code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections.abc import Generator def __SCREAMING_SNAKE_CASE ( ) -> Generator[int, None, None]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = 0, 1 while True: __UpperCAmelCase , __UpperCAmelCase : int = b, a + b yield b def __SCREAMING_SNAKE_CASE ( lowercase_ = 1000 ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Union[str, Any] = fibonacci_generator() while len(str(next(lowercase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
462
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCAmelCase = random.Random() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=1.0 , lowercase_=None , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: __UpperCAmelCase : str = global_rng __UpperCAmelCase : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=4_0_0 , lowercase__=2_0_0_0 , lowercase__=2_0_4_8 , lowercase__=1_2_8 , lowercase__=1 , lowercase__=5_1_2 , lowercase__=3_0 , lowercase__=4_4_1_0_0 , ): __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : int = min_seq_length __UpperCAmelCase : List[str] = max_seq_length __UpperCAmelCase : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase : Any = spectrogram_length __UpperCAmelCase : List[Any] = feature_size __UpperCAmelCase : Union[str, Any] = num_audio_channels __UpperCAmelCase : Optional[int] = hop_length __UpperCAmelCase : Tuple = chunk_length __UpperCAmelCase : Any = sampling_rate def A( self): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def A( self , lowercase__=False , lowercase__=False): def _flatten(lowercase__): return list(itertools.chain(*lowercase__)) if equal_length: __UpperCAmelCase : str = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size __UpperCAmelCase : List[str] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __UpperCAmelCase : List[str] = [np.asarray(lowercase__) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = TvltFeatureExtractor def A( self): __UpperCAmelCase : Dict = TvltFeatureExtractionTester(self) def A( self): __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowercase__ , '''spectrogram_length''')) self.assertTrue(hasattr(lowercase__ , '''feature_size''')) self.assertTrue(hasattr(lowercase__ , '''num_audio_channels''')) self.assertTrue(hasattr(lowercase__ , '''hop_length''')) self.assertTrue(hasattr(lowercase__ , '''chunk_length''')) self.assertTrue(hasattr(lowercase__ , '''sampling_rate''')) def A( self): __UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = feat_extract_first.save_pretrained(lowercase__)[0] check_json_file_has_correct_format(lowercase__) __UpperCAmelCase : Optional[int] = self.feature_extraction_class.from_pretrained(lowercase__) __UpperCAmelCase : List[Any] = feat_extract_first.to_dict() __UpperCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __UpperCAmelCase : Union[str, Any] = dict_first.pop('''mel_filters''') __UpperCAmelCase : Union[str, Any] = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowercase__ , lowercase__)) self.assertEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = os.path.join(lowercase__ , '''feat_extract.json''') feat_extract_first.to_json_file(lowercase__) __UpperCAmelCase : str = self.feature_extraction_class.from_json_file(lowercase__) __UpperCAmelCase : Any = feat_extract_first.to_dict() __UpperCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __UpperCAmelCase : Tuple = dict_first.pop('''mel_filters''') __UpperCAmelCase : List[str] = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowercase__ , lowercase__)) self.assertEqual(lowercase__ , lowercase__) def A( self): # Initialize feature_extractor __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase : Optional[int] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] __UpperCAmelCase : int = [np.asarray(lowercase__) for speech_input in speech_inputs] # Test not batched input __UpperCAmelCase : Dict = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test batched __UpperCAmelCase : List[str] = feature_extractor(lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test audio masking __UpperCAmelCase : Tuple = feature_extractor( lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=lowercase__).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test 2-D numpy arrays are batched. __UpperCAmelCase : Any = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] __UpperCAmelCase : Optional[Any] = np.asarray(lowercase__) __UpperCAmelCase : Tuple = feature_extractor(lowercase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) def A( self , lowercase__): __UpperCAmelCase : Optional[int] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''') # automatic decoding with librispeech __UpperCAmelCase : int = ds.sort('''id''').select(range(lowercase__))[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def A( self): __UpperCAmelCase : Optional[Any] = self._load_datasamples(1) __UpperCAmelCase : Tuple = TvltFeatureExtractor() __UpperCAmelCase : Tuple = feature_extractor(lowercase__ , return_tensors='''pt''').audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8)) __UpperCAmelCase : int = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]]) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowercase__ , atol=1e-4))
