheese in the forest of weight a and b grams, correspondingly. The bears are so greedy that they are ready to fight for the larger piece. That's where the fox comes in and starts the dialog: "Little bears, wait a little, I want to make your pieces equal" "Come off it fox, how are you going to do that?", the curious bears asked. "It's easy", said the fox. "If the mass of a certain piece is divisible by two, then I can eat exactly a half of the piece. If the mass of a certain piece is divisible by three, then I can eat exactly two-thirds, and if the mass is divisible by five, then I can eat four-fifths. I'll eat a little here and there and make the pieces equal".
The little bears realize that the fox's proposal contains a catch. But at the same time they realize that they can not make the two pieces equal themselves. So they agreed to her proposal, but on one condition: the fox should make the pieces equal as quickly as possible. Find the minimum number of operations the fox needs to make pieces equal.
Input
The first line contains two space-separated integers a and b (1 ≤ a, b ≤ 109).
Output
If the fox is lying to the little bears and it is impossible to make the pieces equal, print -1. Otherwise, print the required minimum number of operations. If the pieces of the cheese are initially equal, the required number is 0.
Examples
Input
15 20
Output
3
Input
14 8
Output
-1
Input
6 6
Output
0 | import java.util.Arrays;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class FoxDividingChees {
static int n,m,res;
static void check(int p){
int u = 0;int v = 0;
while(n%p==0){u++;n/=p;}
while(m%p==0){v++;m/=p;}
res+= Math.abs(u-v);
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
res = 0;
check(3);
check(5);
check(2);
if(n==m) System.out.println(res);
else System.out.println(-1);
}
} | 4JAVA
| {
"input": [
"15 20\n",
"14 8\n",
"6 6\n",
"919536000 993098880\n",
"691200 583200\n",
"5 1000000000\n",
"100 10\n",
"537814642 537814642\n",
"21 35\n",
"800000 729000\n",
"881280 765000\n",
"864000000 607500000\n",
"648293430 540244525\n",
"445906944 528482304\n",
"820125000 874800000\n",
"509607936 306110016\n",
"792000 792000\n",
"513600 513600\n",
"1000000000 1\n",
"673067520 807681024\n",
"1 1\n",
"7920 9900\n",
"689147136 861433920\n",
"1024 1048576\n",
"36 30\n",
"119144448 423624704\n",
"576000 972000\n",
"1000000000 7\n",
"1 22\n",
"609120000 913680000\n",
"720212000 864254400\n",
"21751200 43502400\n",
"900000011 800000011\n",
"607500 506250\n",
"1024 729\n",
"3303936 3097440\n",
"1 1000000000\n",
"19500000 140400000\n",
"847500 610200\n",
"536870912 387420489\n",
"100000007 800000011\n",
"1000000000 3\n",
"900000011 999900017\n",
"2208870 122715\n",
"1000000000 2\n",
"1000000000 5\n",
"10332160 476643528\n",
"1 1024\n",
"3 1000000000\n",
"9900 7128\n",
"4812500 7577955\n",
"55404 147744\n",
"522784320 784176480\n",
"2 1000000000\n",
"924896439 993098880\n",
"1 2\n",
"1 24\n",
"1000000000 4\n",
"396 7128\n",
"9 6\n",
"32 30\n",
"691200 438115\n",
"5 1100000000\n",
"110 10\n",
"708145209 537814642\n",
"5 35\n",
"800000 1215134\n",
"881280 752759\n",
"1488496828 607500000\n",
"1183431925 540244525\n",
"371318978 528482304\n",
"908784 792000\n",
"513600 248319\n",
"1000000001 2\n",
"897945222 807681024\n",
"7920 16691\n",
"513923703 861433920\n",
"1024 2051344\n",
"31 30\n",
"103288268 423624704\n",
"657401 972000\n",
"1000010000 7\n",
"232561154 913680000\n",
"25731138 43502400\n",
"671771637 800000011\n",
"533201 506250\n",
"1024 666\n",
"3303936 2817250\n",
"1 1000001000\n",
"847500 533407\n",
"935924067 387420489\n",
"195518386 800000011\n",
"1000010000 3\n",
"900000011 991865743\n",
"1491963 122715\n",
"1100000000 2\n",
"10332160 84989538\n",
"3 1100000000\n",
"5678790 7577955\n",
"67651 147744\n",
"2 1000100000\n",
"17 20\n",
"17 8\n",
"924896439 998299650\n",
"691200 179926\n",
"5 1100000001\n",
"111 10\n",
"897033693 537814642\n",
"5 34\n",
"846029 1215134\n",
"711976880 607500000\n",
"371318978 121822012\n",
"908784 1175872\n",
"995783 248319\n",
"1000000001 1\n",
"5222 16691\n",
"463351059 861433920\n",
"1031 2051344\n",
"103288268 705866301\n",
"1182172 972000\n",
"1000010000 4\n",
"2 22\n",
"232561154 689605800\n",
"25731138 45565213\n",
"471384248 800000011\n",
"533201 831372\n",
"1024 1324\n",
"43729 2817250\n",
"847500 563553\n",
"1270836736 387420489\n",
"195518386 251572851\n",
"1000010000 5\n",
"1491963 130132\n",
"1100000010 2\n",
"1000000000 13\n",
"10332160 112355773\n",
"3 1100000100\n",
"680 7128\n",
"9151662 7577955\n",
"67651 178107\n",
"1 1000100000\n",
"31 20\n",
"17 11\n",
"10 6\n",
"924896439 839890701\n"
],
"output": [
"3\n",
"-1\n",
"0\n",
"5\n",
"8\n",
"17\n",
"2\n",
"0\n",
"2\n",
"13\n",
"9\n",
"9\n",
"3\n",
"8\n",
"6\n",
"24\n",
"0\n",
"0\n",
"18\n",
"3\n",
"0\n",
"3\n",
"3\n",
"10\n",
"3\n",
"7\n",
"7\n",
"-1\n",
"-1\n",
"2\n",
"3\n",
"1\n",
"-1\n",
"3\n",
"16\n",
"6\n",
"18\n",
"5\n",
"5\n",
"47\n",
"-1\n",
"19\n",
"-1\n",
"3\n",
"17\n",
"17\n",
"19\n",
"10\n",
"19\n",
"5\n",
"16\n",
"4\n",
"2\n",
"17\n",
"-1\n",
"1\n",
"4\n",
"16\n",
"3\n",
"2\n",
"6\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"2\n",
"-1\n"
]
} | 2CODEFORCES
|
392_D. Three Arrays_986 | There are three arrays a, b and c. Each of them consists of n integers. SmallY wants to find three integers u, v, w (0 ≤ u, v, w ≤ n) such that the following condition holds: each number that appears in the union of a, b and c, appears either in the first u elements of a, or in the first v elements of b, or in the first w elements of c. Of course, SmallY doesn't want to have huge numbers u, v and w, so she wants sum u + v + w to be as small as possible.
Please, help her to find the minimal possible sum of u + v + w.
Input
The first line contains a single integer n (1 ≤ n ≤ 105). The second line contains n space-separated integers a1, a2, ..., an — array a. The third line contains the description of array b in the same format. The fourth line contains the description of array c in the same format. The following constraint holds: 1 ≤ ai, bi, ci ≤ 109.
Output
Print a single integer — the minimum possible sum of u + v + w.
Examples
Input
3
1 1 101
1 2 1
3 2 1
Output
5
Input
5
1 1 2 2 3
2 2 4 3 3
3 3 1 1 1
Output
5
Note
In the first example you should choose u = 3, v = 0, w = 2.
In the second example you should choose u = 1, v = 3, w = 1. | #include <bits/stdc++.h>
using namespace std;
struct Tnode {
int x, y, z;
} doing[1000050];
struct Type {
int pos, val, size;
Type *father, *son[2];
Type() {}
Type(Type *f, int p, int v, int s) {
pos = p;
val = v;
size = s;
father = f;
son[0] = son[1] = 0;
}
} memory[1000050], *root;
struct Tree {
int best, add;
} tree[2222222];
int vs, n, m, data[1000050], x[1000050], y[1000050], z[1000050];
int Rand() { return (rand() << 15) | rand(); }
bool Cmp(Tnode a, Tnode b) { return a.x < b.x; }
int Half(int ask) {
int low, mid, high;
low = 0;
high = m + 1;
while (low + 1 < high) {
mid = (low + high) >> 1;
if (data[mid] <= ask) {
low = mid;
} else {
high = mid;
}
}
return low;
}
void Down(int root) {
if (tree[root].add != 0) {
tree[root].best += tree[root].add;
tree[root << 1].add += tree[root].add;
tree[(root << 1) | 1].add += tree[root].add;
tree[root].add = 0;
}
return;
}
void Add(int root, int nowleft, int nowright, int askleft, int askright,
int add) {
int mid = (nowleft + nowright) >> 1;
Down(root);
if (nowright < askleft || askright < nowleft) {
return;
}
if (askleft <= nowleft && nowright <= askright) {
tree[root].add += add;
Down(root);
return;
}
Add(root << 1, nowleft, mid, askleft, askright, add);
Add((root << 1) | 1, mid + 1, nowright, askleft, askright, add);
tree[root].best = min(tree[root << 1].best, tree[(root << 1) | 1].best);
return;
}
int Ask(int root, int nowleft, int nowright, int askleft, int askright) {
int mid = (nowleft + nowright) >> 1;
Down(root);
if (nowright < askleft || askright < nowleft) {
return 666666;
}
if (askleft <= nowleft && nowright <= askright) {
return tree[root].best;
}
return min(Ask(root << 1, nowleft, mid, askleft, askright),
Ask((root << 1) | 1, mid + 1, nowright, askleft, askright));
}
void Update(Type *current) {
if (!current) {
return;
}
current->size = 1;
if (current->son[0]) {
current->size += current->son[0]->size;
}
if (current->son[1]) {
current->size += current->son[1]->size;
}
return;
}
void Rotate(Type *current, int flag) {
current->father->son[flag ^ 1] = current->son[flag];
if (current->son[flag]) {
current->son[flag]->father = current->father;
}
current->son[flag] = current->father;
if (current->father->father) {
current->father->father
->son[current->father->father->son[0] != current->father] = current;
}
current->father = current->father->father;
current->son[flag]->father = current;
Update(current->son[flag]);
return;
}
void Splay(Type *current, Type *target) {
while (current->father != target) {
if (current->father->father == target) {
Rotate(current, current->father->son[1] != current);
} else if (current->father->father->son[0] == current->father &&
current->father->son[0] == current) {
Rotate(current->father, 1);
Rotate(current, 1);
} else if (current->father->father->son[1] == current->father &&
current->father->son[1] == current) {
Rotate(current->father, 0);
Rotate(current, 0);
} else {
Rotate(current, current->father->son[1] != current);
Rotate(current, current->father->son[1] != current);
}
}
Update(current);
if (!target) {
root = current;
}
return;
}
void Bigger(int ask, Type *target) {
Type *current = root, *best = 0;
while (current) {
if (current->pos > ask) {
best = current;
current = current->son[0];
} else {
current = current->son[1];
}
}
Splay(best, target);
return;
}
void Smaller(int ask, Type *target) {
Type *current = root, *best = 0;
while (current) {
if (current->pos < ask) {
best = current;
current = current->son[1];
} else {
current = current->son[0];
}
}
Splay(best, target);
return;
}
void Find(int ask, Type *target) {
Type *current = root;
while (current) {
if (current->son[0]) {
if (ask == current->son[0]->size + 1) {
break;
}
} else if (ask == 1) {
break;
}
if (current->son[0] && ask < current->son[0]->size + 1) {
current = current->son[0];
} else {
ask--;
if (current->son[0]) {
ask -= current->son[0]->size;
}
current = current->son[1];
}
}
Splay(current, target);
return;
}
void Find_Left(Type *current) {
while (true) {
if (!current->son[0]) {
break;
}
current = current->son[0];
}
Splay(current, 0);
return;
}
void Find_Right(Type *current) {
while (true) {
if (!current->son[1]) {
break;
}
current = current->son[1];
}
Splay(current, 0);
return;
}
int main() {
int i, j, temp, best, delta, rank, last, maxi, mx, my, mz;
bool solved;
Type *current;
srand((unsigned)time(0));
scanf("%d", &n);
m = 0;
for (i = 1; i <= n; i++) {
scanf("%d", &x[i]);
data[++m] = x[i];
}
for (i = 1; i <= n; i++) {
scanf("%d", &y[i]);
data[++m] = y[i];
}
for (i = 1; i <= n; i++) {
scanf("%d", &z[i]);
data[++m] = z[i];
}
sort(data + 1, data + m + 1);
for (i = j = 1; i < m; i++)
if (data[i + 1] != data[j]) {
data[++j] = data[i + 1];
}
m = j;
for (i = 1; i <= m; i++) {
doing[i].x = doing[i].y = doing[i].z = n + 1;
}
for (i = 1; i <= n; i++) {
temp = Half(x[i]);
doing[temp].x = min(doing[temp].x, i);
}
for (i = 1; i <= n; i++) {
temp = Half(y[i]);
doing[temp].y = min(doing[temp].y, i);
}
for (i = 1; i <= n; i++) {
temp = Half(z[i]);
doing[temp].z = min(doing[temp].z, i);
}
sort(doing + 1, doing + m + 1, Cmp);
for (i = 1; i <= n; i++) {
Add(1, 1, n, i, i, i);
}
memory[++vs] = Type(0, n + 1, 0, 3);
root = &memory[vs];
memory[++vs] = Type(root, -666666, 0, 1);
root->son[0] = &memory[vs];
memory[++vs] = Type(root, 666666, 0, 1);
root->son[1] = &memory[vs];
best = 3 * n;
mx = my = mz = 0;
for (i = 1; i <= m; i++) {
mx = max(mx, doing[i].x);
my = max(my, doing[i].y);
mz = max(mz, doing[i].z);
}
if (mx <= n) {
best = min(best, mx);
}
if (my <= n) {
best = min(best, my);
}
if (mz <= n) {
best = min(best, mz);
}
maxi = 0;
for (i = m; i >= 1; i--) {
solved = false;
Smaller(doing[i].y, 0);
Bigger(doing[i].y, root);
if (doing[i].z > root->son[1]->val) {
if (!root->son[1]->son[0]) {
memory[++vs] = Type(root->son[1], doing[i].y, doing[i].z, 1);
current = root->son[1]->son[0] = &memory[vs];
Update(root->son[1]);
Update(root);
} else {
solved = true;
if (root->son[1]->son[0]->val < doing[i].z) {
current = root->son[1]->son[0];
Splay(current, 0);
delta = doing[i].z;
if (doing[i].z == n + 1) {
delta = 666666;
}
delta -= current->val;
