problem_id
stringlengths
32
32
link
stringlengths
75
84
problem
stringlengths
14
5.33k
solution
stringlengths
15
6.63k
letter
stringclasses
5 values
answer
stringclasses
957 values
b430429b8155131e340e49534a88abf4
https://artofproblemsolving.com/wiki/index.php/2022_AMC_12B_Problems/Problem_24
The figure below depicts a regular $7$ -gon inscribed in a unit circle. [asy] import geometry; unitsize(3cm); draw(circle((0,0),1),linewidth(1.5)); for (int i = 0; i < 7; ++i) { for (int j = 0; j < i; ++j) { draw(dir(i * 360/7) -- dir(j * 360/7),linewidth(1.5)); } } for(int i = 0; i < 7; ++i) { dot(dir(i * 360/7),5+black); } [/asy] What is the sum of the $4$ th powers of the lengths of all $21$ of its edges and diagonals? $\textbf{(A) }49 \qquad \textbf{(B) }98 \qquad \textbf{(C) }147 \qquad \textbf{(D) }168 \qquad \textbf{(E) }196$
This is how I solve this problem: It's easy to solve for $3$ -gon, $4$ -gon, and $6$ -gon inscribed in a unit circle. (Okay, it's just the weird names for triangle, square, and hexagon) For $3$ -gon, the sum is equal to $3$ times the $4$ th power of an edge. Thus, \[S_3=3\,\cdot\,\left(\sqrt{3}\right)^4=27.\] For $4$ -gon, the sum is equal to $4$ times the $4$ th power of an edge, and $2$ times the $4$ th power of the diagonal. Thus, \[S_4=4\,\cdot\,\left(\sqrt{2}\right)^4+2\,\cdot\,\left(2\right)^4=48.\] For $6$ -gon, the sum is equal to $6$ times the $4$ th power of an edge, $6$ times the $4$ th power of the short diagonal, and $3$ times the $4$ th power of the long diagonal. Thus, \[S_6=6\,\cdot\,\left(1\right)^4+6\,\cdot\,\left(\sqrt{3}\right)^4+3\,\cdot\,\left(2\right)^4=108.\] Then, I quickly noticed that $27=3\,\cdot\,3^2$ $48=3\,\cdot\,4^2$ , and $108=3\,\cdot\,6^2$ . So reasonably, it will work out this formula, $S_n=3n^2$ . (This step is purely out of guessing, maybe have a look at Solution 8 for more info...) By inductive reasoning, we got $S_7=3\,\cdot\,7^2=\boxed{147}$
C
147
06890cc553605954a960222d8469999a
https://artofproblemsolving.com/wiki/index.php/2022_AMC_12B_Problems/Problem_25
Four regular hexagons surround a square with side length 1, each one sharing an edge with the square, as shown in the figure below. The area of the resulting 12-sided outer nonconvex polygon can be written as $m \sqrt{n} + p$ , where $m$ $n$ , and $p$ are integers and $n$ is not divisible by the square of any prime. What is $m+n+p$ [asy] import geometry; unitsize(3cm); draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle); draw(shift((1/2,1-sqrt(3)/2))*polygon(6)); draw(shift((1/2,sqrt(3)/2))*polygon(6)); draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw((0,1-sqrt(3))--(1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--(sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--(0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle,linewidth(2)); [/asy] $\textbf{(A) } -12 \qquad \textbf{(B) }-4 \qquad \textbf{(C) } 4 \qquad \textbf{(D) }24 \qquad \textbf{(E) }32$
[asy] import geometry; unitsize(3cm); draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle); draw(shift((1/2,1-sqrt(3)/2))*polygon(6)); draw(shift((1/2,sqrt(3)/2))*polygon(6)); draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw((0,1-sqrt(3))--(1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--(sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--(0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle,linewidth(1.5)); draw((3-sqrt(3),3-sqrt(3)) -- (3-sqrt(3),sqrt(3)-2) -- (sqrt(3)-2,sqrt(3)-2) -- (sqrt(3)-2,3-sqrt(3)) -- cycle,linewidth(1.5)); label("$O (0, 0)$",(0.5,0.5),S); dot((0.5,0.5)); label("$A$", (3-sqrt(3), 3-sqrt(3)), NE); label("$B$", (sqrt(3) - 2, 3-sqrt(3)), NW); label("$M$", (0, sqrt(3)), NW); label("$N$", (1, sqrt(3)), NE); [/asy] Refer to the diagram above. Let the origin be at the center of the square, $A$ be the intersection of the top and right hexagons, $B$ be the intersection of the top and left hexagons, and $M$ and $N$ be the top points in the diagram. By symmetry, $A$ lies on the line $y = x$ . The equation of line $AN$ is $y = -x\sqrt{3} + \frac{3}{2}\sqrt{3} - \frac{1}{2}$ (due to it being one of the sides of the top hexagon). Thus, we can solve for the coordinates of $A$ by finding the intersection of the two lines: \[x = -x\sqrt{3} + \frac{3\sqrt{3} - 1}{2}\] \[x(\sqrt{3} + 1) = \frac{3\sqrt{3} - 1}{2}\] \[x = \frac{3\sqrt{3}-1}{2} \cdot \frac{1}{\sqrt{3} + 1}\] \[= \frac{3\sqrt{3}-1}{2(\sqrt{3} + 1)} \cdot \frac{\sqrt{3} - 1}{\sqrt{3} - 1}\] \[= \frac{10 - 4\sqrt{3}}{4}\] \[= \frac{5}{2} - \sqrt{3}\] \[\therefore A = \left(\frac{5}{2} - \sqrt{3}, \frac{5}{2} - \sqrt{3}\right).\] This means that we can find the length $AB$ , which is equal to $2(\frac{5}{2} - \sqrt{3}) = (5 - 2\sqrt{3}$ . We will next find the area of trapezoid $ABMN$ . The lengths of the bases are $1$ and $5 - 2\sqrt{3}$ , and the height is equal to the $y$ -coordinate of $M$ minus the $y$ -coordinate of $A$ . The height of the hexagon is $\sqrt{3}$ and the bottom of the hexagon lies on the line $y = \frac{1}{2}$ . Thus, the $y$ -coordinate of $M$ is $\sqrt{3} - \frac{1}{2}$ , and the height is $2\sqrt{3} - 3$ . We can now find the area of the trapezoid: \[[ABMN] = (2\sqrt{3} - 3)\left(\frac{1 + 5 - 2\sqrt{3}}{2}\right)\] \[= (2\sqrt{3} - 3)(3 - \sqrt{3})\] \[= 6\sqrt{3} + 3\sqrt{3} - 9 - 6\] \[= 9\sqrt{3} - 15.\] The total area of the figure is the area of a square with side length $AB$ plus four times the area of this trapezoid: \[\textrm{Area} = (5 - 2\sqrt{3})^2 + 4(9\sqrt{3} - 15)\] \[= 37 - 20\sqrt{3} + 36\sqrt{3} - 60\] \[= 16\sqrt{3} - 23.\] Our answer is $16 + 3 - 23 = \boxed{4}$
B
4
06890cc553605954a960222d8469999a
https://artofproblemsolving.com/wiki/index.php/2022_AMC_12B_Problems/Problem_25
Four regular hexagons surround a square with side length 1, each one sharing an edge with the square, as shown in the figure below. The area of the resulting 12-sided outer nonconvex polygon can be written as $m \sqrt{n} + p$ , where $m$ $n$ , and $p$ are integers and $n$ is not divisible by the square of any prime. What is $m+n+p$ [asy] import geometry; unitsize(3cm); draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle); draw(shift((1/2,1-sqrt(3)/2))*polygon(6)); draw(shift((1/2,sqrt(3)/2))*polygon(6)); draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw((0,1-sqrt(3))--(1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--(sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--(0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle,linewidth(2)); [/asy] $\textbf{(A) } -12 \qquad \textbf{(B) }-4 \qquad \textbf{(C) } 4 \qquad \textbf{(D) }24 \qquad \textbf{(E) }32$
[asy] import geometry; unitsize(3cm); draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle); draw(shift((1/2,1-sqrt(3)/2))*polygon(6)); draw(shift((1/2,sqrt(3)/2))*polygon(6)); draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw((0,1-sqrt(3))--(1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--(sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--(0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle,linewidth(2)); draw((0.5,sqrt(3))--(0.5,1-sqrt(3)),linewidth(2)); draw((1-sqrt(3),0.5)--(sqrt(3),0.5),linewidth(2)); draw((-2+sqrt(3),-2+sqrt(3))--(3-sqrt(3),3-sqrt(3)),linewidth(2)); draw((1, sqrt(3))--(1,1),linewidth(2)); label("$O$",(0.5,0.5),SE); dot((0.5,0.5)); label("$A$", (3-sqrt(3), 3-sqrt(3)), NE); label("$B$", (1, sqrt(3)), NE); label("$C$", (1,1), E); label("$D$", (1/2, sqrt(3)), N); [/asy] Begin by dividing the figure as shown above. Clearly, the entire figure has 8-fold symmetry. Therefore, we can calculate the area of $ODBA$ and multiply it by 8. We split $[ODBA]$ into $[ODBC]+[ABC]$ Knowing the side length of the hexagon is $1$ , we can use 30-60-90 triangles within the hexagon to find the total distance between opposite edges is $2\cdot \frac{\sqrt{3}}{2}=\sqrt{3}.$ Thus, $OD=\sqrt{3}-\frac{1}{2}$ and $BC=\sqrt{3}-1.$ Recognizing $DB=\frac{1}{2}$ and $ODBC$ is a trapezoid, \[8\cdot[ODBC]=2\left(\sqrt{3}-\frac{1}{2}+\sqrt{3}-1\right)=4\sqrt{3}-3.\] Next, we aim to find $[ABC]$ . By angle chasing, we find $\angle A=105^\circ,$ $\angle B=30^\circ,$ and $\angle C = 45^\circ.$ We can use the law of sines to find $AB$ \[\frac{\sin(105^\circ)}{\sqrt{3}-1}=\frac{\sin(45^\circ)}{AB}\implies AB=\frac{\sqrt{6}-\sqrt{2}}{2\sin(105^\circ)}.\] We may not know what $\sin(105^\circ)$ is by memory, but we can cleverly calculate it using a common trig identity: \begin{align*} \sin(105^\circ)&=\sin(60^\circ+45^\circ),\\ &=\sin(60^\circ)\cos(45^\circ)+\cos(60^\circ)\sin(45^\circ),\\ &=\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2}+\frac{1}{2}\cdot\frac{\sqrt{2}}{2},\\ &=\frac{\sqrt{6}+\sqrt{2}}{4}. \end{align*} With some simplification, we'll find $AB=4-2\sqrt{3}$ . Now, we can easily calculate $8\cdot [ABC]$ as \[8\cdot\frac{1}{2}\cdot(\sqrt{3}-1)(4-2\sqrt{3})\sin(30^\circ)=12\sqrt{3}-20.\] Thus, the area of the dodecagon is $8\cdot [ODBA] = 8\cdot [ODBC] + 8 \cdot [ABC] =4\sqrt{3}-3+12\sqrt{3}-20=16\sqrt{3}-23.$ Finally, we find \[16+3-23=\boxed{4}.\]
B
4
06890cc553605954a960222d8469999a
https://artofproblemsolving.com/wiki/index.php/2022_AMC_12B_Problems/Problem_25
Four regular hexagons surround a square with side length 1, each one sharing an edge with the square, as shown in the figure below. The area of the resulting 12-sided outer nonconvex polygon can be written as $m \sqrt{n} + p$ , where $m$ $n$ , and $p$ are integers and $n$ is not divisible by the square of any prime. What is $m+n+p$ [asy] import geometry; unitsize(3cm); draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle); draw(shift((1/2,1-sqrt(3)/2))*polygon(6)); draw(shift((1/2,sqrt(3)/2))*polygon(6)); draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw((0,1-sqrt(3))--(1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--(sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--(0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle,linewidth(2)); [/asy] $\textbf{(A) } -12 \qquad \textbf{(B) }-4 \qquad \textbf{(C) } 4 \qquad \textbf{(D) }24 \qquad \textbf{(E) }32$
[asy] import geometry; unitsize(3cm); draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle); draw(shift((1/2,1-sqrt(3)/2))*polygon(6)); draw(shift((1/2,sqrt(3)/2))*polygon(6)); draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw((0,1-sqrt(3))--(1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--(sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--(0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle,linewidth(2)); draw((1,1)--(3-sqrt(3),3-sqrt(3)),linewidth(2)); draw((0,1)--(sqrt(3)-2,3-sqrt(3)),linewidth(2)); draw((0,0)--(sqrt(3)-2,sqrt(3)-2),linewidth(2)); draw((1,0)--(3-sqrt(3),sqrt(3)-2),linewidth(2)); draw((0, sqrt(3))--(0, -sqrt(3)+1),linewidth(2)); draw((1, sqrt(3))--(1, -sqrt(3)+1),linewidth(2)); draw((1-sqrt(3),0)--(sqrt(3),0),linewidth(2)); draw((1-sqrt(3),1)--(sqrt(3),1),linewidth(2)); label("$A$", (3-sqrt(3), 3-sqrt(3)), NE); label("$B$", (1, sqrt(3)), NE); label("$C$", (1,1), SW); label("$D$", (1,0), NW); label("$E$", (1, -sqrt(3)+1), SE); label("$F$", (0, -sqrt(3)+1), SW); label("$G$", (0, sqrt(3)), NW); [/asy] Divide this polygon into a 'cross' and $8$ triangles like $\triangle ABC$ $BD = 2 \cdot \frac{ \sqrt{3} }{2} = \sqrt{3}$ $BE = 2BD - CD = 2\sqrt{3} - 1$ $EF = 1$ $[BEFG] = 1 \cdot (2\sqrt{3} - 1) = 2\sqrt{3} - 1$ $[\text{cross}] = 2\cdot [BEFG] - 1 = 2(2\sqrt{3} - 1)- 1 = 4\sqrt{3} - 3$ $\angle ABC = 120^{\circ} - 90^{\circ} = 30^{\circ}$ $\angle ACB = \frac{90^{\circ}}{2} = 45^{\circ}$ $\angle BAC = 180^{\circ} - 30^{\circ} - 45^{\circ} = 105^{\circ}$ $BC = BD - CD = \sqrt{3} - 1$ . Draw a perpendicular line $AG$ to side $BC$ $BG + CG = BC$ $AG \cdot \sqrt{3} + AG = \sqrt{3} - 1$ $AG = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{(\sqrt{3} - 1)^2}{2} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}$ $[ABC] = \frac12 \cdot AG \cdot BC = \frac12 (2 - \sqrt{3})(\sqrt{3} - 1)$ $[\text{12-sided outer polygon}] = [\text{cross}] + 8 \cdot [ABC] = 4\sqrt{3} - 3 + 8 \cdot \frac12 (2 - \sqrt{3})(\sqrt{3} - 1) = 4\sqrt{3} - 3 + 4 (3\sqrt{3} - 5) = 16\sqrt{3}-23$ \[16+3-23=\boxed{4}\]
B
4
06890cc553605954a960222d8469999a
https://artofproblemsolving.com/wiki/index.php/2022_AMC_12B_Problems/Problem_25
Four regular hexagons surround a square with side length 1, each one sharing an edge with the square, as shown in the figure below. The area of the resulting 12-sided outer nonconvex polygon can be written as $m \sqrt{n} + p$ , where $m$ $n$ , and $p$ are integers and $n$ is not divisible by the square of any prime. What is $m+n+p$ [asy] import geometry; unitsize(3cm); draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle); draw(shift((1/2,1-sqrt(3)/2))*polygon(6)); draw(shift((1/2,sqrt(3)/2))*polygon(6)); draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw((0,1-sqrt(3))--(1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--(sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--(0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle,linewidth(2)); [/asy] $\textbf{(A) } -12 \qquad \textbf{(B) }-4 \qquad \textbf{(C) } 4 \qquad \textbf{(D) }24 \qquad \textbf{(E) }32$
We calculate the area as the area of the red octagon minus the four purple congruent triangles: [asy] import geometry; unitsize(3cm); draw((1-sqrt(3),1-sqrt(3))--(1-sqrt(3),sqrt(3))--(sqrt(3),sqrt(3))--(sqrt(3),1-sqrt(3))--cycle,dashed); filldraw((0,1-sqrt(3))--(1,1-sqrt(3))--(sqrt(3),0)--(sqrt(3),1)--(1,sqrt(3))--(0,sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--cycle,red*0.2+white,red); filldraw((1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--cycle,purple*0.2+white,blue); filldraw((sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--cycle,purple*0.2+white,blue); filldraw((0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--cycle,purple*0.2+white,blue); filldraw((0,1-sqrt(3))--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle,purple*0.2+white,blue); draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle); draw(shift((1/2,1-sqrt(3)/2))*polygon(6)); draw(shift((1/2,sqrt(3)/2))*polygon(6)); draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); [/asy] We first find the important angles in the figure. We note that 2 adjacent hexagons are rotated $90^\circ$ with respect to the other, so the angles between any sides is $150^\circ$ . In particular, as the purple triangles are isosceles, they have angles $150^\circ,15^\circ$ , and $15^\circ$ , and the octagon is equiangular (all its angles are $135^\circ$ ). Thus, we can draw a square around the octagon, and we note that the ``cut out" triangles are all isosceles right triangles. Now, we calculate the side length of the square. Note that the hexagon has a height of $\sqrt 3$ , so the length of a side of the square is $2\sqrt 3-1$ . In particular, the horizontal/vertical sides of the octagon have length $1$ , so the legs of the isosceles triangles are \[\frac{2\sqrt3-1-1}2=\sqrt3-1\] Thus, the area of the octagon is \[(2\sqrt3-1)^2-4\cdot\frac 12(\sqrt3-1)^2=5\] Now, we calculate the area of one of the four isosceles triangles. The base of the triangle is $(\sqrt 3-1)\sqrt 2$ , so the area is \[\frac 14\mathrm{base length}^2\cdot\tan(\mathrm{base angle})=\frac 14((\sqrt3-1)\sqrt2)^2\cdot\tan15^\circ=\frac 14(8-4\sqrt3)(2-\sqrt3)=7-4\sqrt 3\] Thus, the area of the dodecagon is \[5-4(7-4\sqrt3)=16\sqrt3-23\] Thus the answer is $16+3-23=-4$ , or $\boxed{4}$
B
4
06890cc553605954a960222d8469999a
https://artofproblemsolving.com/wiki/index.php/2022_AMC_12B_Problems/Problem_25
Four regular hexagons surround a square with side length 1, each one sharing an edge with the square, as shown in the figure below. The area of the resulting 12-sided outer nonconvex polygon can be written as $m \sqrt{n} + p$ , where $m$ $n$ , and $p$ are integers and $n$ is not divisible by the square of any prime. What is $m+n+p$ [asy] import geometry; unitsize(3cm); draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle); draw(shift((1/2,1-sqrt(3)/2))*polygon(6)); draw(shift((1/2,sqrt(3)/2))*polygon(6)); draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw((0,1-sqrt(3))--(1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--(sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--(0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle,linewidth(2)); [/asy] $\textbf{(A) } -12 \qquad \textbf{(B) }-4 \qquad \textbf{(C) } 4 \qquad \textbf{(D) }24 \qquad \textbf{(E) }32$
Note that each of the green sections is a rectangle, so its interior angles are all $90^{\circ}.$ Since $\angle{ABC}=120^{\circ}$ , every one of the orange sections is a $30-60-90$ right triangle. Define $x$ to be the distance from the corner of the square with side length $1$ to the corner of the larger blue square. Due to the sides of the two squares being parallel to each other, the large blue triangle is a $45-45-90$ right triangle. By $AAA$ similarity, the smaller blue triangles are also $45-45-90,$ and have side lengths of $\frac{x\sqrt{2}}{2}, \frac{x\sqrt{2}}{2},$ and $x$ . By $30-60-90$ triangle relations, the largest altitude of the orange triangle is $\frac{x\sqrt{6}}{2}.$ Now, we can find the height of the hexagon to obtain an equation in terms of $x$ . Consider a hexagon with side length $1$ , where point $P$ is the foot of the perpendicular dropped from $B$ , bisecting $\angle{ABC}$ [asy] import geometry; import fontsize; defaultpen(fontsize(9pt)); unitsize(3cm); draw(shift((1/2,1-sqrt(3)/2))*polygon(6)); draw((1,1-sqrt(3))--(1, 1)--cycle,linewidth(1)); draw((3/2,1-sqrt(3)/2)--(1, 1-sqrt(3)/2)--cycle,linewidth(1)); draw((1, 1-sqrt(3)/2)--(1.1, 1-sqrt(3)/2)--(1.1, 1-sqrt(3)/2 +0.1)--(1, 1-sqrt(3)/2+0.1)--cycle,linewidth(1)); draw((1, 1-sqrt(3)/2)--(1.1, 1-sqrt(3)/2)--(1.1, 1-sqrt(3)/2 -0.1)--(1, 1-sqrt(3)/2-0.1)--cycle,linewidth(1)); label("$A$", (1, 1), N); label("$P$", (1, 1-sqrt(3)/2), W); label("$C$", (1, 1-sqrt(3)), S); label("$B$", (3/2, 1-sqrt(3)/2), E); label("$60^{\circ}$", (3/2-0.025, 1-sqrt(3)/2), NW); label("$60^{\circ}$", (3/2-0.025, 1-sqrt(3)/2), SW); [/asy] Note that triangles $\triangle{APB}$ and $\triangle{CPB}$ are congruent $30-60-90$ triangles, by SAS congruence. Since the side length of this hexagon is $1$ , the length of $AP$ is $\frac{1}{2}\cdot \sqrt{3} =\frac{\sqrt{3}}{2}$ , by $30-60-90$ triangle relations. The height of the hexagon is twice this value, or $\sqrt{3}.$ The height is also equal to the sum of the values along the long blue line, in the first diagram. Therefore, $1+\frac{x\sqrt{2}}{2}+\frac{x\sqrt{6}}{2}=\sqrt{3}.$ Solving and rationalizing, $x=2\sqrt{2}-\sqrt{6}.$ The area of the dodecagon is equal to the sum of the areas of the four rectangles, eight orange triangles, and purple square. In terms of $x$ , this is \[8\cdot \frac{1}{2}\cdot \frac{x\sqrt{2}}{2}\cdot \frac{x\sqrt{6}}{{2}}+4\cdot 1\cdot\frac{x\sqrt{6}}{2}+(x\sqrt{2}+1)^2.\] Plugging in $x=2\sqrt{2}-\sqrt{6}$ , the area of the dodecagon is $16\sqrt{3}-23$ . Therefore, the answer is $16+3-23=$ $\boxed{4}.$
B
4