462
1
def _SCREAMING_SNAKE_CASE ( a ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _SCREAMING_SNAKE_CASE ( a ) -> list[tuple[int, int]]: __A : Any = 0 __A : Tuple = len(a ) # No of vertices in graph __A : int = [0] * n __A : Tuple = [False] * n def dfs(a , a , a , a ): __A : Union[str, Any] = True __A : List[str] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(a , a , a , id_ ) __A : str = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __A : str = min(low[at] , low[to] ) __A : list[tuple[int, int]] = [] for i in range(a ): if not visited[i]: dfs(a , -1 , a , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
77
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase : Any = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase : Optional[int] = { '''bert-base-uncased''': 5_12, '''bert-large-uncased''': 5_12, '''bert-base-cased''': 5_12, '''bert-large-cased''': 5_12, '''bert-base-multilingual-uncased''': 5_12, '''bert-base-multilingual-cased''': 5_12, '''bert-base-chinese''': 5_12, '''bert-base-german-cased''': 5_12, '''bert-large-uncased-whole-word-masking''': 5_12, '''bert-large-cased-whole-word-masking''': 5_12, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 5_12, '''bert-large-cased-whole-word-masking-finetuned-squad''': 5_12, '''bert-base-cased-finetuned-mrpc''': 5_12, '''bert-base-german-dbmdz-cased''': 5_12, '''bert-base-german-dbmdz-uncased''': 5_12, '''TurkuNLP/bert-base-finnish-cased-v1''': 5_12, '''TurkuNLP/bert-base-finnish-uncased-v1''': 5_12, '''wietsedv/bert-base-dutch-cased''': 5_12, } UpperCAmelCase : List[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class _A( snake_case__ ): """simple docstring""" UpperCamelCase : List[str] = VOCAB_FILES_NAMES UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : List[str] = BertTokenizer def __init__( self , _A=None , _A=None , _A=True , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A=True , _A=None , **_A , ): super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) __A : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): __A : Any = getattr(_A , normalizer_state.pop('type' ) ) __A : Union[str, Any] = do_lower_case __A : Optional[int] = strip_accents __A : List[Any] = tokenize_chinese_chars __A : int = normalizer_class(**_A ) __A : Union[str, Any] = do_lower_case def UpperCAmelCase_ ( self , _A , _A=None ): __A : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self , _A , _A = None ): __A : Optional[Any] = [self.sep_token_id] __A : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self , _A , _A = None ): __A : int = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
77
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = 42 __UpperCAmelCase = 42 class __lowercase ( nn.Module ): __UpperCAmelCase = 42 __UpperCAmelCase = (16, 32, 96, 256) __UpperCAmelCase = jnp.floataa def _a ( self) -> int: __snake_case = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case = [] for i in range(len(self.block_out_channels) - 1): __snake_case = self.block_out_channels[i] __snake_case = self.block_out_channels[i + 1] __snake_case = nn.Conv( lowercase_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_) __snake_case = nn.Conv( lowercase_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_) __snake_case = blocks __snake_case = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase_) -> str: __snake_case = self.conv_in(lowercase_) __snake_case = nn.silu(lowercase_) for block in self.blocks: __snake_case = block(lowercase_) __snake_case = nn.silu(lowercase_) __snake_case = self.conv_out(lowercase_) return embedding @flax_register_to_config class __lowercase ( nn.Module , lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase = 32 __UpperCAmelCase = 4 __UpperCAmelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __UpperCAmelCase = False __UpperCAmelCase = (320, 640, 1_280, 1_280) __UpperCAmelCase = 2 __UpperCAmelCase = 8 __UpperCAmelCase = None __UpperCAmelCase = 1_280 __UpperCAmelCase = 0.0 __UpperCAmelCase = False __UpperCAmelCase = jnp.floataa __UpperCAmelCase = True __UpperCAmelCase = 0 __UpperCAmelCase = "rgb" __UpperCAmelCase = (16, 32, 96, 256) def _a ( self , lowercase_) -> FrozenDict: # init input tensors __snake_case = (1, self.in_channels, self.sample_size, self.sample_size) __snake_case = jnp.zeros(lowercase_ , dtype=jnp.floataa) __snake_case = jnp.ones((1,) , dtype=jnp.intaa) __snake_case = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) __snake_case = (1, 3, self.sample_size * 8, self.sample_size * 8) __snake_case = jnp.zeros(lowercase_ , dtype=jnp.floataa) __snake_case , __snake_case = jax.random.split(lowercase_) __snake_case = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_)["params"] def _a ( self) -> Tuple: __snake_case = self.block_out_channels __snake_case = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __snake_case = self.num_attention_heads or self.attention_head_dim # input __snake_case = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __snake_case = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) __snake_case = FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype) __snake_case = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __snake_case = self.only_cross_attention if isinstance(lowercase_ , lowercase_): __snake_case = (only_cross_attention,) * len(self.down_block_types) if isinstance(lowercase_ , lowercase_): __snake_case = (num_attention_heads,) * len(self.down_block_types) # down __snake_case = [] __snake_case = [] __snake_case = block_out_channels[0] __snake_case = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_) for i, down_block_type in enumerate(self.down_block_types): __snake_case = output_channel __snake_case = block_out_channels[i] __snake_case = i == len(lowercase_) - 1 if down_block_type == "CrossAttnDownBlock2D": __snake_case = FlaxCrossAttnDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __snake_case = FlaxDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase_) for _ in range(self.layers_per_block): __snake_case = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_) if not is_final_block: __snake_case = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_) __snake_case = down_blocks __snake_case = controlnet_down_blocks # mid __snake_case = block_out_channels[-1] __snake_case = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __snake_case = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1.0 , lowercase_ = True , lowercase_ = False , ) -> Union[FlaxControlNetOutput, Tuple]: __snake_case = self.controlnet_conditioning_channel_order if channel_order == "bgr": __snake_case = jnp.flip(lowercase_ , axis=1) # 1. time if not isinstance(lowercase_ , jnp.ndarray): __snake_case = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(lowercase_ , jnp.ndarray) and len(timesteps.shape) == 0: __snake_case = timesteps.astype(dtype=jnp.floataa) __snake_case = jnp.expand_dims(lowercase_ , 0) __snake_case = self.time_proj(lowercase_) __snake_case = self.time_embedding(lowercase_) # 2. pre-process __snake_case = jnp.transpose(lowercase_ , (0, 2, 3, 1)) __snake_case = self.conv_in(lowercase_) __snake_case = jnp.transpose(lowercase_ , (0, 2, 3, 1)) __snake_case = self.controlnet_cond_embedding(lowercase_) sample += controlnet_cond # 3. down __snake_case = (sample,) for down_block in self.down_blocks: if isinstance(lowercase_ , lowercase_): __snake_case , __snake_case = down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train) else: __snake_case , __snake_case = down_block(lowercase_ , lowercase_ , deterministic=not train) down_block_res_samples += res_samples # 4. mid __snake_case = self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train) # 5. contronet blocks __snake_case = () for down_block_res_sample, controlnet_block in zip(lowercase_ , self.controlnet_down_blocks): __snake_case = controlnet_block(lowercase_) controlnet_down_block_res_samples += (down_block_res_sample,) __snake_case = controlnet_down_block_res_samples __snake_case = self.controlnet_mid_block(lowercase_) # 6. scaling __snake_case = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase_ , mid_block_res_sample=lowercase_)
313