if (current->son[0]->size == 1) {
Add(1, 1, n, 1, n, delta);
} else {
Find_Right(current->son[0]);
Add(1, 1, n, root->pos, n, delta);
}
if (doing[i].z <= n) {
current->val = doing[i].z;
} else {
current->val = 666666;
}
}
}
} else {
current = 0;
solved = true;
}
if (current) {
Splay(current, 0);
if (current->val == n + 1) {
current->val = 666666;
}
if (!solved) {
delta = current->val;
if (current->son[0]->size == 1) {
Find_Left(current->son[1]);
delta -= root->val;
if (root->val < current->val) {
Add(1, 1, n, 1, current->pos - 1, delta);
}
} else {
Find_Left(current->son[1]);
delta -= root->val;
if (root->val < current->val) {
Splay(current, 0);
Find_Right(current->son[0]);
Add(1, 1, n, root->pos, current->pos - 1, delta);
}
}
}
while (true) {
Splay(current, 0);
rank = current->son[0]->size + 1;
if (rank == 2) {
break;
}
Find(rank - 1, 0);
if (root->val > current->val) {
break;
}
delta = current->val - root->val;
last = root->pos - 1;
if (rank == 3) {
Add(1, 1, n, 1, last, delta);
} else {
Find(rank - 2, 0);
Add(1, 1, n, root->pos, last, delta);
}
Find(rank - 2, 0);
Find(rank, root);
root->son[1]->son[0] = 0;
Update(root->son[1]);
Update(root);
}
}
maxi = max(maxi, doing[i].z);
if (doing[i - 1].x <= n) {
best = min(best, doing[i - 1].x + Ask(1, 1, n, 1, n));
if (maxi <= n) {
best = min(best, doing[i - 1].x + maxi);
}
}
}
printf("%d\n", best);
return 0;
}
| 2C++
| {
"input": [
"3\n1 1 101\n1 2 1\n3 2 1\n",
"5\n1 1 2 2 3\n2 2 4 3 3\n3 3 1 1 1\n",
"1\n2\n3\n2\n",
"8\n190409007 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n190409007 190409007 190409007 190409007 190409007 352375776 352375776 190409007\n190409007 352375776 352375776 190409007 190409007 190409007 352375776 352375776\n",
"1\n1\n1\n1\n",
"1\n377489979\n588153796\n588153796\n",
"2\n1 1\n2 2\n3 3\n",
"4\n1 1 1 1\n1 1 1 1\n1 1 1 1\n",
"2\n1 2\n2 2\n1 1\n",
"3\n1 1 2\n1 1 3\n1 1 4\n",
"1\n1\n3\n2\n",
"3\n1 1 2\n1 0 3\n1 1 4\n",
"3\n1 1 101\n1 2 1\n1 2 1\n",
"8\n148933105 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n190409007 190409007 190409007 190409007 190409007 352375776 275127519 190409007\n190409007 352375776 352375776 190409007 190409007 190409007 352375776 352375776\n",
"3\n2 1 001\n1 2 1\n1 2 1\n",
"3\n1 1 2\n1 0 3\n1 1 1\n",
"8\n148933105 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n160822181 190409007 5445398 190409007 190409007 352375776 275127519 190409007\n260509461 352375776 352375776 190409007 128249171 190409007 352375776 352375776\n",
"3\n2 1 001\n2 3 1\n1 4 1\n",
"8\n148933105 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n160822181 190409007 5445398 190409007 190409007 352375776 275127519 190409007\n100186612 352375776 352375776 190409007 128249171 190409007 263447971 352375776\n",
"8\n148933105 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n190409007 190409007 190409007 190409007 190409007 352375776 352375776 190409007\n190409007 352375776 352375776 190409007 190409007 190409007 352375776 352375776\n",
"1\n377489979\n789746674\n588153796\n",
"4\n1 1 1 1\n1 1 1 1\n1 1 2 1\n",
"1\n1\n6\n2\n",
"1\n239699328\n789746674\n588153796\n",
"3\n1 2 2\n1 0 3\n1 1 4\n",
"3\n2 1 101\n1 2 1\n1 2 1\n",
"1\n1\n10\n2\n",
"8\n148933105 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n160822181 190409007 190409007 190409007 190409007 352375776 275127519 190409007\n190409007 352375776 352375776 190409007 190409007 190409007 352375776 352375776\n",
"1\n143966741\n789746674\n588153796\n",
"3\n1 2 2\n1 0 3\n1 1 1\n",
"8\n148933105 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n160822181 190409007 5445398 190409007 190409007 352375776 275127519 190409007\n190409007 352375776 352375776 190409007 190409007 190409007 352375776 352375776\n",
"1\n143966741\n789746674\n483564004\n",
"3\n2 1 001\n2 2 1\n1 2 1\n",
"8\n148933105 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n160822181 190409007 5445398 190409007 190409007 352375776 275127519 190409007\n260509461 352375776 352375776 190409007 190409007 190409007 352375776 352375776\n",
"1\n243266554\n789746674\n483564004\n",
"3\n1 1 2\n1 1 3\n1 1 1\n",
"3\n2 1 001\n2 2 1\n1 4 1\n",
"1\n243266554\n1343176569\n483564004\n",
"3\n1 1 2\n1 1 3\n1 2 1\n",
"8\n148933105 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n160822181 190409007 5445398 190409007 190409007 352375776 275127519 190409007\n100186612 352375776 352375776 190409007 128249171 190409007 352375776 352375776\n",
"1\n29918218\n1343176569\n483564004\n",
"3\n1 1 2\n2 1 3\n1 2 1\n",
"8\n148933105 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n160822181 103925754 5445398 190409007 190409007 352375776 275127519 190409007\n100186612 352375776 352375776 190409007 128249171 190409007 263447971 352375776\n",
"8\n148933105 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n160822181 103925754 5445398 336054964 190409007 352375776 275127519 190409007\n100186612 352375776 352375776 190409007 128249171 190409007 263447971 352375776\n",
"8\n148933105 190409007 352375776 190409007 352375776 352375776 352375776 352375776\n160822181 174551494 5445398 336054964 190409007 352375776 275127519 190409007\n100186612 352375776 352375776 190409007 128249171 190409007 263447971 352375776\n"
],
"output": [
"5\n",
"5\n",
"2\n",
"2\n",
"1\n",
"2\n",
"3\n",
"1\n",
"2\n",
"9\n",
"3\n",
"9\n",
"5\n",
"8\n",
"2\n",
"6\n",
"13\n",
"4\n",
"15\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"8\n",
"3\n",
"3\n",
"8\n",
"3\n",
"5\n",
"8\n",
"3\n",
"2\n",
"9\n",
"3\n",
"6\n",
"3\n",
"3\n",
"5\n",
"13\n",
"3\n",
"3\n",
"15\n",
"15\n",
"15\n"
]
} | 2CODEFORCES
|
415_E. Mashmokh and Reverse Operation_987 | Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following.
You have an array a of length 2n and m queries on it. The i-th query is described by an integer qi. In order to perform the i-th query you must:
* split the array into 2n - qi parts, where each part is a subarray consisting of 2qi numbers; the j-th subarray (1 ≤ j ≤ 2n - qi) should contain the elements a[(j - 1)·2qi + 1], a[(j - 1)·2qi + 2], ..., a[(j - 1)·2qi + 2qi];
* reverse each of the subarrays;
* join them into a single array in the same order (this array becomes new array a);
* output the number of inversions in the new a.
Given initial array a and all the queries. Answer all the queries. Please, note that the changes from some query is saved for further queries.
Input
The first line of input contains a single integer n (0 ≤ n ≤ 20).
The second line of input contains 2n space-separated integers a[1], a[2], ..., a[2n] (1 ≤ a[i] ≤ 109), the initial array.
The third line of input contains a single integer m (1 ≤ m ≤ 106).
The fourth line of input contains m space-separated integers q1, q2, ..., qm (0 ≤ qi ≤ n), the queries.
Note: since the size of the input and output could be very large, don't use slow output techniques in your language. For example, do not use input and output streams (cin, cout) in C++.
Output
Output m lines. In the i-th line print the answer (the number of inversions) for the i-th query.
Examples
Input
2
2 1 4 3
4
1 2 0 2
Output
0
6
6
0
Input
1
1 2
3
0 1 1
Output
0
1
0
Note
If we reverse an array x[1], x[2], ..., x[n] it becomes new array y[1], y[2], ..., y[n], where y[i] = x[n - i + 1] for each i.
The number of inversions of an array x[1], x[2], ..., x[n] is the number of pairs of indices i, j such that: i < j and x[i] > x[j]. | #include <bits/stdc++.h>
using namespace std;
int xx[4] = {0, 0, 1, -1};
int yy[4] = {1, -1, 0, 0};
int n, m;
int a[int(1048576 + 2000)], b[int(1048576 + 2000)];
long long f[30][2];
long long res = 0;
void build(int l, int r, int h) {
if (l == r) return;
int mid = (l + r) / 2;
build(l, mid, h + 1);
build(mid + 1, r, h + 1);
int i = l;
int j = mid + 1;
int k = l;
while (i <= mid && j <= r) {
if (a[i] <= a[j]) {
b[k] = a[i];
i++;
f[h][1] += j - (mid + 1);
} else {
b[k] = a[j];
j++;
f[h][0] += (i - l);
}
k++;
}
while (i <= mid) {
b[k] = a[i];
i++;
k++;
f[h][1] += r - mid;
}
while (j <= r) {
b[k] = a[j];
j++;
k++;
f[h][0] += (mid - l + 1);
}
j = mid;
int d = 0;
for (int i = (l), _b = (mid); i <= _b; i++) {
if (i == l || a[i] != a[i - 1]) d = 0;
while (j + 1 <= r && a[j + 1] <= a[i]) {
j++;
if (a[j] == a[i]) d++;
}
f[h][0] -= d;
}
for (int i = (l), _b = (r); i <= _b; i++) a[i] = b[i];
}
void solve(int x) {
for (int i = (x), _b = (n); i <= _b; i++) {
res -= f[i][1];
swap(f[i][1], f[i][0]);
res += f[i][1];
}
printf("%I64d\n", res);
}
int main() {
scanf("%d", &n);
m = (1 << n);
for (int i = (1), _b = (m); i <= _b; i++) scanf("%d", &a[i]);
build(1, m, 0);
for (int i = (0), _b = (n); i <= _b; i++) res += f[i][1];
int q;
scanf("%d", &q);
for (int i = (1), _b = (q); i <= _b; i++) {
int x;
scanf("%d", &x);
solve(n - x);
}
}
| 2C++
| {
"input": [
"2\n2 1 4 3\n4\n1 2 0 2\n",
"1\n1 2\n3\n0 1 1\n",
"2\n1 1 3 1\n3\n0 1 2\n",
"2\n1 1 6 1\n3\n0 1 2\n",
"2\n2 0 4 3\n4\n1 2 0 2\n",
"2\n1 1 6 2\n3\n0 1 2\n",
"2\n2 0 4 6\n4\n1 2 0 2\n",
"2\n2 0 4 6\n4\n1 2 0 0\n",
"2\n3 0 4 6\n4\n1 1 1 1\n",
"2\n3 0 4 4\n4\n1 1 1 1\n",
"2\n3 0 7 4\n4\n1 1 1 1\n",
"2\n3 0 7 4\n4\n1 1 0 1\n",
"2\n3 0 7 4\n4\n1 0 0 1\n",
"2\n3 0 7 2\n4\n1 0 0 1\n",
"2\n3 0 7 2\n4\n1 0 1 1\n",
"2\n3 0 15 2\n4\n0 0 1 1\n",
"2\n3 1 15 2\n4\n0 0 1 0\n",
"2\n3 1 15 4\n4\n0 0 1 0\n",
"2\n3 1 7 4\n4\n0 0 0 0\n",
"2\n1 1 3 0\n3\n0 1 2\n",
"1\n0 2\n3\n0 1 1\n",
"2\n1 1 6 1\n3\n0 2 2\n",
"2\n2 0 4 3\n4\n2 2 0 2\n",
"2\n2 1 6 2\n3\n0 1 2\n",
"2\n1 2 7 2\n3\n0 1 2\n",
"2\n1 2 7 1\n3\n0 1 2\n",
"2\n2 0 4 3\n4\n1 2 1 1\n",
"2\n3 0 4 6\n4\n2 2 1 1\n",
"2\n3 0 4 4\n4\n2 1 1 1\n",
"2\n3 0 7 4\n4\n1 1 2 1\n",
"2\n5 0 7 4\n4\n1 1 0 1\n",
"2\n3 0 15 2\n4\n2 0 1 1\n",
"2\n1 0 3 0\n3\n0 1 2\n",
"2\n2 0 2 5\n4\n1 2 0 2\n",
"2\n1 2 7 4\n3\n0 1 2\n",
"2\n3 0 7 4\n4\n1 2 2 1\n",
"2\n3 0 0 2\n4\n0 0 1 1\n",
"2\n3 1 22 2\n4\n0 0 2 1\n",
"2\n2 0 4 3\n4\n1 0 1 1\n",
"2\n6 0 7 4\n4\n1 2 2 1\n",
"2\n0 0 0 2\n4\n0 0 1 1\n",
"2\n1 1 7 2\n3\n0 1 2\n",
"2\n1 1 7 1\n3\n0 1 2\n",
"2\n2 0 4 6\n4\n1 2 0 1\n",
"2\n2 0 4 6\n4\n1 2 1 1\n",
"2\n3 0 4 6\n4\n1 2 1 1\n",
"2\n3 0 8 2\n4\n1 0 1 1\n",
"2\n3 0 15 2\n4\n1 0 1 1\n",
"2\n3 1 15 2\n4\n0 0 1 1\n",
"2\n3 1 7 4\n4\n0 0 1 0\n",
"2\n2 0 4 5\n4\n1 2 0 2\n",
"2\n3 0 4 6\n4\n1 1 0 1\n",
"2\n3 0 7 0\n4\n1 0 0 1\n",
"2\n3 0 8 2\n4\n0 0 1 1\n",
"2\n3 1 22 2\n4\n0 0 1 1\n",
"2\n3 0 15 2\n4\n0 0 1 0\n",
"1\n0 3\n3\n0 1 1\n",
"2\n1 1 4 1\n3\n0 2 2\n",
"2\n1 0 4 3\n4\n1 2 1 1\n",
"2\n6 0 4 6\n4\n1 1 0 1\n",
"2\n5 0 7 1\n4\n1 1 0 1\n",
"2\n3 0 7 1\n4\n1 0 0 1\n",
"2\n2 0 15 2\n4\n0 0 1 0\n",
"1\n1 3\n3\n0 1 1\n",
"2\n1 2 7 1\n3\n1 1 2\n",
"2\n5 0 14 1\n4\n1 1 0 1\n"
],
"output": [
" 0\n 6\n 6\n 0\n",
" 0\n 1\n 0\n",
" 1\n 0\n 3\n",
" 1\n 0\n 3\n",
" 0\n 6\n 6\n 0\n",
" 1\n 0\n 5\n",
" 1\n 5\n 5\n 1\n",
" 1\n 5\n 5\n 5\n",
" 1\n 1\n 1\n 1\n",
" 0\n 1\n 0\n 1\n",
" 0\n 2\n 0\n 2\n",
" 0\n 2\n 2\n 0\n",
" 0\n 0\n 0\n 2\n",
" 1\n 1\n 1\n 3\n",
" 1\n 1\n 3\n 1\n",
" 3\n 3\n 1\n 3\n",
" 3\n 3\n 1\n 1\n",
" 2\n 2\n 0\n 0\n",
" 2\n 2\n 2\n 2\n",
" 3\n 2\n 3\n",
" 0\n 1\n 0\n",
" 1\n 2\n 1\n",
" 4\n 2\n 2\n 4\n",
" 2\n 0\n 5\n",
" 1\n 1\n 4\n",
" 2\n 2\n 3\n",
" 0\n 6\n 4\n 6\n",
" 5\n 1\n 1\n 1\n",
" 4\n 5\n 4\n 5\n",
" 0\n 2\n 4\n 6\n",
" 1\n 3\n 3\n 1\n",
" 3\n 3\n 5\n 3\n",
" 3\n 1\n 4\n",
" 1\n 4\n 4\n 1\n",
" 1\n 1\n 5\n",
" 0\n 6\n 0\n 2\n",
" 3\n 3\n 3\n 3\n",
" 3\n 3\n 3\n 5\n",
" 0\n 0\n 2\n 0\n",
" 1\n 5\n 1\n 3\n",
" 0\n 0\n 1\n 0\n",
" 1\n 0\n 5\n",
" 1\n 0\n 3\n",
" 1\n 5\n 5\n 5\n",
" 1\n 5\n 5\n 5\n",
" 1\n 5\n 5\n 5\n",
" 1\n 1\n 3\n 1\n",
" 1\n 1\n 3\n 1\n",
" 3\n 3\n 1\n 3\n",
" 2\n 2\n 0\n 0\n",
" 1\n 5\n 5\n 1\n",
" 1\n 1\n 1\n 1\n",
" 1\n 1\n 1\n 3\n",
" 3\n 3\n 1\n 3\n",
" 3\n 3\n 1\n 3\n",
" 3\n 3\n 1\n 1\n",
" 0\n 1\n 0\n",
" 1\n 2\n 1\n",
" 0\n 6\n 4\n 6\n",
" 2\n 2\n 2\n 2\n",
" 1\n 3\n 3\n 1\n",
" 1\n 1\n 1\n 3\n",
" 2\n 2\n 0\n 0\n",
" 0\n 1\n 0\n",
" 2\n 2\n 3\n",
" 1\n 3\n 3\n 1\n"
]
} | 2CODEFORCES
|
415_E. Mashmokh and Reverse Operation_988 | Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following.
You have an array a of length 2n and m queries on it. The i-th query is described by an integer qi. In order to perform the i-th query you must:
* split the array into 2n - qi parts, where each part is a subarray consisting of 2qi numbers; the j-th subarray (1 ≤ j ≤ 2n - qi) should contain the elements a[(j - 1)·2qi + 1], a[(j - 1)·2qi + 2], ..., a[(j - 1)·2qi + 2qi];
* reverse each of the subarrays;
* join them into a single array in the same order (this array becomes new array a);
* output the number of inversions in the new a.