06890cc553605954a960222d8469999a
https://artofproblemsolving.com/wiki/index.php/2022_AMC_12B_Problems/Problem_25
Four regular hexagons surround a square with side length 1, each one sharing an edge with the square, as shown in the figure below. The area of the resulting 12-sided outer nonconvex polygon can be written as $m \sqrt{n} + p$ , where $m$ $n$ , and $p$ are integers and $n$ is not divisible by the square of any prime. What is $m+n+p$ [asy] import geometry; unitsize(3cm); draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle); draw(shift((1/2,1-sqrt(3)/2))*polygon(6)); draw(shift((1/2,sqrt(3)/2))*polygon(6)); draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); draw((0,1-sqrt(3))--(1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--(sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--(0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle,linewidth(2)); [/asy] $\textbf{(A) } -12 \qquad \textbf{(B) }-4 \qquad \textbf{(C) } 4 \qquad \textbf{(D) }24 \qquad \textbf{(E) }32$
Obviously, each of the hexagon have area of $\frac{3\sqrt{3}}{2}$ , which gives a total of $6\sqrt{3}$ . Now we calculate the area of the intersection of two hexagons. There are two cases : Case 1: The hexagons are on the opposite sides In this case, we see that the two hexagons' intersection is the middle square plus two triangles on its side. The square have area $1$ . Each of the triangles are 120-30-30, and hence its short side is $\frac{\sqrt{3}}{3}$ because its longer side is $1$ . Therefore, each of the small triangles have area of $\frac{\sqrt{3}}{12}$ , so each of the intersections have $1+\frac{\sqrt{3}}{6}$ area. Since there are $2$ pairs of hexagons on opposite side of each other, that gives a total area of $2+\frac{\sqrt{3}}{3}$ Case 2: The hexagons are adjacent [asy] pair[] A,B; path h1, h2,h3,h4; h1 = shift((sqrt(3)-1)/2*dir(90))*polygon(6); h2 = shift((sqrt(3)-1)/2*dir(0))*rotate(90)*polygon(6); h3 = shift((sqrt(3)-1)/2*dir(-90))*polygon(6); h4 = shift((sqrt(3)-1)/2*dir(180))*rotate(90)*polygon(6); B.cyclic=true; B.push((0,0)); int indexSquare[] = sequence(4); int indexPolygon[] = sequence(12); for(int i : indexSquare){ A.push(1/sqrt(2)*dir(45+90*i)); } draw(A[0]--A[1]--A[2]--A[3]--cycle); fill(h1,green); fill(h2,red); fill(buildcycle(h2,h1),yellow); draw(h1); draw(h2); draw(h3); draw(h4); for(int i : sequence(4)) { for(int j : sequence(3)) { B.push(B[3*i+j]+((sqrt(3)-1.5)*(j-1)*(j)+4-2*sqrt(3))*dir(90*i+60+30*j*(1.5*(j-1)-1))); } } for(int i=0; i <12; ++i) { draw(shift(0.5,0.5-sqrt(3))*(B[i])--shift(0.5,0.5-sqrt(3))*(B[i + 1]),linewidth(2)); } [/asy] In this case, their intersection is a convex hexagon. We cut it in half and we're left with a quadrilateral with two sides with length one (because it shares these sides with one of the hexagons, and for this reason the angle between the two sides is $120$ degrees) and one short side and one long side. Here, we divide the area even further. We draw a line that divide the quadrilateral into a triangle with side lengths $1$ $1$ , and $\sqrt{3}$ (because it is 30-30-120) and another triangle with unknown side lengths. Simple angle chasing yields the triangle with unknown side lengths is a 15-75-90 triangle. If you remembered your sines and cosines, you know that $\sin{15}=\frac{\sqrt{6}-\sqrt{2}}{4}$ or you can calculate it by using the fact that $\sin{15}=\sin{45-30}$ . Also, $\sin{75}=\frac{\sqrt{6}+\sqrt{2}}{4}$ . Now, because the 15-75-90 triangle have one side with length $\sqrt{3}$ (it shares the side with the other triangle) and it corresponds to the 75 degrees angle, we have $\frac{\sqrt{3}}{\frac{\sqrt{6}+\sqrt{2}}{4}}=\frac{x}{\frac{\sqrt{6}-\sqrt{2}}{4}}$ $\implies x=\frac{\sqrt{3}{(\sqrt{6}-\sqrt{2})}}{\sqrt{6}+\sqrt{2}}=2\sqrt{3}-3$ where $x$ denote the shorter leg of the 15-75-90 triangle. Hence, that triangle have area $\frac{\sqrt{3}}{2} x=\frac{\sqrt{3}}{2}(2\sqrt{3}-3)=\frac{6-3\sqrt{3}}{2}$ . The isosceles 120-30-30 triangle obviously have area $\frac{\sqrt{3}}{4}$ , and that gives a total of $\frac{12-5\sqrt{3}}{4}$ . We multiply that by $2$ because $\frac{12-5\sqrt{3}}{4}$ is only half of the intersection of the hexagons. We multiply the result by $4$ because there are $4$ pairs of adjacent hexagons. That gives $24-10\sqrt{3}$ , which is it for Case 2. Now that we got the total area of the intersection of two hexagons, we find the area of the intersection of three hexagons. Note that the intersection of any three hexagons is just the middle square plus one small triangle on the side. Again, the middle square have area $1$ and the triangle have area $\frac{\sqrt{3}}{12}$ , so the total is $1+\frac{\sqrt{3}}{12}$ . We multiply that by $4\choose3$ to get $4+\frac{\sqrt{3}}{3}$ Then, we calculate the area of the intersection of all four hexagons, which is just the middle square with area $1$ Finally, we apply PIE. The total area is $6\sqrt{3}-[(2+\frac{\sqrt{3}}{3})+(24-10\sqrt{3})]+(4+\frac{\sqrt{3}}{3})-1=16\sqrt{3}-23$ , so our final answer is $16+3-23=\boxed{4}$ . ~ Ddk001
B
4
9abd14571b42326de8889f974057e5e1
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_1
What is the value of $\frac{(2112-2021)^2}{169}$ $\textbf{(A) } 7 \qquad\textbf{(B) } 21 \qquad\textbf{(C) } 49 \qquad\textbf{(D) } 64 \qquad\textbf{(E) } 91$
We have \[\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{91^2}{13^2}=\left(\frac{91}{13}\right)^2=7^2=\boxed{49}.\] ~MRENTHUSIASM
C
49
9abd14571b42326de8889f974057e5e1
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_1
What is the value of $\frac{(2112-2021)^2}{169}$ $\textbf{(A) } 7 \qquad\textbf{(B) } 21 \qquad\textbf{(C) } 49 \qquad\textbf{(D) } 64 \qquad\textbf{(E) } 91$
We have \[\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{(10^2-3^2)^2}{13^2}=\frac{((10+3)(10-3))^2}{13^2}=\frac{(13\cdot7)^2}{13^2}=\frac{13^2 \cdot 7^2}{13^2}=7^2=\boxed{49}.\]
C
49
9abd14571b42326de8889f974057e5e1
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_1
What is the value of $\frac{(2112-2021)^2}{169}$ $\textbf{(A) } 7 \qquad\textbf{(B) } 21 \qquad\textbf{(C) } 49 \qquad\textbf{(D) } 64 \qquad\textbf{(E) } 91$
We know that $2112-2021 = 91$ . Approximate this as $100$ as it is pretty close to it. Also, approximate $169$ to $170$ . We then have \[\frac{(2112 - 2021)^2}{169} \approx \frac{100^2}{170} \approx \frac{1000}{17} \approx 58.\] Now check the answer choices. The two closest answers are $49$ and $64$ . As the numerator is actually bigger than it should be, it should be the smaller answer, or $\boxed{49}$
C
49
68f4bdf36bb281a18b07cb14ad293484
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_2
Menkara has a $4 \times 6$ index card. If she shortens the length of one side of this card by $1$ inch, the card would have area $18$ square inches. What would the area of the card be in square inches if instead she shortens the length of the other side by $1$ inch? $\textbf{(A) } 16 \qquad\textbf{(B) } 17 \qquad\textbf{(C) } 18 \qquad\textbf{(D) } 19 \qquad\textbf{(E) } 20$
We construct the following table: \[\begin{array}{c||c|c||c} & & & \\ [-2.5ex] \textbf{Scenario} & \textbf{Length} & \textbf{Width} & \textbf{Area} \\ [0.5ex] \hline & & & \\ [-2ex] \text{Initial} & 4 & 6 & 24 \\ \text{Menkara shortens one side.} & 3 & 6 & 18 \\ \text{Menkara shortens other side instead.} & 4 & 5 & 20 \end{array}\] Therefore, the answer is $\boxed{20}.$
E
20
b4cb165be718b8eeb4c9857aa868b5c8
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_4
The six-digit number $\underline{2}\,\underline{0}\,\underline{2}\,\underline{1}\,\underline{0}\,\underline{A}$ is prime for only one digit $A.$ What is $A?$ $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 9$
First, modulo $2$ or $5$ $\underline{20210A} \equiv A$ . Hence, $A \neq 0, 2, 4, 5, 6, 8$ Second modulo $3$ $\underline{20210A} \equiv 2 + 0 + 2 + 1 + 0 + A \equiv 5 + A$ . Hence, $A \neq 1, 4, 7$ Third, modulo $11$ $\underline{20210A} \equiv A + 1 + 0 - 0 - 2 - 2 \equiv A - 3$ . Hence, $A \neq 3$ Therefore, the answer is $\boxed{9}$
E
9
b4cb165be718b8eeb4c9857aa868b5c8
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_4
The six-digit number $\underline{2}\,\underline{0}\,\underline{2}\,\underline{1}\,\underline{0}\,\underline{A}$ is prime for only one digit $A.$ What is $A?$ $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 9$
Any number ending in $5$ is divisible by $5$ . So we can eliminate option $\textbf{(C)}$ If the sum of the digits of a number is divisible by $3$ , the number is divisible by $3$ . The sum of the digits of this number is $2 + 0 + 2 + 1 + 0 + A = 5 + A$ . If $5 + A$ is divisible by $3$ , the number is divisible by $3$ . Thus we can eliminate options $\textbf{(A)}$ and $\textbf{(D)}$ So the correct option is either $\textbf{(B)}$ or $\textbf{(E)}$ . Let's try dividing the number with some integers. $20210A/7 = 2887x$ , where $x$ is $1A/7$ . Since $13$ and $19$ are both indivisible by $7$ , this does not help us narrow the choices down. $20210A/11 = 1837x$ , where $x$ is $3A/11$ . Since $33/11 = 3$ , option $\textbf{(B)}$ would make $20210A$ divisible by $11$ . Thus, by elimination, the correct choice must be option $\boxed{9}$
E
9
b4cb165be718b8eeb4c9857aa868b5c8
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_4
The six-digit number $\underline{2}\,\underline{0}\,\underline{2}\,\underline{1}\,\underline{0}\,\underline{A}$ is prime for only one digit $A.$ What is $A?$ $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 9$
$202100 \implies$ divisible by $2$ $202101 \implies$ divisible by $3$ $202102 \implies$ divisible by $2$ $202103 \implies$ divisible by $11$ $202104 \implies$ divisible by $2$ $202105 \implies$ divisible by $5$ $202106 \implies$ divisible by $2$ $202107 \implies$ divisible by $3$ $202108 \implies$ divisible by $2$ This leaves only $A=\boxed{9}$
E
9
6672411badb6d91da3dfa44cf3399ec9
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_5
Elmer the emu takes $44$ equal strides to walk between consecutive telephone poles on a rural road. Oscar the ostrich can cover the same distance in $12$ equal leaps. The telephone poles are evenly spaced, and the $41$ st pole along this road is exactly one mile ( $5280$ feet) from the first pole. How much longer, in feet, is Oscar's leap than Elmer's stride? $\textbf{(A) }6\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }15$
There are $41-1=40$ gaps between the $41$ telephone poles, so the distance of each gap is $5280\div40=132$ feet. Each of Oscar's leaps covers $132\div12=11$ feet, and each of Elmer's strides covers $132\div44=3$ feet. Therefore, Oscar's leap is $11-3=\boxed{8}$ feet longer than Elmer's stride.
B
8
6672411badb6d91da3dfa44cf3399ec9
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_5
Elmer the emu takes $44$ equal strides to walk between consecutive telephone poles on a rural road. Oscar the ostrich can cover the same distance in $12$ equal leaps. The telephone poles are evenly spaced, and the $41$ st pole along this road is exactly one mile ( $5280$ feet) from the first pole. How much longer, in feet, is Oscar's leap than Elmer's stride? $\textbf{(A) }6\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }15$
There are $41-1=40$ gaps between the $41$ telephone poles, so Elmer takes $44 \cdot 40 = 1760$ strides in total, and Oscar takes $12 \cdot 40 = 480$ leaps in total. Therefore, the answer is $(5280 \div 480) - (5280 \div 1760) = 11-3=\boxed{8}$
B
8
a92018d93b169b9a6b82489bc54a53a4
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_6
As shown in the figure below, point $E$ lies on the opposite half-plane determined by line $CD$ from point $A$ so that $\angle CDE = 110^\circ$ . Point $F$ lies on $\overline{AD}$ so that $DE=DF$ , and $ABCD$ is a square. What is the degree measure of $\angle AFE$ [asy] size(6cm); pair A = (0,10); label("$A$", A, N); pair B = (0,0); label("$B$", B, S); pair C = (10,0); label("$C$", C, S); pair D = (10,10); label("$D$", D, SW); pair EE = (15,11.8); label("$E$", EE, N); pair F = (3,10); label("$F$", F, N); filldraw(D--arc(D,2.5,270,380)--cycle,lightgray); dot(A^^B^^C^^D^^EE^^F); draw(A--B--C--D--cycle); draw(D--EE--F--cycle); label("$110^\circ$", (15,9), SW); [/asy] $\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174$
By angle subtraction, we have $\angle ADE = 360^\circ - \angle ADC - \angle CDE = 160^\circ.$ Note that $\triangle DEF$ is isosceles, so $\angle DFE = \frac{180^\circ - \angle ADE}{2}=10^\circ.$ Finally, we get $\angle AFE = 180^\circ - \angle DFE = \boxed{170}$ degrees.
D
170
a92018d93b169b9a6b82489bc54a53a4
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_6
As shown in the figure below, point $E$ lies on the opposite half-plane determined by line $CD$ from point $A$ so that $\angle CDE = 110^\circ$ . Point $F$ lies on $\overline{AD}$ so that $DE=DF$ , and $ABCD$ is a square. What is the degree measure of $\angle AFE$ [asy] size(6cm); pair A = (0,10); label("$A$", A, N); pair B = (0,0); label("$B$", B, S); pair C = (10,0); label("$C$", C, S); pair D = (10,10); label("$D$", D, SW); pair EE = (15,11.8); label("$E$", EE, N); pair F = (3,10); label("$F$", F, N); filldraw(D--arc(D,2.5,270,380)--cycle,lightgray); dot(A^^B^^C^^D^^EE^^F); draw(A--B--C--D--cycle); draw(D--EE--F--cycle); label("$110^\circ$", (15,9), SW); [/asy] $\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174$
We can extend $\overline{AD}$ to $G$ , making $\angle CDG$ a right angle. It follows that $\angle GDE$ is $110^\circ - 90^\circ = 20^\circ$ , as shown below. [asy] size(6cm); pair A = (0,10); label("$A$", A, N); pair B = (0,0); label("$B$", B, S); pair C = (10,0); label("$C$", C, S); pair D = (10,10); label("$D$", D, SW); pair EE = (15,11.8); label("$E$", EE, N); pair F = (3,10); label("$F$", F, N); pair G = (15,10); label("$G$", G, E); filldraw(D--arc(D,2.5,270,380)--cycle,lightgray); dot(A^^B^^C^^D^^EE^^F^^G); draw(A--B--C--D--G--cycle); draw(D--EE--F--cycle); [/asy] Since $\angle DFE = \angle DEF$ , we see that $\angle DFE = \angle DEF = \frac{20}{2} = 10^\circ$ . Thus, $\angle AFE = 180^\circ - 10^\circ = \boxed{170}$ degrees.
D
170
cfeafd9b994368a4ef91c0b8fb49f314
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_7
A school has $100$ students and $5$ teachers. In the first period, each student is taking one class, and each teacher is teaching one class. The enrollments in the classes are $50, 20, 20, 5,$ and $5$ . Let $t$ be the average value obtained if a teacher is picked at random and the number of students in their class is noted. Let $s$ be the average value obtained if a student was picked at random and the number of students in their class, including the student, is noted. What is $t-s$ $\textbf{(A)}\ {-}18.5 \qquad\textbf{(B)}\ {-}13.5 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 13.5 \qquad\textbf{(E)}\ 18.5$
The formula for expected values is \[\text{Expected Value}=\sum(\text{Outcome}\cdot\text{Probability}).\] We have \begin{align*} t &= 50\cdot\frac15 + 20\cdot\frac15 + 20\cdot\frac15 + 5\cdot\frac15 + 5\cdot\frac15 \\ &= (50+20+20+5+5)\cdot\frac15 \\ &= 100\cdot\frac15 \\ &= 20, \\ s &= 50\cdot\frac{50}{100} + 20\cdot\frac{20}{100} + 20\cdot\frac{20}{100} + 5\cdot\frac{5}{100} + 5\cdot\frac{5}{100} \\ &= 25 + 4 + 4 + 0.25 + 0.25 \\ &= 33.5. \end{align*} Therefore, the answer is $t-s=\boxed{13.5}.$
B
13.5
7cbf3866819077df9c792171b74e12f9
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_8
Let $M$ be the least common multiple of all the integers $10$ through $30,$ inclusive. Let $N$ be the least common multiple of $M,32,33,34,35,36,37,38,39,$ and $40.$ What is the value of $\frac{N}{M}?$ $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 37 \qquad\textbf{(D)}\ 74 \qquad\textbf{(E)}\ 2886$
By the definition of least common mutiple, we take the greatest powers of the prime numbers of the prime factorization of all the numbers, that we are taking the $\text{lcm}$ of. In this case, \[M = 2^4 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29.\] Now, using the same logic, we find that \[N = M \cdot 2 \cdot 37,\] because we have an extra power of $2$ and an extra power of $37.$ Thus, $\frac{N}{M} = 2\cdot 37 = \boxed{74}.$
D
74
fecf78d47b0ddd743eedd05dd1a26044
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_9
A right rectangular prism whose surface area and volume are numerically equal has edge lengths $\log_{2}x, \log_{3}x,$ and $\log_{4}x.$ What is $x?$ $\textbf{(A)}\ 2\sqrt{6} \qquad\textbf{(B)}\ 6\sqrt{6} \qquad\textbf{(C)}\ 24 \qquad\textbf{(D)}\ 48 \qquad\textbf{(E)}\ 576$
The surface area of this right rectangular prism is $2(\log_{2}x\log_{3}x+\log_{2}x\log_{4}x+\log_{3}x\log_{4}x).$ The volume of this right rectangular prism is $\log_{2}x\log_{3}x\log_{4}x.$ Equating the numerical values of the surface area and the volume, we have \[2(\log_{2}x\log_{3}x+\log_{2}x\log_{4}x+\log_{3}x\log_{4}x)=\log_{2}x\log_{3}x\log_{4}x.\] Dividing both sides by $\log_{2}x\log_{3}x\log_{4}x,$ we get \[2\left(\frac{1}{\log_{4}x}+\frac{1}{\log_{3}x}+\frac{1}{\log_{2}x}\right)=1. \hspace{15mm} (\bigstar)\] Recall that $\log_{b}a=\frac{1}{\log_{a}b}$ and $\log_{b}\left(a^n\right)=n\log_{b}a,$ so we rewrite $(\bigstar)$ as \begin{align*} 2(\log_{x}4+\log_{x}3+\log_{x}2)&=1 \\ 2\log_{x}24&=1 \\ \log_{x}576&=1 \\ x&=\boxed{576} ~MRENTHUSIASM
E
576
16df3b2436a617f88fda34fbfadf7f88
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_10
The base-nine representation of the number $N$ is $27006000052_{\text{nine}}.$ What is the remainder when $N$ is divided by $5?$ $\textbf{(A) } 0\qquad\textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) }4$
Recall that $9\equiv-1\pmod{5}.$ We expand $N$ by the definition of bases: \begin{align*} N&=27006000052_9 \\ &= 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2 \\ &\equiv 2\cdot(-1)^{10} + 7\cdot(-1)^9 + 6\cdot(-1)^6 + 5\cdot(-1) + 2 &&\pmod{5} \\ &\equiv 2-7+6-5+2 &&\pmod{5} \\ &\equiv -2 &&\pmod{5} \\ &\equiv \boxed{3} ~Aidensharp ~Kante314 ~MRENTHUSIASM
D
3
16df3b2436a617f88fda34fbfadf7f88
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_10
The base-nine representation of the number $N$ is $27006000052_{\text{nine}}.$ What is the remainder when $N$ is divided by $5?$ $\textbf{(A) } 0\qquad\textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) }4$
We need to first convert $N$ into a regular base- $10$ number: \[N = 27006000052_9 = 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2.\] Now, consider how the last digit of $9$ changes with changes of the power of $9:$ \begin{align*} 9^0&=1, \\ 9^1&=9, \\ 9^2&=\ldots 1, \\ 9^3&=\ldots 9, \\ 9^4&=\ldots 1, \\ & \ \vdots \end{align*} Note that if $x$ is odd, then $9^x \equiv 4\pmod{5}.$ On the other hand, if $x$ is even, then $9^x \equiv 1\pmod{5}.$ Therefore, we have \begin{align*} N&\equiv 2\cdot(1) + 7\cdot(4) + 6\cdot(1) + 5\cdot(4) + 2\cdot(1) &&\pmod{5} \\ &\equiv 2+28+6+20+2 &&\pmod{5} \\ &\equiv 58 &&\pmod{5} \\ &\equiv \boxed{3}$ may simplify the process further, as given by Solution 1.