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __lowercase : def __init__( self , lowercase_ = "cpu" , lowercase_ = "openai/clip-vit-large-patch14") -> None: __snake_case = device __snake_case = CLIPTokenizerFast.from_pretrained(lowercase_) __snake_case = [0.4814_5466, 0.457_8275, 0.4082_1073] __snake_case = [0.2686_2954, 0.2613_0258, 0.2757_7711] __snake_case = torchvision.transforms.Normalize(self.image_mean , self.image_std) __snake_case = torchvision.transforms.Resize(2_2_4) __snake_case = torchvision.transforms.CenterCrop(2_2_4) def _a ( self , lowercase_) -> int: __snake_case = self.resize(lowercase_) __snake_case = self.center_crop(lowercase_) __snake_case = self.normalize(lowercase_) return images def __call__( self , lowercase_=None , lowercase_=None , **lowercase_) -> Union[str, Any]: __snake_case = self.tokenizer(text=lowercase_ , **lowercase_) __snake_case = self.preprocess_img(lowercase_) __snake_case = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class __lowercase ( nn.Module ): def __init__( self , lowercase_=1_0 , lowercase_=0.01 , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=True , lowercase_="image" , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=False , ) -> None: super().__init__() __snake_case = None __snake_case = device if device else get_device() if vqgan: __snake_case = vqgan else: __snake_case = load_vqgan(self.device , conf_path=lowercase_ , ckpt_path=lowercase_) self.vqgan.eval() if clip: __snake_case = clip else: __snake_case = CLIPModel.from_pretrained('openai/clip-vit-base-patch32') self.clip.to(self.device) __snake_case = ProcessorGradientFlow(device=self.device) __snake_case = iterations __snake_case = lr __snake_case = log __snake_case = make_grid __snake_case = return_val __snake_case = quantize __snake_case = self.vqgan.decoder.z_shape def _a ( self , lowercase_=None , lowercase_=None , lowercase_=5 , lowercase_=True) -> List[str]: __snake_case = [] if output_path is None: __snake_case = './animation.gif' if input_path is None: __snake_case = self.save_path __snake_case = sorted(glob(input_path + '/*')) if not len(lowercase_): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)') if len(lowercase_) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)') __snake_case = total_duration / len(lowercase_) __snake_case = [frame_duration] * len(lowercase_) if extend_frames: __snake_case = 1.5 __snake_case = 3 for file_name in paths: if file_name.endswith('.png'): images.append(imageio.imread(lowercase_)) imageio.mimsave(lowercase_ , lowercase_ , duration=lowercase_) print(F"gif saved to {output_path}") def _a ( self , lowercase_=None , lowercase_=None) -> Union[str, Any]: if not (path or img): raise ValueError('Input either path or tensor') if img is not None: raise NotImplementedError __snake_case = preprocess(Image.open(lowercase_) , target_image_size=2_5_6).to(self.device) __snake_case = preprocess_vqgan(lowercase_) __snake_case , *__snake_case = self.vqgan.encode(lowercase_) return z def _a ( self , lowercase_) -> Dict: __snake_case = self.latent.detach().requires_grad_() __snake_case = base_latent + transform_vector if self.quantize: __snake_case , *__snake_case = self.vqgan.quantize(lowercase_) else: __snake_case = trans_latent return self.vqgan.decode(lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_=None) -> Any: __snake_case = self.clip_preprocessor(text=lowercase_ , images=lowercase_ , return_tensors='pt' , padding=lowercase_) __snake_case = self.clip(**lowercase_) __snake_case = clip_outputs.logits_per_image if weights is not None: __snake_case = similarity_logits * weights return similarity_logits.sum() def _a ( self , lowercase_ , lowercase_ , lowercase_) -> List[Any]: __snake_case = self._get_clip_similarity(pos_prompts['prompts'] , lowercase_ , weights=(1 / pos_prompts['weights'])) if neg_prompts: __snake_case = self._get_clip_similarity(neg_prompts['prompts'] , lowercase_ , weights=neg_prompts['weights']) else: __snake_case = torch.tensor([1] , device=self.device) __snake_case = -torch.log(lowercase_) + torch.log(lowercase_) return loss def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Any: __snake_case = torch.randn_like(self.latent , requires_grad=lowercase_ , device=self.device) __snake_case = torch.optim.Adam([vector] , lr=self.lr) for i in range(self.iterations): optim.zero_grad() __snake_case = self._add_vector(lowercase_) __snake_case = loop_post_process(lowercase_) __snake_case = self._get_CLIP_loss(lowercase_ , lowercase_ , lowercase_) print('CLIP loss' , lowercase_) if self.log: wandb.log({'CLIP Loss': clip_loss}) clip_loss.backward(retain_graph=lowercase_) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Any: wandb.init(reinit=lowercase_ , project='face-editor') wandb.config.update({'Positive Prompts': positive_prompts}) wandb.config.update({'Negative Prompts': negative_prompts}) wandb.config.update({'lr': self.lr, 'iterations': self.iterations}) if image_path: __snake_case = Image.open(lowercase_) __snake_case = image.resize((2_5_6, 2_5_6)) wandb.log('Original Image' , wandb.Image(lowercase_)) def _a ( self , lowercase_) -> Optional[int]: if not prompts: return [] __snake_case = [] __snake_case = [] if isinstance(lowercase_ , lowercase_): __snake_case = [prompt.strip() for prompt in prompts.split('|')] for prompt in prompts: if isinstance(lowercase_ , (tuple, list)): __snake_case = prompt[0] __snake_case = float(prompt[1]) elif ":" in prompt: __snake_case , __snake_case = prompt.split(':') __snake_case = float(lowercase_) else: __snake_case = prompt __snake_case = 1.0 processed_prompts.append(lowercase_) weights.append(lowercase_) return { "prompts": processed_prompts, "weights": torch.tensor(lowercase_ , device=self.device), } def _a ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_=None , ) -> List[str]: if image_path: __snake_case = self._get_latent(lowercase_) else: __snake_case = torch.randn(self.latent_dim , device=self.device) if self.log: self._init_logging(lowercase_ , lowercase_ , lowercase_) assert pos_prompts, "You must provide at least one positive prompt." __snake_case = self.process_prompts(lowercase_) __snake_case = self.process_prompts(lowercase_) if save_final and save_path is None: __snake_case = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'])) if not os.path.exists(lowercase_): os.makedirs(lowercase_) else: __snake_case = save_path + '_' + get_timestamp() os.makedirs(lowercase_) __snake_case = save_path __snake_case = self.vqgan.decode(self.latent)[0] if show_intermediate: print('Original Image') show_pil(custom_to_pil(lowercase_)) __snake_case = loop_post_process(lowercase_) for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase_ , lowercase_ , lowercase_)): if show_intermediate: show_pil(lowercase_) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}.png")) if self.log: wandb.log({'Image': wandb.Image(lowercase_)}) if show_final: show_pil(lowercase_) if save_final: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}_final.png"))
313
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): _UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] _UpperCAmelCase = np.concatenate(_lowerCAmelCase , axis=0 ) _UpperCAmelCase = np.array(_lowerCAmelCase ).astype(np.floataa ) / 255.0 _UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase = 2.0 * image - 1.0 _UpperCAmelCase = torch.from_numpy(_lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): _UpperCAmelCase = torch.cat(_lowerCAmelCase , dim=0 ) return image def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=0.9995 ) -> Optional[int]: if not isinstance(_lowerCAmelCase , np.ndarray ): _UpperCAmelCase = True _UpperCAmelCase = va.device _UpperCAmelCase = va.cpu().numpy() _UpperCAmelCase = va.cpu().numpy() _UpperCAmelCase = np.sum(va * va / (np.linalg.norm(_lowerCAmelCase ) * np.linalg.norm(_lowerCAmelCase )) ) if np.abs(_lowerCAmelCase ) > DOT_THRESHOLD: _UpperCAmelCase = (1 - t) * va + t * va else: _UpperCAmelCase = np.arccos(_lowerCAmelCase ) _UpperCAmelCase = np.sin(_lowerCAmelCase ) _UpperCAmelCase = theta_a * t _UpperCAmelCase = np.sin(_lowerCAmelCase ) _UpperCAmelCase = np.sin(theta_a - theta_t ) / sin_theta_a _UpperCAmelCase = sin_theta_t / sin_theta_a _UpperCAmelCase = sa * va + sa * va if inputs_are_torch: _UpperCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) return va def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: _UpperCAmelCase = F.normalize(_lowerCAmelCase , dim=-1 ) _UpperCAmelCase = F.normalize(_lowerCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: for param in model.parameters(): _UpperCAmelCase = value class __SCREAMING_SNAKE_CASE ( lowercase): def __init__( self : Optional[Any] , __UpperCamelCase : AutoencoderKL , __UpperCamelCase : CLIPTextModel , __UpperCamelCase : CLIPModel , __UpperCamelCase : CLIPTokenizer , __UpperCamelCase : UNetaDConditionModel , __UpperCamelCase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __UpperCamelCase : CLIPFeatureExtractor , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Dict=None , __UpperCamelCase : Dict=None , ): super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , clip_model=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , feature_extractor=__UpperCamelCase , coca_model=__UpperCamelCase , coca_tokenizer=__UpperCamelCase , coca_transform=__UpperCamelCase , ) _UpperCAmelCase = ( feature_extractor.size if isinstance(feature_extractor.size , __UpperCamelCase ) else feature_extractor.size["shortest_edge"] ) _UpperCAmelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __UpperCamelCase ) set_requires_grad(self.clip_model , __UpperCamelCase ) def UpperCAmelCase__ ( self : Any , __UpperCamelCase : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def