Given initial array a and all the queries. Answer all the queries. Please, note that the changes from some query is saved for further queries.
Input
The first line of input contains a single integer n (0 ≤ n ≤ 20).
The second line of input contains 2n space-separated integers a[1], a[2], ..., a[2n] (1 ≤ a[i] ≤ 109), the initial array.
The third line of input contains a single integer m (1 ≤ m ≤ 106).
The fourth line of input contains m space-separated integers q1, q2, ..., qm (0 ≤ qi ≤ n), the queries.
Note: since the size of the input and output could be very large, don't use slow output techniques in your language. For example, do not use input and output streams (cin, cout) in C++.
Output
Output m lines. In the i-th line print the answer (the number of inversions) for the i-th query.
Examples
Input
2
2 1 4 3
4
1 2 0 2
Output
0
6
6
0
Input
1
1 2
3
0 1 1
Output
0
1
0
Note
If we reverse an array x[1], x[2], ..., x[n] it becomes new array y[1], y[2], ..., y[n], where y[i] = x[n - i + 1] for each i.
The number of inversions of an array x[1], x[2], ..., x[n] is the number of pairs of indices i, j such that: i < j and x[i] > x[j]. | import java.io.*;
import java.util.*;
public class cf414c {
static FastIO in = new FastIO(), out = in;
static long[] count1, count2;
public static void main(String[] args) {
int n = in.nextInt();
int[] v = new int[1<<n];
for(int i=0; i<1<<n; i++) v[i] = in.nextInt();
count1 = new long[n+1];
count2 = new long[n+1];
go(v, 0, 1<<n, n);
int m = in.nextInt();
for(int z=0; z<m; z++) {
long ret = 0;
int x = in.nextInt();
for(int i=0; i<=x; i++) {
long tmp = count1[i];
count1[i] = count2[i];
count2[i] = tmp;
}
for(int i=0; i<=n; i++)
ret += count1[i];
out.println(ret);
}
out.close();
}
static void go(int[] v, int l, int r, int level) {
if(l+1 == r) return;
int mid = (l+r)/2;
go(v, l, mid, level-1);
go(v, mid, r, level-1);
int[] tmp = new int[r-l];
int cur = 0;
int ind1 = l, ind2 = mid;
while(ind1 < mid && ind2 < r) {
if(v[ind1] < v[ind2]) {
count2[level] += r-ind2;
tmp[cur++] = v[ind1++];
}
else if(v[ind1] > v[ind2]) {
count1[level] += mid-ind1;
tmp[cur++] = v[ind2++];
}
else {
int c1 = 0;
int c2 = 0;
int val = v[ind1];
while(ind1 < mid && v[ind1] == val) {
ind1++;
c1++;
}
while(ind2 < r && v[ind2] == val) {
ind2++;
c2++;
}
for(int i=0; i<c1+c2; i++)
tmp[cur++] = val;
count1[level] += (mid-ind1)*1L*c2;
count2[level] += (r-ind2)*1L*c1;
}
}
while(ind1 < mid) {
tmp[cur++] = v[ind1++];
}
while(ind2 < r) {
tmp[cur++] = v[ind2++];
}
for(int i=0; i<tmp.length; i++)
v[l+i] = tmp[i];
}
static class FastIO extends PrintWriter {
BufferedReader br;
StringTokenizer st;
public FastIO() {
this(System.in, System.out);
}
public FastIO(InputStream in, OutputStream out) {
super(new BufferedWriter(new OutputStreamWriter(out)));
br = new BufferedReader(new InputStreamReader(in));
scanLine();
}
public void scanLine() {
try {
st = new StringTokenizer(br.readLine().trim());
} catch (Exception e) {
throw new RuntimeException(e.getMessage());
}
}
public int numTokens() {
if (!st.hasMoreTokens()) {
scanLine();
return numTokens();
}
return st.countTokens();
}
public String next() {
if (!st.hasMoreTokens()) {
scanLine();
return next();
}
return st.nextToken();
}
public double nextDouble() {
return Double.parseDouble(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
| 4JAVA
| {
"input": [
"2\n2 1 4 3\n4\n1 2 0 2\n",
"1\n1 2\n3\n0 1 1\n",
"2\n1 1 3 1\n3\n0 1 2\n",
"2\n1 1 6 1\n3\n0 1 2\n",
"2\n2 0 4 3\n4\n1 2 0 2\n",
"2\n1 1 6 2\n3\n0 1 2\n",
"2\n2 0 4 6\n4\n1 2 0 2\n",
"2\n2 0 4 6\n4\n1 2 0 0\n",
"2\n3 0 4 6\n4\n1 1 1 1\n",
"2\n3 0 4 4\n4\n1 1 1 1\n",
"2\n3 0 7 4\n4\n1 1 1 1\n",
"2\n3 0 7 4\n4\n1 1 0 1\n",
"2\n3 0 7 4\n4\n1 0 0 1\n",
"2\n3 0 7 2\n4\n1 0 0 1\n",
"2\n3 0 7 2\n4\n1 0 1 1\n",
"2\n3 0 15 2\n4\n0 0 1 1\n",
"2\n3 1 15 2\n4\n0 0 1 0\n",
"2\n3 1 15 4\n4\n0 0 1 0\n",
"2\n3 1 7 4\n4\n0 0 0 0\n",
"2\n1 1 3 0\n3\n0 1 2\n",
"1\n0 2\n3\n0 1 1\n",
"2\n1 1 6 1\n3\n0 2 2\n",
"2\n2 0 4 3\n4\n2 2 0 2\n",
"2\n2 1 6 2\n3\n0 1 2\n",
"2\n1 2 7 2\n3\n0 1 2\n",
"2\n1 2 7 1\n3\n0 1 2\n",
"2\n2 0 4 3\n4\n1 2 1 1\n",
"2\n3 0 4 6\n4\n2 2 1 1\n",
"2\n3 0 4 4\n4\n2 1 1 1\n",
"2\n3 0 7 4\n4\n1 1 2 1\n",
"2\n5 0 7 4\n4\n1 1 0 1\n",
"2\n3 0 15 2\n4\n2 0 1 1\n",
"2\n1 0 3 0\n3\n0 1 2\n",
"2\n2 0 2 5\n4\n1 2 0 2\n",
"2\n1 2 7 4\n3\n0 1 2\n",
"2\n3 0 7 4\n4\n1 2 2 1\n",
"2\n3 0 0 2\n4\n0 0 1 1\n",
"2\n3 1 22 2\n4\n0 0 2 1\n",
"2\n2 0 4 3\n4\n1 0 1 1\n",
"2\n6 0 7 4\n4\n1 2 2 1\n",
"2\n0 0 0 2\n4\n0 0 1 1\n",
"2\n1 1 7 2\n3\n0 1 2\n",
"2\n1 1 7 1\n3\n0 1 2\n",
"2\n2 0 4 6\n4\n1 2 0 1\n",
"2\n2 0 4 6\n4\n1 2 1 1\n",
"2\n3 0 4 6\n4\n1 2 1 1\n",
"2\n3 0 8 2\n4\n1 0 1 1\n",
"2\n3 0 15 2\n4\n1 0 1 1\n",
"2\n3 1 15 2\n4\n0 0 1 1\n",
"2\n3 1 7 4\n4\n0 0 1 0\n",
"2\n2 0 4 5\n4\n1 2 0 2\n",
"2\n3 0 4 6\n4\n1 1 0 1\n",
"2\n3 0 7 0\n4\n1 0 0 1\n",
"2\n3 0 8 2\n4\n0 0 1 1\n",
"2\n3 1 22 2\n4\n0 0 1 1\n",
"2\n3 0 15 2\n4\n0 0 1 0\n",
"1\n0 3\n3\n0 1 1\n",
"2\n1 1 4 1\n3\n0 2 2\n",
"2\n1 0 4 3\n4\n1 2 1 1\n",
"2\n6 0 4 6\n4\n1 1 0 1\n",
"2\n5 0 7 1\n4\n1 1 0 1\n",
"2\n3 0 7 1\n4\n1 0 0 1\n",
"2\n2 0 15 2\n4\n0 0 1 0\n",
"1\n1 3\n3\n0 1 1\n",
"2\n1 2 7 1\n3\n1 1 2\n",
"2\n5 0 14 1\n4\n1 1 0 1\n"
],
"output": [
" 0\n 6\n 6\n 0\n",
" 0\n 1\n 0\n",
" 1\n 0\n 3\n",
" 1\n 0\n 3\n",
" 0\n 6\n 6\n 0\n",
" 1\n 0\n 5\n",
" 1\n 5\n 5\n 1\n",
" 1\n 5\n 5\n 5\n",
" 1\n 1\n 1\n 1\n",
" 0\n 1\n 0\n 1\n",
" 0\n 2\n 0\n 2\n",
" 0\n 2\n 2\n 0\n",
" 0\n 0\n 0\n 2\n",
" 1\n 1\n 1\n 3\n",
" 1\n 1\n 3\n 1\n",
" 3\n 3\n 1\n 3\n",
" 3\n 3\n 1\n 1\n",
" 2\n 2\n 0\n 0\n",
" 2\n 2\n 2\n 2\n",
" 3\n 2\n 3\n",
" 0\n 1\n 0\n",
" 1\n 2\n 1\n",
" 4\n 2\n 2\n 4\n",
" 2\n 0\n 5\n",
" 1\n 1\n 4\n",
" 2\n 2\n 3\n",
" 0\n 6\n 4\n 6\n",
" 5\n 1\n 1\n 1\n",
" 4\n 5\n 4\n 5\n",
" 0\n 2\n 4\n 6\n",
" 1\n 3\n 3\n 1\n",
" 3\n 3\n 5\n 3\n",
" 3\n 1\n 4\n",
" 1\n 4\n 4\n 1\n",
" 1\n 1\n 5\n",
" 0\n 6\n 0\n 2\n",
" 3\n 3\n 3\n 3\n",
" 3\n 3\n 3\n 5\n",
" 0\n 0\n 2\n 0\n",
" 1\n 5\n 1\n 3\n",
" 0\n 0\n 1\n 0\n",
" 1\n 0\n 5\n",
" 1\n 0\n 3\n",
" 1\n 5\n 5\n 5\n",
" 1\n 5\n 5\n 5\n",
" 1\n 5\n 5\n 5\n",
" 1\n 1\n 3\n 1\n",
" 1\n 1\n 3\n 1\n",
" 3\n 3\n 1\n 3\n",
" 2\n 2\n 0\n 0\n",
" 1\n 5\n 5\n 1\n",
" 1\n 1\n 1\n 1\n",
" 1\n 1\n 1\n 3\n",
" 3\n 3\n 1\n 3\n",
" 3\n 3\n 1\n 3\n",
" 3\n 3\n 1\n 1\n",
" 0\n 1\n 0\n",
" 1\n 2\n 1\n",
" 0\n 6\n 4\n 6\n",
" 2\n 2\n 2\n 2\n",
" 1\n 3\n 3\n 1\n",
" 1\n 1\n 1\n 3\n",
" 2\n 2\n 0\n 0\n",
" 0\n 1\n 0\n",
" 2\n 2\n 3\n",
" 1\n 3\n 3\n 1\n"
]
} | 2CODEFORCES
|
442_C. Artem and Array _989 | Artem has an array of n positive integers. Artem decided to play with it. The game consists of n moves. Each move goes like this. Artem chooses some element of the array and removes it. For that, he gets min(a, b) points, where a and b are numbers that were adjacent with the removed number. If the number doesn't have an adjacent number to the left or right, Artem doesn't get any points.
After the element is removed, the two parts of the array glue together resulting in the new array that Artem continues playing with. Borya wondered what maximum total number of points Artem can get as he plays this game.
Input
The first line contains a single integer n (1 ≤ n ≤ 5·105) — the number of elements in the array. The next line contains n integers ai (1 ≤ ai ≤ 106) — the values of the array elements.
Output
In a single line print a single integer — the maximum number of points Artem can get.
Examples
Input
5
3 1 5 2 6
Output
11
Input
5
1 2 3 4 5
Output
6
Input
5
1 100 101 100 1
Output
102 | from sys import stdin
def main():
n = int(stdin.readline())
a = map(int, stdin.readline().split())
b = []
ans = 0
for x in a:
b.append(x)
while len(b) > 2 and b[-2] <= b[-1] and b[-2] <= b[-3]:
ans += min(b[-1], b[-3])
b[-2] = b[-1]
b.pop()
for x in xrange(1, len(b) - 1):
ans += min(b[x-1], b[x+1])
print ans
main()
| 1Python2
| {
"input": [
"5\n1 2 3 4 5\n",
"5\n1 100 101 100 1\n",
"5\n3 1 5 2 6\n",
"9\n72 49 39 50 68 35 75 94 56\n",
"4\n2 3 1 2\n",
"8\n3 4 3 1 1 3 4 1\n",
"1\n4\n",
"7\n2 1 2 2 2 2 2\n",
"6\n1 7 3 1 6 2\n",
"8\n77 84 26 34 17 56 76 3\n",
"2\n93 51\n",
"1\n87\n",
"4\n86 21 58 60\n",
"10\n96 66 8 18 30 48 34 11 37 42\n",
"6\n46 30 38 9 65 23\n",
"5\n21 6 54 69 32\n",
"3\n1 2 1\n",
"3\n31 19 5\n",
"10\n4 2 2 4 1 2 2 4 2 1\n",
"7\n82 60 92 4 2 13 15\n",
"9\n4 5 2 2 3 1 3 3 5\n",
"5\n2 6 2 1 2\n",
"2\n3 1\n",
"9\n72 49 39 50 68 35 75 158 56\n",
"4\n2 4 1 2\n",
"8\n3 4 3 1 1 3 6 1\n",
"1\n1\n",
"7\n2 1 2 4 2 2 2\n",
"8\n77 84 26 34 6 56 76 3\n",
"4\n101 21 58 60\n",
"10\n96 66 8 18 58 48 34 11 37 42\n",
"6\n46 30 38 4 65 23\n",
"5\n29 6 54 69 32\n",
"3\n20 19 5\n",
"10\n4 2 1 4 1 2 2 4 2 1\n",
"7\n82 60 92 4 2 13 30\n",
"9\n4 5 2 2 3 1 3 6 5\n",
"5\n4 6 2 1 2\n",
"9\n64 49 39 50 68 35 75 158 56\n",
"8\n77 84 26 34 6 56 23 3\n",
"6\n46 30 3 4 65 23\n",
"5\n29 6 54 69 38\n",
"3\n20 19 2\n",
"10\n2 2 1 4 1 2 2 4 2 1\n",
"7\n63 60 92 4 2 13 30\n",
"9\n4 9 2 2 3 1 3 6 5\n",
"9\n64 49 39 8 68 35 75 158 56\n",
"8\n6 4 3 0 1 3 6 1\n",
"4\n101 15 68 60\n",
"10\n96 106 8 18 36 48 34 11 37 42\n",
"5\n41 6 54 69 38\n",
"7\n89 60 92 4 2 13 30\n",
"2\n93 100\n",
"1\n79\n",
"5\n1 1 3 4 5\n",
"8\n3 4 3 0 1 3 6 1\n",
"7\n2 0 2 4 2 2 2\n",
"1\n41\n",
"4\n101 15 58 60\n",
"10\n96 106 8 18 58 48 34 11 37 42\n",
"5\n4 12 2 1 2\n",
"5\n1 0 3 4 5\n",
"8\n77 108 26 34 6 56 23 3\n",
"1\n52\n",
"6\n46 45 3 4 65 23\n",
"3\n39 19 2\n",
"10\n2 2 1 4 1 2 2 4 2 2\n",
"9\n3 9 2 2 3 1 3 6 5\n",
"5\n4 14 2 1 2\n"
],
"output": [
"6",
"102",
"11",
"435",
"4",
"15",
"0",
"10",
"12",
"279",
"0",
"0",
"118",
"299",
"145",
"74",
"1",
"5",
"21",
"129",
"23",
"6",
"0",
"435\n",
"4\n",
"15\n",
"0\n",
"10\n",
"279\n",
"118\n",
"337\n",
"145\n",
"90\n",
"5\n",
"21\n",
"159\n",
"25\n",
"6\n",
"419\n",
"206\n",
"103\n",
"96\n",
"2\n",
"17\n",
"140\n",
"26\n",
"408\n",
"18\n",
"128\n",
"305\n",
"120\n",
"166\n",
"0\n",
"0\n",
"5\n",
"15\n",
"10\n",
"0\n",
"118\n",
"337\n",
"6\n",
"5\n",
"206\n",
"0\n",
"118\n",
"2\n",
"18\n",
"25\n",
"6\n"
]
} | 2CODEFORCES
|
442_C. Artem and Array _990 | Artem has an array of n positive integers. Artem decided to play with it. The game consists of n moves. Each move goes like this. Artem chooses some element of the array and removes it. For that, he gets min(a, b) points, where a and b are numbers that were adjacent with the removed number. If the number doesn't have an adjacent number to the left or right, Artem doesn't get any points.