D
3
6791c28fdf2199b33e9ab06dcfddce35
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_12
What is the number of terms with rational coefficients among the $1001$ terms in the expansion of $\left(x\sqrt[3]{2}+y\sqrt{3}\right)^{1000}?$ $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 166 \qquad\textbf{(C)}\ 167 \qquad\textbf{(D)}\ 500 \qquad\textbf{(E)}\ 501$
By the Binomial Theorem, each term in the expansion is of the form \[\binom{1000}{k}\left(x\sqrt[3]{2}\right)^k\left(y\sqrt{3}\right)^{1000-k}=\binom{1000}{k}2^{\frac k3}3^{\frac{1000-k}{2}}x^k y^{1000-k},\] where $k\in\{0,1,2,\ldots,1000\}.$ This problem is equivalent to counting the values of $k$ such that both $\frac k3$ and $\frac{1000-k}{2}$ are integers. Note that $k$ must be a multiple of $3$ and a multiple of $2,$ so $k$ must be a multiple of $6.$ There are $\boxed{167}$ such values of $k:$ \[6(0), 6(1), 6(2), \ldots, 6(166).\]
C
167
2a758b9322b5db53942319d95b624189
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_15
Recall that the conjugate of the complex number $w = a + bi$ , where $a$ and $b$ are real numbers and $i = \sqrt{-1}$ , is the complex number $\overline{w} = a - bi$ . For any complex number $z$ , let $f(z) = 4i\hspace{1pt}\overline{z}$ . The polynomial \[P(z) = z^4 + 4z^3 + 3z^2 + 2z + 1\] has four complex roots: $z_1$ $z_2$ $z_3$ , and $z_4$ . Let \[Q(z) = z^4 + Az^3 + Bz^2 + Cz + D\] be the polynomial whose roots are $f(z_1)$ $f(z_2)$ $f(z_3)$ , and $f(z_4)$ , where the coefficients $A,$ $B,$ $C,$ and $D$ are complex numbers. What is $B + D?$ $(\textbf{A})\: {-}304\qquad(\textbf{B}) \: {-}208\qquad(\textbf{C}) \: 12i\qquad(\textbf{D}) \: 208\qquad(\textbf{E}) \: 304$
By Vieta's formulas, $z_1z_2+z_1z_3+\dots+z_3z_4=3$ , and $B=(4i)^2\left(\overline{z}_1\,\overline{z}_2+\overline{z}_1\,\overline{z}_3+\dots+\overline{z}_3\,\overline{z}_4\right).$ Since $\overline{a}\cdot\overline{b}=\overline{ab},$ \[B=(4i)^2\left(\overline{z_1z_2}+\overline{z_1z_3}+\overline{z_1z_4}+\overline{z_2z_3}+\overline{z_2z_4}+\overline{z_3z_4}\right).\] Since $\overline{a}+\overline{b}=\overline{a+b},$ \[B=(4i)^2\left(\overline{z_1z_2+z_1z_3+\dots+z_3z_4}\right)=-16(\overline{3})=-48\] Also, $z_1z_2z_3z_4=1,$ and \[D=(4i)^4\left(\overline{z}_1\,\overline{z}_2\,\overline{z}_3\,\overline{z}_4\right)=256\left(\overline{z_1z_2z_3z_4}\right)=256(\overline{1})=256.\] Our answer is $B+D=256-48=\boxed{208}.$
D
208
6ef22e7f7279dc23e8e080ee26b285df
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_16
An organization has $30$ employees, $20$ of whom have a brand A computer while the other $10$ have a brand B computer. For security, the computers can only be connected to each other and only by cables. The cables can only connect a brand A computer to a brand B computer. Employees can communicate with each other if their computers are directly connected by a cable or by relaying messages through a series of connected computers. Initially, no computer is connected to any other. A technician arbitrarily selects one computer of each brand and installs a cable between them, provided there is not already a cable between that pair. The technician stops once every employee can communicate with each other. What is the maximum possible number of cables used? $\textbf{(A)}\ 190 \qquad\textbf{(B)}\ 191 \qquad\textbf{(C)}\ 192 \qquad\textbf{(D)}\ 195 \qquad\textbf{(E)}\ 196$
We claim that to maximize the number of cables used, we isolate one computer and connect all cables for the remaining $29$ computers, then connect one more cable for the isolated computer. If a brand A computer is isolated, then the technician can use at most $19\cdot10+1=191$ cables. If a brand B computer is isolated instead, then the technician can use at most $20\cdot9+1=181$ cables. Therefore, the answer is $\boxed{191}.$
B
191
bf367cf5b05c1c8b21b7ede034ecd6e8
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_17
For how many ordered pairs $(b,c)$ of positive integers does neither $x^2+bx+c=0$ nor $x^2+cx+b=0$ have two distinct real solutions? $\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 16 \qquad$
A quadratic equation does not have two distinct real solutions if and only if the discriminant is nonpositive. We conclude that: Squaring the first inequality, we get $b^4\leq 16c^2.$ Multiplying the second inequality by $16,$ we get $16c^2\leq 64b.$ Combining these results, we get \[b^4\leq 16c^2\leq 64b.\] We apply casework to the value of $b:$ Together, there are $\boxed{6}$ ordered pairs $(b,c),$ namely $(1,1),(1,2),(2,1),(2,2),(3,3),$ and $(4,4).$
B
6
bf367cf5b05c1c8b21b7ede034ecd6e8
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_17
For how many ordered pairs $(b,c)$ of positive integers does neither $x^2+bx+c=0$ nor $x^2+cx+b=0$ have two distinct real solutions? $\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 16 \qquad$
Similar to Solution 1, use the discriminant to get $b^2\leq 4c$ and $c^2\leq 4b$ . These can be rearranged to $c\geq \frac{1}{4}b^2$ and $b\geq \frac{1}{4}c^2$ . Now, we can roughly graph these two inequalities, letting one of them be the $x$ axis and the other be $y$ . The graph of solutions should be above the parabola and under its inverse, meaning we want points on the graph or in the first area enclosed by the two graphs: [asy] unitsize(2); Label f; f.p=fontsize(6); xaxis("$x$",0,5,Ticks(f, 1.0)); yaxis("$y$",0,5,Ticks(f, 1.0)); real f(real x) { return 0.25x^2; } real g(real x) { return 2*sqrt(x); } dot((1,1)); dot((2,1)); dot((1,2)); dot((2,2)); dot((3,3)); dot((4,4)); draw(graph(f,0,sqrt(20))); draw(graph(g,0,5)); [/asy] We are looking for lattice points (since $b$ and $c$ are positive integers), of which we can count $\boxed{6}$
B
6
bf367cf5b05c1c8b21b7ede034ecd6e8
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_17
For how many ordered pairs $(b,c)$ of positive integers does neither $x^2+bx+c=0$ nor $x^2+cx+b=0$ have two distinct real solutions? $\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 16 \qquad$
We need to solve the following system of inequalities: \[ \left\{ \begin{array}{ll} b^2 - 4 c \leq 0 \\ c^2 - 4 b \leq 0 \end{array} \right.. \] Feasible solutions are in the region formed between two parabolas $b^2 - 4 c = 0$ and $c^2 - 4 b = 0$ Define $f \left( b \right) = \frac{b^2}{4}$ and $g \left( b \right) = 2 \sqrt{b}$ . Therefore, all feasible solutions are in the region formed between the graphs of these two functions. For $b = 1$ , we have $f(b) = \frac{1}{4}$ and $g(b) = 2$ . Hence, the feasible $c$ are $1, 2$ For $b = 2$ , we have $f(b) = 1$ and $g(b) = 2 \sqrt{2}$ . Hence, the feasible $c$ are $1, 2$ For $b = 3$ , we have $f(b) = \frac{9}{4}$ and $g(b) = 2 \sqrt{3}$ . Hence, the feasible $c$ is $3$ For $b = 4$ , we have $f(b) = 4$ and $g(b) = 4$ . Hence, the feasible $c$ is $4$ For $b > 4$ , we have $f(b) > g(b)$ . Hence, there is no feasible $c$ Putting all cases together, the correct answer is $\boxed{6}$
B
6
bf367cf5b05c1c8b21b7ede034ecd6e8
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_17
For how many ordered pairs $(b,c)$ of positive integers does neither $x^2+bx+c=0$ nor $x^2+cx+b=0$ have two distinct real solutions? $\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 16 \qquad$
A quadratic equation $Ax^2+Bx+C=0$ has one real solution if and only if $\sqrt{B^2-4AC}=0.$ Similarly, it has imaginary solutions if and only if $\sqrt{B^2-4AC}<0.$ We proceed as following: We want both $x^2+bx+c$ to be $1$ value or imaginary and $x^2+cx+b$ to be $1$ value or imaginary. $x^2+4x+4$ is one such case since $\sqrt {b^2-4ac}$ is $0.$ Also, $x^2+3x+3, x^2+2x+2, x^2+x+1$ are always imaginary for both $b$ and $c.$ We also have $x^2+x+2$ along with $x^2+2x+1$ since the latter has one solution, while the first one is imaginary. Therefore, we have $\boxed{6}$ total ordered pairs of integers.
B
6
bf367cf5b05c1c8b21b7ede034ecd6e8
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_17
For how many ordered pairs $(b,c)$ of positive integers does neither $x^2+bx+c=0$ nor $x^2+cx+b=0$ have two distinct real solutions? $\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 16 \qquad$
We see that $b^2 \leq 4c$ and $c^2 \leq 4b.$ WLOG, assume that $b \geq c.$ Then we have that $b^2 \leq 4c \leq 4b$ , so $b^2 \leq 4b$ and therefore $b \leq 4$ , also meaning that $c \leq 4.$ This means that we only need to try 16 cases. Now we can get rid of the assumption that $b \geq c$ , because we want ordered pairs. For $b = 1$ and $b = 2$ $c = 1$ and $c = 2$ work. When $b = 3$ $c$ can only be $3$ , and when $b = 4$ , only $c = 4$ works, for a total of $\boxed{6}$ ordered pairs of integers.
B
6
bf367cf5b05c1c8b21b7ede034ecd6e8
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_17
For how many ordered pairs $(b,c)$ of positive integers does neither $x^2+bx+c=0$ nor $x^2+cx+b=0$ have two distinct real solutions? $\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 16 \qquad$
We need both $b^2\leq 4c$ and $c^2\leq 4b$ If $b=c$ then the above become $b^2\leq 4b\iff b\leq 4$ , so we have four solutions $(k,k)$ , where $k=1$ $2$ $3$ $4$ If $b<c$ then we only need $c^2\leq 4b$ since it implies $b^2< 4c$ . Now $c^2\leq 4b\leq 4(c-1) \implies (c-2)^2\leq 0 \implies c=2$ , so $b=1$ . We plug $b=1$ $c=2$ back into $c^2\leq 4b$ and it works. So there is another solution $(1,2)$ By symmetry, if $b>c$ then $(b,c)=(2,1)$ Therefore the total number of solutions is $\boxed{6}$
B
6
bf367cf5b05c1c8b21b7ede034ecd6e8
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_17
For how many ordered pairs $(b,c)$ of positive integers does neither $x^2+bx+c=0$ nor $x^2+cx+b=0$ have two distinct real solutions? $\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 16 \qquad$
Since $b^{2} - 4c \le 0$ and $c^{2} - 4b \le 0$ , adding the two together yields $b^{2} + c^{2} \le 4(c+b)$ . Obviously, this is not true if either $b$ or $c$ get too large, and they are equal when $b = c = 4$ , so the greatest pair is $(4,4)$ and both numbers must be lesser for further pairs. For there to be two distinct real solutions, we can test all these pairs where $(b,c)$ are less than 4 (except for the already valid solution) on the original quadratics, and we find the working pairs are $(1,1)$ $(2,1)$ $(2,1)$ $(2,2)$ $(3,3)$ $(4,4)$ meaning there are $\boxed{6}$ pairs.
B
6
bfb87ab860d5c056834cd044b33d08ca
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_18
Each of the $20$ balls is tossed independently and at random into one of the $5$ bins. Let $p$ be the probability that some bin ends up with $3$ balls, another with $5$ balls, and the other three with $4$ balls each. Let $q$ be the probability that every bin ends up with $4$ balls. What is $\frac{p}{q}$ $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 16$
For simplicity purposes, we assume that the balls and the bins are both distinguishable. Recall that there are $5^{20}$ ways to distribute $20$ balls into $5$ bins. We have \[p=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{5^{20}} \text{ and } q=\frac{\binom{20}{4,4,4,4,4}}{5^{20}}.\] Therefore, the answer is \[\frac pq=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{\binom{20}{4,4,4,4,4}}=\frac{5\cdot4\cdot\frac{20!}{3!\cdot5!\cdot4!\cdot4!\cdot4!}}{\frac{20!}{4!\cdot4!\cdot4!\cdot4!\cdot4!}}=\frac{5\cdot4\cdot(4!\cdot4!\cdot4!\cdot4!\cdot4!)}{3!\cdot5!\cdot4!\cdot4!\cdot4!}=\frac{5\cdot4\cdot4}{5}=\boxed{16}.\] ~MRENTHUSIASM ~Jesshuang
E
16
bfb87ab860d5c056834cd044b33d08ca
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_18
Each of the $20$ balls is tossed independently and at random into one of the $5$ bins. Let $p$ be the probability that some bin ends up with $3$ balls, another with $5$ balls, and the other three with $4$ balls each. Let $q$ be the probability that every bin ends up with $4$ balls. What is $\frac{p}{q}$ $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 16$
For simplicity purposes, we assume that the balls and the bins are both distinguishable. Let $q=\frac{x}{a},$ where $a$ is the total number of combinations and $x$ is the number of cases where every bin ends up with $4$ balls. We can take $1$ ball from one bin and place it in another bin so that some bin ends up with $3$ balls, another with $5$ balls, and the other three with $4$ balls each. Note that one configuration of $4{-}4{-}4{-}4{-}4$ corresponds to $5\cdot4\cdot4=80$ configurations of $3{-}5{-}4{-}4{-}4.$ On the other hand, one configuration of $3{-}5{-}4{-}4{-}4$ corresponds to $5$ configurations of $4{-}4{-}4{-}4{-}4.$ Therefore, we have \[p = \frac{80}{5}\cdot\frac{x}{a} = 16\cdot\frac{x}{a},\] from which $\frac{p}{q} = \boxed{16}.$
E
16
bfb87ab860d5c056834cd044b33d08ca
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_18
Each of the $20$ balls is tossed independently and at random into one of the $5$ bins. Let $p$ be the probability that some bin ends up with $3$ balls, another with $5$ balls, and the other three with $4$ balls each. Let $q$ be the probability that every bin ends up with $4$ balls. What is $\frac{p}{q}$ $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 16$
Since both of the cases will have $3$ bins with $4$ balls in them, we can leave those out. There are $2 \cdot \binom {5}{2} = 20$ ways to choose where to place the $3$ and the $5$ . After that, there are $\binom {8}{3} = 56$ ways to put the $3$ and $5$ balls being put into the bins. For the $4,4,4,4,4$ case, after we canceled the $4,4,4$ out, we have $\binom {8}{4} = 70$ ways to put the $4$ balls inside the bins. Therefore, we have $\frac {56\cdot 20}{70}$ which is equal to $8 \cdot 2 = \boxed{16}$
E
16
bfb87ab860d5c056834cd044b33d08ca
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_18
Each of the $20$ balls is tossed independently and at random into one of the $5$ bins. Let $p$ be the probability that some bin ends up with $3$ balls, another with $5$ balls, and the other three with $4$ balls each. Let $q$ be the probability that every bin ends up with $4$ balls. What is $\frac{p}{q}$ $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 16$
Construct the set $A$ consisting of all possible $3{-}5{-}4{-}4{-}4$ bin configurations, and construct set $B$ consisting of all possible $4{-}4{-}4{-}4{-}4$ configurations. If we let $N$ be the total number of configurations possible, it's clear we want to solve for $\frac{p}{q} = \frac{\frac{|A|}{N}}{\frac{|B|}{N}} = \frac{|A|}{|B|}$ Consider drawing an edge between an element in $A$ and an element in $B$ if it is possible to reach one configuration from the other by moving a single ball (Note this process is reversible.). Let us consider the total number of edges drawn. For any element in $A$ , we may choose one of the $5$ balls in the $5$ -bin and move it to the $3$ -bin to get a valid element in $B$ . This implies the number of edges is $5|A|$ On the other hand, for any element in $B$ , we may choose one of the $20$ balls and move it to one of the other $4$ -bins to get a valid element in $A$ . This implies the number of edges is $80|B|$ We equate the expressions to get $5|A| = 80|B|$ , from which $\frac{|A|}{|B|} = \frac{80}{5} = \boxed{16}$
E
16
92cf0a1f46f3e612b70fd7912ea0effb
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_19
Let $x$ be the least real number greater than $1$ such that $\sin(x)= \sin(x^2)$ , where the arguments are in degrees. What is $x$ rounded up to the closest integer? $\textbf{(A) } 10 \qquad \textbf{(B) } 13 \qquad \textbf{(C) } 14 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 20$
The smallest $x$ to make $\sin(x) = \sin(x^2)$ would require $x=x^2$ , but since $x$ needs to be greater than $1$ , these solutions are not valid. The next smallest $x$ would require $x=180-x^2$ , or $x^2+x=180$ After a bit of guessing and checking, we find that $12^2+12=156$ , and $13^2+13=182$ , so the solution lies between $12{ }$ and $13$ , making our answer $\boxed{13}.$
B
13
92cf0a1f46f3e612b70fd7912ea0effb
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_19
Let $x$ be the least real number greater than $1$ such that $\sin(x)= \sin(x^2)$ , where the arguments are in degrees. What is $x$ rounded up to the closest integer? $\textbf{(A) } 10 \qquad \textbf{(B) } 13 \qquad \textbf{(C) } 14 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 20$
For choice $\textbf{(A)},$ we have \begin{align*} \left| \sin x - \sin \left( x^2 \right) \right| & = \left| \sin 10^\circ - \sin \left( \left( 10^2 \right)^\circ \right) \right| \\ & = \left| \sin 10^\circ - \sin 100^\circ \right| \\ & = \left| \sin 10^\circ - \sin 80^\circ \right| \\ & = \sin 80^\circ - \sin 10^\circ . \end{align*} For choice $\textbf{(B)},$ we have \begin{align*} \left| \sin x - \sin \left( x^2 \right) \right| & = \left| \sin 13^\circ - \sin \left( \left( 13^2 \right)^\circ \right) \right| \\ & = \left| \sin 13^\circ - \sin 169^\circ \right| \\ & = \left| \sin 10^\circ - \sin 11^\circ \right| \\ & = \sin 11^\circ - \sin 10^\circ . \end{align*} For choice $\textbf{(C)},$ we have \begin{align*} \left| \sin x - \sin \left( x^2 \right) \right| & = \left| \sin 14^\circ - \sin \left( \left( 14^2 \right)^\circ \right) \right| \\ & = \left| \sin 14^\circ - \sin 196^\circ \right| \\ & = \left| \sin 14^\circ + \sin 16^\circ \right| \\ & = \sin 14^\circ + \sin 16^\circ . \end{align*} For choice $\textbf{(D)},$ we have \begin{align*} \left| \sin x - \sin \left( x^2 \right) \right| & = \left| \sin 19^\circ - \sin \left( \left( 19^2 \right)^\circ \right) \right| \\ & = \left| \sin 19^\circ - \sin 361^\circ \right| \\ & = \left| \sin 19^\circ - \sin 1^\circ \right| \\ & = \sin 19^\circ - \sin 1^\circ . \end{align*} For choice $\textbf{(E)},$ we have \begin{align*} \left| \sin x - \sin \left( x^2 \right) \right| & = \left| \sin 20^\circ - \sin \left( \left( 20^2 \right)^\circ \right) \right| \\ & = \left| \sin 20^\circ - \sin 400^\circ \right| \\ & = \left| \sin 20^\circ - \sin 40^\circ \right| \\ & = \sin 40^\circ - \sin 20^\circ . \end{align*} Therefore, the answer is $\boxed{13},$ as $\sin 11^\circ - \sin 10^\circ$ is the closest to $0.$
B
13
eb6becbc674600f627dc98ed98dc955b
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_20
For each positive integer $n$ , let $f_1(n)$ be twice the number of positive integer divisors of $n$ , and for $j \ge 2$ , let $f_j(n) = f_1(f_{j-1}(n))$ . For how many values of $n \le 50$ is $f_{50}(n) = 12?$ $\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }9\qquad\textbf{(D) }10\qquad\textbf{(E) }11$
First, we can test values that would make $f(x)=12$ true. For this to happen $x$ must have $6$ divisors, which means its prime factorization is in the form $pq^2$ or $p^5$ , where $p$ and $q$ are prime numbers. Listing out values less than $50$ which have these prime factorizations, we find $12,18,20,28,44,45,50$ for $pq^2$ , and just $32$ for $p^5$ . Here $12$ especially catches our eyes, as this means if one of $f_i(n)=12$ , each of $f_{i+1}(n), f_{i+2}(n), ...$ will all be $12$ . This is because $f_{i+1}(n)=f(f_i(n))$ (as given in the problem statement), so were $f_i(n)=12$ , plugging this in we get $f_{i+1}(n)=f(12)=12$ , and thus the pattern repeats. Hence, as long as for a $i$ , such that $i\leq 50$ and $f_{i}(n)=12$ $f_{50}(n)=12$ must be true, which also immediately makes all our previously listed numbers, where $f(x)=12$ , possible values of $n$ We also know that if $f(x)$ were to be any of these numbers, $x$ would satisfy $f_{50}(n)$ as well. Looking through each of the possibilities aside from $12$ , we see that $f(x)$ could only possibly be equal to $20$ and $18$ , and still have $x$ less than or equal to $50$ . This would mean $x$ must have $10$ , or $9$ divisors, and testing out, we see that $x$ will then be of the form $p^4q$ , or $p^2q^2$ . The only two values less than or equal to $50$ would be $48$ and $36$ respectively. From here there are no more possible values, so tallying our possibilities we count $\boxed{10}$ values (Namely $12,18,20,28,32,36,44,45,48,50$ ).