UpperCAmelCase__ ( self : List[str] ): self.enable_attention_slicing(__UpperCamelCase ) def UpperCAmelCase__ ( self : Any ): set_requires_grad(self.vae , __UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): set_requires_grad(self.vae , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): set_requires_grad(self.unet , __UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): set_requires_grad(self.unet , __UpperCamelCase ) def UpperCAmelCase__ ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] ): # get the original timestep using init_timestep _UpperCAmelCase = min(int(num_inference_steps * strength ) , __UpperCamelCase ) _UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase__ ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int]=None ): if not isinstance(__UpperCamelCase , torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(__UpperCamelCase )}''' ) _UpperCAmelCase = image.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__UpperCamelCase ) ] _UpperCAmelCase = torch.cat(__UpperCamelCase , dim=0 ) else: _UpperCAmelCase = self.vae.encode(__UpperCamelCase ).latent_dist.sample(__UpperCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase = 0.18215 * init_latents _UpperCAmelCase = init_latents.repeat_interleave(__UpperCamelCase , dim=0 ) _UpperCAmelCase = randn_tensor(init_latents.shape , generator=__UpperCamelCase , device=__UpperCamelCase , dtype=__UpperCamelCase ) # get latents _UpperCAmelCase = self.scheduler.add_noise(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = init_latents return latents def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Any ): _UpperCAmelCase = self.coca_transform(__UpperCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _UpperCAmelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _UpperCAmelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Dict , __UpperCamelCase : str ): _UpperCAmelCase = self.feature_extractor.preprocess(__UpperCamelCase ) _UpperCAmelCase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() _UpperCAmelCase = self.clip_model.get_image_features(__UpperCamelCase ) _UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCamelCase ) _UpperCAmelCase = image_embeddings_clip.repeat_interleave(__UpperCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , ): _UpperCAmelCase = latents.detach().requires_grad_() _UpperCAmelCase = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual _UpperCAmelCase = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _UpperCAmelCase = self.scheduler.alphas_cumprod[timestep] _UpperCAmelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _UpperCAmelCase = torch.sqrt(__UpperCamelCase ) _UpperCAmelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __UpperCamelCase ): _UpperCAmelCase = self.scheduler.sigmas[index] _UpperCAmelCase = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase = 1 / 0.18215 * sample _UpperCAmelCase = self.vae.decode(__UpperCamelCase ).sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = transforms.Resize(self.feature_extractor_size )(__UpperCamelCase ) _UpperCAmelCase = self.normalize(__UpperCamelCase ).to(latents.dtype ) _UpperCAmelCase = self.clip_model.get_image_features(__UpperCamelCase ) _UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCamelCase ) _UpperCAmelCase = spherical_dist_loss(__UpperCamelCase , __UpperCamelCase ).mean() * clip_guidance_scale _UpperCAmelCase = -torch.autograd.grad(__UpperCamelCase , __UpperCamelCase )[0] if isinstance(self.scheduler , __UpperCamelCase ): _UpperCAmelCase = latents.detach() + grads * (sigma**2) _UpperCAmelCase = noise_pred_original else: _UpperCAmelCase = noise_pred_original - torch.sqrt(__UpperCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str , __UpperCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , __UpperCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : Optional[int] = 512 , __UpperCamelCase : Optional[int] = 512 , __UpperCamelCase : float = 0.6 , __UpperCamelCase : Optional[int] = 50 , __UpperCamelCase : Optional[float] = 7.5 , __UpperCamelCase : Optional[int] = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : Optional[float] = 100 , __UpperCamelCase : Optional[torch.Generator] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , __UpperCamelCase : float = 0.8 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : float = 0.1 , ): if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(__UpperCamelCase )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(__UpperCamelCase , torch.Generator ) and batch_size > 1: _UpperCAmelCase = [generator] + [None] * (batch_size - 