After the element is removed, the two parts of the array glue together resulting in the new array that Artem continues playing with. Borya wondered what maximum total number of points Artem can get as he plays this game.
Input
The first line contains a single integer n (1 ≤ n ≤ 5·105) — the number of elements in the array. The next line contains n integers ai (1 ≤ ai ≤ 106) — the values of the array elements.
Output
In a single line print a single integer — the maximum number of points Artem can get.
Examples
Input
5
3 1 5 2 6
Output
11
Input
5
1 2 3 4 5
Output
6
Input
5
1 100 101 100 1
Output
102 | #include <bits/stdc++.h>
using namespace std;
const int Imx = 2147483647;
const int mod = 1000000007;
const long long Lbig = 2e18;
inline long long getnum() {
register long long r = 0;
register bool ng = 0;
register char c;
c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') ng = 1, c = getchar();
while (c >= '0' && c <= '9') r = r * 10 + c - '0', c = getchar();
if (ng) r = -r;
return r;
}
template <class T>
inline void putnum(T x) {
if (x < 0) putchar('-'), x = -x;
register short a[20] = {}, sz = 0;
while (x > 0) a[sz++] = x % 10, x /= 10;
if (sz == 0) putchar('0');
for (int i = sz - 1; i >= 0; i--) putchar('0' + a[i]);
}
inline void putsp() { putchar(' '); }
inline void putendl() { putchar('\n'); }
inline char mygetchar() {
register char c = getchar();
while (c == ' ' || c == '\n') c = getchar();
return c;
}
int n, nxt[500111], pre[500111], a[500111];
bool f[500111];
void del(int x) {
f[x] = 1;
nxt[pre[x]] = nxt[x];
pre[nxt[x]] = pre[x];
}
long long check(int x) {
if (!f[x] && x != 1 && x != n && a[pre[x]] >= a[x] && a[x] <= a[nxt[x]]) {
del(x);
return min(a[nxt[x]], a[pre[x]]) + check(pre[x]) + check(nxt[x]);
}
return 0;
}
int main() {
n = getnum();
for (int i = 1; i <= n; i++) a[i] = getnum(), nxt[i] = i + 1, pre[i] = i - 1;
long long ans = 0;
for (int i = 2; i < n; i++) {
if (!f[i]) ans += check(i);
}
int p = 1;
while (p >= 1 && p <= n) ans += min(a[pre[p]], a[nxt[p]]), p = nxt[p];
cout << ans << endl;
return 0;
}
| 2C++
| {
"input": [
"5\n1 2 3 4 5\n",
"5\n1 100 101 100 1\n",
"5\n3 1 5 2 6\n",
"9\n72 49 39 50 68 35 75 94 56\n",
"4\n2 3 1 2\n",
"8\n3 4 3 1 1 3 4 1\n",
"1\n4\n",
"7\n2 1 2 2 2 2 2\n",
"6\n1 7 3 1 6 2\n",
"8\n77 84 26 34 17 56 76 3\n",
"2\n93 51\n",
"1\n87\n",
"4\n86 21 58 60\n",
"10\n96 66 8 18 30 48 34 11 37 42\n",
"6\n46 30 38 9 65 23\n",
"5\n21 6 54 69 32\n",
"3\n1 2 1\n",
"3\n31 19 5\n",
"10\n4 2 2 4 1 2 2 4 2 1\n",
"7\n82 60 92 4 2 13 15\n",
"9\n4 5 2 2 3 1 3 3 5\n",
"5\n2 6 2 1 2\n",
"2\n3 1\n",
"9\n72 49 39 50 68 35 75 158 56\n",
"4\n2 4 1 2\n",
"8\n3 4 3 1 1 3 6 1\n",
"1\n1\n",
"7\n2 1 2 4 2 2 2\n",
"8\n77 84 26 34 6 56 76 3\n",
"4\n101 21 58 60\n",
"10\n96 66 8 18 58 48 34 11 37 42\n",
"6\n46 30 38 4 65 23\n",
"5\n29 6 54 69 32\n",
"3\n20 19 5\n",
"10\n4 2 1 4 1 2 2 4 2 1\n",
"7\n82 60 92 4 2 13 30\n",
"9\n4 5 2 2 3 1 3 6 5\n",
"5\n4 6 2 1 2\n",
"9\n64 49 39 50 68 35 75 158 56\n",
"8\n77 84 26 34 6 56 23 3\n",
"6\n46 30 3 4 65 23\n",
"5\n29 6 54 69 38\n",
"3\n20 19 2\n",
"10\n2 2 1 4 1 2 2 4 2 1\n",
"7\n63 60 92 4 2 13 30\n",
"9\n4 9 2 2 3 1 3 6 5\n",
"9\n64 49 39 8 68 35 75 158 56\n",
"8\n6 4 3 0 1 3 6 1\n",
"4\n101 15 68 60\n",
"10\n96 106 8 18 36 48 34 11 37 42\n",
"5\n41 6 54 69 38\n",
"7\n89 60 92 4 2 13 30\n",
"2\n93 100\n",
"1\n79\n",
"5\n1 1 3 4 5\n",
"8\n3 4 3 0 1 3 6 1\n",
"7\n2 0 2 4 2 2 2\n",
"1\n41\n",
"4\n101 15 58 60\n",
"10\n96 106 8 18 58 48 34 11 37 42\n",
"5\n4 12 2 1 2\n",
"5\n1 0 3 4 5\n",
"8\n77 108 26 34 6 56 23 3\n",
"1\n52\n",
"6\n46 45 3 4 65 23\n",
"3\n39 19 2\n",
"10\n2 2 1 4 1 2 2 4 2 2\n",
"9\n3 9 2 2 3 1 3 6 5\n",
"5\n4 14 2 1 2\n"
],
"output": [
"6",
"102",
"11",
"435",
"4",
"15",
"0",
"10",
"12",
"279",
"0",
"0",
"118",
"299",
"145",
"74",
"1",
"5",
"21",
"129",
"23",
"6",
"0",
"435\n",
"4\n",
"15\n",
"0\n",
"10\n",
"279\n",
"118\n",
"337\n",
"145\n",
"90\n",
"5\n",
"21\n",
"159\n",
"25\n",
"6\n",
"419\n",
"206\n",
"103\n",
"96\n",
"2\n",
"17\n",
"140\n",
"26\n",
"408\n",
"18\n",
"128\n",
"305\n",
"120\n",
"166\n",
"0\n",
"0\n",
"5\n",
"15\n",
"10\n",
"0\n",
"118\n",
"337\n",
"6\n",
"5\n",
"206\n",
"0\n",
"118\n",
"2\n",
"18\n",
"25\n",
"6\n"
]
} | 2CODEFORCES
|
442_C. Artem and Array _991 | Artem has an array of n positive integers. Artem decided to play with it. The game consists of n moves. Each move goes like this. Artem chooses some element of the array and removes it. For that, he gets min(a, b) points, where a and b are numbers that were adjacent with the removed number. If the number doesn't have an adjacent number to the left or right, Artem doesn't get any points.
After the element is removed, the two parts of the array glue together resulting in the new array that Artem continues playing with. Borya wondered what maximum total number of points Artem can get as he plays this game.
Input
The first line contains a single integer n (1 ≤ n ≤ 5·105) — the number of elements in the array. The next line contains n integers ai (1 ≤ ai ≤ 106) — the values of the array elements.
Output
In a single line print a single integer — the maximum number of points Artem can get.
Examples
Input
5
3 1 5 2 6
Output
11
Input
5
1 2 3 4 5
Output
6
Input
5
1 100 101 100 1
Output
102 |
MAXN = 5 * 10**5 + 100
a = []
ans = 0
n = int(input())
a = list( map ( int, input().split() ) )
a.append(0)
a = [0] + a
n = n + 2
arr = []
arr.append( a[0] )
arr.append( a[1] )
i = 2
while i < n :
ln = a[i]
l1 = arr[-1]
l0 = arr[-2]
while l1 <= l0 and l1 <= ln :
ans = ans + min ( l0 , ln )
arr.pop()
l1 = arr[-1]
l0 = arr[-2]
arr.append(ln)
i = i + 1
for i in range ( 1 , len(arr) - 1 ) :
ans += min ( arr[i - 1] , arr[i + 1] )
print (ans)
| 3Python3
| {
"input": [
"5\n1 2 3 4 5\n",
"5\n1 100 101 100 1\n",
"5\n3 1 5 2 6\n",
"9\n72 49 39 50 68 35 75 94 56\n",
"4\n2 3 1 2\n",
"8\n3 4 3 1 1 3 4 1\n",
"1\n4\n",
"7\n2 1 2 2 2 2 2\n",
"6\n1 7 3 1 6 2\n",
"8\n77 84 26 34 17 56 76 3\n",
"2\n93 51\n",
"1\n87\n",
"4\n86 21 58 60\n",
"10\n96 66 8 18 30 48 34 11 37 42\n",
"6\n46 30 38 9 65 23\n",
"5\n21 6 54 69 32\n",
"3\n1 2 1\n",
"3\n31 19 5\n",
"10\n4 2 2 4 1 2 2 4 2 1\n",
"7\n82 60 92 4 2 13 15\n",
"9\n4 5 2 2 3 1 3 3 5\n",
"5\n2 6 2 1 2\n",
"2\n3 1\n",
"9\n72 49 39 50 68 35 75 158 56\n",
"4\n2 4 1 2\n",
"8\n3 4 3 1 1 3 6 1\n",
"1\n1\n",
"7\n2 1 2 4 2 2 2\n",
"8\n77 84 26 34 6 56 76 3\n",
"4\n101 21 58 60\n",
"10\n96 66 8 18 58 48 34 11 37 42\n",
"6\n46 30 38 4 65 23\n",
"5\n29 6 54 69 32\n",
"3\n20 19 5\n",
"10\n4 2 1 4 1 2 2 4 2 1\n",
"7\n82 60 92 4 2 13 30\n",
"9\n4 5 2 2 3 1 3 6 5\n",
"5\n4 6 2 1 2\n",
"9\n64 49 39 50 68 35 75 158 56\n",
"8\n77 84 26 34 6 56 23 3\n",
"6\n46 30 3 4 65 23\n",
"5\n29 6 54 69 38\n",
"3\n20 19 2\n",
"10\n2 2 1 4 1 2 2 4 2 1\n",
"7\n63 60 92 4 2 13 30\n",
"9\n4 9 2 2 3 1 3 6 5\n",
"9\n64 49 39 8 68 35 75 158 56\n",
"8\n6 4 3 0 1 3 6 1\n",
"4\n101 15 68 60\n",
"10\n96 106 8 18 36 48 34 11 37 42\n",
"5\n41 6 54 69 38\n",
"7\n89 60 92 4 2 13 30\n",
"2\n93 100\n",
"1\n79\n",
"5\n1 1 3 4 5\n",
"8\n3 4 3 0 1 3 6 1\n",
"7\n2 0 2 4 2 2 2\n",
"1\n41\n",
"4\n101 15 58 60\n",
"10\n96 106 8 18 58 48 34 11 37 42\n",
"5\n4 12 2 1 2\n",
"5\n1 0 3 4 5\n",
"8\n77 108 26 34 6 56 23 3\n",
"1\n52\n",
"6\n46 45 3 4 65 23\n",
"3\n39 19 2\n",
"10\n2 2 1 4 1 2 2 4 2 2\n",
"9\n3 9 2 2 3 1 3 6 5\n",
"5\n4 14 2 1 2\n"
],
"output": [
"6",
"102",
"11",
"435",
"4",
"15",
"0",
"10",
"12",
"279",
"0",
"0",
"118",
"299",
"145",
"74",
"1",
"5",
"21",
"129",
"23",
"6",
"0",
"435\n",
"4\n",
"15\n",
"0\n",
"10\n",
"279\n",
"118\n",
"337\n",
"145\n",
"90\n",
"5\n",
"21\n",
"159\n",
"25\n",
"6\n",
"419\n",
"206\n",
"103\n",
"96\n",
"2\n",
"17\n",
"140\n",
"26\n",
"408\n",
"18\n",
"128\n",
"305\n",
"120\n",
"166\n",
"0\n",
"0\n",
"5\n",
"15\n",
"10\n",
"0\n",
"118\n",
"337\n",
"6\n",
"5\n",
"206\n",
"0\n",
"118\n",
"2\n",
"18\n",
"25\n",
"6\n"
]
} | 2CODEFORCES
|
442_C. Artem and Array _992 | Artem has an array of n positive integers. Artem decided to play with it. The game consists of n moves. Each move goes like this. Artem chooses some element of the array and removes it. For that, he gets min(a, b) points, where a and b are numbers that were adjacent with the removed number. If the number doesn't have an adjacent number to the left or right, Artem doesn't get any points.
After the element is removed, the two parts of the array glue together resulting in the new array that Artem continues playing with. Borya wondered what maximum total number of points Artem can get as he plays this game.
Input
The first line contains a single integer n (1 ≤ n ≤ 5·105) — the number of elements in the array. The next line contains n integers ai (1 ≤ ai ≤ 106) — the values of the array elements.
Output
In a single line print a single integer — the maximum number of points Artem can get.