D
10
eb6becbc674600f627dc98ed98dc955b
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_20
For each positive integer $n$ , let $f_1(n)$ be twice the number of positive integer divisors of $n$ , and for $j \ge 2$ , let $f_j(n) = f_1(f_{j-1}(n))$ . For how many values of $n \le 50$ is $f_{50}(n) = 12?$ $\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }9\qquad\textbf{(D) }10\qquad\textbf{(E) }11$
First, take note that the maximum possible value of $f_1(n)$ for $1 \le n \le k$ increases as $k$ increases (it is a step function), i.e. it is increasing. Likewise, as $k$ decreases, the maximum possible value of $f_1(n)$ decreases as well. Also, let $f_1(n) = 2d(n)$ where $d(n)$ is the number of divisors of n. Since $n \le 50$ $f_1(n) <= 20$ . This maximum occurs when $d(n) = 10 \implies n = 2^4 \cdot 3 = 48$ . Next, since $f_1(n) <=20$ $f_1(f_1(n)) \le 12 \implies f_2(n) \le 12$ . This maximum occurs when $d(f_1(n)) = 6 \implies n = 2 \cdot 3^2 = 18, n = 2^2 \cdot 3 = 12$ . Since $f_2(n) \le 12$ $f_1(f_2(n)) \le 12 \implies f_3(n) \le 12$ , once again. This maximum again occurs when $d(f_2(n)) = 6 \implies f_2(n) = 2^2 \cdot 3 = 12$ . Now, suppose for the sake of contradiction that $f_2(n) < 12$ . Then, $f_3(n) < 12$ (since $f_2(n) = 12$ was the only number that would maximize $f_3(n))$ for $f_2(n) \le 12$ ). As a result, since $f_1(n)$ is increasing, and because $12$ is where $f_1$ steps down from a maximum of $6 \cdot 2 = 12$ , we must have that $f_1(f_3(n)) < f_1(12) = 12 \implies f_4(n) < 12$ . We continue applying $f_1$ on both sides (which is possible since $f_1$ is increasing) until we reach $f_50$ , giving us that $f_50(n) < 12$ . However, $f_50(n) = 12$ , which is a contradiction. Thus, $f_2(n) = 12$ Now, let us finally solve for the solutions. $f_2(n) = 12 \implies f_1(f_1(n)) = 12 \implies d(f_1(n)) = 6$ $d(f_1(n)) = 6 \implies f_1(n) = p^2 \cdot q$ where $p$ and $q$ are primes. Since $f_1(n) \le 20$ $f_1(n)$ can only be $12$ $18$ , or $20$ . If $f_1(n) = 12$ , then $d(n) = 6 \implies n = p^5, p^2 \cdot q \implies n \in \{ 12, 18, 20, 28, 32, 44, 45, 50 \}$ , resulting in 8 solutions. If $f_1(n) = 18$ , then $d(n) = 9 \implies n = p^8, p^2 \cdot q^2 \implies n = 36$ , giving us one more solution. Finally, $f_1(n) = 20 \implies d(n) = 10 \implies n = p^9, p^4 \cdot q \implies n = 48$ . Thus, in total, we have $\boxed{10}$ solutions.
D
10
eb6becbc674600f627dc98ed98dc955b
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_20
For each positive integer $n$ , let $f_1(n)$ be twice the number of positive integer divisors of $n$ , and for $j \ge 2$ , let $f_j(n) = f_1(f_{j-1}(n))$ . For how many values of $n \le 50$ is $f_{50}(n) = 12?$ $\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }9\qquad\textbf{(D) }10\qquad\textbf{(E) }11$
$\textbf{Observation 1}$ $f_1 \left( 12 \right) = 12$ Hence, if $n$ has the property that $f_j \left( n \right) = 12$ for some $j$ , then $f_k \left( n \right) = 12$ for all $k > j$ $\textbf{Observation 2}$ $f_1 \left( 8 \right) = 8$ Hence, if $n$ has the property that $f_j \left( n \right) = 8$ for some $j$ , then $f_k \left( n \right) = 8$ for all $k > j$ $\textbf{Case 1}$ $n = 1$ We have $f_1 \left( n \right) = 2$ $f_2 \left( n \right) = f_1 \left( 2 \right) = 4$ $f_3 \left( n \right) = f_1 \left( 4 \right) = 6$ $f_4 \left( n \right) = f_1 \left( 6 \right) = 8$ . Hence, Observation 2 implies $f_{50} \left( n \right) = 8$ $\textbf{Case 2}$ $n$ is prime. We have $f_1 \left( n \right) = 4$ $f_2 \left( n \right) = f_1 \left( 4 \right) = 6$ $f_3 \left( n \right) = f_1 \left( 6 \right) = 8$ . Hence, Observation 2 implies $f_{50} \left( n \right) = 8$ $\textbf{Case 3}$ : The prime factorization of $n$ takes the form $p_1^2$ We have $f_1 \left( n \right) = 6$ $f_2 \left( n \right) = f_1 \left( 6 \right) = 8$ . Hence, Observation 2 implies $f_{50} \left( n \right) = 8$ $\textbf{Case 4}$ : The prime factorization of $n$ takes the form $p_1^3$ We have $f_1 \left( n \right) = 8$ . Hence, Observation 2 implies $f_{50} \left( n \right) = 8$ $\textbf{Case 5}$ : The prime factorization of $n$ takes the form $p_1^4$ We have $f_1 \left( n \right) = 10$ $f_2 \left( n \right) = f_1 \left( 10 \right) = 8$ . Hence, Observation 2 implies $f_{50} \left( n \right) = 8$ $\textbf{Case 6}$ : The prime factorization of $n$ takes the form $p_1^5$ We have $f_1 \left( n \right) = 12$ . Hence, Observation 1 implies $f_{50} \left( n \right) = 12$ In this case the only $n$ is $2^5 = 32$ $\textbf{Case 7}$ : The prime factorization of $n$ takes the form $p_1 p_2$ We have $f_1 \left( n \right) = 8$ . Hence, Observation 2 implies $f_{50} \left( n \right) = 8$ $\textbf{Case 8}$ : The prime factorization of $n$ takes the form $p_1 p_2^2$ We have $f_1 \left( n \right) = 12$ . Hence, Observation 1 implies $f_{50} \left( n \right) = 12$ In this case, all $n$ are $12, 18, 20, 28, 44, 45,$ and $50$ $\textbf{Case 9}$ : The prime factorization of $n$ takes the form $p_1 p_2^3$ We have $f_1 \left( n \right) = 16$ $f_2 \left( n \right) = f_1 \left( 16 \right) = 10$ $f_3 \left( n \right) = f_1 \left( 10 \right) = 8$ . Hence, Observation 2 implies $f_{50} \left( n \right) = 8$ $\textbf{Case 10}$ : The prime factorization of $n$ takes the form $p_1 p_2^4$ We have $f_1 \left( n \right) = 20$ $f_2 \left( n \right) = f_1 \left( 20 \right) = 12$ . Hence, Observation 1 implies $f_{50} \left( n \right) = 12$ In this case, the only $n$ is $48$ $\textbf{Case 11}$ : The prime factorization of $n$ takes the form $p_1^2 p_2^2$ We have $f_1 \left( n \right) = 18$ $f_2 \left( n \right) = f_1 \left( 18 \right) = 12$ . Hence, Observation 1 implies $f_{50} \left( n \right) = 12$ In this case, the only $n$ is $36$ $\textbf{Case 12}$ : The prime factorization of $n$ takes the form $p_1 p_2 p_3$ We have $f_1 \left( n \right) = 16$ $f_2 \left( n \right) = f_1 \left( 16 \right) = 10$ $f_3 \left( n \right) = f_2 \left( 10 \right) = 8$ . Hence, Observation 2 implies $f_{50} \left( n \right) = 8$ Putting all cases together, the number of feasible $n \leq 50$ is $\boxed{10}$
D
10
41790c54159d8d8cd40741389308fb87
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_22
Azar and Carl play a game of tic-tac-toe. Azar places an in $X$ one of the boxes in a $3$ -by- $3$ array of boxes, then Carl places an $O$ in one of the remaining boxes. After that, Azar places an $X$ in one of the remaining boxes, and so on until all boxes are filled or one of the players has of their symbols in a row—horizontal, vertical, or diagonal—whichever comes first, in which case that player wins the game. Suppose the players make their moves at random, rather than trying to follow a rational strategy, and that Carl wins the game when he places his third $O$ . How many ways can the board look after the game is over? $\textbf{(A) } 36 \qquad\textbf{(B) } 112 \qquad\textbf{(C) } 120 \qquad\textbf{(D) } 148 \qquad\textbf{(E) } 160$
We need to find out the number of configurations with 3 $O$ and 3 $X$ with 3 $O$ in a row, and 3 $X$ not in a row. $\textbf{Case 1}$ : 3 $O$ are in a horizontal row or a vertical row. Step 1: We determine the row that 3 $O$ occupy. The number of ways is 6. Step 2: We determine the configuration of 3 $X$ The number of ways is $\binom{6}{3} - 2 = 18$ In this case, following from the rule of product, the number of ways is $6 \cdot 18 = 108$ $\textbf{Case 2}$ : 3 $O$ are in a diagonal row. Step 1: We determine the row that 3 $O$ occupy. The number of ways is 2. Step 2: We determine the configuration of 3 $X$ The number of ways is $\binom{6}{3} = 20$ In this case, following from the rule of product, the number of ways is $2 \cdot 20 = 40$ Putting all cases together, the total number of ways is $108 + 40 = 148$ Therefore, the answer is $\boxed{148}$
D
148
56112a67348ed83b07ac41aad4336a9d
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_24
Convex quadrilateral $ABCD$ has $AB = 18, \angle{A} = 60^\circ,$ and $\overline{AB} \parallel \overline{CD}.$ In some order, the lengths of the four sides form an arithmetic progression, and side $\overline{AB}$ is a side of maximum length. The length of another side is $a.$ What is the sum of all possible values of $a$ $\textbf{(A) } 24 \qquad \textbf{(B) } 42 \qquad \textbf{(C) } 60 \qquad \textbf{(D) } 66 \qquad \textbf{(E) } 84$
Let $E$ be a point on $\overline{AB}$ such that $BCDE$ is a parallelogram. Suppose that $BC=ED=b, CD=BE=c,$ and $DA=d,$ so $AE=18-c,$ as shown below. [asy] /* Made by MRENTHUSIASM */ size(250); pair A, B, C, D, E; A = (0,0); B = (18,0); D = A+9*dir(60); C = D+(7,0); E = D+(B-C); dot("$A$",A,1.5*SW,linewidth(4)); dot("$B$",B,1.5*SE,linewidth(4)); dot("$C$",C,1.5*NE,linewidth(4)); dot("$D$",D,1.5*NW,linewidth(4)); dot("$E$",E,1.5*S,linewidth(4)); draw(A--B--C--D--cycle); draw(D--E,dashed); label("$60^\circ$",A,2.5*dir(30),fontsize(10)); label("$18-c$",midpoint(A--E),1.5*S,red); label("$c$",midpoint(E--B),2.25*S,red); label("$b$",midpoint(B--C),scale(1.5)*rotate(90)*dir(midpoint(B--C)--B),red); label("$b$",midpoint(D--E),scale(1.5)*rotate(90)*dir(midpoint(E--D)--E),red); label("$c$",midpoint(C--D),1.5*N,red); label("$d$",midpoint(D--A),scale(1.5)*rotate(90)*dir(midpoint(D--A)--D),red); [/asy] We apply the Law of Cosines to $\triangle ADE:$ \begin{align*} AD^2 + AE^2 - 2\cdot AD\cdot AE\cdot\cos 60^\circ &= DE^2 \\ d^2 + (18-c)^2 - d(18-c) &= b^2 \\ (18-c)^2 - d(18-c) &= b^2 - d^2 \\ (18-c)(18-c-d) &= (b+d)(b-d). \hspace{15mm}(\bigstar) \end{align*} Let $k$ be the common difference of the arithmetic progression of the side-lengths. It follows that $b,c,$ and $d$ are $18-k, 18-2k,$ and $18-3k,$ in some order. It is clear that $0\leq k<6.$ If $k=0,$ then $ABCD$ is a rhombus with side-length $18,$ which is valid. If $k\neq0,$ then we have six cases: Together, the sum of all possible values of $a$ is $18+(13+3+8)+(14+12+16)=\boxed{84}.$
E
84
56112a67348ed83b07ac41aad4336a9d
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_24
Convex quadrilateral $ABCD$ has $AB = 18, \angle{A} = 60^\circ,$ and $\overline{AB} \parallel \overline{CD}.$ In some order, the lengths of the four sides form an arithmetic progression, and side $\overline{AB}$ is a side of maximum length. The length of another side is $a.$ What is the sum of all possible values of $a$ $\textbf{(A) } 24 \qquad \textbf{(B) } 42 \qquad \textbf{(C) } 60 \qquad \textbf{(D) } 66 \qquad \textbf{(E) } 84$
Let $b, c$ , and $d$ denote the sides $BC, CD$ , and $AD$ respectively. [asy] size(250); pair A, B, C, D, E; A = (0,0); B = (18,0); D = A+9*dir(60); C = D+(7,0); E = D+(B-C); pen pdot=linewidth(3)+fontsize(12); dot("$A$",A,SW,pdot); dot("$B$",B,SE,pdot); dot("$C$",C,NE,pdot); dot("$D$",D,NW,pdot); draw(A--B--C--D--cycle); label("$60^\circ$",A,5*dir(30),fontsize(10)); label("$\theta$", B, 5*dir(155),fontsize(10)); pen plabel=red+fontsize(12); label("$18$",midpoint(A--B),1.5*S,plabel); label("$b$", midpoint(B--C), scale(1.5)*rotate(90)* dir((B+C)/2--B), plabel); label("$c$", (C+D)/2,1.5*N, plabel); label("$d$",(D+A)/2, scale(1.5)*rotate(90)*dir((D+A)/2--D), plabel); [/asy] Since $AB\parallel CD$ , we get \[\tfrac{\sqrt 3}{2}\ d = b\sin\theta \quad \textrm{and}\quad \tfrac 12 d + c + b\cos\theta = 18.\] Using $b^2\sin^2\theta + b^2\cos^2\theta = b^2$ , we eliminate $\theta$ from above to get $(36-2c-d)^2+3d^2=4b^2$ , which rearranges to $(36-2c-d)^2-d^2=4(b^2-d^2)$ , and, upon factoring, yields \begin{align} (18-c)(18-c-d)=(b+d)(b-d). \end{align} We divide into two cases, depending on whether $c$ is the smallest side. If $c$ is not the smallest side then $18-c=\pm (b-d)$ . If $c=18$ , we get a rhombus of side $18$ , so one possible value is $a=18$ . Otherwise, we can cancel the common factor from $(1)$ . After rearranging we get \[18-c=-b \quad \textrm{or}\quad 18-c=b+2d.\] The first condition is false because $-b< 0 <18-c$ ; the second condition is false because $b+2d > |b-d| = 18-c$ If $c$ is the smallest side, then $18-c = \pm 3(b-d)$ . Assuming $c<18$ we can cancel common factors in $(1)$ to get \[8b=13d \quad \textrm{or}\quad 8b=7d.\] The first condition yields the solution $(c,d,b)=(3,8,13)$ and the second condition yields the solution $(c,b,d)=(12,14,16)$ Together, the sum of all possible values of $a$ is $18+(3+8+13)+(12+14+16)=\boxed{84}.$
E
84
56112a67348ed83b07ac41aad4336a9d
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_24
Convex quadrilateral $ABCD$ has $AB = 18, \angle{A} = 60^\circ,$ and $\overline{AB} \parallel \overline{CD}.$ In some order, the lengths of the four sides form an arithmetic progression, and side $\overline{AB}$ is a side of maximum length. The length of another side is $a.$ What is the sum of all possible values of $a$ $\textbf{(A) } 24 \qquad \textbf{(B) } 42 \qquad \textbf{(C) } 60 \qquad \textbf{(D) } 66 \qquad \textbf{(E) } 84$
Denote $x = AD$ $\theta = \angle B$ . Hence, $BC = \frac{\sqrt{3}}{2} \cdot \frac{x}{\sin \theta}$ $DC = 18 - \frac{x}{2} - \frac{\sqrt{3}}{2} x \cot \theta$ $\textbf{Case 1}$ $DC = AD = BC = AB$ This is a rhombus. So each side has length $18$ For the following cases, we consider four sides that have distinct lengths. To make their lengths an arithmetic sequence, we must have $\theta \neq 120^\circ$ Therefore, in the subsequent analysis, we exclude the solution $\theta = 120^\circ$ $\textbf{Case 2}$ $DC < AD < BC < AB$ Because the lengths of these sides form an arithmetic sequence, we have the following system of equations: \[ AB - BC = BC - AD = AD - DC . \] Hence, \begin{eqnarray*} & 18 - \frac{\sqrt{3}}{2}\cdot\frac{x}{\sin \theta} = \frac{\sqrt{3}}{2}\cdot\frac{x}{\sin \theta} - x = x - \left( 18 - \frac{x}{2} - \frac{\sqrt{3}}{2} x \cot \theta \right) . & \end{eqnarray*} By solving this system of equations, we get $\left( \cos \theta , \sin \theta , x\right) = \left( \frac{11}{13} , \frac{4 \sqrt{3}}{13} , 8 \right)$ Thus, in this case, $DC = 3$ $AD = 8$ $BC = 13$ $\textbf{Case 3}$ $DC < BC < AD < AB$ Because the lengths of these sides form an arithmetic sequence, we have the following system of equations: \[ AB - AD = AD - BC = BC - DC . \] Hence, \begin{eqnarray*} & 18 - x = x - \frac{\sqrt{3}}{2}\cdot\frac{x}{\sin \theta} = \frac{\sqrt{3}}{2}\cdot\frac{x}{\sin \theta} - \left( 18 - \frac{x}{2} - \frac{\sqrt{3}}{2} x \cot \theta \right) . & \end{eqnarray*} By solving this system of equations, we get $\left( \cos \theta , \sin \theta , x\right) = \left( - \frac{1}{7} , \frac{4 \sqrt{3}}{7} , 16 \right)$ Thus, in this case, $DC = 12$ $AD = 16$ $BC = 14$ $\textbf{Case 4}$ $BC < CD < AD < AB$ By doing the similar analysis, we can show there is no solution in this case. $\textbf{Case 5}$ $BC < AD < CD < AB$ By doing the similar analysis, we can show there is no solution in this case. $\textbf{Case 6}$ $AD < CD < BC < AB$ By doing the similar analysis, we can show there is no solution in this case. $\textbf{Case 7}$ $AD < BC < CD < AB$ By doing the similar analysis, we can show there is no solution in this case. Therefore, the sum of all possible values of $a$ is \begin{align*} 18 + \left( 3 + 8 + 13 \right) + \left( 12 + 14 + 16 \right) & = 84 . \end{align*} Therefore, the answer is $\boxed{84}$
E
84
3651799f7fc15ded2e5222ff34fd8f20
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_25
Let $m\ge 5$ be an odd integer, and let $D(m)$ denote the number of quadruples $(a_1, a_2, a_3, a_4)$ of distinct integers with $1\le a_i \le m$ for all $i$ such that $m$ divides $a_1+a_2+a_3+a_4$ . There is a polynomial \[q(x) = c_3x^3+c_2x^2+c_1x+c_0\] such that $D(m) = q(m)$ for all odd integers $m\ge 5$ . What is $c_1?$ $\textbf{(A)}\ {-}6\qquad\textbf{(B)}\ {-}1\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 11$
For a fixed value of $m,$ there is a total of $m(m-1)(m-2)(m-3)$ possible ordered quadruples $(a_1, a_2, a_3, a_4).$ Let $S=a_1+a_2+a_3+a_4.$ We claim that exactly $\frac1m$ of these $m(m-1)(m-2)(m-3)$ ordered quadruples satisfy that $m$ divides $S:$ Since $\gcd(m,4)=1,$ we conclude that \[\{k+4(0),k+4(1),k+4(2),\ldots,k+4(m-1)\}\] is the complete residue system modulo $m$ for all integers $k.$ Given any ordered quadruple $(a'_1, a'_2, a'_3, a'_4)$ in modulo $m,$ it follows that exactly one of these $m$ ordered quadruples has sum $0$ modulo $m:$ \[\begin{array}{c|c} & \\ [-2.5ex] \textbf{Ordered Quadruple} & \textbf{Sum Modulo }\boldsymbol{m} \\ [0.5ex] \hline & \\ [-2ex] (a'_1, a'_2, a'_3, a'_4) & S'+4(0) \\ [0.5ex] (a'_1+1, a'_2+1, a'_3+1, a'_4+1) & S'+4(1) \\ [0.5ex] (a'_1+2, a'_2+2, a'_3+2, a'_4+2) & S'+4(2) \\ [0.5ex] \cdots & \cdots \\ [0.5ex] (a'_1+m-1, a'_2+m-1, a'_3+m-1, a'_4+m-1) & S'+4(m-1) \\ [0.5ex] \end{array}\] We conclude that $q(m)=\frac1m\cdot[m(m-1)(m-2)(m-3)]=(m-1)(m-2)(m-3),$ so \[q(x)=(x-1)(x-2)(x-3)=c_3x^3+c_2x^2+c_1x+c_0.\] By Vieta's Formulas, we get $c_1=1\cdot2+1\cdot3+2\cdot3=\boxed{11}.$
E
11
3651799f7fc15ded2e5222ff34fd8f20
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_25
Let $m\ge 5$ be an odd integer, and let $D(m)$ denote the number of quadruples $(a_1, a_2, a_3, a_4)$ of distinct integers with $1\le a_i \le m$ for all $i$ such that $m$ divides $a_1+a_2+a_3+a_4$ . There is a polynomial \[q(x) = c_3x^3+c_2x^2+c_1x+c_0\] such that $D(m) = q(m)$ for all odd integers $m\ge 5$ . What is $c_1?$ $\textbf{(A)}\ {-}6\qquad\textbf{(B)}\ {-}1\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 11$