Examples
Input
5
3 1 5 2 6
Output
11
Input
5
1 2 3 4 5
Output
6
Input
5
1 100 101 100 1
Output
102 | /*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.LinkedList;
import java.util.Queue;
/**
*
* @author sousnake
*/
public class E {
static int max = 500005;
static int previous[];
static int a[];
static int next[];
static boolean add[];
static long ans=0;
static Queue<Integer> q;
public static void main(String args[]) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String s[] = br.readLine().split(" ");
a = new int[max];
previous = new int[max];
next = new int[max];
add = new boolean[max];
q= new LinkedList<Integer>();
for(int i=1;i<=n;i++){
a[i] = Integer.parseInt(s[i-1]);
previous[i]=i-1;
next[i]=i+1;
}
next[0]=1;
previous[n+1]=n;
for(int i=1;i<=n;i++)
check(i);
while(q.size()>0){
int c = q.poll();
next[previous[c]]=next[c];
previous[next[c]]=previous[c];
ans+=Math.min(a[previous[c]],a[next[c]]);
check(previous[c]);
check(next[c]);
}
int c = next[0];
while(c!=n+1){
ans+= Math.min(a[previous[c]], a[next[c]]);
c=next[c];
}
System.out.println(ans);
}
public static void check(int k){
if(add[k]){
return;
}
if(a[previous[k]]>=a[k]&&a[next[k]]>=a[k]){
add[k]=true;
q.add(k);
}
}
}
| 4JAVA
| {
"input": [
"5\n1 2 3 4 5\n",
"5\n1 100 101 100 1\n",
"5\n3 1 5 2 6\n",
"9\n72 49 39 50 68 35 75 94 56\n",
"4\n2 3 1 2\n",
"8\n3 4 3 1 1 3 4 1\n",
"1\n4\n",
"7\n2 1 2 2 2 2 2\n",
"6\n1 7 3 1 6 2\n",
"8\n77 84 26 34 17 56 76 3\n",
"2\n93 51\n",
"1\n87\n",
"4\n86 21 58 60\n",
"10\n96 66 8 18 30 48 34 11 37 42\n",
"6\n46 30 38 9 65 23\n",
"5\n21 6 54 69 32\n",
"3\n1 2 1\n",
"3\n31 19 5\n",
"10\n4 2 2 4 1 2 2 4 2 1\n",
"7\n82 60 92 4 2 13 15\n",
"9\n4 5 2 2 3 1 3 3 5\n",
"5\n2 6 2 1 2\n",
"2\n3 1\n",
"9\n72 49 39 50 68 35 75 158 56\n",
"4\n2 4 1 2\n",
"8\n3 4 3 1 1 3 6 1\n",
"1\n1\n",
"7\n2 1 2 4 2 2 2\n",
"8\n77 84 26 34 6 56 76 3\n",
"4\n101 21 58 60\n",
"10\n96 66 8 18 58 48 34 11 37 42\n",
"6\n46 30 38 4 65 23\n",
"5\n29 6 54 69 32\n",
"3\n20 19 5\n",
"10\n4 2 1 4 1 2 2 4 2 1\n",
"7\n82 60 92 4 2 13 30\n",
"9\n4 5 2 2 3 1 3 6 5\n",
"5\n4 6 2 1 2\n",
"9\n64 49 39 50 68 35 75 158 56\n",
"8\n77 84 26 34 6 56 23 3\n",
"6\n46 30 3 4 65 23\n",
"5\n29 6 54 69 38\n",
"3\n20 19 2\n",
"10\n2 2 1 4 1 2 2 4 2 1\n",
"7\n63 60 92 4 2 13 30\n",
"9\n4 9 2 2 3 1 3 6 5\n",
"9\n64 49 39 8 68 35 75 158 56\n",
"8\n6 4 3 0 1 3 6 1\n",
"4\n101 15 68 60\n",
"10\n96 106 8 18 36 48 34 11 37 42\n",
"5\n41 6 54 69 38\n",
"7\n89 60 92 4 2 13 30\n",
"2\n93 100\n",
"1\n79\n",
"5\n1 1 3 4 5\n",
"8\n3 4 3 0 1 3 6 1\n",
"7\n2 0 2 4 2 2 2\n",
"1\n41\n",
"4\n101 15 58 60\n",
"10\n96 106 8 18 58 48 34 11 37 42\n",
"5\n4 12 2 1 2\n",
"5\n1 0 3 4 5\n",
"8\n77 108 26 34 6 56 23 3\n",
"1\n52\n",
"6\n46 45 3 4 65 23\n",
"3\n39 19 2\n",
"10\n2 2 1 4 1 2 2 4 2 2\n",
"9\n3 9 2 2 3 1 3 6 5\n",
"5\n4 14 2 1 2\n"
],
"output": [
"6",
"102",
"11",
"435",
"4",
"15",
"0",
"10",
"12",
"279",
"0",
"0",
"118",
"299",
"145",
"74",
"1",
"5",
"21",
"129",
"23",
"6",
"0",
"435\n",
"4\n",
"15\n",
"0\n",
"10\n",
"279\n",
"118\n",
"337\n",
"145\n",
"90\n",
"5\n",
"21\n",
"159\n",
"25\n",
"6\n",
"419\n",
"206\n",
"103\n",
"96\n",
"2\n",
"17\n",
"140\n",
"26\n",
"408\n",
"18\n",
"128\n",
"305\n",
"120\n",
"166\n",
"0\n",
"0\n",
"5\n",
"15\n",
"10\n",
"0\n",
"118\n",
"337\n",
"6\n",
"5\n",
"206\n",
"0\n",
"118\n",
"2\n",
"18\n",
"25\n",
"6\n"
]
} | 2CODEFORCES
|
464_D. World of Darkraft - 2_993 | Roma found a new character in the game "World of Darkraft - 2". In this game the character fights monsters, finds the more and more advanced stuff that lets him fight stronger monsters.
The character can equip himself with k distinct types of items. Power of each item depends on its level (positive integer number). Initially the character has one 1-level item of each of the k types.
After the victory over the monster the character finds exactly one new randomly generated item. The generation process looks as follows. Firstly the type of the item is defined; each of the k types has the same probability. Then the level of the new item is defined. Let's assume that the level of player's item of the chosen type is equal to t at the moment. Level of the new item will be chosen uniformly among integers from segment [1; t + 1].
From the new item and the current player's item of the same type Roma chooses the best one (i.e. the one with greater level) and equips it (if both of them has the same level Roma choses any). The remaining item is sold for coins. Roma sells an item of level x of any type for x coins.
Help Roma determine the expected number of earned coins after the victory over n monsters.
Input
The first line contains two integers, n and k (1 ≤ n ≤ 105; 1 ≤ k ≤ 100).
Output
Print a real number — expected number of earned coins after victory over n monsters. The answer is considered correct if its relative or absolute error doesn't exceed 10 - 9.
Examples
Input
1 3
Output
1.0000000000
Input
2 1
Output
2.3333333333
Input
10 2
Output
15.9380768924 | #include <bits/stdc++.h>
using namespace std;
const int maxn = 100005;
const int maxk = 105;
vector<pair<int, long double> > f, tmp;
long double g[maxn], t[maxn];
long double ans;
int n, k;
int main() {
scanf("%d%d", &n, &k);
f.push_back(make_pair(1, 1.0));
for (int i = 0; i < n; ++i) {
tmp.clear();
for (int k = 0; k < (int)f.size(); ++k) {
int j = f[k].first;
long double p = f[k].second;
if (p < 1e-15) continue;
g[i + 1] += p * (j * 1.0 / (j + 1)) * ((j + 1) / 2.0);
tmp.push_back(make_pair(j, p * (j * 1.0 / (j + 1))));
g[i + 1] += p * (1.0 / (j + 1)) * j;
tmp.push_back(make_pair(j + 1, p * (1.0 / (j + 1))));
}
pair<int, long double> last = tmp[0];
f.clear();
for (int k = 1; k < (int)tmp.size(); ++k)
if (tmp[k].first == last.first)
last.second += tmp[k].second;
else {
f.push_back(last);
last = tmp[k];
}
f.push_back(last);
}
for (int i = 1; i <= n; ++i) g[i] += g[i - 1];
if (k > 1) {
t[0] = log(1);
for (int i = 1; i <= n; ++i) t[0] = t[0] + log(k - 1) - log(k);
for (int i = 1; i <= n; ++i)
t[i] = t[i - 1] + log(n - i + 1) - log(i) - log(k - 1);
for (int i = 1; i <= n; ++i) t[i] = exp(t[i]);
} else {
t[n] = 1;
}
for (int i = 0; i <= n; ++i) ans += g[i] * t[i];
ans *= k;
printf("%.100lf\n", (double)ans);
return 0;
}
| 2C++
| {
"input": [
"2 1\n",
"1 3\n",
"10 2\n",
"777 2\n",
"2 2\n",
"99900 1\n",
"50000 1\n",
"2 5\n",
"100000 99\n",
"22222 22\n",
"100000 4\n",
"100000 1\n",
"100 1\n",
"100 2\n",
"77777 1\n",
"100000 3\n",
"13 20\n",
"66666 6\n",
"1 1\n",
"527 21\n",
"1 100\n",
"11111 1\n",
"99999 1\n",
"99999 2\n",
"1000 1\n",
"10 10\n",
"81702 1\n",
"3456 78\n",
"100000 5\n",
"100000 100\n",
"10 98\n",
"90001 1\n",
"10000 1\n",
"666 66\n",
"99998 1\n",
"98765 1\n",
"100000 12\n",
"93012 1\n",
"280 2\n",
"0 2\n",
"99900 2\n",
"79086 1\n",
"1 5\n",
"100000 96\n",
"2523 22\n",
"100000 2\n",
"52877 1\n",
"66666 7\n",
"527 26\n",
"10111 1\n",
"84942 1\n",
"1001 1\n",
"10 13\n",
"81702 2\n",
"5763 78\n",
"6 98\n",
"10010 1\n",
"241 66\n",
"3 1\n",
"16 2\n",
"177 2\n",
"68464 1\n",
"2294 22\n",
"000 -1\n",
"17938 1\n",
"11664 7\n",
"970 26\n",
"2 100\n",
"00111 1\n",
"1001 2\n",
"6 13\n",
"81702 3\n",
"9729 78\n",
"6 152\n",
"10011 1\n",
"300 66\n",
"000100 12\n",
"4 1\n",
"2 3\n",
"21 2\n",
"177 1\n",
"195 22\n",
"16433 7\n",
"124 26\n",
"000 0\n",
"0 1\n",
"1 101\n",
"000000 12\n",
"1 2\n",
"0 100\n"
],
"output": [
"2.333333333",
"1.000000000",
"15.938076892",
"7711.133204117",
"2.166666667",
"14951105.362681892",
"5303612.978465776",
"2.066666667",
"1562974.683985027",
"347318.195810008",
"7519794.068457119",
"14973526.987552967",
"531.085837171",
"392.059297628",
"10276792.312280677",
"8672913.058441818",
"14.252518489",
"3356667.078394883",
"1.000000000",
"1551.993280023",
"1.000000000",
"559428.984015481",
"14973302.715951933",
"10607106.707430664",
"15549.020583516",
"11.421704729",
"11063104.342954138",
"12907.261392362",
"6732856.7141528353\n",
"1555455.819511603",
"10.152199131",
"12787888.717240792",
"477990.031393559",
"1378.605023648",
"14973078.445468944",
"14697405.264750529",
"4369271.391613076",
"13433937.862080764",
"1733.565896704814",
"0.000000000000",
"10591391.549216268584",
"10536883.136224981397",
"1.000000000000",
"1586231.426364744548",
"14292.278836968999",
"10607265.485937982798",
"5766901.594959842972",
"3110905.379284236580",
"1423.929466095499",
"485934.200652186817",
"11726566.552394656464",
"15572.040492017324",
"11.106856219196",
"7838620.139082116075",
"26856.126371308626",
"6.050876193916",
"478703.940355275350",
"359.487126657324",
"3.930555555556",
"29.990530522857",
"891.615853518523",
"8490184.955286636949",
"12452.611638374989",
"-0.000000000000",
"1144392.708627333865",
"232041.009823653643",
"3367.523190841515",
"2.003333333333",
"617.864580696385",
"11193.743739457568",
"6.376567132539",
"6410096.474742878228",
"57240.473977242007",
"6.032834729842",
"478775.350691214320",
"476.318640941550",
"192.904165971151",
"5.747453703704",
"2.111111111111",
"43.527401771936",
"1218.387998820558",
"384.927198923229",
"386072.072540990601",
"199.487977990797",
"0.000000000000",
"0.000000000000",
"1.000000000000",
"0.000000000000",
"1.000000000000",
"0.000000000000"
]
} | 2CODEFORCES
|
464_D. World of Darkraft - 2_994 | Roma found a new character in the game "World of Darkraft - 2". In this game the character fights monsters, finds the more and more advanced stuff that lets him fight stronger monsters.
The character can equip himself with k distinct types of items. Power of each item depends on its level (positive integer number). Initially the character has one 1-level item of each of the k types.
After the victory over the monster the character finds exactly one new randomly generated item. The generation process looks as follows. Firstly the type of the item is defined; each of the k types has the same probability. Then the level of the new item is defined. Let's assume that the level of player's item of the chosen type is equal to t at the moment. Level of the new item will be chosen uniformly among integers from segment [1; t + 1].
From the new item and the current player's item of the same type Roma chooses the best one (i.e. the one with greater level) and equips it (if both of them has the same level Roma choses any). The remaining item is sold for coins. Roma sells an item of level x of any type for x coins.
Help Roma determine the expected number of earned coins after the victory over n monsters.
Input
The first line contains two integers, n and k (1 ≤ n ≤ 105; 1 ≤ k ≤ 100).
Output
Print a real number — expected number of earned coins after victory over n monsters. The answer is considered correct if its relative or absolute error doesn't exceed 10 - 9.
Examples
Input
1 3
Output
1.0000000000
Input
2 1
Output
2.3333333333
Input
10 2
Output
15.9380768924 | import java.io.*;
import java.util.*;
public class Main{
private static Reader in;
private static PrintWriter out;
public static void main(String[] args) throws IOException {
in = new Reader();
out = new PrintWriter(System.out, true);
int N = in.nextInt(), K = in.nextInt();
long time = System.currentTimeMillis();
int maxlevel = 750;
double[] level = new double[maxlevel];
for (int i = 0; i < N; i++) {
double[] nlevel = new double[maxlevel];
for (int j = 1; j < maxlevel; j++)
nlevel[j] = level[j] * (K - 1) / (double)K;
for (int j = 1; j < maxlevel - 1; j++) {
double s = j * level[j] / (double)(j + 1);
s += j / 2.;
s += (level[j + 1] + j) / (double)(j + 1);
nlevel[j] += s / (double)K;
}
level = nlevel;
}
out.printf ("%.15f\n", level[1] * K);
out.close();
System.exit(0);
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[1024];
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.')
while ((c = read()) >= '0' && c <= '9')
ret += (c - '0') / (div *= 10);
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
}
| 4JAVA
| {
"input": [
"2 1\n",
"1 3\n",
"10 2\n",
"777 2\n",
"2 2\n",
"99900 1\n",
"50000 1\n",
"2 5\n",
"100000 99\n",
"22222 22\n",
"100000 4\n",
"100000 1\n",
"100 1\n",
"100 2\n",
"77777 1\n",
"100000 3\n",
"13 20\n",
"66666 6\n",
"1 1\n",
"527 21\n",
"1 100\n",
"11111 1\n",
"99999 1\n",
"99999 2\n",
"1000 1\n",
"10 10\n",
"81702 1\n",
"3456 78\n",
"100000 5\n",
"100000 100\n",
"10 98\n",
"90001 1\n",
"10000 1\n",
"666 66\n",
"99998 1\n",
"98765 1\n",
"100000 12\n",
"93012 1\n",
"280 2\n",
"0 2\n",
"99900 2\n",
"79086 1\n",
"1 5\n",
"100000 96\n",
"2523 22\n",
"100000 2\n",
"52877 1\n",
"66666 7\n",
"527 26\n",
"10111 1\n",
"84942 1\n",
"1001 1\n",
"10 13\n",
"81702 2\n",
"5763 78\n",
"6 98\n",
"10010 1\n",
"241 66\n",
"3 1\n",
"16 2\n",
"177 2\n",
"68464 1\n",
"2294 22\n",
"000 -1\n",
"17938 1\n",
"11664 7\n",
"970 26\n",
"2 100\n",
"00111 1\n",
"1001 2\n",
"6 13\n",
"81702 3\n",
"9729 78\n",
"6 152\n",
"10011 1\n",
"300 66\n",
"000100 12\n",
"4 1\n",
"2 3\n",
"21 2\n",
"177 1\n",
"195 22\n",
"16433 7\n",
"124 26\n",
"000 0\n",
"0 1\n",
"1 101\n",
"000000 12\n",
"1 2\n",
"0 100\n"
],
"output": [
"2.333333333",
"1.000000000",
"15.938076892",
"7711.133204117",
"2.166666667",
"14951105.362681892",
"5303612.978465776",
"2.066666667",
"1562974.683985027",
"347318.195810008",
"7519794.068457119",
"14973526.987552967",
"531.085837171",
"392.059297628",
"10276792.312280677",
"8672913.058441818",
"14.252518489",
"3356667.078394883",
"1.000000000",
"1551.993280023",
"1.000000000",
"559428.984015481",
"14973302.715951933",
"10607106.707430664",
"15549.020583516",
"11.421704729",
"11063104.342954138",
"12907.261392362",
"6732856.7141528353\n",
"1555455.819511603",
"10.152199131",
"12787888.717240792",
"477990.031393559",
"1378.605023648",
"14973078.445468944",
"14697405.264750529",
"4369271.391613076",
"13433937.862080764",
"1733.565896704814",
"0.000000000000",
"10591391.549216268584",
"10536883.136224981397",
"1.000000000000",
"1586231.426364744548",
"14292.278836968999",
"10607265.485937982798",
"5766901.594959842972",
"3110905.379284236580",
"1423.929466095499",
"485934.200652186817",
"11726566.552394656464",
"15572.040492017324",
"11.106856219196",
"7838620.139082116075",
"26856.126371308626",
"6.050876193916",
"478703.940355275350",
"359.487126657324",
"3.930555555556",
"29.990530522857",
"891.615853518523",
"8490184.955286636949",
"12452.611638374989",
"-0.000000000000",
"1144392.708627333865",
"232041.009823653643",
"3367.523190841515",
"2.003333333333",
"617.864580696385",
"11193.743739457568",
"6.376567132539",
"6410096.474742878228",
"57240.473977242007",
"6.032834729842",
"478775.350691214320",
"476.318640941550",
"192.904165971151",
"5.747453703704",
"2.111111111111",
"43.527401771936",
"1218.387998820558",
"384.927198923229",
"386072.072540990601",
"199.487977990797",
"0.000000000000",
"0.000000000000",
"1.000000000000",
"0.000000000000",
"1.000000000000",
"0.000000000000"
]
} | 2CODEFORCES
|
488_C. Fight the Monster_995 | A monster is attacking the Cyberland!