Define \[ b_i = \left\{ \begin{array}{ll} a_i & \mbox{ if } 1 \leq a_i \leq \frac{m-1}{2} \\ a_i - m & \mbox{ if } \frac{m-1}{2} + 1 \leq a_i \leq m - 1 \\ 0 & \mbox{ if } a_i = m \end{array} \right.. \] Hence, $b_i$ is a one-to-one and onto function of $a_i$ , and the range of $b_i$ is $\left\{- \frac{m-1}{2} , \cdots , \frac{m-1}{2} \right\}$ Therefore, to solve this problem, it is equivalent for us to count the number of tuples $\left( b_1 , b_2 , b_3 , b_4 \right)$ that are all distinct and satisfy $m | b_1 + b_2 + b_3 + b_4$ Denote by $d \left( m \right)$ the number of such tuples that are also subject to the constraint $b_1 < b_2 < b_3 < b_4$ Hence, $D \left( m \right) = 4! d \left( m \right) = 24 d \left( m \right)$ We do the following casework analysis to compute $d \left( m \right)$ $\textbf{Case 1}$ : There is one $0$ in $\left( b_1 , b_2 , b_3 , b_4 \right)$ Denote by $d_{1i} \left( m \right)$ the number of tuples with $b_i = 0$ By symmetry, $d_{11} \left( m \right)= d_{14} \left( m \right)$ and $d_{12} \left( m \right)= d_{13} \left( m \right)$ $\textbf{Case 2}$ : There is no $0$ in $\left( b_1 , b_2 , b_3 , b_4 \right)$ Denote by $d_{2i} \left( m \right)$ the number of tuples with $i$ positive entries. By symmetry, $d_{20} \left( m \right) = d_{24} \left( m \right)$ and $d_{21} \left( m \right) = d_{23} \left( m \right)$ Therefore, \begin{align*} D \left( m \right) & = 24 d \left( m \right) \\ & = 24 \left( \sum_{i=1}^4 d_{1i} \left( m \right) + \sum_{i=0}^4 d_{2i} \left( m \right) \right) \\ & = 24 \left( 2 d_{11} \left( m \right) + 2 d_{12} \left( m \right) + 2 d_{24} \left( m \right) + 2 d_{23} \left( m \right) + d_{22} \left( m \right) \right) . \end{align*} Now, we compute $D \left( m \right)$ for $m = 5 , 7 , 9 , 11$ $\underline{\textbf{SCENARIO}}$ $m = 5$ We have $b_i \in \left\{ - 2 , \cdots , 2 \right\}$ $\textbf{Case 1}$ $\textbf{Case 1.1}$ $b_1 = 0$ We cannot have $3$ distinct positive integers. So $d_{11} \left( 5 \right) = 0$ $\textbf{Case 1.2}$ $b_2 = 0$ Because there are $2$ positive integers, we must have $b_3 = 1$ $b_4 = 2$ . Hence, $b_1 = - 3$ . However, this is out of the range of $b_i$ . Thus, $d_{12} \left( 5 \right) = 0$ $\textbf{Case 2}$ $\textbf{Case 2.1}$ $b_1 > 0$ We cannot have $4$ distinct positive integers. So $d_{24} \left( 5 \right) = 0$ $\textbf{Case 2.2}$ $b_1 < 0 < b_2$ We cannot have $3$ distinct positive integers. So $d_{23} \left( 5 \right) = 0$ $\textbf{Case 2.3}$ $b_2 < 0 < b_3$ The only solution is $\left( b_1 , b_2 , b_3 , b_4 \right) = \left( - 2 , - 1 , 1 , 2 \right)$ . So $d_{22} \left( 5 \right) = 1$ Therefore, $D \left( 5 \right) = 24$ $\underline{\textbf{SCENARIO}}$ $m = 7$ We have $b_i \in \left\{ - 3 , \cdots , 3 \right\}$ $\textbf{Case 1}$ $\textbf{Case 1.1}$ $b_1 = 0$ We have no feasible solution. Thus, $d_{11} \left( 7 \right) = 0$ $\textbf{Case 1.2}$ $b_2 = 0$ The only solution is $\left( b_1 , b_3 , b_4 \right) = \left( - 3 , 1 , 2 \right)$ . Thus, $d_{12} \left( 7 \right) = 1$ $\textbf{Case 2}$ $\textbf{Case 2.1}$ $b_1 > 0$ We cannot have $4$ distinct positive integers. So $d_{24} \left( 7 \right) = 0$ $\textbf{Case 2.2}$ $b_1 < 0 < b_2$ To get $3$ distinct positive integers, we have $\left( b_2 , b_3 , b_4 \right) = \left( 1 , 2 , 3 \right)$ . This implies $b_1 = - 6$ . However, this is out of the range of $b_1$ . So $d_{23} \left( 6 \right) = 0$ $\textbf{Case 2.3}$ $b_2 < 0 < b_3$ We have $d_{22} \left( 7 \right) = \binom{3}{2} = 3$ Therefore, $D \left( 7 \right) = 24 \cdot 5$ $\underline{\textbf{SCENARIO}}$ $m = 9$ We have $b_i \in \left\{ - 4 , \cdots , 4 \right\}$ $\textbf{Case 1}$ $\textbf{Case 1.1}$ $b_1 = 0$ The only solution is $\left( b_2 , b_3 , b_4 \right) = \left( 2, 3, 4 \right)$ . Thus, $d_{11} \left( 9 \right) = 1$ $\textbf{Case 1.2}$ $b_2 = 0$ The feasible solutions are $\left( b_1 , b_3 , b_4 \right) = \left( - 3 , 1 , 2 \right)$ $\left( - 4 , 1 , 3 \right)$ . Thus, $d_{12} \left( 9 \right) = 2$ $\textbf{Case 2}$ $\textbf{Case 2.1}$ $b_1 > 0$ There is no feasible solution. So $d_{24} \left( 9 \right) = 0$ $\textbf{Case 2.2}$ $b_1 < 0 < b_2$ To get $3$ distinct positive integers, we have $b_2 + b_3 + b_4 \geq 1 + 2 + 3 = 6$ . This implies $b_1 = - 6$ . However, this is out of the range of $b_1$ . So $d_{23} \left( 9 \right) = 0$ $\textbf{Case 2.3}$ $b_2 < 0 < b_3$ We have $d_{22} \left( 9 \right) = 8$ Therefore, $D \left( 9 \right) = 24 \cdot 14$ $\underline{\textbf{SCENARIO}}$ $m = 11$ We have $b_i \in \left\{ - 5 , \cdots , 5 \right\}$ $\textbf{Case 1}$ $\textbf{Case 1.1}$ $b_1 = 0$ The only solution is $\left( b_2 , b_3 , b_4 \right) = \left( 2, 4, 5 \right)$ . Thus, $d_{11} \left( 11 \right) = 1$ $\textbf{Case 1.2}$ $b_2 = 0$ The feasible solutions are $\left( b_1 , b_3 , b_4 \right) = \left( - 3 , 1 , 2 \right)$ $\left( - 4 , 1 , 3 \right)$ $\left( - 5 , 1 , 4 \right)$ $\left( - 5 , 2 , 3 \right)$ . Thus, $d_{12} \left( 11 \right) = 4$ $\textbf{Case 2}$ $\textbf{Case 2.1}$ $b_1 > 0$ The only feasible solution is $\left( b_1 , b_2 , b_3 , b_4 \right) = \left( 1 , 2, 3, 5 \right)$ . So $d_{24} \left( 11 \right) = 1$ $\textbf{Case 2.2}$ $b_1 < 0 < b_2$ The only feasible solution is $\left( b_1 , b_2 , b_3 , b_4 \right) = \left( -1 , 3, 4, 5 \right)$ . So $d_{23} \left( 11 \right) = 1$ $\textbf{Case 2.3}$ $b_2 < 0 < b_3$ We have $d_{22} \left( 11 \right) = 16$ Therefore, $D \left( 11 \right) = 24 \cdot 30$ We know that $q \left( m \right) = D \left( m \right)$ for odd $m \geq 5$ Plugging $m = 5, 7, 9, 11$ into this equation, we get \begin{align*} c_3 5^3 + c_2 5^2 + c_1 5 + c_0 & = 24 \cdot 1 && (1.1) \\ c_3 7^3 + c_2 7^2 + c_1 7 + c_0 & = 24 \cdot 5 && (1.2) \\ c_3 9^3 + c_2 9^2 + c_1 9 + c_0 & = 24 \cdot 14 && (1.3) \\ c_3 11^3 + c_2 11^2 + c_1 11 + c_0 & = 24 \cdot 30 && (1.4) \end{align*} Now, we solve this system of equations. Taking $\frac{(1.2)-(1.1)}{2}$ $\frac{(1.3)-(1.2)}{2}$ $\frac{(1.4)-(1.2)}{2}$ , we get \begin{align*} c_3 109 + c_2 12 + c_1 & = 48 && (2.1) \\ c_3 193 + c_2 16 + c_1 & = 108 && (2.2) \\ c_3 301 + c_2 20 + c_1 & = 192 && (2.3) \end{align*} Taking $\frac{(2.2)-(2.1)}{4}$ $\frac{(2.3)-(2.2)}{4}$ , we get \begin{align*} c_3 21 + c_2 & = 15 && (3.1) \\ c_3 27 + c_2 & = 21 && (3.2) \end{align*} Taking $\frac{(3.2)-(3.1)}{6}$ , we get $c_3 = 1$ Plugging $c_3$ into Equation (3.1), we get $c_2 = - 6$ Plugging $c_2$ and $c_3$ into Equation (2.1), we get $c_1 = 11$ Therefore, the answer is $\boxed{11}$
E
11
3651799f7fc15ded2e5222ff34fd8f20
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12A_Problems/Problem_25
Let $m\ge 5$ be an odd integer, and let $D(m)$ denote the number of quadruples $(a_1, a_2, a_3, a_4)$ of distinct integers with $1\le a_i \le m$ for all $i$ such that $m$ divides $a_1+a_2+a_3+a_4$ . There is a polynomial \[q(x) = c_3x^3+c_2x^2+c_1x+c_0\] such that $D(m) = q(m)$ for all odd integers $m\ge 5$ . What is $c_1?$ $\textbf{(A)}\ {-}6\qquad\textbf{(B)}\ {-}1\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 11$
As before, note that we have $m(m-1)(m-2)$ numbers we can choose as $a,b,c.$ From here, there is exactly one possible value of $1 \leq d \leq m$ that could make $S=a+b+c+d$ divisible by $m.$ However, there is a $\frac{3}{m}$ chance that this value of $d$ has already been chosen as $a,b$ or $c$ . Thus our polynomial is $m(m-1)(m-2)\left(1-\frac{3}{m}\right)=m(m-1)(m-2)\left(\frac{m-3}{m}\right)=(m-1)(m-2)(m-3)$ . By Vieta's, $c_1 = 2+3+6=\boxed{11}$
E
11
b3853573b6037e5ed2d211252b4aa53d
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_1
What is the value of $1234 + 2341 + 3412 + 4123$ $\textbf{(A)}\: 10000\qquad\textbf{(B)} \: 10010\qquad\textbf{(C)} \: 10110\qquad\textbf{(D)} \: 11000\qquad\textbf{(E)} \: 11110$
We see that $1, 2, 3,$ and $4$ each appear in the ones, tens, hundreds, and thousands digit exactly once. Since $1+2+3+4=10$ , we find that the sum is equal to \[10\cdot(1+10+100+1000)=\boxed{11110}.\] Note that it is equally valid to manually add all four numbers together to get the answer.
E
11110
b3853573b6037e5ed2d211252b4aa53d
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_1
What is the value of $1234 + 2341 + 3412 + 4123$ $\textbf{(A)}\: 10000\qquad\textbf{(B)} \: 10010\qquad\textbf{(C)} \: 10110\qquad\textbf{(D)} \: 11000\qquad\textbf{(E)} \: 11110$
We have \[1234 + 2341 + 3412 + 4123 = 1111 \left( 1 + 2 + 3 + 4 \right) = \boxed{11110}.\] ~Steven Chen (www.professorchenedu.com)
E
11110
b3853573b6037e5ed2d211252b4aa53d
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_1
What is the value of $1234 + 2341 + 3412 + 4123$ $\textbf{(A)}\: 10000\qquad\textbf{(B)} \: 10010\qquad\textbf{(C)} \: 10110\qquad\textbf{(D)} \: 11000\qquad\textbf{(E)} \: 11110$
We see that the units digit must be $0$ , since $4+3+2+1$ is $0$ . But every digit from there, will be a $1$ since we have that each time afterwards, we must carry the $1$ from the previous sum. The answer choice that satisfies these conditions is $\boxed{11110}$
E
11110
b3853573b6037e5ed2d211252b4aa53d
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_1
What is the value of $1234 + 2341 + 3412 + 4123$ $\textbf{(A)}\: 10000\qquad\textbf{(B)} \: 10010\qquad\textbf{(C)} \: 10110\qquad\textbf{(D)} \: 11000\qquad\textbf{(E)} \: 11110$
We can simply add the numbers. $1234 + 2341 + 3412 + 4123 = 11110 \implies \boxed{11110}$
E
11110
9120324a1d3cca922636ac79477fd8a5
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_2
What is the area of the shaded figure shown below? [asy] size(200); defaultpen(linewidth(0.4)+fontsize(12)); pen s = linewidth(0.8)+fontsize(8); pair O,X,Y; O = origin; X = (6,0); Y = (0,5); fill((1,0)--(3,5)--(5,0)--(3,2)--cycle, palegray+opacity(0.2)); for (int i=1; i<7; ++i) { draw((i,0)--(i,5), gray+dashed); label("${"+string(i)+"}$", (i,0), 2*S); if (i<6) { draw((0,i)--(6,i), gray+dashed); label("${"+string(i)+"}$", (0,i), 2*W); } } label("$0$", O, 2*SW); draw(O--X+(0.35,0), black+1.5, EndArrow(10)); draw(O--Y+(0,0.35), black+1.5, EndArrow(10)); draw((1,0)--(3,5)--(5,0)--(3,2)--(1,0), black+1.5); [/asy] $\textbf{(A)}\: 4\qquad\textbf{(B)} \: 6\qquad\textbf{(C)} \: 8\qquad\textbf{(D)} \: 10\qquad\textbf{(E)} \: 12$
The line of symmetry divides the shaded figure into two congruent triangles, each with base $3$ and height $2.$ Therefore, the area of the shaded figure is \[2\cdot\left(\frac12\cdot3\cdot2\right)=2\cdot3=\boxed{6}.\] ~MRENTHUSIASM ~Wilhelm Z
B
6
9120324a1d3cca922636ac79477fd8a5
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_2
What is the area of the shaded figure shown below? [asy] size(200); defaultpen(linewidth(0.4)+fontsize(12)); pen s = linewidth(0.8)+fontsize(8); pair O,X,Y; O = origin; X = (6,0); Y = (0,5); fill((1,0)--(3,5)--(5,0)--(3,2)--cycle, palegray+opacity(0.2)); for (int i=1; i<7; ++i) { draw((i,0)--(i,5), gray+dashed); label("${"+string(i)+"}$", (i,0), 2*S); if (i<6) { draw((0,i)--(6,i), gray+dashed); label("${"+string(i)+"}$", (0,i), 2*W); } } label("$0$", O, 2*SW); draw(O--X+(0.35,0), black+1.5, EndArrow(10)); draw(O--Y+(0,0.35), black+1.5, EndArrow(10)); draw((1,0)--(3,5)--(5,0)--(3,2)--(1,0), black+1.5); [/asy] $\textbf{(A)}\: 4\qquad\textbf{(B)} \: 6\qquad\textbf{(C)} \: 8\qquad\textbf{(D)} \: 10\qquad\textbf{(E)} \: 12$
To find the area of the shaded figure, we subtract the area of the smaller triangle (base $4$ and height $2$ ) from the area of the larger triangle (base $4$ and height $5$ ): \[\frac12\cdot4\cdot5-\frac12\cdot4\cdot2=10-4=\boxed{6}.\] ~MRENTHUSIASM ~Steven Chen (www.professorchenedu.com)
B
6
9120324a1d3cca922636ac79477fd8a5
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_2
What is the area of the shaded figure shown below? [asy] size(200); defaultpen(linewidth(0.4)+fontsize(12)); pen s = linewidth(0.8)+fontsize(8); pair O,X,Y; O = origin; X = (6,0); Y = (0,5); fill((1,0)--(3,5)--(5,0)--(3,2)--cycle, palegray+opacity(0.2)); for (int i=1; i<7; ++i) { draw((i,0)--(i,5), gray+dashed); label("${"+string(i)+"}$", (i,0), 2*S); if (i<6) { draw((0,i)--(6,i), gray+dashed); label("${"+string(i)+"}$", (0,i), 2*W); } } label("$0$", O, 2*SW); draw(O--X+(0.35,0), black+1.5, EndArrow(10)); draw(O--Y+(0,0.35), black+1.5, EndArrow(10)); draw((1,0)--(3,5)--(5,0)--(3,2)--(1,0), black+1.5); [/asy] $\textbf{(A)}\: 4\qquad\textbf{(B)} \: 6\qquad\textbf{(C)} \: 8\qquad\textbf{(D)} \: 10\qquad\textbf{(E)} \: 12$
The consecutive vertices of the shaded figure are $(1,0),(3,2),(5,0),$ and $(3,5).$ By the Shoelace Theorem , the area is \[\frac12\cdot|(1\cdot2+3\cdot0+5\cdot5+3\cdot0)-(0\cdot3+2\cdot5+0\cdot3+5\cdot1)|=\frac12\cdot12=\boxed{6}.\] ~Taco12 ~I-AM-DA-KING
B
6
9120324a1d3cca922636ac79477fd8a5
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_2
What is the area of the shaded figure shown below? [asy] size(200); defaultpen(linewidth(0.4)+fontsize(12)); pen s = linewidth(0.8)+fontsize(8); pair O,X,Y; O = origin; X = (6,0); Y = (0,5); fill((1,0)--(3,5)--(5,0)--(3,2)--cycle, palegray+opacity(0.2)); for (int i=1; i<7; ++i) { draw((i,0)--(i,5), gray+dashed); label("${"+string(i)+"}$", (i,0), 2*S); if (i<6) { draw((0,i)--(6,i), gray+dashed); label("${"+string(i)+"}$", (0,i), 2*W); } } label("$0$", O, 2*SW); draw(O--X+(0.35,0), black+1.5, EndArrow(10)); draw(O--Y+(0,0.35), black+1.5, EndArrow(10)); draw((1,0)--(3,5)--(5,0)--(3,2)--(1,0), black+1.5); [/asy] $\textbf{(A)}\: 4\qquad\textbf{(B)} \: 6\qquad\textbf{(C)} \: 8\qquad\textbf{(D)} \: 10\qquad\textbf{(E)} \: 12$
We have $4$ lattice points in the interior and $6$ lattice points on the boundary. By Pick's Theorem , the area of the shaded figure is \[4+\frac{6}{2}-1 = 4+3-1 = \boxed{6}.\] ~danprathab
B
6
a8889e9344789e2b0b27d69c849410ac
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_3
At noon on a certain day, Minneapolis is $N$ degrees warmer than St. Louis. At $4{:}00$ the temperature in Minneapolis has fallen by $5$ degrees while the temperature in St. Louis has risen by $3$ degrees, at which time the temperatures in the two cities differ by $2$ degrees. What is the product of all possible values of $N?$ $\textbf{(A)}\: 10\qquad\textbf{(B)} \: 30\qquad\textbf{(C)} \: 60\qquad\textbf{(D)} \: 100\qquad\textbf{(E)} \: 120$
At noon on a certain day, let $M$ and $L$ be the temperatures (in degrees) in Minneapolis and St. Louis, respectively. It follows that $M=L+N.$ At $4{:}00,$ we get \begin{align*} |(M-5)-(L+3)| &= 2 \\ |M-L-8| &= 2 \\ |N-8| &= 2. \end{align*} We have two cases: Together, the product of all possible values of $N$ is $10\cdot6=\boxed{60}.$
C
60
a8889e9344789e2b0b27d69c849410ac
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_3
At noon on a certain day, Minneapolis is $N$ degrees warmer than St. Louis. At $4{:}00$ the temperature in Minneapolis has fallen by $5$ degrees while the temperature in St. Louis has risen by $3$ degrees, at which time the temperatures in the two cities differ by $2$ degrees. What is the product of all possible values of $N?$ $\textbf{(A)}\: 10\qquad\textbf{(B)} \: 30\qquad\textbf{(C)} \: 60\qquad\textbf{(D)} \: 100\qquad\textbf{(E)} \: 120$
At noon on a certain day, the difference of temperatures in Minneapolis and St. Louis is $N$ degrees. At $4{:}00,$ the difference of temperatures in Minneapolis and St. Louis is $N-8$ degrees. It follows that \[|N-8|=2.\] We continue with the casework in Solution 1 to get the answer $\boxed{60}.$
C
60
7ca872a6d79c380c12540e05837735b5
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_5
Call a fraction $\frac{a}{b}$ , not necessarily in the simplest form, special if $a$ and $b$ are positive integers whose sum is $15$ . How many distinct integers can be written as the sum of two, not necessarily different, special fractions? $\textbf{(A)}\ 9 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 11 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 13$
The special fractions are \[\frac{1}{14},\frac{2}{13},\frac{3}{12},\frac{4}{11},\frac{5}{10},\frac{6}{9},\frac{7}{8},\frac{8}{7},\frac{9}{6},\frac{10}{5},\frac{11}{4},\frac{12}{3},\frac{13}{2},\frac{14}{1}.\] We rewrite them in the simplest form: \[\frac{1}{14},\frac{2}{13},\frac{1}{4},\frac{4}{11},\frac{1}{2},\frac{2}{3},\frac{7}{8},1\frac{1}{7},1\frac{1}{2},2,2\frac{3}{4},4,6\frac{1}{2},14.\] Note that two unlike fractions in the simplest form cannot sum to an integer. So, we only consider the fractions whose denominators appear more than once: \[\frac{1}{4},\frac{1}{2},1\frac{1}{2},2,2\frac{3}{4},4,6\frac{1}{2},14.\] For the set $\{2,4,14\},$ two elements (not necessarily different) can sum to $4,6,8,16,18,28.$ For the set $\left\{\frac{1}{2},1\frac{1}{2},6\frac{1}{2}\right\},$ two elements (not necessarily different) can sum to $1,2,3,7,8,13.$ For the set $\left\{\frac{1}{4},2\frac{3}{4}\right\},$ two elements (not necessarily different) can sum to $3.$ Together, there are $\boxed{11}$ distinct integers that can be written as the sum of two, not necessarily different, special fractions: \[1,2,3,4,6,7,8,13,16,18,28.\] ~KingRavi ~samrocksnature ~Wilhelm Z ~MRENTHUSIASM ~Steven Chen (www.professorchenedu.com)
C
11
7ca872a6d79c380c12540e05837735b5
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_5
Call a fraction $\frac{a}{b}$ , not necessarily in the simplest form, special if $a$ and $b$ are positive integers whose sum is $15$ . How many distinct integers can be written as the sum of two, not necessarily different, special fractions? $\textbf{(A)}\ 9 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 11 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 13$
Let $a=15-b,$ so the special fraction is \[\frac ab = \frac{15-b}{b} = \frac{15}{b}-1.\] We can ignore the $-1$ part and only focus on $\frac{15}{b}.$ The integers are $\frac{15}{1},\frac{15}{3},\frac{15}{5},$ which are $15,5,3,$ respectively. We get $30,20,18,10,8,6$ from this group of numbers. The halves are $\frac{15}{2},\frac{15}{6},\frac{15}{10},$ which are $7\frac12,2\frac12,1\frac12,$ respectively. We get $15,10,9,5,4,3$ from this group of numbers. The quarters are $\frac{15}{4},\frac{15}{12},$ which are $3\frac34,1\frac14,$ respectively. We get $5$ from this group of numbers. Note that $10$ and $5$ each appear twice. Therefore, the answer is $\boxed{11}.$