Master Yang, a braver, is going to beat the monster. Yang and the monster each have 3 attributes: hitpoints (HP), offensive power (ATK) and defensive power (DEF).
During the battle, every second the monster's HP decrease by max(0, ATKY - DEFM), while Yang's HP decreases by max(0, ATKM - DEFY), where index Y denotes Master Yang and index M denotes monster. Both decreases happen simultaneously Once monster's HP ≤ 0 and the same time Master Yang's HP > 0, Master Yang wins.
Master Yang can buy attributes from the magic shop of Cyberland: h bitcoins per HP, a bitcoins per ATK, and d bitcoins per DEF.
Now Master Yang wants to know the minimum number of bitcoins he can spend in order to win.
Input
The first line contains three integers HPY, ATKY, DEFY, separated by a space, denoting the initial HP, ATK and DEF of Master Yang.
The second line contains three integers HPM, ATKM, DEFM, separated by a space, denoting the HP, ATK and DEF of the monster.
The third line contains three integers h, a, d, separated by a space, denoting the price of 1 HP, 1 ATK and 1 DEF.
All numbers in input are integer and lie between 1 and 100 inclusively.
Output
The only output line should contain an integer, denoting the minimum bitcoins Master Yang should spend in order to win.
Examples
Input
1 2 1
1 100 1
1 100 100
Output
99
Input
100 100 100
1 1 1
1 1 1
Output
0
Note
For the first sample, prices for ATK and DEF are extremely high. Master Yang can buy 99 HP, then he can beat the monster with 1 HP left.
For the second sample, Master Yang is strong enough to beat the monster, so he doesn't need to buy anything. | def optimize(a,b,c,l):
prev =100000
for i in range(150):
if l*i > c:
if b*i < prev:
prev = b*i
else:
rh = c+1-l*i
if (rh*a + b*i) < prev:
prev = (rh*a + b*i)
# print prev
return prev
y = map(int,raw_input().split())
m = map(int,raw_input().split())
p = map(int,raw_input().split())
A = [0,0,0]
prev =10000000
for i in range(1,1000):
if m[0]-i*(y[1]-m[2]) <=0:
A[1]=0
else:
if (m[0]-i*(y[1]-m[2]))%i==0:
A[1] = (m[0]-i*(y[1]-m[2]))/i
else:
A[1] = (m[0]-i*(y[1]-m[2]))/i
A[1]=A[1]+1
eq = y[0]-i*(m[1]-y[2])
if eq >0:
l=0
else:
eq=-1*eq
l=optimize(p[0],p[2],eq,i)
if p[1]*A[1] + l <= prev :
prev = p[1]*A[1] + l
# print prev,l,A[1]
print max(0,prev)
| 1Python2
| {
"input": [
"1 2 1\n1 100 1\n1 100 100\n",
"100 100 100\n1 1 1\n1 1 1\n",
"51 89 97\n18 25 63\n22 91 74\n",
"1 100 1\n100 100 100\n1 100 100\n",
"20 1 1\n100 100 100\n1 100 100\n",
"1 10 29\n1 1 43\n1 1 100\n",
"25 38 49\n84 96 42\n3 51 92\n",
"2 1 1\n100 2 100\n100 1 100\n",
"1 1 1\n100 100 100\n1 100 100\n",
"99 32 20\n89 72 74\n1 100 39\n",
"100 1 1\n100 100 100\n1 100 100\n",
"10 100 55\n100 100 1\n1 1 1\n",
"1 1 1\n1 1 1\n100 100 100\n",
"1 1 1\n1 1 1\n1 1 1\n",
"1 97 1\n100 99 98\n1 51 52\n",
"50 80 92\n41 51 56\n75 93 12\n",
"100 1 1\n100 100 100\n100 1 100\n",
"11 1 1\n100 1 1\n100 1 1\n",
"1 1 1\n100 100 100\n100 100 100\n",
"1 28 47\n31 60 38\n14 51 77\n",
"1 1 1\n100 100 100\n1 2 3\n",
"1 100 100\n1 1 1\n87 100 43\n",
"1 1 1\n100 100 100\n1 1 100\n",
"14 61 87\n11 78 14\n5 84 92\n",
"65 6 5\n70 78 51\n88 55 78\n",
"1 100 1\n100 100 99\n1 100 100\n",
"39 49 78\n14 70 41\n3 33 23\n",
"11 1 1\n10 1 10\n100 50 1\n",
"1 100 1\n1 1 1\n1 1 1\n",
"79 1 1\n1 1 10\n1 1 100\n",
"100 100 100\n100 100 100\n100 100 100\n",
"11 82 51\n90 84 72\n98 98 43\n",
"50 100 51\n100 100 100\n1 100 100\n",
"10 100 1\n100 1 1\n1 100 1\n",
"74 89 5\n32 76 99\n62 95 36\n",
"72 16 49\n5 21 84\n48 51 88\n",
"100 100 1\n100 100 100\n1 100 100\n",
"76 63 14\n89 87 35\n20 15 56\n",
"1 1 1\n1 1 100\n100 100 1\n",
"1 10 10\n1 10 100\n1 1 61\n",
"10 10 100\n1 10 1\n1 1 100\n",
"1 1 100\n1 1 1\n100 1 100\n",
"12 59 66\n43 15 16\n12 18 66\n",
"10 10 100\n1 100 100\n10 100 90\n",
"10 100 1\n1 100 100\n100 1 9\n",
"51 89 97\n18 25 63\n41 91 74\n",
"1 100 1\n100 100 000\n1 100 100\n",
"2 10 29\n1 1 43\n1 1 100\n",
"25 38 84\n84 96 42\n3 51 92\n",
"99 32 20\n89 72 74\n1 100 38\n",
"1 1 1\n1 1 1\n101 100 100\n",
"1 0 1\n1 1 1\n1 1 1\n",
"1 97 1\n100 99 98\n2 51 52\n",
"100 1 1\n100 100 100\n100 1 101\n",
"1 1 1\n100 100 100\n100 100 101\n",
"1 28 47\n31 9 38\n14 51 77\n",
"1 1 1\n100 100 101\n1 2 3\n",
"65 6 7\n70 78 51\n88 55 78\n",
"11 2 1\n10 1 10\n100 50 1\n",
"79 1 1\n2 1 10\n1 1 100\n",
"11 82 51\n20 84 72\n98 98 43\n",
"50 100 80\n100 100 100\n1 100 100\n",
"74 89 5\n37 76 99\n62 95 36\n",
"72 16 49\n2 21 84\n48 51 88\n",
"76 63 14\n89 157 35\n20 15 56\n",
"1 10 10\n1 10 101\n1 1 61\n",
"10 5 100\n1 100 100\n10 100 90\n",
"10 100 1\n1 100 100\n101 1 9\n",
"99 32 20\n89 72 48\n1 100 38\n",
"1 178 1\n100 99 98\n2 51 52\n",
"19 1 1\n100 1 1\n100 1 1\n",
"1 28 47\n31 9 66\n14 51 77\n",
"1 1 1\n100 100 101\n1 3 3\n",
"65 6 7\n70 78 51\n88 23 78\n",
"74 89 5\n37 76 53\n62 95 36\n",
"81 63 14\n89 157 35\n20 15 56\n",
"10 100 1\n1 100 110\n101 1 9\n",
"50 80 98\n41 51 56\n75 93 12\n",
"11 1 1\n100 1 1\n100 2 1\n",
"1 100 100\n1 1 1\n102 100 43\n",
"39 49 78\n14 70 41\n3 33 36\n",
"10 10 100\n1 10 1\n1 2 100\n",
"12 59 66\n43 15 16\n21 18 66\n",
"110 100 100\n1 1 1\n1 1 1\n",
"2 89 97\n18 25 63\n41 91 74\n",
"2 10 29\n1 1 43\n1 1 101\n",
"1 2 1\n1 1 1\n101 100 100\n",
"1 0 2\n1 1 1\n1 1 1\n",
"50 80 98\n41 51 56\n23 93 12\n",
"1 100 100\n1 1 1\n102 100 79\n",
"39 49 78\n14 70 41\n3 9 36\n",
"7 2 1\n10 1 10\n100 50 1\n",
"79 1 0\n2 1 10\n1 1 100\n",
"11 82 51\n20 84 72\n98 89 43\n",
"72 16 3\n2 21 84\n48 51 88\n",
"1 10 10\n2 10 101\n1 1 61\n",
"12 59 66\n43 15 16\n41 18 66\n",
"10 5 100\n1 000 100\n10 100 90\n",
"110 101 100\n1 1 1\n1 1 1\n",
"2 68 97\n18 25 63\n41 91 74\n"
],
"output": [
"99",
"0",
"0",
"1990",
"11871",
"34",
"1692",
"199",
"11890",
"5478",
"11791",
"37",
"100",
"1",
"1498",
"0",
"199",
"1",
"19900",
"1562",
"496",
"0",
"298",
"0",
"7027",
"1890",
"0",
"500",
"0",
"10",
"100",
"1376",
"1384",
"0",
"3529",
"3519",
"1891",
"915",
"10000",
"91",
"0",
"1",
"0",
"9100",
"811",
"0\n",
"99\n",
"34\n",
"921\n",
"5478\n",
"100\n",
"2\n",
"2051\n",
"199\n",
"19999\n",
"561\n",
"498\n",
"6871\n",
"450\n",
"10\n",
"1204\n",
"851\n",
"3565\n",
"3519\n",
"2275\n",
"92\n",
"9600\n",
"811\n",
"2878\n",
"392\n",
"1\n",
"1989\n",
"600\n",
"3191\n",
"95\n",
"2175\n",
"821\n",
"0\n",
"2\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"34\n",
"0\n",
"2\n",
"0\n",
"0\n",
"0\n",
"450\n",
"10\n",
"1204\n",
"3519\n",
"92\n",
"0\n",
"9600\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
|
488_C. Fight the Monster_996 | A monster is attacking the Cyberland!
Master Yang, a braver, is going to beat the monster. Yang and the monster each have 3 attributes: hitpoints (HP), offensive power (ATK) and defensive power (DEF).
During the battle, every second the monster's HP decrease by max(0, ATKY - DEFM), while Yang's HP decreases by max(0, ATKM - DEFY), where index Y denotes Master Yang and index M denotes monster. Both decreases happen simultaneously Once monster's HP ≤ 0 and the same time Master Yang's HP > 0, Master Yang wins.
Master Yang can buy attributes from the magic shop of Cyberland: h bitcoins per HP, a bitcoins per ATK, and d bitcoins per DEF.
Now Master Yang wants to know the minimum number of bitcoins he can spend in order to win.
Input
The first line contains three integers HPY, ATKY, DEFY, separated by a space, denoting the initial HP, ATK and DEF of Master Yang.
The second line contains three integers HPM, ATKM, DEFM, separated by a space, denoting the HP, ATK and DEF of the monster.
The third line contains three integers h, a, d, separated by a space, denoting the price of 1 HP, 1 ATK and 1 DEF.
All numbers in input are integer and lie between 1 and 100 inclusively.
Output
The only output line should contain an integer, denoting the minimum bitcoins Master Yang should spend in order to win.
Examples
Input
1 2 1
1 100 1
1 100 100
Output
99
Input
100 100 100
1 1 1
1 1 1
Output
0
Note
For the first sample, prices for ATK and DEF are extremely high. Master Yang can buy 99 HP, then he can beat the monster with 1 HP left.
For the second sample, Master Yang is strong enough to beat the monster, so he doesn't need to buy anything. | #include <bits/stdc++.h>
using namespace std;
const int MM = 100005;
const long long MOD = 1000000007;
bool judge(int hpy, int atky, int defy, int hpm, int atkm, int defm) {
int a = max(0, atky - defm), b = max(0, atkm - defy);
if (a == 0) return false;
if (b == 0) return true;
int c = hpm % a == 0 ? hpm / a : hpm / a + 1;
int d = hpy % b == 0 ? hpy / b : hpy / b + 1;
if (d > c) return true;
return false;
}
int main() {
int h, a, d;
int hpy, atky, defy, hpm, atkm, defm;
scanf("%d%d%d", &hpy, &atky, &defy);
scanf("%d%d%d", &hpm, &atkm, &defm);
scanf("%d%d%d", &h, &a, &d);
int ans = (1 << 30);
for (int i = 0; i <= 1000; i++) {
for (int j = 0; j <= 1000; j++) {
for (int k = 0; k <= 1000; k++) {
if (i * h + j * a + k * d > ans) break;
if (judge(hpy + i, atky + j, defy + k, hpm, atkm, defm)) {
ans = min(ans, i * h + j * a + k * d);
}
}
}
}
printf("%d\n", ans);
return 0;
}
| 2C++
| {
"input": [
"1 2 1\n1 100 1\n1 100 100\n",
"100 100 100\n1 1 1\n1 1 1\n",
"51 89 97\n18 25 63\n22 91 74\n",
"1 100 1\n100 100 100\n1 100 100\n",
"20 1 1\n100 100 100\n1 100 100\n",
"1 10 29\n1 1 43\n1 1 100\n",
"25 38 49\n84 96 42\n3 51 92\n",
"2 1 1\n100 2 100\n100 1 100\n",
"1 1 1\n100 100 100\n1 100 100\n",
"99 32 20\n89 72 74\n1 100 39\n",
"100 1 1\n100 100 100\n1 100 100\n",
"10 100 55\n100 100 1\n1 1 1\n",
"1 1 1\n1 1 1\n100 100 100\n",
"1 1 1\n1 1 1\n1 1 1\n",
"1 97 1\n100 99 98\n1 51 52\n",
"50 80 92\n41 51 56\n75 93 12\n",
"100 1 1\n100 100 100\n100 1 100\n",
"11 1 1\n100 1 1\n100 1 1\n",
"1 1 1\n100 100 100\n100 100 100\n",
"1 28 47\n31 60 38\n14 51 77\n",
"1 1 1\n100 100 100\n1 2 3\n",
"1 100 100\n1 1 1\n87 100 43\n",
"1 1 1\n100 100 100\n1 1 100\n",
"14 61 87\n11 78 14\n5 84 92\n",
"65 6 5\n70 78 51\n88 55 78\n",
"1 100 1\n100 100 99\n1 100 100\n",
"39 49 78\n14 70 41\n3 33 23\n",
"11 1 1\n10 1 10\n100 50 1\n",
"1 100 1\n1 1 1\n1 1 1\n",
"79 1 1\n1 1 10\n1 1 100\n",
"100 100 100\n100 100 100\n100 100 100\n",
"11 82 51\n90 84 72\n98 98 43\n",
"50 100 51\n100 100 100\n1 100 100\n",
"10 100 1\n100 1 1\n1 100 1\n",
"74 89 5\n32 76 99\n62 95 36\n",
"72 16 49\n5 21 84\n48 51 88\n",
"100 100 1\n100 100 100\n1 100 100\n",
"76 63 14\n89 87 35\n20 15 56\n",
"1 1 1\n1 1 100\n100 100 1\n",
"1 10 10\n1 10 100\n1 1 61\n",
"10 10 100\n1 10 1\n1 1 100\n",
"1 1 100\n1 1 1\n100 1 100\n",
"12 59 66\n43 15 16\n12 18 66\n",
"10 10 100\n1 100 100\n10 100 90\n",
"10 100 1\n1 100 100\n100 1 9\n",
"51 89 97\n18 25 63\n41 91 74\n",
"1 100 1\n100 100 000\n1 100 100\n",
"2 10 29\n1 1 43\n1 1 100\n",
"25 38 84\n84 96 42\n3 51 92\n",
"99 32 20\n89 72 74\n1 100 38\n",
"1 1 1\n1 1 1\n101 100 100\n",
"1 0 1\n1 1 1\n1 1 1\n",
"1 97 1\n100 99 98\n2 51 52\n",
"100 1 1\n100 100 100\n100 1 101\n",
"1 1 1\n100 100 100\n100 100 101\n",
"1 28 47\n31 9 38\n14 51 77\n",
"1 1 1\n100 100 101\n1 2 3\n",
"65 6 7\n70 78 51\n88 55 78\n",
"11 2 1\n10 1 10\n100 50 1\n",
"79 1 1\n2 1 10\n1 1 100\n",
"11 82 51\n20 84 72\n98 98 43\n",
"50 100 80\n100 100 100\n1 100 100\n",
"74 89 5\n37 76 99\n62 95 36\n",
"72 16 49\n2 21 84\n48 51 88\n",
"76 63 14\n89 157 35\n20 15 56\n",
"1 10 10\n1 10 101\n1 1 61\n",
"10 5 100\n1 100 100\n10 100 90\n",
"10 100 1\n1 100 100\n101 1 9\n",
"99 32 20\n89 72 48\n1 100 38\n",
"1 178 1\n100 99 98\n2 51 52\n",
"19 1 1\n100 1 1\n100 1 1\n",
"1 28 47\n31 9 66\n14 51 77\n",
"1 1 1\n100 100 101\n1 3 3\n",
"65 6 7\n70 78 51\n88 23 78\n",
"74 89 5\n37 76 53\n62 95 36\n",
"81 63 14\n89 157 35\n20 15 56\n",
"10 100 1\n1 100 110\n101 1 9\n",
"50 80 98\n41 51 56\n75 93 12\n",
"11 1 1\n100 1 1\n100 2 1\n",
"1 100 100\n1 1 1\n102 100 43\n",
"39 49 78\n14 70 41\n3 33 36\n",
"10 10 100\n1 10 1\n1 2 100\n",
"12 59 66\n43 15 16\n21 18 66\n",
"110 100 100\n1 1 1\n1 1 1\n",
"2 89 97\n18 25 63\n41 91 74\n",
"2 10 29\n1 1 43\n1 1 101\n",
"1 2 1\n1 1 1\n101 100 100\n",
"1 0 2\n1 1 1\n1 1 1\n",
"50 80 98\n41 51 56\n23 93 12\n",
"1 100 100\n1 1 1\n102 100 79\n",
"39 49 78\n14 70 41\n3 9 36\n",
"7 2 1\n10 1 10\n100 50 1\n",
"79 1 0\n2 1 10\n1 1 100\n",
"11 82 51\n20 84 72\n98 89 43\n",
"72 16 3\n2 21 84\n48 51 88\n",
"1 10 10\n2 10 101\n1 1 61\n",
"12 59 66\n43 15 16\n41 18 66\n",
"10 5 100\n1 000 100\n10 100 90\n",
"110 101 100\n1 1 1\n1 1 1\n",
"2 68 97\n18 25 63\n41 91 74\n"
],
"output": [
"99",
"0",
"0",
"1990",
"11871",
"34",
"1692",
"199",
"11890",
"5478",
"11791",
"37",
"100",
"1",
"1498",
"0",
"199",
"1",
"19900",
"1562",
"496",
"0",
"298",
"0",
"7027",
"1890",
"0",
"500",
"0",
"10",
"100",
"1376",
"1384",
"0",
"3529",
"3519",
"1891",
"915",
"10000",
"91",
"0",
"1",
"0",
"9100",
"811",
"0\n",
"99\n",
"34\n",
"921\n",
"5478\n",
"100\n",
"2\n",
"2051\n",
"199\n",
"19999\n",
"561\n",
"498\n",
"6871\n",
"450\n",
"10\n",
"1204\n",
"851\n",
"3565\n",
"3519\n",
"2275\n",
"92\n",
"9600\n",
"811\n",
"2878\n",
"392\n",
"1\n",
"1989\n",
"600\n",
"3191\n",
"95\n",
"2175\n",
"821\n",
"0\n",
"2\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"34\n",
"0\n",
"2\n",
"0\n",
"0\n",
"0\n",
"450\n",
"10\n",
"1204\n",
"3519\n",
"92\n",
"0\n",
"9600\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
|
488_C. Fight the Monster_997 | A monster is attacking the Cyberland!