C
11
7ca872a6d79c380c12540e05837735b5
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_5
Call a fraction $\frac{a}{b}$ , not necessarily in the simplest form, special if $a$ and $b$ are positive integers whose sum is $15$ . How many distinct integers can be written as the sum of two, not necessarily different, special fractions? $\textbf{(A)}\ 9 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 11 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 13$
We split this up into two cases: Case 1: integer + integer The whole numbers we have are $\frac{10}{5}$ (or $2$ ), $\frac{12}{3}$ (or $4$ ), and $\frac{14}{1}$ (or $14$ ). There are $\dbinom{3}{2}=3$ ways to choose different-numbered pairs and $3$ ways to choose the same-numbered pairs. So, $3+3=6$ Case 2: fraction + fraction The fractions we have are $\frac{5}{10}$ (or $\frac{1}{2}$ ), $\frac{9}{6}$ (or $\frac{3}{2}$ ), and $\frac{13}{2}$ . Similarly, there are $\dbinom{3}{2}=3$ ways to choose different-numbered pairs and $3$ ways to choose the same-numbered pairs. So, $3+3=6$ Thus, $6+6=12$ So now you would just go ahead and innocently choose $\textbf{(D) }12$ , right? No! We overcounted $8$ , as $\frac{13}{2}+\frac96=\frac{12}{3}+\frac{12}{3}=8$ . Therefore, the correct answer is actually $12-1=\boxed{11}$
C
11
c2ede9143de38b4e4ff32b0214de01cd
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_6
The greatest prime number that is a divisor of $16384$ is $2$ because $16384 = 2^{14}$ . What is the sum of the digits of the greatest prime number that is a divisor of $16383$ $\textbf{(A)} \: 3\qquad\textbf{(B)} \: 7\qquad\textbf{(C)} \: 10\qquad\textbf{(D)} \: 16\qquad\textbf{(E)} \: 22$
We have \begin{align*} 16383 & = 2^{14} - 1 \\ & = \left( 2^7 + 1 \right) \left( 2^7 - 1 \right) \\ & = 129 \cdot 127 \\ \end{align*} Since $129$ is composite, $127$ is the largest prime which can divide $16383$ . The sum of $127$ 's digits is $1+2+7=\boxed{10}$
C
10
c0474014457c19560ee5ee7b9e70ed3b
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_8
The product of the lengths of the two congruent sides of an obtuse isosceles triangle is equal to the product of the base and twice the triangle's height to the base. What is the measure, in degrees, of the vertex angle of this triangle? $\textbf{(A)} \: 105 \qquad\textbf{(B)} \: 120 \qquad\textbf{(C)} \: 135 \qquad\textbf{(D)} \: 150 \qquad\textbf{(E)} \: 165$
Let the lengths of the two congruent sides of the triangle be $x$ , then the product desired is $x^2$ Notice that the product of the base and twice the height is $4$ times the area of the triangle. Set the vertex angle to be $a$ , we derive the equation: $x^2=4\left(\frac{1}{2}x^2\sin(a)\right)$ $\sin(a)=\frac{1}{2}$ As the triangle is obtuse, $a=150^\circ$ only. We get $\boxed{150}.$
D
150
c0474014457c19560ee5ee7b9e70ed3b
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_8
The product of the lengths of the two congruent sides of an obtuse isosceles triangle is equal to the product of the base and twice the triangle's height to the base. What is the measure, in degrees, of the vertex angle of this triangle? $\textbf{(A)} \: 105 \qquad\textbf{(B)} \: 120 \qquad\textbf{(C)} \: 135 \qquad\textbf{(D)} \: 150 \qquad\textbf{(E)} \: 165$
Denote by $a$ the length of each congruent side. Denote by $\theta$ the degree measure of each acute angle. Denote by $\phi$ the degree measure of the obtuse angle. Hence, this problem tells us the following relationship: \[ a^2 = 2 a \cos \theta \cdot 2 a \sin \theta . \] Hence, \begin{align*} 1 & = 2 \cdot 2 \sin \theta \cos \theta \\ & = 2 \sin 2 \theta \\ & = 2 \sin \left( 180^\circ - 2 \theta \right) \\ & = 2 \sin \phi . \end{align*} Hence, $\phi = 150^\circ$ Therefore, the answer is $\boxed{150}$
D
150
99f1a5e777fb4e658191be6b727d6070
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_9
Triangle $ABC$ is equilateral with side length $6$ . Suppose that $O$ is the center of the inscribed circle of this triangle. What is the area of the circle passing through $A$ $O$ , and $C$ $\textbf{(A)} \: 9\pi \qquad\textbf{(B)} \: 12\pi \qquad\textbf{(C)} \: 18\pi \qquad\textbf{(D)} \: 24\pi \qquad\textbf{(E)} \: 27\pi$
Construct the circle that passes through $A$ $O$ , and $C$ , centered at $X$ Also notice that $\overline{OA}$ and $\overline{OC}$ are the angle bisectors of angle $\angle BAC$ and $\angle BCA$ respectively. We then deduce $\angle AOC=120^\circ$ Consider another point $M$ on Circle $X$ opposite to point $O$ As $AOCM$ is an inscribed quadrilateral of Circle $X$ $\angle AMC=180^\circ-120^\circ=60^\circ$ Afterward, deduce that $\angle AXC=2·\angle AMC=120^\circ$ By the Cosine Rule, we have the equation: (where $r$ is the radius of circle $X$ $2r^2(1-\cos(120^\circ))=6^2$ $r^2=12$ The area is therefore $\pi r^2 = \boxed{12}$
B
12
99f1a5e777fb4e658191be6b727d6070
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_9
Triangle $ABC$ is equilateral with side length $6$ . Suppose that $O$ is the center of the inscribed circle of this triangle. What is the area of the circle passing through $A$ $O$ , and $C$ $\textbf{(A)} \: 9\pi \qquad\textbf{(B)} \: 12\pi \qquad\textbf{(C)} \: 18\pi \qquad\textbf{(D)} \: 24\pi \qquad\textbf{(E)} \: 27\pi$
We have $\angle AOC = 120^\circ$ Denote by $R$ the circumradius of $\triangle AOC$ . In $\triangle AOC$ , the law of sines implies \[ 2 R = \frac{AC}{\sin \angle AOC} = 4 \sqrt{3} . \] Hence, the area of the circumcircle of $\triangle AOC$ is \[ \pi R^2 = 12 \pi . \] Therefore, the answer is $\boxed{12}$
B
12
99f1a5e777fb4e658191be6b727d6070
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_9
Triangle $ABC$ is equilateral with side length $6$ . Suppose that $O$ is the center of the inscribed circle of this triangle. What is the area of the circle passing through $A$ $O$ , and $C$ $\textbf{(A)} \: 9\pi \qquad\textbf{(B)} \: 12\pi \qquad\textbf{(C)} \: 18\pi \qquad\textbf{(D)} \: 24\pi \qquad\textbf{(E)} \: 27\pi$
As in the previous solution, construct the circle that passes through $A$ $O$ , and $C$ , centered at $X$ . Let $Y$ be the intersection of $\overline{OX}$ and $\overline{AB}$ Note that since $\overline{OA}$ is the angle bisector of $\angle BAC$ that $\angle OAC=30^\circ$ . Also by symmetry, $\overline{OX}$ $\perp$ $\overline{AB}$ and $AY = 3$ . Thus $\tan(30^\circ) = \frac{OY}{3}$ so $OY = \sqrt{3}$ Let $r$ be the radius of circle $X$ , and note that $AX = OX = r$ . So $\triangle AYX$ is a right triangle with legs of length $3$ and $r - \sqrt{3}$ and hypotenuse $r$ . By Pythagoras, $3^2 + (r - \sqrt{3})^2 = r^2$ . So $r = 2\sqrt{3}$ Thus the area is $\pi r^2 = \boxed{12}$
B
12
99f1a5e777fb4e658191be6b727d6070
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_9
Triangle $ABC$ is equilateral with side length $6$ . Suppose that $O$ is the center of the inscribed circle of this triangle. What is the area of the circle passing through $A$ $O$ , and $C$ $\textbf{(A)} \: 9\pi \qquad\textbf{(B)} \: 12\pi \qquad\textbf{(C)} \: 18\pi \qquad\textbf{(D)} \: 24\pi \qquad\textbf{(E)} \: 27\pi$
The semiperimeter is $\frac{6+6+6}{2}=9$ units. The area of the triangle is $9\sqrt{3}$ units squared. By the formula that says that the area of the triangle is its semiperimeter times its inradius, the inradius $r=\sqrt{3}$ . As $\angle{AOC}=120^\circ$ , we can form an altitude from point $O$ to side $AC$ at point $M$ , forming two 30-60-90 triangles. As $CM=MA=3$ , we can solve for $OC=2\sqrt{3}$ . Now, the area of the circle is just $\pi*(2*\sqrt{3})^2 = 12\pi$ . Select $\boxed{12}$
B
12
99f1a5e777fb4e658191be6b727d6070
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_9
Triangle $ABC$ is equilateral with side length $6$ . Suppose that $O$ is the center of the inscribed circle of this triangle. What is the area of the circle passing through $A$ $O$ , and $C$ $\textbf{(A)} \: 9\pi \qquad\textbf{(B)} \: 12\pi \qquad\textbf{(C)} \: 18\pi \qquad\textbf{(D)} \: 24\pi \qquad\textbf{(E)} \: 27\pi$
Call the diameter of the circle $d$ . If we extend points $A$ and $C$ to meet at a point on the circle and call it $E$ , then $\bigtriangleup OAE=\bigtriangleup OCE$ . Note that both triangles are right, since their hypotenuse is the diameter of the circle. Therefore, $CE=AE=\sqrt{d^2-12}$ . We know this since $OC=OA=OB$ and $OC$ is the hypotenuse of a $30-60-90$ right triangle, with the longer leg being $\frac{6}{2}=3$ so $OC=2\sqrt{3}$ . Applying Ptolemy's Theorem on cyclic quadrilateral $OCEA$ , we get $2({\sqrt{d^2-12}})\cdot{2\sqrt{3}}=6d$ . Squaring and solving we get $d^2=48 \Longrightarrow (2r)^2=48$ so $r^2=12$ . Therefore, the area of the circle is $\boxed{12}$
null
12
1e8e002304cfffc8f866993a57f7b742
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_10
What is the sum of all possible values of $t$ between $0$ and $360$ such that the triangle in the coordinate plane whose vertices are \[(\cos 40^\circ,\sin 40^\circ), (\cos 60^\circ,\sin 60^\circ), \text{ and } (\cos t^\circ,\sin t^\circ)\] is isosceles? $\textbf{(A)} \: 100 \qquad\textbf{(B)} \: 150 \qquad\textbf{(C)} \: 330 \qquad\textbf{(D)} \: 360 \qquad\textbf{(E)} \: 380$
Let $A = (\cos 40^{\circ}, \sin 40^{\circ}), B = (\cos 60^{\circ}, \sin 60^{\circ}),$ and $C = (\cos t^{\circ}, \sin t^{\circ}).$ We apply casework to the legs of isosceles $\triangle ABC:$ Together, the sum of all such possible values of $t$ is $20+80+50+230=\boxed{380}.$
E
380
bb2841e09d3b8334648d32771f8a7271
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_13
Let $c = \frac{2\pi}{11}.$ What is the value of \[\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}?\] $\textbf{(A)}\ {-}1 \qquad\textbf{(B)}\ {-}\frac{\sqrt{11}}{5} \qquad\textbf{(C)}\ \frac{\sqrt{11}}{5} \qquad\textbf{(D)}\ \frac{10}{11} \qquad\textbf{(E)}\ 1$
Plugging in $c$ , we get \[\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}.\] Since $\sin(x+2\pi)=\sin(x),$ $\sin(2\pi-x)=\sin(-x),$ and $\sin(-x)=-\sin(x),$ we get \[\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{-10\pi}{11} \cdot \sin \frac{-4\pi}{11} \cdot \sin \frac{2\pi}{11} \cdot \sin \frac{8\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\boxed{1}.\]
E
1
bb2841e09d3b8334648d32771f8a7271
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_13
Let $c = \frac{2\pi}{11}.$ What is the value of \[\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}?\] $\textbf{(A)}\ {-}1 \qquad\textbf{(B)}\ {-}\frac{\sqrt{11}}{5} \qquad\textbf{(C)}\ \frac{\sqrt{11}}{5} \qquad\textbf{(D)}\ \frac{10}{11} \qquad\textbf{(E)}\ 1$
Eisenstein used such a quotient in his proof of quadratic reciprocity . Let $c=\frac{2\pi}{p}$ where $p$ is an odd prime number and $q$ is any integer. Then $\dfrac{\sin(qc)\sin(2qc)\cdots\sin(\frac{p-1}{2}qc)}{\sin(c)\sin(2c)\cdots\sin(\frac{p-1}{2}c)}$ is the Legendre symbol $\left(\frac{q}{p}\right)$ . Legendre symbol is calculated using quadratic reciprocity which is $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$ . The Legendre symbol $\left(\frac{3}{11}\right)=(-1)\left(\frac{11}{3}\right)=(-1)\left(\frac{-1}{3}\right)=(-1)(-1)=\boxed{1}$
E
1
9bde944b16f9f6f0ad5839dca4fa206d
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_14
Suppose that $P(z), Q(z)$ , and $R(z)$ are polynomials with real coefficients, having degrees $2$ $3$ , and $6$ , respectively, and constant terms $1$ $2$ , and $3$ , respectively. Let $N$ be the number of distinct complex numbers $z$ that satisfy the equation $P(z) \cdot Q(z)=R(z)$ . What is the minimum possible value of $N$ $\textbf{(A)}\: 0\qquad\textbf{(B)} \: 1\qquad\textbf{(C)} \: 2\qquad\textbf{(D)} \: 3\qquad\textbf{(E)} \: 5$
The answer cannot be $0,$ as every nonconstant polynomial has at least $1$ distinct complex root (Fundamental Theorem of Algebra). Since $P(z) \cdot Q(z)$ has degree $2 + 3 = 5,$ we conclude that $R(z) - P(z)\cdot Q(z)$ has degree $6$ and is thus nonconstant. It now suffices to illustrate an example for which $N = 1$ : Take \begin{align*} P(z)&=z^2+1, \\ Q(z)&=z^3+2, \\ R(z)&=(z+1)^6 + P(z) \cdot Q(z). \end{align*} Note that $R(z)$ has degree $6$ and constant term $3,$ so it satisfies the conditions. We need to find the solutions to \begin{align*} P(z) \cdot Q(z) &= (z+1)^6 + P(z) \cdot Q(z) \\ 0 &= (z+1)^6. \end{align*} Clearly, the only distinct complex root is $-1,$ so our answer is $N=\boxed{1}.$
B
1
a6e04243821fe39a1e2caa40347e7154
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_15
Three identical square sheets of paper each with side length $6$ are stacked on top of each other. The middle sheet is rotated clockwise $30^\circ$ about its center and the top sheet is rotated clockwise $60^\circ$ about its center, resulting in the $24$ -sided polygon shown in the figure below. The area of this polygon can be expressed in the form $a-b\sqrt{c}$ , where $a$ $b$ , and $c$ are positive integers, and $c$ is not divisible by the square of any prime. What is $a+b+c$ $(\textbf{A})\: 75\qquad(\textbf{B}) \: 93\qquad(\textbf{C}) \: 96\qquad(\textbf{D}) \: 129\qquad(\textbf{E}) \: 147$
[asy] defaultpen(fontsize(8)+0.8); size(100); pair A=(0,0); pair B=(1.732,3); pair C=(3,3); pair D=(3,1.732); draw(A--(0,3)--C--(3,0)--A, lightgray+dashed); draw(A--B--C--A); draw(A--D--C, gray); label("$A$",A,W); label("$B$",B,N); label("$C$",C,NE); label("$D$",D,E); label("$E$",(0,3),NW); label("$F$",(3,0),E); [/asy] The $24$ -sided polygon is made out of $24$ shapes like $\triangle ABC$ . Then $\angle BAC=360^\circ/24=15^\circ$ , and $\angle EAC = 45^\circ$ , so $\angle{EAB} = 30^{\circ}$ . Then $EB=AE\tan 30^\circ = \sqrt{3}$ ; therefore $BC=EC-EB=3-\sqrt{3}$ . Thus \[[ABC] = \frac{BC}{EC}\cdot [ACE] = \frac{3-\sqrt{3}}{3}\cdot \frac 92\] and the required area is $24\cdot[ABC] =108-36\sqrt{3}$ . Finally $108+36+3=\boxed{147}$ . ~lopkiloinm
E
147
a6e04243821fe39a1e2caa40347e7154
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_15
Three identical square sheets of paper each with side length $6$ are stacked on top of each other. The middle sheet is rotated clockwise $30^\circ$ about its center and the top sheet is rotated clockwise $60^\circ$ about its center, resulting in the $24$ -sided polygon shown in the figure below. The area of this polygon can be expressed in the form $a-b\sqrt{c}$ , where $a$ $b$ , and $c$ are positive integers, and $c$ is not divisible by the square of any prime. What is $a+b+c$ $(\textbf{A})\: 75\qquad(\textbf{B}) \: 93\qquad(\textbf{C}) \: 96\qquad(\textbf{D}) \: 129\qquad(\textbf{E}) \: 147$
As shown in Image:2021_AMC_12B_(Nov)_Problem_15,_sol.png , all 12 vertices of three squares form a regular dodecagon (12-gon). Denote by $O$ the center of this dodecagon. Hence, $\angle AOB = \frac{360^\circ}{12} = 30^\circ$ Because the length of a side of a square is 6, $AO = 3 \sqrt{2}$ Hence, $AB = 2 AO \sin \frac{\angle AOB}{2} = 3 \left( \sqrt{3} - 1 \right)$ We notice that $\angle MAB = \angle MBA = 30^\circ$ . Hence, $AM = \frac{AB}{2\cos \angle MAB} = 3 - \sqrt{3}$ Therefore, the area of the region that three squares cover is \begin{align*} & {\rm Area} \ ABCDEFGHIJKL - 12 {\rm Area} \ \triangle MAB \\ & = 12 {\rm Area} \ \triangle OAB - 12 {\rm Area} \ \triangle MAB \\ & = 12 \cdot \frac{1}{2} OA \cdot OB \sin \angle AOB - 12 \cdot \frac{1}{2} MA \cdot MB \sin \angle AMB \\ & = 6 OA^2 \sin \angle AOB - 6 MA^2 \sin \angle AMB \\ & = 108 - 36 \sqrt{3} . \end{align*} Therefore, the answer is $\boxed{147}$
E
147
b5d8ba445586cd8616e6c72a6f54e230
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_16
Suppose $a$ $b$ $c$ are positive integers such that \[a+b+c=23\] and \[\gcd(a,b)+\gcd(b,c)+\gcd(c,a)=9.\] What is the sum of all possible distinct values of $a^2+b^2+c^2$ $\textbf{(A)}\: 259\qquad\textbf{(B)} \: 438\qquad\textbf{(C)} \: 516\qquad\textbf{(D)} \: 625\qquad\textbf{(E)} \: 687$
Because $a + b + c$ is odd, $a$ $b$ $c$ are either one odd and two evens or three odds. $\textbf{Case 1}$ $a$ $b$ $c$ have one odd and two evens. Without loss of generality, we assume $a$ is odd and $b$ and $c$ are even. Hence, ${\rm gcd} \left( a , b \right)$ and ${\rm gcd} \left( a , c \right)$ are odd, and ${\rm gcd} \left( b , c \right)$ is even. Hence, ${\rm gcd} \left( a , b \right) + {\rm gcd} \left( b , c \right) + {\rm gcd} \left( c , a \right)$ is even. This violates the condition given in the problem. Therefore, there is no solution in this case. $\textbf{Case 2}$ $a$ $b$ $c$ are all odd. In this case, ${\rm gcd} \left( a , b \right)$ ${\rm gcd} \left( a , c \right)$ ${\rm gcd} \left( b , c \right)$ are all odd. Without loss of generality, we assume \[ {\rm gcd} \left( a , b \right) \leq {\rm gcd} \left( b , c \right) \leq {\rm gcd} \left( c , a \right) . \] $\textbf{Case 2.1}$ ${\rm gcd} \left( a , b \right) = 1$ ${\rm gcd} \left( b , c \right) = 1$ ${\rm gcd} \left( c , a \right) = 7$ The only solution is $(a, b, c) = (7, 9, 7)$ Hence, $a^2 + b^2 + c^2 = 179$ $\textbf{Case 2.2}$ ${\rm gcd} \left( a , b \right) = 1$ ${\rm gcd} \left( b , c \right) = 3$ ${\rm gcd} \left( c , a \right) = 5$ The only solution is $(a, b, c) = (5, 3, 15)$ Hence, $a^2 + b^2 + c^2 = 259$ $\textbf{Case 2.3}$ ${\rm gcd} \left( a , b \right) = 3$ ${\rm gcd} \left( b , c \right) = 3$ ${\rm gcd} \left( c , a \right) = 3$ There is no solution in this case. Therefore, putting all cases together, the answer is $179 + 259 = \boxed{438}$