Master Yang, a braver, is going to beat the monster. Yang and the monster each have 3 attributes: hitpoints (HP), offensive power (ATK) and defensive power (DEF).
During the battle, every second the monster's HP decrease by max(0, ATKY - DEFM), while Yang's HP decreases by max(0, ATKM - DEFY), where index Y denotes Master Yang and index M denotes monster. Both decreases happen simultaneously Once monster's HP ≤ 0 and the same time Master Yang's HP > 0, Master Yang wins.
Master Yang can buy attributes from the magic shop of Cyberland: h bitcoins per HP, a bitcoins per ATK, and d bitcoins per DEF.
Now Master Yang wants to know the minimum number of bitcoins he can spend in order to win.
Input
The first line contains three integers HPY, ATKY, DEFY, separated by a space, denoting the initial HP, ATK and DEF of Master Yang.
The second line contains three integers HPM, ATKM, DEFM, separated by a space, denoting the HP, ATK and DEF of the monster.
The third line contains three integers h, a, d, separated by a space, denoting the price of 1 HP, 1 ATK and 1 DEF.
All numbers in input are integer and lie between 1 and 100 inclusively.
Output
The only output line should contain an integer, denoting the minimum bitcoins Master Yang should spend in order to win.
Examples
Input
1 2 1
1 100 1
1 100 100
Output
99
Input
100 100 100
1 1 1
1 1 1
Output
0
Note
For the first sample, prices for ATK and DEF are extremely high. Master Yang can buy 99 HP, then he can beat the monster with 1 HP left.
For the second sample, Master Yang is strong enough to beat the monster, so he doesn't need to buy anything. | # HEY STALKER
hp_y, at_y, df_y = map(int, input().split())
hp_m, at_m, df_m = map(int, input().split())
cst_hp, cst_at, cst_df = map(int, input().split())
ans = 2e18
for ati in range(201):
for dfi in range(201):
if ati + at_y > df_m:
k = hp_m // ((at_y + ati) - df_m)
if hp_m % ((at_y + ati) - df_m) != 0:
k += 1
t = max(0, k*(at_m-df_y-dfi) - hp_y+1)
cost = cst_hp*t + cst_df*dfi + cst_at*ati
ans = min(ans, cost)
print(ans) | 3Python3
| {
"input": [
"1 2 1\n1 100 1\n1 100 100\n",
"100 100 100\n1 1 1\n1 1 1\n",
"51 89 97\n18 25 63\n22 91 74\n",
"1 100 1\n100 100 100\n1 100 100\n",
"20 1 1\n100 100 100\n1 100 100\n",
"1 10 29\n1 1 43\n1 1 100\n",
"25 38 49\n84 96 42\n3 51 92\n",
"2 1 1\n100 2 100\n100 1 100\n",
"1 1 1\n100 100 100\n1 100 100\n",
"99 32 20\n89 72 74\n1 100 39\n",
"100 1 1\n100 100 100\n1 100 100\n",
"10 100 55\n100 100 1\n1 1 1\n",
"1 1 1\n1 1 1\n100 100 100\n",
"1 1 1\n1 1 1\n1 1 1\n",
"1 97 1\n100 99 98\n1 51 52\n",
"50 80 92\n41 51 56\n75 93 12\n",
"100 1 1\n100 100 100\n100 1 100\n",
"11 1 1\n100 1 1\n100 1 1\n",
"1 1 1\n100 100 100\n100 100 100\n",
"1 28 47\n31 60 38\n14 51 77\n",
"1 1 1\n100 100 100\n1 2 3\n",
"1 100 100\n1 1 1\n87 100 43\n",
"1 1 1\n100 100 100\n1 1 100\n",
"14 61 87\n11 78 14\n5 84 92\n",
"65 6 5\n70 78 51\n88 55 78\n",
"1 100 1\n100 100 99\n1 100 100\n",
"39 49 78\n14 70 41\n3 33 23\n",
"11 1 1\n10 1 10\n100 50 1\n",
"1 100 1\n1 1 1\n1 1 1\n",
"79 1 1\n1 1 10\n1 1 100\n",
"100 100 100\n100 100 100\n100 100 100\n",
"11 82 51\n90 84 72\n98 98 43\n",
"50 100 51\n100 100 100\n1 100 100\n",
"10 100 1\n100 1 1\n1 100 1\n",
"74 89 5\n32 76 99\n62 95 36\n",
"72 16 49\n5 21 84\n48 51 88\n",
"100 100 1\n100 100 100\n1 100 100\n",
"76 63 14\n89 87 35\n20 15 56\n",
"1 1 1\n1 1 100\n100 100 1\n",
"1 10 10\n1 10 100\n1 1 61\n",
"10 10 100\n1 10 1\n1 1 100\n",
"1 1 100\n1 1 1\n100 1 100\n",
"12 59 66\n43 15 16\n12 18 66\n",
"10 10 100\n1 100 100\n10 100 90\n",
"10 100 1\n1 100 100\n100 1 9\n",
"51 89 97\n18 25 63\n41 91 74\n",
"1 100 1\n100 100 000\n1 100 100\n",
"2 10 29\n1 1 43\n1 1 100\n",
"25 38 84\n84 96 42\n3 51 92\n",
"99 32 20\n89 72 74\n1 100 38\n",
"1 1 1\n1 1 1\n101 100 100\n",
"1 0 1\n1 1 1\n1 1 1\n",
"1 97 1\n100 99 98\n2 51 52\n",
"100 1 1\n100 100 100\n100 1 101\n",
"1 1 1\n100 100 100\n100 100 101\n",
"1 28 47\n31 9 38\n14 51 77\n",
"1 1 1\n100 100 101\n1 2 3\n",
"65 6 7\n70 78 51\n88 55 78\n",
"11 2 1\n10 1 10\n100 50 1\n",
"79 1 1\n2 1 10\n1 1 100\n",
"11 82 51\n20 84 72\n98 98 43\n",
"50 100 80\n100 100 100\n1 100 100\n",
"74 89 5\n37 76 99\n62 95 36\n",
"72 16 49\n2 21 84\n48 51 88\n",
"76 63 14\n89 157 35\n20 15 56\n",
"1 10 10\n1 10 101\n1 1 61\n",
"10 5 100\n1 100 100\n10 100 90\n",
"10 100 1\n1 100 100\n101 1 9\n",
"99 32 20\n89 72 48\n1 100 38\n",
"1 178 1\n100 99 98\n2 51 52\n",
"19 1 1\n100 1 1\n100 1 1\n",
"1 28 47\n31 9 66\n14 51 77\n",
"1 1 1\n100 100 101\n1 3 3\n",
"65 6 7\n70 78 51\n88 23 78\n",
"74 89 5\n37 76 53\n62 95 36\n",
"81 63 14\n89 157 35\n20 15 56\n",
"10 100 1\n1 100 110\n101 1 9\n",
"50 80 98\n41 51 56\n75 93 12\n",
"11 1 1\n100 1 1\n100 2 1\n",
"1 100 100\n1 1 1\n102 100 43\n",
"39 49 78\n14 70 41\n3 33 36\n",
"10 10 100\n1 10 1\n1 2 100\n",
"12 59 66\n43 15 16\n21 18 66\n",
"110 100 100\n1 1 1\n1 1 1\n",
"2 89 97\n18 25 63\n41 91 74\n",
"2 10 29\n1 1 43\n1 1 101\n",
"1 2 1\n1 1 1\n101 100 100\n",
"1 0 2\n1 1 1\n1 1 1\n",
"50 80 98\n41 51 56\n23 93 12\n",
"1 100 100\n1 1 1\n102 100 79\n",
"39 49 78\n14 70 41\n3 9 36\n",
"7 2 1\n10 1 10\n100 50 1\n",
"79 1 0\n2 1 10\n1 1 100\n",
"11 82 51\n20 84 72\n98 89 43\n",
"72 16 3\n2 21 84\n48 51 88\n",
"1 10 10\n2 10 101\n1 1 61\n",
"12 59 66\n43 15 16\n41 18 66\n",
"10 5 100\n1 000 100\n10 100 90\n",
"110 101 100\n1 1 1\n1 1 1\n",
"2 68 97\n18 25 63\n41 91 74\n"
],
"output": [
"99",
"0",
"0",
"1990",
"11871",
"34",
"1692",
"199",
"11890",
"5478",
"11791",
"37",
"100",
"1",
"1498",
"0",
"199",
"1",
"19900",
"1562",
"496",
"0",
"298",
"0",
"7027",
"1890",
"0",
"500",
"0",
"10",
"100",
"1376",
"1384",
"0",
"3529",
"3519",
"1891",
"915",
"10000",
"91",
"0",
"1",
"0",
"9100",
"811",
"0\n",
"99\n",
"34\n",
"921\n",
"5478\n",
"100\n",
"2\n",
"2051\n",
"199\n",
"19999\n",
"561\n",
"498\n",
"6871\n",
"450\n",
"10\n",
"1204\n",
"851\n",
"3565\n",
"3519\n",
"2275\n",
"92\n",
"9600\n",
"811\n",
"2878\n",
"392\n",
"1\n",
"1989\n",
"600\n",
"3191\n",
"95\n",
"2175\n",
"821\n",
"0\n",
"2\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"34\n",
"0\n",
"2\n",
"0\n",
"0\n",
"0\n",
"450\n",
"10\n",
"1204\n",
"3519\n",
"92\n",
"0\n",
"9600\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
|
488_C. Fight the Monster_998 | A monster is attacking the Cyberland!
Master Yang, a braver, is going to beat the monster. Yang and the monster each have 3 attributes: hitpoints (HP), offensive power (ATK) and defensive power (DEF).
During the battle, every second the monster's HP decrease by max(0, ATKY - DEFM), while Yang's HP decreases by max(0, ATKM - DEFY), where index Y denotes Master Yang and index M denotes monster. Both decreases happen simultaneously Once monster's HP ≤ 0 and the same time Master Yang's HP > 0, Master Yang wins.
Master Yang can buy attributes from the magic shop of Cyberland: h bitcoins per HP, a bitcoins per ATK, and d bitcoins per DEF.
Now Master Yang wants to know the minimum number of bitcoins he can spend in order to win.
Input
The first line contains three integers HPY, ATKY, DEFY, separated by a space, denoting the initial HP, ATK and DEF of Master Yang.
The second line contains three integers HPM, ATKM, DEFM, separated by a space, denoting the HP, ATK and DEF of the monster.
The third line contains three integers h, a, d, separated by a space, denoting the price of 1 HP, 1 ATK and 1 DEF.
All numbers in input are integer and lie between 1 and 100 inclusively.
Output
The only output line should contain an integer, denoting the minimum bitcoins Master Yang should spend in order to win.
Examples
Input
1 2 1
1 100 1
1 100 100
Output
99
Input
100 100 100
1 1 1
1 1 1
Output
0
Note
For the first sample, prices for ATK and DEF are extremely high. Master Yang can buy 99 HP, then he can beat the monster with 1 HP left.