B
438
b5d8ba445586cd8616e6c72a6f54e230
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_16
Suppose $a$ $b$ $c$ are positive integers such that \[a+b+c=23\] and \[\gcd(a,b)+\gcd(b,c)+\gcd(c,a)=9.\] What is the sum of all possible distinct values of $a^2+b^2+c^2$ $\textbf{(A)}\: 259\qquad\textbf{(B)} \: 438\qquad\textbf{(C)} \: 516\qquad\textbf{(D)} \: 625\qquad\textbf{(E)} \: 687$
Let $\gcd(a,b)=x$ $\gcd(b,c)=y$ $\gcd(c,a)=z$ . Without the loss of generality, let $x \le y \le z$ . We can split this off into cases: $x=1,y=1,z=7$ : let $a=7A, c=7C,$ we can try all possibilities of $A$ and $C$ to find that $a=7, b=9, c=7$ is the only solution. $x=1,y=2,z=6$ : No solutions. By $y$ and $z$ , we know that $a$ $b$ , and $c$ have to all be divisible by $2$ . Therefore, $x$ cannot be equal to $1$ $x=1,y=3,z=5$ : Note that $c$ has to be both a multiple of $3$ and $5$ . Therefore, $c$ has to be a multiple of $15$ . The only solution for this is $a=5, b=3, c=15$ $x=1,y=4,z=4$ : No solutions. By $y$ and $z$ , we know that $a$ $b$ , and $c$ have to all be divisible by $4$ . Therefore, $x$ cannot be equal to $1$ $x=2,y=2,z=5$ : No solutions. By $x$ and $y$ , we know that $a$ $b$ , and $c$ have to all be divisible by $2$ . Therefore, $z$ cannot be equal to $5$ $x=2,y=3,z=4$ : No solutions. By $x$ and $z$ , we know that $a$ $b$ , and $c$ have to all be divisible by $2$ . Therefore, $y$ cannot be equal to $3$ $x=3,y=3,z=3$ : No solutions. As $a$ $b$ , and $c$ have to all be divisible by $3$ $a+b+c$ has to be divisible by $3$ . This contradicts the sum $a+b+c=23$ Putting these solutions together, we have $(7^2+9^2+7^2)+(5^2+3^2+15^2)=179+259=\boxed{438}$
B
438
b5d8ba445586cd8616e6c72a6f54e230
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_16
Suppose $a$ $b$ $c$ are positive integers such that \[a+b+c=23\] and \[\gcd(a,b)+\gcd(b,c)+\gcd(c,a)=9.\] What is the sum of all possible distinct values of $a^2+b^2+c^2$ $\textbf{(A)}\: 259\qquad\textbf{(B)} \: 438\qquad\textbf{(C)} \: 516\qquad\textbf{(D)} \: 625\qquad\textbf{(E)} \: 687$
Since $a+b+c=23$ $\gcd(a,b,c)=23$ or $\gcd(a,b,c)=1$ As $\gcd(a,b)+\gcd(b,c)+\gcd(c,a)=9$ , it is impossible for $\gcd(a,b,c)=23$ , so $\gcd(a,b,c)=1$ This means that $\gcd(a,b)$ $\gcd(b,c)$ , and $\gcd(c,a)$ must all be coprime. The only possible ways for this to be true are $1+1+7=9$ and $1+3+5=9$ Without loss of generality, let $a\le b\le c$ . Since $a+b+c=23$ , then $a=7, b=7, c=9$ or $a=3, b=5, c=15$ $(7^2+7^2+9^2)+(3^2+5^2+15^2)=179+259=\boxed{438}$
B
438
38f42e292b2c0fc1ea5cbaa56af12a87
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_18
Set $u_0 = \frac{1}{4}$ , and for $k \ge 0$ let $u_{k+1}$ be determined by the recurrence \[u_{k+1} = 2u_k - 2u_k^2.\] This sequence tends to a limit; call it $L$ . What is the least value of $k$ such that \[|u_k-L| \le \frac{1}{2^{1000}}?\] $\textbf{(A)}\: 10\qquad\textbf{(B)}\: 87\qquad\textbf{(C)}\: 123\qquad\textbf{(D)}\: 329\qquad\textbf{(E)}\: 401$
Note that terms of the sequence $(u_k)$ lie in the interval $\left(0,\frac12\right),$ strictly increasing. Since the sequence $(u_k)$ tends to the limit $L,$ we set $u_{k+1}=u_k=L>0.$ The given equation becomes \[L=2L-2L^2,\] from which $L=\frac12.$ The given inequality becomes \[\frac12-\frac{1}{2^{1000}} \leq u_k \leq \frac12+\frac{1}{2^{1000}},\] and we only need to consider $\frac12-\frac{1}{2^{1000}} \leq u_k.$ We have \begin{alignat*}{8} u_0 &= \phantom{1}\frac14 &&= \frac{2^1-1}{2^2}, \\ u_1 &= \phantom{1}\frac38 &&= \frac{2^2-1}{2^3}, \\ u_2 &= \ \frac{15}{32} &&= \frac{2^4-1}{2^5}, \\ u_3 &= \frac{255}{512} &&= \frac{2^8-1}{2^9}, \\ & \phantom{1111} \vdots \end{alignat*} By induction, it can be proven that \[u_k=\frac{2^{2^k}-1}{2^{2^k+1}}=\frac12-\frac{1}{2^{2^k+1}}.\] We substitute this into the inequality, then solve for $k:$ \begin{align*} \frac12-\frac{1}{2^{1000}} &\leq \frac12-\frac{1}{2^{2^k+1}} \\ -\frac{1}{2^{1000}} &\leq -\frac{1}{2^{2^k+1}} \\ 2^{1000} &\leq 2^{2^k+1} \\ 1000 &\leq 2^k+1. \end{align*} Therefore, the least such value of $k$ is $\boxed{10}.$
A
10
38f42e292b2c0fc1ea5cbaa56af12a87
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_18
Set $u_0 = \frac{1}{4}$ , and for $k \ge 0$ let $u_{k+1}$ be determined by the recurrence \[u_{k+1} = 2u_k - 2u_k^2.\] This sequence tends to a limit; call it $L$ . What is the least value of $k$ such that \[|u_k-L| \le \frac{1}{2^{1000}}?\] $\textbf{(A)}\: 10\qquad\textbf{(B)}\: 87\qquad\textbf{(C)}\: 123\qquad\textbf{(D)}\: 329\qquad\textbf{(E)}\: 401$
If we list out the first few values of $k$ , we get the series $\frac{1}{4}, \frac{3}{8}, \frac{15}{32}, \frac{255}{512}$ , which always seems to be a negative power of $2$ away from $\frac{1}{2}$ . We can test this out by setting $u_k=\frac{1}{2}-\frac{1}{2^{n_k}}$ , where $n_0=2$ Now, we get \begin{align*} u_{k+1} &= 2\cdot\left(\frac{1}{2}-\frac{1}{2^{n_{k}}}\right)-2\cdot\left(\frac{1}{2}-\frac{1}{2^{n_{k}}}\right)^2 \\ &= 1-\frac{1}{2^{n_k - 1}}-2\cdot\left(\frac{1}{4}-\frac{1}{2^{n_k}}+\frac{1}{2^{2 \cdot n_k}}\right)\\ &= 1-\frac{1}{2^{n_k - 1}}-\frac{1}{2}+\frac{1}{2^{n_k-1}}-\frac{1}{2^{2 \cdot n_k-1}} \\ &= \frac{1}{2}-\frac{1}{2^{2 \cdot n_k-1}}. \end{align*} This means that this series approaches $\frac{1}{2}$ , as the second term is decreasing. In addition, we find that $n_{k+1}=2 \cdot n_k-1$ We claim that $n_k = 2^k+1$ , which can be proven by induction: Base Case We have $n_0=2=2^0+1$ Induction Step Assuming that the claim is true, we have $n_{k+1}=2 \cdot (2^k+1)-1=2^{k+1}+1$ It follows that $n_{10}=2^{10}+1>1000$ and $n_9=2^9+1<1000$ . Therefore, the least value of $k$ would be $\boxed{10}$
A
10
38f42e292b2c0fc1ea5cbaa56af12a87
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_18
Set $u_0 = \frac{1}{4}$ , and for $k \ge 0$ let $u_{k+1}$ be determined by the recurrence \[u_{k+1} = 2u_k - 2u_k^2.\] This sequence tends to a limit; call it $L$ . What is the least value of $k$ such that \[|u_k-L| \le \frac{1}{2^{1000}}?\] $\textbf{(A)}\: 10\qquad\textbf{(B)}\: 87\qquad\textbf{(C)}\: 123\qquad\textbf{(D)}\: 329\qquad\textbf{(E)}\: 401$
We are given $u_{k+1} = 2u_k - 2{u_k}^2$ . Multiply this equation by $2$ and subtract $1$ from both sides. The equations can then be written nicely as $2u_{k+1} - 1 = -(2u_k-1)^2$ . Let $v_k = 2u_k - 1$ so that $v_{k+1} = -(v_k)^2$ Clearly, $v_0 = 2u_0 - 1 = -\frac{1}{2}$ . Since the magnitude of $v_0$ is less than $1$ and because our recursive relation for $v_k$ squares the previous term (and negates it), we see that as $k \rightarrow \infty, 2u_k - 1 = v_k \rightarrow 0$ . This means $u_k \rightarrow \frac{1}{2}$ , so $L = \frac{1}{2}$ Isolating $u_k$ in our relation $2u_k - 1 = v_k$ gives us $u_k = \frac{v_k + 1}{2}$ . Substituting into the inequality, we have $\left|\frac{v_k + 1}{2}-\frac{1}{2}\right| \le \frac{1}{2^{1000}}$ . Rewriting this, we get $|v_k| \le \frac{1}{2^{999}}$ The sequence $\{v_k\}$ is much easier to handle because of its simple recursive relation. Writing out a few terms shows that $|v_k| = \frac{1}{2^{2^k}}$ . Now it just comes down to having $2^k > 999$ , so $k = \boxed{10}$
A
10
dbe5dabfa5e8877a7e098f746fc56d59
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_19
Regular polygons with $5,6,7,$ and $8$ sides are inscribed in the same circle. No two of the polygons share a vertex, and no three of their sides intersect at a common point. At how many points inside the circle do two of their sides intersect? $(\textbf{A})\: 52\qquad(\textbf{B}) \: 56\qquad(\textbf{C}) \: 60\qquad(\textbf{D}) \: 64\qquad(\textbf{E}) \: 68$
Imagine we have $2$ regular polygons with $m$ and $n$ sides and $m>n$ inscribed in a circle without sharing a vertex. We see that each side of the polygon with $n$ sides (the polygon with fewer sides) will be intersected twice. (We can see this because to have a vertex of the $m$ -gon on an arc subtended by a side of the $n$ -gon, there will be one intersection to “enter” the arc and one to “exit” the arc. ~KingRavi) This means that we will end up with $2$ times the number of sides in the polygon with fewer sides. If we have polygons with $5,$ $6,$ $7,$ and $8$ sides, we need to consider each possible pair of polygons and count their intersections. Throughout $6$ of these pairs, the $5$ -sided polygon has the least number of sides $3$ times, the $6$ -sided polygon has the least number of sides $2$ times, and the $7$ -sided polygon has the least number of sides $1$ time. Therefore the number of intersections is $2\cdot(3\cdot5+2\cdot6+1\cdot7)=\boxed{68}$
E
68
fbdc5f69f6ef614e52d2bed1e2c8f0fc
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_20
A cube is constructed from $4$ white unit cubes and $4$ blue unit cubes. How many different ways are there to construct the $2 \times 2 \times 2$ cube using these smaller cubes? (Two constructions are considered the same if one can be rotated to match the other.) $\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11$
This problem is about the relationships between the white unit cubes and the blue unit cubes, which can be solved by Graph Theory . We use a Planar Graph to represent the larger cube. Each vertex of the planar graph represents a unit cube. Each edge of the planar graph represents a shared face between $2$ neighboring unit cubes. Each face of the planar graph represents a face of the larger cube. Now the problem becomes a Graph Coloring problem of how many ways to assign $4$ vertices blue and $4$ vertices white with Topological Equivalence . For example, in Figure $(1)$ , as long as the $4$ blue vertices belong to the same planar graph face, the different planar graphs are considered to be topological equivalent by rotating the larger cube. Topology.jpg Here is how the $4$ blue unit cubes are arranged: In Figure $(1)$ $4$ blue unit cubes are on the same layer (horizontal or vertical). In Figure $(2)$ $4$ blue unit cubes are in $T$ shape. In Figure $(3)$ and $(4)$ $4$ blue unit cubes are in $S$ shape. In Figure $(5)$ $3$ blue unit cubes are in $L$ shape, and the other is isolated without a shared face. In Figure $(6)$ $2$ pairs of neighboring blue unit cubes are isolated from each other without a shared face. In Figure $(7)$ $4$ blue unit cubes are isolated from each other without a shared face. So the answer is $\boxed{7}$
A
7
fbdc5f69f6ef614e52d2bed1e2c8f0fc
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_20
A cube is constructed from $4$ white unit cubes and $4$ blue unit cubes. How many different ways are there to construct the $2 \times 2 \times 2$ cube using these smaller cubes? (Two constructions are considered the same if one can be rotated to match the other.) $\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11$
Let’s split the cube into two layers; a bottom and top. Note that there must be four of each color, so however many number of one color are in the bottom, there will be four minus that number of the color on the top. We do casework on the color distribution of the bottom layer. Case 1: 4, 0 In this case, there is only one possibility for the top layer - all of the other color - $\binom{4}{4}$ . Therefore there is 1 construction from this case. Case 2: 3, 1 In this case, the top layer has four possibilities, because there are four different ways to arrange it so that it also has a 3, 1 color distribution - $\binom{4}{3}$ . Therefore there are 4 constructions from this case. Case 3: 2, 2 In this case, the top layer has six possibilities of arrangement - $\binom{4}{2}$ . However, having adjacent colors one way can be rotated to having adjacent colors any other way, so there is only one construction for the adjacent colors subcase and similarly, only one for the diagonal color subcase. Therefore the total number of constructions for this case is 2. The total number of constructions for the cube is thus $1+4+2=7=\boxed{7}$
A
7
fbdc5f69f6ef614e52d2bed1e2c8f0fc
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_20
A cube is constructed from $4$ white unit cubes and $4$ blue unit cubes. How many different ways are there to construct the $2 \times 2 \times 2$ cube using these smaller cubes? (Two constructions are considered the same if one can be rotated to match the other.) $\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11$
Divide the $2 \times 2 \times 2$ cube into two layers, say, front and back. Any possible construction can be rotated such that the front layer has the same or greater number of white cubes than blue cubes, so we only need to count the number of cases given that is true. Therefore, our answer is $6+1+0=\boxed{7}$
A
7
fbdc5f69f6ef614e52d2bed1e2c8f0fc
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_20
A cube is constructed from $4$ white unit cubes and $4$ blue unit cubes. How many different ways are there to construct the $2 \times 2 \times 2$ cube using these smaller cubes? (Two constructions are considered the same if one can be rotated to match the other.) $\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11$
Burnside lemma is used to counting number of orbit where the element on the same orbit can be achieved by the defined operator, naming rotation, reflection and etc. The fact for Burnside lemma are 1. the sum of stablizer on the same orbit equals to the # of operators; 2. the sum of stablizer can be counted as $fix(g)$ 3. the sum of the $fix(g)/|G|$ equals the # of orbit. Let's start with defining the operator for a cube, 1. $\textbf{e (identity)}$ For identity, there are $\frac{8!}{4!4!} = 70$ 2. ${\bf r^{1}, r^{2}, r^{3}}$ to be the rotation axis along three pair of opposite face, each contains $r^{i}_{90}, r^{i}_{180}, r^{i}_{270}$ where $i= 1, 2, 3$ $fix(r^{i}_{90}) = fix(r^{i}_{270}) = 2\cdot1 = 2$ $fix(r^{i}_{180}) = \frac{4!}{2!\cdot2!} = 6$ therefore $fix(\bf r^{i}) = 2+2+6 = 10$ , and $fix(\bf r^{1})+fix(\bf r^{2})+fix(\bf r^{3}) = 30$ 3. ${\bf r^{4}, r^{5}, r^{6}, r^{7}}$ to the rotation axis along four cube diagnals. each contains $r^{i}_{120}, r^{i}_{240}$ where $i= 4, 5, 6, 7$ $fix(r^{i}_{120}) = fix(r^{i}_{240}) = 2\cdot1\cdot2\cdot1 = 4$ therefore $fix(\bf r^{i}) = 4+4 = 8$ , and $fix(\bf r^{4})+fix(\bf r^{5})+fix(\bf r^{6})+fix(\bf r^{7}) = 32$ 4. ${\bf r^{8}, r^{9}, r^{10}, r^{11}, r^{12}, r^{13}}$ to be the rotation axis along 6 pairs of diagnally opposite sides each contains $r^{i}_{180}$ where $i= 8, 9, 10, 11, 12, 13$ $fix(r^{i}_{180}) = \frac{4!}{2!\cdot2!} = 6$ therefore $fix(\bf r^{8})+fix(\bf r^{9})+fix(\bf r^{10})+fix(\bf r^{11})+fix(\bf r^{12})+fix(\bf r^{13}) = 36$ 5. The total number of operators are $|G| = 1 + 3\cdot3 + 4\cdot2 + 6\cdot1 = 24$ Based on 1, 2, 3, 4 the total number of stablizer is $70 + 30 + 32 + 36 = 168$ therefore the number of orbit $= \frac{168}{G=24} = \boxed{7}$
null
7
fbdc5f69f6ef614e52d2bed1e2c8f0fc
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_20
A cube is constructed from $4$ white unit cubes and $4$ blue unit cubes. How many different ways are there to construct the $2 \times 2 \times 2$ cube using these smaller cubes? (Two constructions are considered the same if one can be rotated to match the other.) $\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11$
Since rotations of a single pattern are considered indistinguishable, we can assume that the forward upper right corner of the 2-by-2-by-2 cube is a blue cube (since we can always rotate the big cube to place a blue cube in that spot). Once we've assigned this cube to be blue, we note that 3 1-by-1-by-1 cubes share a side with it, 3 1-by-1-by-1 cubes share a corner with it, and 1 1-by-1-by-1 cube does not touch the assigned cube at all, from the perspective of someone who can only see the cube's faces. We'll call the first 3 "adjacent", the second 3 "cornering", and the last one "opposite." We can use a little bit of intuition to confirm that due to the rotation condition, we should treat all adjacents as indistinguishable, all cornerings as indistinguishable, and of course the opposite one is unique from all the others. Thus, we can list out like so (keeping in mind that there are 3 adjacents, 3 cornerings, and 1 opposite, and that we're choosing the positions of the remaining 3 blue cubes): OAA, OAC, OCC, CCC, CAA, CCA, AAA. This gives the answer to be $\boxed{7}$
A
7
9a37f5a136c04ad6e6ab5432be5f08dd
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_21
For real numbers $x$ , let \[P(x)=1+\cos(x)+i\sin(x)-\cos(2x)-i\sin(2x)+\cos(3x)+i\sin(3x)\] where $i = \sqrt{-1}$ . For how many values of $x$ with $0\leq x<2\pi$ does \[P(x)=0?\] $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4$
Let $a=\cos(x)+i\sin(x)$ . Now $P(a)=1+a-a^2+a^3$ $P(-1)=-2$ and $P(0)=1$ so there is a real root $a_1$ between $-1$ and $0$ . The other $a$ 's must be complex conjugates since all coefficients of the polynomial are real. The magnitude of those complex $a$ 's squared is $\frac{1}{a_1}$ which is greater than $1$ . If $x$ is real number then $a$ must have magnitude of $1$ , but none of the solutions for $a$ have magnitude of $1$ , so the answer is $\boxed{0}$ ~lopkiloinm
A
0
9a37f5a136c04ad6e6ab5432be5f08dd
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_21
For real numbers $x$ , let \[P(x)=1+\cos(x)+i\sin(x)-\cos(2x)-i\sin(2x)+\cos(3x)+i\sin(3x)\] where $i = \sqrt{-1}$ . For how many values of $x$ with $0\leq x<2\pi$ does \[P(x)=0?\] $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4$
For $\textrm{Im}(P(x))=0$ , we get \[\sin(2x)=\sin(x)+\sin(3x)=2\sin(2x)\cos(x)\] So either $\sin(2x)=0$ , i.e. $x\in\{0,\pi\}$ or $\cos(x)=\tfrac 12$ , i.e. $x\in \{\pi/3, 5\pi/3\}$ For none of these values do we get $\textrm{Re}(P(x))=0$ Therefore, the answer is $\boxed{0}$