For the second sample, Master Yang is strong enough to beat the monster, so he doesn't need to buy anything. | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.InputMismatchException;
public class Main {
public static void main(String[] args) {
// TaskA mSol = new TaskA();
// TaskB mSol = new TaskB();
// TaskC mSol = new TaskC();
// TaskD mSol = new TaskD();
// TaskE mSol = new TaskE();
TaskF mSol = new TaskF();
mSol.solve();
mSol.flush();
mSol.close();
}
}
class TaskF {
public FasterScanner mFScanner;
public PrintWriter mOut;
public TaskF() {
mFScanner = new FasterScanner();
mOut = new PrintWriter(System.out);
}
public void solve() {
int i, j, k;
int hpY, atkY, defY;
int hpM, atkM, defM;
int h, a, d;
int nY, nM;
int res = Integer.MAX_VALUE;
int temp;
int hitpoints;
boolean win;
hpY = mFScanner.nextInt();
atkY = mFScanner.nextInt();
defY = mFScanner.nextInt();
hpM = mFScanner.nextInt();
atkM = mFScanner.nextInt();
defM = mFScanner.nextInt();
h = mFScanner.nextInt();
a = mFScanner.nextInt();
d = mFScanner.nextInt();
int ratkY = Math.max(0, atkY - defM);
int ratkM = Math.max(0, atkM - defY);
for (int attack = 0; attack <= 200; attack++) {
for (int defence = 0; defence <= 200; defence++) {
win = false;
ratkY = Math.max(0, atkY - defM + attack);
ratkM = Math.max(0, atkM - defY - defence);
if (ratkY == 0) {
continue;
}
if (ratkM == 0) {
temp = attack * a + defence * d;
res = Math.min(res, temp);
continue;
}
nM = (hpM / ratkY) + (hpM % ratkY != 0 ? 1 : 0);
nY = (hpY / ratkM) + (hpY % ratkM != 0 ? 1 : 0);
if (nY > nM) {
temp = attack * a + defence * d;
res = Math.min(res, temp);
continue;
}
nY = nM * ratkM - hpY;
nY++;
temp = nY * h + attack * a + defence * d;
res = Math.min(res, temp);
}
}
// if (res == Integer.MAX_VALUE)
// res = 0;
mOut.println(res);
}
public void flush() {
mOut.flush();
}
public void close() {
mOut.close();
}
}
class FasterScanner {
private InputStream mIs;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FasterScanner() {
this(System.in);
}
public FasterScanner(InputStream is) {
mIs = is;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = mIs.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public String nextString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
} | 4JAVA
| {
"input": [
"1 2 1\n1 100 1\n1 100 100\n",
"100 100 100\n1 1 1\n1 1 1\n",
"51 89 97\n18 25 63\n22 91 74\n",
"1 100 1\n100 100 100\n1 100 100\n",
"20 1 1\n100 100 100\n1 100 100\n",
"1 10 29\n1 1 43\n1 1 100\n",
"25 38 49\n84 96 42\n3 51 92\n",
"2 1 1\n100 2 100\n100 1 100\n",
"1 1 1\n100 100 100\n1 100 100\n",
"99 32 20\n89 72 74\n1 100 39\n",
"100 1 1\n100 100 100\n1 100 100\n",
"10 100 55\n100 100 1\n1 1 1\n",
"1 1 1\n1 1 1\n100 100 100\n",
"1 1 1\n1 1 1\n1 1 1\n",
"1 97 1\n100 99 98\n1 51 52\n",
"50 80 92\n41 51 56\n75 93 12\n",
"100 1 1\n100 100 100\n100 1 100\n",
"11 1 1\n100 1 1\n100 1 1\n",
"1 1 1\n100 100 100\n100 100 100\n",
"1 28 47\n31 60 38\n14 51 77\n",
"1 1 1\n100 100 100\n1 2 3\n",
"1 100 100\n1 1 1\n87 100 43\n",
"1 1 1\n100 100 100\n1 1 100\n",
"14 61 87\n11 78 14\n5 84 92\n",
"65 6 5\n70 78 51\n88 55 78\n",
"1 100 1\n100 100 99\n1 100 100\n",
"39 49 78\n14 70 41\n3 33 23\n",
"11 1 1\n10 1 10\n100 50 1\n",
"1 100 1\n1 1 1\n1 1 1\n",
"79 1 1\n1 1 10\n1 1 100\n",
"100 100 100\n100 100 100\n100 100 100\n",
"11 82 51\n90 84 72\n98 98 43\n",
"50 100 51\n100 100 100\n1 100 100\n",
"10 100 1\n100 1 1\n1 100 1\n",
"74 89 5\n32 76 99\n62 95 36\n",
"72 16 49\n5 21 84\n48 51 88\n",
"100 100 1\n100 100 100\n1 100 100\n",
"76 63 14\n89 87 35\n20 15 56\n",
"1 1 1\n1 1 100\n100 100 1\n",
"1 10 10\n1 10 100\n1 1 61\n",
"10 10 100\n1 10 1\n1 1 100\n",
"1 1 100\n1 1 1\n100 1 100\n",
"12 59 66\n43 15 16\n12 18 66\n",
"10 10 100\n1 100 100\n10 100 90\n",
"10 100 1\n1 100 100\n100 1 9\n",
"51 89 97\n18 25 63\n41 91 74\n",
"1 100 1\n100 100 000\n1 100 100\n",
"2 10 29\n1 1 43\n1 1 100\n",
"25 38 84\n84 96 42\n3 51 92\n",
"99 32 20\n89 72 74\n1 100 38\n",
"1 1 1\n1 1 1\n101 100 100\n",
"1 0 1\n1 1 1\n1 1 1\n",
"1 97 1\n100 99 98\n2 51 52\n",
"100 1 1\n100 100 100\n100 1 101\n",
"1 1 1\n100 100 100\n100 100 101\n",
"1 28 47\n31 9 38\n14 51 77\n",
"1 1 1\n100 100 101\n1 2 3\n",
"65 6 7\n70 78 51\n88 55 78\n",
"11 2 1\n10 1 10\n100 50 1\n",
"79 1 1\n2 1 10\n1 1 100\n",
"11 82 51\n20 84 72\n98 98 43\n",
"50 100 80\n100 100 100\n1 100 100\n",
"74 89 5\n37 76 99\n62 95 36\n",
"72 16 49\n2 21 84\n48 51 88\n",
"76 63 14\n89 157 35\n20 15 56\n",
"1 10 10\n1 10 101\n1 1 61\n",
"10 5 100\n1 100 100\n10 100 90\n",
"10 100 1\n1 100 100\n101 1 9\n",
"99 32 20\n89 72 48\n1 100 38\n",
"1 178 1\n100 99 98\n2 51 52\n",
"19 1 1\n100 1 1\n100 1 1\n",
"1 28 47\n31 9 66\n14 51 77\n",
"1 1 1\n100 100 101\n1 3 3\n",
"65 6 7\n70 78 51\n88 23 78\n",
"74 89 5\n37 76 53\n62 95 36\n",
"81 63 14\n89 157 35\n20 15 56\n",
"10 100 1\n1 100 110\n101 1 9\n",
"50 80 98\n41 51 56\n75 93 12\n",
"11 1 1\n100 1 1\n100 2 1\n",
"1 100 100\n1 1 1\n102 100 43\n",
"39 49 78\n14 70 41\n3 33 36\n",
"10 10 100\n1 10 1\n1 2 100\n",
"12 59 66\n43 15 16\n21 18 66\n",
"110 100 100\n1 1 1\n1 1 1\n",
"2 89 97\n18 25 63\n41 91 74\n",
"2 10 29\n1 1 43\n1 1 101\n",
"1 2 1\n1 1 1\n101 100 100\n",
"1 0 2\n1 1 1\n1 1 1\n",
"50 80 98\n41 51 56\n23 93 12\n",
"1 100 100\n1 1 1\n102 100 79\n",
"39 49 78\n14 70 41\n3 9 36\n",
"7 2 1\n10 1 10\n100 50 1\n",
"79 1 0\n2 1 10\n1 1 100\n",
"11 82 51\n20 84 72\n98 89 43\n",
"72 16 3\n2 21 84\n48 51 88\n",
"1 10 10\n2 10 101\n1 1 61\n",
"12 59 66\n43 15 16\n41 18 66\n",
"10 5 100\n1 000 100\n10 100 90\n",
"110 101 100\n1 1 1\n1 1 1\n",
"2 68 97\n18 25 63\n41 91 74\n"
],
"output": [
"99",
"0",
"0",
"1990",
"11871",
"34",
"1692",
"199",
"11890",
"5478",
"11791",
"37",
"100",
"1",
"1498",
"0",
"199",
"1",
"19900",
"1562",
"496",
"0",
"298",
"0",
"7027",
"1890",
"0",
"500",
"0",
"10",
"100",
"1376",
"1384",
"0",
"3529",
"3519",
"1891",
"915",
"10000",
"91",
"0",
"1",
"0",
"9100",
"811",
"0\n",
"99\n",
"34\n",
"921\n",
"5478\n",
"100\n",
"2\n",
"2051\n",
"199\n",
"19999\n",
"561\n",
"498\n",
"6871\n",
"450\n",
"10\n",
"1204\n",
"851\n",
"3565\n",
"3519\n",
"2275\n",
"92\n",
"9600\n",
"811\n",
"2878\n",
"392\n",
"1\n",
"1989\n",
"600\n",
"3191\n",
"95\n",
"2175\n",
"821\n",
"0\n",
"2\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"34\n",
"0\n",
"2\n",
"0\n",
"0\n",
"0\n",
"450\n",
"10\n",
"1204\n",
"3519\n",
"92\n",
"0\n",
"9600\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
|
512_B. Fox And Jumping_999 | Fox Ciel is playing a game. In this game there is an infinite long tape with cells indexed by integers (positive, negative and zero). At the beginning she is standing at the cell 0.
There are also n cards, each card has 2 attributes: length li and cost ci. If she pays ci dollars then she can apply i-th card. After applying i-th card she becomes able to make jumps of length li, i. e. from cell x to cell (x - li) or cell (x + li).
She wants to be able to jump to any cell on the tape (possibly, visiting some intermediate cells). For achieving this goal, she wants to buy some cards, paying as little money as possible.
If this is possible, calculate the minimal cost.
Input
The first line contains an integer n (1 ≤ n ≤ 300), number of cards.
The second line contains n numbers li (1 ≤ li ≤ 109), the jump lengths of cards.
The third line contains n numbers ci (1 ≤ ci ≤ 105), the costs of cards.
Output
If it is impossible to buy some cards and become able to jump to any cell, output -1. Otherwise output the minimal cost of buying such set of cards.
Examples
Input
3
100 99 9900
1 1 1
Output
2
Input
5
10 20 30 40 50
1 1 1 1 1
Output
-1
Input
7
15015 10010 6006 4290 2730 2310 1
1 1 1 1 1 1 10
Output
6
Input
8
4264 4921 6321 6984 2316 8432 6120 1026
4264 4921 6321 6984 2316 8432 6120 1026
Output
7237
Note
In first sample test, buying one card is not enough: for example, if you buy a card with length 100, you can't jump to any cell whose index is not a multiple of 100. The best way is to buy first and second card, that will make you be able to jump to any cell.
In the second sample test, even if you buy all cards, you can't jump to any cell whose index is not a multiple of 10, so you should output -1. | R=lambda:map(int,raw_input().split())
def gcd(a,b):return a if not b else gcd(b,a%b)
input()
v={0:0}
for a,b in zip(R(),R()):
for k in v.keys():
x=gcd(a,k)
v[x]=min(v.get(x,1<<28),v[k]+b)
print v.get(1,-1) | 1Python2
| {
"input": [
"5\n10 20 30 40 50\n1 1 1 1 1\n",
"8\n4264 4921 6321 6984 2316 8432 6120 1026\n4264 4921 6321 6984 2316 8432 6120 1026\n",
"3\n100 99 9900\n1 1 1\n",
"7\n15015 10010 6006 4290 2730 2310 1\n1 1 1 1 1 1 10\n",
"8\n2 3 5 7 11 13 17 19\n4 8 7 1 5 2 6 3\n",
"1\n2\n2\n",
"1\n1000000000\n100000\n",
"1\n1\n1\n",
"6\n1 2 4 8 16 32\n32 16 8 4 2 1\n",
"2\n1000000000 999999999\n100000 100000\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 1365 1155 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 85 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 62478 6180 26977 12112 9975 72933 73239 65856 98253 18875 55266 55867 36397 40743 47977\n",
"35\n512 268435456 8 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 12683 36255 61053 83828 93590 74236 5281 28143 7350 45953 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 28986 25365 98581 11195 43674 75769 22053\n",
"8\n2 4 5 7 11 13 17 19\n4 8 7 1 5 2 6 3\n",
"1\n4\n2\n",
"6\n1 2 6 8 16 32\n32 16 8 4 2 1\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 2486 1155 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 85 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 62478 6180 26977 12112 9975 72933 73239 65856 98253 18875 55266 55867 36397 40743 47977\n",
"8\n1843 4921 6321 6984 2316 8432 6120 1026\n4264 4921 6321 6984 2316 8432 6120 1026\n",
"3\n100 99 12690\n1 1 1\n",
"8\n1843 4921 6321 6984 4370 8432 6120 1026\n4264 4921 6321 6984 2316 8432 6120 1026\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 2486 732 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 85 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 4916 6180 26977 12112 9975 72933 73239 65856 98253 18875 55266 55867 36397 40743 47977\n",
"8\n1843 4921 6321 6984 4370 8432 6120 1026\n4264 4921 6321 6984 2316 3194 6120 1026\n",
"35\n512 172290165 12 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 13319 36255 61053 83828 93590 74236 5281 28143 7350 45953 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 30591 25365 98581 11195 43674 75769 22053\n",
"3\n100 99 22739\n0 1 2\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 2486 732 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 9 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 4916 6180 26977 12112 9975 72933 119150 65856 98253 18875 55266 55867 36397 40743 47977\n",
"1\n1010000000\n100000\n",
"1\n2\n1\n",
"2\n1000000000 112654816\n100000 100000\n",
"35\n512 268435456 8 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 12683 36255 61053 83828 93590 74236 5281 28143 7350 45953 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 30591 25365 98581 11195 43674 75769 22053\n",
"5\n10 20 30 40 50\n0 1 1 1 1\n",
"7\n15015 10010 6006 4290 2335 2310 1\n1 1 1 1 1 1 10\n",
"8\n4 4 5 7 11 13 17 19\n4 8 7 1 5 2 6 3\n",
"1\n1010000000\n000000\n",
"1\n3\n1\n",
"6\n1 2 6 8 16 32\n32 16 8 0 2 1\n",
"2\n1000000000 112654816\n100001 100000\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 2486 732 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 85 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 62478 6180 26977 12112 9975 72933 73239 65856 98253 18875 55266 55867 36397 40743 47977\n",
"35\n512 268435456 12 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 12683 36255 61053 83828 93590 74236 5281 28143 7350 45953 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 30591 25365 98581 11195 43674 75769 22053\n",
"5\n15 20 30 40 50\n0 1 1 1 1\n",
"3\n100 99 22739\n1 1 1\n",
"7\n15015 10010 6006 4290 2335 2310 1\n1 1 1 1 1 1 5\n",
"8\n4 4 5 7 11 13 5 19\n4 8 7 1 5 2 6 3\n",
"1\n1000000000\n000000\n",
"1\n5\n1\n",
"2\n1100000000 112654816\n100001 100000\n",
"35\n512 268435456 12 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 13319 36255 61053 83828 93590 74236 5281 28143 7350 45953 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 30591 25365 98581 11195 43674 75769 22053\n",
"5\n4 20 30 40 50\n0 1 1 1 1\n",
"3\n100 99 22739\n1 1 2\n",
"7\n15015 10010 6006 4290 2335 2310 1\n1 1 1 1 1 1 3\n",
"8\n7 4 5 7 11 13 5 19\n4 8 7 1 5 2 6 3\n",
"1\n1100000000\n000000\n",
"1\n5\n2\n",
"2\n1100000000 112654816\n100001 100010\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 2486 732 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 85 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 4916 6180 26977 12112 9975 72933 119150 65856 98253 18875 55266 55867 36397 40743 47977\n",
"5\n4 20 30 40 50\n1 1 1 1 1\n",
"8\n1843 4921 6321 6984 4370 13270 6120 1026\n4264 4921 6321 6984 2316 3194 6120 1026\n",
"7\n15015 10010 6006 4290 2335 2310 1\n1 1 1 1 0 1 3\n",
"8\n14 4 5 7 11 13 5 19\n4 8 7 1 5 2 6 3\n",
"1\n1100010000\n000000\n",
"1\n5\n0\n",
"2\n1100000000 112654816\n110001 100010\n",
"35\n512 172290165 12 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 13319 36255 61053 83828 93590 74236 5281 28143 7350 82281 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 30591 25365 98581 11195 43674 75769 22053\n",
"5\n4 20 30 40 50\n1 0 1 1 1\n",
"8\n1843 4921 6321 6984 4370 13270 6120 1026\n4264 4921 6321 6984 2316 3194 6120 901\n",
"3\n100 99 22739\n0 2 2\n",
"7\n15015 10010 6006 4290 242 2310 1\n1 1 1 1 0 1 3\n",
"8\n14 4 5 7 11 13 5 19\n4 8 7 1 5 2 8 3\n",
"1\n1100010000\n100000\n",
"2\n1110000000 112654816\n110001 100010\n"
],
"output": [
"-1",
"7237\n",
"2\n",
"6\n",
"3\n",
"-1",
"-1",
"1\n",
"32\n",
"200000\n",
"18961\n",
"-1\n",
"3\n",
"-1\n",
"32\n",
"18961\n",
"6580\n",
"2\n",
"8637\n",
"17028\n",
"7458\n",
"73158\n",
"1\n",
"7568\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"2\n",
"3\n",
"-1\n",
"-1\n",
"32\n",
"-1\n",
"18961\n",
"-1\n",
"-1\n",
"2\n",
"2\n",
"3\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"2\n",
"2\n",
"3\n",
"-1\n",
"-1\n",
"-1\n",
"17028\n",
"-1\n",
"7458\n",
"1\n",
"3\n",
"-1\n",
"-1\n",
"-1\n",
"73158\n",
"-1\n",
"7458\n",
"2\n",
"3\n",
"3\n",
"-1\n",
"-1\n"
]
} | 2CODEFORCES
|
Subsets and Splits