A
0
9a37f5a136c04ad6e6ab5432be5f08dd
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_21
For real numbers $x$ , let \[P(x)=1+\cos(x)+i\sin(x)-\cos(2x)-i\sin(2x)+\cos(3x)+i\sin(3x)\] where $i = \sqrt{-1}$ . For how many values of $x$ with $0\leq x<2\pi$ does \[P(x)=0?\] $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4$
We have \begin{align*} P \left( x \right) & = 1 + e^{ix} - e^{i 2x} + e^{i 3x} . \end{align*} Denote $y = e^{i x}$ . Hence, this problem asks us to find the number of $y$ with $| y| = 1$ that satisfy \[ 1 + y - y^2 + y^3 = 0 . \hspace{1cm} (1) \] Taking imaginary part of both sides, we have \begin{align*} 0 & = {\rm Im} \ \left( 1 + y - y^2 + y^3 \right) \\ & = \frac{1}{2i} \left( y - \bar y - y^2 + \bar y^2 + y^3 - \bar y^3 \right) \\ & = \frac{y - \bar y}{2i} \left( 1 - y - \bar y + y^2 + y \bar y + \bar y^2 \right) \\ & = {\rm Im} \ y \left( 1 - \left( y + \bar y \right) + \left( y + \bar y \right)^2 - y \bar y \right) \\ & = {\rm Im} \ y \left( 1 - 2 {\rm Re} \ y + 4 \left( {\rm Re} \ y \right)^2 - |y|^2 \right) \\ & = {\rm Im} \ y \left( 1 - 2 {\rm Re} \ y + 4 \left( {\rm Re} \ y \right)^2 - 1 \right) \\ & = 2 {\rm Im} \ y \cdot {\rm Re} \ y \left( 2 {\rm Re} \ y - 1 \right) \\ \end{align*} The sixth equality follows from the property that $|y| = 1$ Therefore, we have either ${\rm Re} \ y = 0$ or ${\rm Im} \ y = 0$ or $2 {\rm Re} \ y - 1 = 0$ Case 1: ${\rm Re} \ y = 0$ Because $|y| = 1$ $y = \pm i$ However, these solutions fail to satisfy Equation (1). Therefore, there is no solution in this case. Case 2: ${\rm Im} \ y = 0$ Because $|y| = 1$ $y = \pm 1$ However, these solutions fail to satisfy Equation (1). Therefore, there is no solution in this case. Case 3: $2 {\rm Re} \ y - 1 = 0$ Because $|y| = 1$ $y = \frac{1}{2} \pm \frac{\sqrt{3}}{2} i = e^{i \pm \frac{\pi}{3}}$ However, these solutions fail to satisfy Equation (1). Therefore, there is no solution in this case. All cases above imply that there is no solution in this problem. Therefore, the answer is $\boxed{0}$
A
0
9a37f5a136c04ad6e6ab5432be5f08dd
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_21
For real numbers $x$ , let \[P(x)=1+\cos(x)+i\sin(x)-\cos(2x)-i\sin(2x)+\cos(3x)+i\sin(3x)\] where $i = \sqrt{-1}$ . For how many values of $x$ with $0\leq x<2\pi$ does \[P(x)=0?\] $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4$
Let $a=\cos(x)+i\sin(x)$ , so by De Moivre $P(x)=a^3-a^2+a+1$ . The problem essentially asks for the number of real roots of $P$ which lie on the complex unit circle. Let $|r|=1$ be a root of $P$ , and note that we can't have $r^3-r^2+r=0$ , else $P(r)=0$ . Thus, suppose henceforth that $r^3-r^2+r \neq 0$ . We then have $r^3-r^2+r=r^2(r+\tfrac{1}{r}-1)=a^2(2\mathrm{Re}(r)-1)$ , hence the argument of $r^3-r^2+r$ is either the argument of $a^2$ , or the argument of $-a^2$ . Since $r^3-r^2+r=-1$ is real, it follows that $a^2=\pm 1 \implies a \in \{1,i,-1,-i\}$ . Now, we can check all of these values and find that none of them work, yielding an answer of $\boxed{0}$
A
0
9a37f5a136c04ad6e6ab5432be5f08dd
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_21
For real numbers $x$ , let \[P(x)=1+\cos(x)+i\sin(x)-\cos(2x)-i\sin(2x)+\cos(3x)+i\sin(3x)\] where $i = \sqrt{-1}$ . For how many values of $x$ with $0\leq x<2\pi$ does \[P(x)=0?\] $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4$
$P(x)$ can be written equivalently as $P(x) = 1 + cis(x) - cis(2x) + cis(3x).$ Thus, we aim to find $x$ such that the sum of the vectors $cis(x)$ $-cis(2x)$ , and $cis(3x)$ is -1. Notice that $cis(x)$ $-cis(2x)$ $cis(3x)$ all lie on the unit circle in the complex plane, and the vector $cis(x) + cis(3x)$ is collinear with $-cis(2x).$ Since $|-cis(2x)| = 1$ and we want the three vectors to sum to -1, we either have $-cis(2x) = 1$ and $cis(x) + cis(3x) = -2$ , or $-cis(2x) = -1$ and $cis(x) + cis(3x) = 0.$ If the first condition is true, $cis(x) = cis(3x)=-1.$ This will imply that $x= \pi.$ But then $-cis(2x) = -1$ , which violates the condition. Similarly, we can show that the second condition cannot be met either. Thus $P(x)$ does not have any solutions on the interval $[0, 2\pi].$ Therefore, the answer is $\boxed{0}$
A
0
740edae610372c6de2fc25bb4d023e0e
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_24
Triangle $ABC$ has side lengths $AB = 11, BC=24$ , and $CA = 20$ . The bisector of $\angle{BAC}$ intersects $\overline{BC}$ in point $D$ , and intersects the circumcircle of $\triangle{ABC}$ in point $E \ne A$ . The circumcircle of $\triangle{BED}$ intersects the line $AB$ in points $B$ and $F \ne B$ . What is $CF$ $\textbf{(A) } 28 \qquad \textbf{(B) } 20\sqrt{2} \qquad \textbf{(C) } 30 \qquad \textbf{(D) } 32 \qquad \textbf{(E) } 20\sqrt{3}$
By the Law of Cosine $\cos A = \frac{AC^2 + AB^2 - BC^2}{ 2 \cdot AC \cdot AB} = \frac{20^2 + 11^2 - 24^2}{2\cdot20\cdot11} = -\frac18$ As $ABEC$ is a cyclic quadrilateral, $\angle CEA = \angle CBA$ . As $BDEF$ is a cyclic quadrilateral, $\angle CBA = \angle FEA$ $\because \quad \angle CEA = \angle FEA \quad \text{and} \quad \angle CAE = \angle FAE$ $\therefore \quad \triangle AFE \cong \triangle ACE$ by $ASA$ Hence, $AF = AC = 20$ By the Law of Cosine $CF = \sqrt{20^2 + 20^2 - 2 \cdot 20 \cdot 20 (-\frac18)} = \sqrt{900} = \boxed{30}$
C
30
740edae610372c6de2fc25bb4d023e0e
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_24
Triangle $ABC$ has side lengths $AB = 11, BC=24$ , and $CA = 20$ . The bisector of $\angle{BAC}$ intersects $\overline{BC}$ in point $D$ , and intersects the circumcircle of $\triangle{ABC}$ in point $E \ne A$ . The circumcircle of $\triangle{BED}$ intersects the line $AB$ in points $B$ and $F \ne B$ . What is $CF$ $\textbf{(A) } 28 \qquad \textbf{(B) } 20\sqrt{2} \qquad \textbf{(C) } 30 \qquad \textbf{(D) } 32 \qquad \textbf{(E) } 20\sqrt{3}$
Construct the $E$ -antipode, $E^{\prime}\in(ABC)$ . Notice $\triangle CE^{\prime}A\stackrel{+}{\sim}\triangle CBF$ by spiral similarity at $C$ , thus $CF=\dfrac{CB\cdot CA}{CE^{\prime}}=\frac{480}{CE^{\prime}}$ . Let $CE^{\prime}=x$ ; by symmetry $BE^{\prime}=x$ as well and $\cos\angle BE^{\prime}C=\cos\angle A=\tfrac{11^{2}+20^{2}-24^{2}}{2\cdot 11\cdot 20}=-\tfrac{1}{8}$ from Law of Cosines in $\triangle ABC$ , so by Law of Cosines in $\triangle BE^{\prime}C$ we have \[x^{2}+x^{2}+\left(2x^{2}\right)\left(-\dfrac{1}{8}\right)=24^{2}\] from which $x=16$ . Now, $CF=\dfrac{480}{16}=\boxed{30}$
C
30
740edae610372c6de2fc25bb4d023e0e
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_24
Triangle $ABC$ has side lengths $AB = 11, BC=24$ , and $CA = 20$ . The bisector of $\angle{BAC}$ intersects $\overline{BC}$ in point $D$ , and intersects the circumcircle of $\triangle{ABC}$ in point $E \ne A$ . The circumcircle of $\triangle{BED}$ intersects the line $AB$ in points $B$ and $F \ne B$ . What is $CF$ $\textbf{(A) } 28 \qquad \textbf{(B) } 20\sqrt{2} \qquad \textbf{(C) } 30 \qquad \textbf{(D) } 32 \qquad \textbf{(E) } 20\sqrt{3}$
Applying Stewart's theorem on $\triangle ABC$ with cevian $\overline{CF}$ using the directed lengths $AF = AC = 20$ and $FB = 11-20 = -9$ , we obtain \begin{align*} (20)(-9)(11) + (CF)(11)(CF) &= (24)(20)(24) + (20)(-9)(20) \\ 11CF^{2} - 1980 &= 11520 - 3600\end{align*} so $CF=\sqrt{\frac{11520 - 3600 + 1980}{11}}=\sqrt{\frac{9900}{11}}=\sqrt{900}=\boxed{30}$
C
30
740edae610372c6de2fc25bb4d023e0e
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_24
Triangle $ABC$ has side lengths $AB = 11, BC=24$ , and $CA = 20$ . The bisector of $\angle{BAC}$ intersects $\overline{BC}$ in point $D$ , and intersects the circumcircle of $\triangle{ABC}$ in point $E \ne A$ . The circumcircle of $\triangle{BED}$ intersects the line $AB$ in points $B$ and $F \ne B$ . What is $CF$ $\textbf{(A) } 28 \qquad \textbf{(B) } 20\sqrt{2} \qquad \textbf{(C) } 30 \qquad \textbf{(D) } 32 \qquad \textbf{(E) } 20\sqrt{3}$
Note that $\angle CAF = \angle CAB$ so we may plug into Law of Cosines to find the angle's cosine: \[AB^2+AC^2-2\cdot AB \cdot AC \cdot \cos(\angle CAB) = BC^2 \to \cos(\angle CAB) = -\frac{1}{8}.\] So, we observe that we can use Law of Cosines again to find $CF$ \[CF^2 = AF^2+AC^2-2 \cdot AF \cdot AC \cdot \cos(\angle CAF) = 900 \to CF=\boxed{30}\] both ways.
C
30
740edae610372c6de2fc25bb4d023e0e
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_24
Triangle $ABC$ has side lengths $AB = 11, BC=24$ , and $CA = 20$ . The bisector of $\angle{BAC}$ intersects $\overline{BC}$ in point $D$ , and intersects the circumcircle of $\triangle{ABC}$ in point $E \ne A$ . The circumcircle of $\triangle{BED}$ intersects the line $AB$ in points $B$ and $F \ne B$ . What is $CF$ $\textbf{(A) } 28 \qquad \textbf{(B) } 20\sqrt{2} \qquad \textbf{(C) } 30 \qquad \textbf{(D) } 32 \qquad \textbf{(E) } 20\sqrt{3}$
This solution is based on this figure: 2021 AMC 12B (Nov) Problem 24, sol.png Denote by $O$ the circumcenter of $\triangle BED$ . Denote by $R$ the circumradius of $\triangle BED$ In $\triangle BCF$ , following from the law of cosines, we have \begin{align*} CF^2 & = BC^2 + BF^2 - 2 BC \cdot BF \cos \angle CBF \\ & = BC^2 + BF^2 + 2 BC \cdot BF \cos \angle ABC . \hspace{1cm} (1) \end{align*} For $BF$ , we have \begin{align*} BF & = 2 R \cos \angle FBO \\ & = 2 R \cos \left( 180^\circ - \angle ABC - \angle CBO \right) \\ & = 2 R \cos \left( 180^\circ - \angle ABC - \frac{180^\circ - \angle BOD}{2} \right) \\ & = 2 R \cos \left( 180^\circ - \angle ABC - \frac{180^\circ - 2 \angle BED}{2} \right) \\ & = 2 R \cos \left( 180^\circ - \angle ABC - \frac{180^\circ - 2 \angle BCA}{2} \right) \\ & = 2 R \cos \left( 90^\circ - \angle ABC + \angle BCA \right) \\ & = 2 R \sin \left( \angle ABC - \angle BCA \right) \\ & = \frac{BD}{\sin \angle BED} \sin \left( \angle ABC - \angle BCA \right) \\ & = \frac{BD}{\sin \angle BCA} \sin \left( \angle ABC - \angle BCA \right) \\ & = BD \left( \sin \angle ABC \cot \angle BCA - \cos \angle ABC \right) . \hspace{1cm} (2) \end{align*} The fourth equality follows from the property that $B$ $D$ $E$ are concyclic. The fifth and the ninth equalities follow from the property that $A$ $B$ $C$ $E$ are concyclic. Because $AD$ bisects $\angle BAC$ , following from the angle bisector theorem, we have \[ \frac{BD}{CD} = \frac{AB}{AC} . \] Hence, $BD = \frac{24 \cdot 11}{31}$ In $\triangle ABC$ , following from the law of cosines, we have \begin{align*} \cos \angle ABC & = \frac{AB^2 + BC^2 - AC^2}{2 AB \cdot BC} \\ & = \frac{9}{16} \end{align*} and \begin{align*} \cos \angle BCA & = \frac{AC^2 + BC^2 - AB^2}{2 AC \cdot BC} \\ & = \frac{57}{64} . \end{align*} Hence, $\sin \angle ABC = \frac{5 \sqrt{7}}{16}$ and $\sin \angle BCA = \frac{11 \sqrt{7}}{64}$ . Hence, $\cot \angle BCA = \frac{57}{11 \sqrt{7}}$ Now, we are ready to compute $BF$ whose expression is given in Equation (2). We get $BF = 9$ Now, we can compute $CF$ whose expression is given in Equation (1). We have $CF = 30$ Therefore, the answer is $\boxed{30}$
C
30
afd2b0ede1265c5f8ec3481828f63aed
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_25
For $n$ a positive integer, let $R(n)$ be the sum of the remainders when $n$ is divided by $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ , and $10$ . For example, $R(15) = 1+0+3+0+3+1+7+6+5=26$ . How many two-digit positive integers $n$ satisfy $R(n) = R(n+1)\,?$ $\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4$
Note that we can add $9$ to $R(n)$ to get $R(n+1)$ , but must subtract $k$ for all $k|n+1$ . Hence, we see that there are four ways to do that because $9=7+2=6+3=5+4=4+3+2$ . Note that only $7+2$ is a plausible option, since $4+3+2$ indicates $n+1$ is divisible by $6$ $5+4$ indicates that $n+1$ is divisible by $2$ $6+3$ indicates $n+1$ is divisible by $2$ , and $9$ itself indicates divisibility by $3$ , too. So, $14|n+1$ and $n+1$ is not divisible by any positive integers from $2$ to $10$ , inclusive, except $2$ and $7$ . We check and get that only $n+1=14 \cdot 1$ and $n+1=14 \cdot 7$ give possible solutions so our answer is $\boxed{2}$
C
2
afd2b0ede1265c5f8ec3481828f63aed
https://artofproblemsolving.com/wiki/index.php/2021_Fall_AMC_12B_Problems/Problem_25
For $n$ a positive integer, let $R(n)$ be the sum of the remainders when $n$ is divided by $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ , and $10$ . For example, $R(15) = 1+0+3+0+3+1+7+6+5=26$ . How many two-digit positive integers $n$ satisfy $R(n) = R(n+1)\,?$ $\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4$
Denote by ${\rm Rem} \ \left( n, k \right)$ the remainder of $n$ divided by $k$ . Define $\Delta \left( n, k \right) = {\rm Rem} \ \left( n + 1, k \right) - {\rm Rem} \ \left( n, k \right)$ Hence, \[ \Delta \left( n, k \right) = \left\{ \begin{array}{ll} 1 & \mbox{ if } n \not\equiv -1 \pmod{k} \\ - \left( k -1 \right) & \mbox{ if } n \equiv -1 \pmod{k} \end{array} \right.. \] Hence, this problem asks us to find all $n \in \left\{ 10 , 11, \cdots , 99 \right\}$ , such that $\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0$ $\textbf{Case 1}$ $\Delta \left( n, 10 \right) = - 9$ We have $\sum_{k = 2}^9 \Delta \left( n, k \right) \leq \sum_{k = 2}^9 1 = 8$ Therefore, there is no $n$ in this case. $\textbf{Case 2}$ $\Delta \left( n, 10 \right) = 1$ and $\Delta \left( n, 9 \right) = -8$ The condition $\Delta \left( n, 9 \right) = -8$ implies $n \equiv - 1 \pmod{9}$ . This further implies $n \equiv - 1 \pmod{3}$ . Hence, $\Delta \left( n, 3 \right) = -2$ To get $\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0$ , we have $\sum_{k \in \left\{ 2 , 4 , 5 , 6, 7, 8\right\}} \Delta \left( n, k \right) = 9$ However, we have $\sum_{k \in \left\{ 2 , 4 , 5 , 6, 7, 8\right\}} \Delta \left( n, k \right) \leq \sum_{k \in \left\{ 2 , 4 , 5 , 6, 7, 8\right\}} 1 = 6$ Therefore, there is no $n$ in this case. $\textbf{Case 3}$ $\Delta \left( n, k \right) = 1$ for $k \in \left\{ 9 , 10 \right\}$ and $\Delta \left( n, 8 \right) = -7$ The condition $\Delta \left( n, 8 \right) = -7$ implies $n \equiv - 1 \pmod{k}$ with $k \in \left\{ 2, 4 \right\}$ . Hence, $\Delta \left( n, 2 \right) = -1$ and $\Delta \left( n, 4 \right) = -3$ To get $\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0$ , we have $\sum_{k \in \left\{ 3, 5, 6, 7 \right\}} \Delta \left( n, k \right) = 9$ However, we have $\sum_{k \in \left\{ 3, 5, 6, 7 \right\}} \Delta \left( n, k \right) \leq \sum_{k \in \left\{ 3, 5, 6, 7 \right\}} 1 = 4$ Therefore, there is no $n$ in this case. $\textbf{Case 4}$ $\Delta \left( n, k \right) = 1$ for $k \in \left\{ 8, \cdots , 10 \right\}$ and $\Delta \left( n, 7 \right) = -6$ To get $\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0$ , we have $\sum_{k \in \left\{ 2, 3, 4, 5, 6 \right\}} \Delta \left( n, k \right) = 3$ Hence, we must have $\Delta \left( n, 2 \right) = -1$ and $\Delta \left( n, k \right) = 1$ for $k \in \left\{ 3 , 4 , 5 , 6 \right\}$ Therefore, $n = 13, 97$ $\textbf{Case 5}$ $\Delta \left( n, k \right) = 1$ for $k \in \left\{ 7 , \cdots , 10 \right\}$ and $\Delta \left( n, 6 \right) = -5$ The condition $\Delta \left( n, 6 \right) = -5$ implies $n \equiv - 1 \pmod{k}$ with $k \in \left\{ 2, 3 \right\}$ . Hence, $\Delta \left( n, 2 \right) = -1$ and $\Delta \left( n, 3 \right) = -2$ To get $\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0$ , we have $\sum_{k \in \left\{ 4, 5 \right\}} \Delta \left( n, k \right) = 4$ However, we have $\sum_{k \in \left\{ 4, 5 \right\}} \Delta \left( n, k \right) \leq \sum_{k \in \left\{ 4, 5 \right\}} 1 = 2$ Therefore, there is no $n$ in this case. $\textbf{Case 6}$ $\Delta \left( n, k \right) = 1$ for $k \in \left\{ 6 , \cdots , 10 \right\}$ and $\Delta \left( n, 5 \right) = -4$ To get $\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0$ , we have $\sum_{k \in \left\{ 2, 3, 4 \right\}} \Delta \left( n, k \right) = -1$ This can be achieved if $\Delta \left( n, 2 \right) = 1$ $\Delta \left( n, 3 \right) = 1$ $\Delta \left( n, 4 \right) = -3$ However, $\Delta \left( n, 4 \right) = -3$ implies $n \equiv - 1 \pmod{4}$ . This implies $n \equiv -1 \pmod{2}$ . Hence, $\Delta \left( n, 2 \right) = -1$ . We get a contradiction. Therefore, there is no $n$ in this case. $\textbf{Case 7}$ $\Delta \left( n, k \right) = 1$ for $k \in \left\{ 5 , \cdots , 10 \right\}$ and $\Delta \left( n, 4 \right) = -3$ The condition $\Delta \left( n, 4 \right) = -3$ implies $n \equiv - 1 \pmod{k}$ with $k = 2$ . Hence, $\Delta \left( n, 2 \right) = -1$ To get $\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0$ , we have $\Delta \left( n, 3 \right) = - 2$ . This implies $n \equiv - 1 \pmod{3}$ Because $n \equiv - 1 \pmod{2}$ and $n \equiv - 1 \pmod{3}$ , we have $n \equiv - 1 \pmod{6}$ . Hence, $\Delta \left( n, 6 \right) = - 5$ . However, in this case, we assume $\Delta \left( n, 6 \right) = 1$ . We get a contradiction. Therefore, there is no $n$ in this case. $\textbf{Case 8}$ $\Delta \left( n, k \right) = 1$ for $k \in \left\{ 4 , \cdots , 10 \right\}$ and $\Delta \left( n, 3 \right) = -2$ To get $\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0$ , we have $\Delta \left( n, 2 \right) = - 5$ . This is infeasible. Therefore, there is no $n$ in this case. $\textbf{Case 9}$ $\Delta \left( n, k \right) = 1$ for $k \in \left\{3 , \cdots , 10 \right\}$ To get $\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0$ , we have $\Delta \left( n, 2 \right) = - 8$ . This is infeasible. Therefore, there is no $n$ in this case. Putting all cases together, the answer is $\boxed{2}$
C
2