1) _UpperCAmelCase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] _UpperCAmelCase = [x[0] for x in coca_is_none if x[1]] _UpperCAmelCase = ", ".join(__UpperCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__UpperCamelCase ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _UpperCAmelCase = self.get_image_description(__UpperCamelCase ) if style_prompt is None: if len(__UpperCamelCase ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _UpperCAmelCase = self.get_image_description(__UpperCamelCase ) # get prompt text embeddings for content and style _UpperCAmelCase = self.tokenizer( __UpperCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="pt" , ) _UpperCAmelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _UpperCAmelCase = self.tokenizer( __UpperCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="pt" , ) _UpperCAmelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _UpperCAmelCase = slerp(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # duplicate text embeddings for each generation per prompt _UpperCAmelCase = text_embeddings.repeat_interleave(__UpperCamelCase , dim=0 ) # set timesteps _UpperCAmelCase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _UpperCAmelCase = {} if accepts_offset: _UpperCAmelCase = 1 self.scheduler.set_timesteps(__UpperCamelCase , **__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _UpperCAmelCase , _UpperCAmelCase = self.get_timesteps(__UpperCamelCase , __UpperCamelCase , self.device ) _UpperCAmelCase = timesteps[:1].repeat(__UpperCamelCase ) # Preprocess image _UpperCAmelCase = preprocess(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.prepare_latents( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text_embeddings.dtype , self.device , __UpperCamelCase ) _UpperCAmelCase = preprocess(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.prepare_latents( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text_embeddings.dtype , self.device , __UpperCamelCase ) _UpperCAmelCase = slerp(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if clip_guidance_scale > 0: _UpperCAmelCase = self.get_clip_image_embeddings(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.get_clip_image_embeddings(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = slerp( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCAmelCase = content_text_input.input_ids.shape[-1] _UpperCAmelCase = self.tokenizer([""] , padding="max_length" , max_length=__UpperCamelCase , return_tensors="pt" ) _UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _UpperCAmelCase = uncond_embeddings.repeat_interleave(__UpperCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCAmelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _UpperCAmelCase = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="cpu" , dtype=__UpperCamelCase ).to( self.device ) else: _UpperCAmelCase = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _UpperCAmelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta # check if the scheduler accepts generator _UpperCAmelCase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _UpperCAmelCase = generator with self.progress_bar(total=__UpperCamelCase ): for i, t in enumerate(__UpperCamelCase ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual _UpperCAmelCase = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 ) _UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _UpperCAmelCase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _UpperCAmelCase , _UpperCAmelCase = self.cond_fn( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase = 1 / 0.18215 * latents _UpperCAmelCase = self.vae.decode(__UpperCamelCase ).sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
129
from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=lowercase): __SCREAMING_SNAKE_CASE : List[str] = ["""torch""", """torchsde"""] def __init__( self : Optional[Any] , *__UpperCamelCase : int , **__UpperCamelCase : List[Any] ): requires_backends(self , ["torch", "torchsde"] ) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : List[str] ): requires_backends(cls , ["torch", "torchsde"] ) @classmethod def UpperCAmelCase__ ( cls : Tuple , *__UpperCamelCase : Dict , **__UpperCamelCase : Optional[Any] ): requires_backends(cls , ["torch", "torchsde"] )
129
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : Union[str, Any] = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCamelCase( lowerCAmelCase_ ): snake_case_ : int = 'wavlm' def __init__( self : List[str] , SCREAMING_SNAKE_CASE : int=3_2 , SCREAMING_SNAKE_CASE : str=7_6_8 , SCREAMING_SNAKE_CASE : List[Any]=1_2 , SCREAMING_SNAKE_CASE : Any=1_2 , SCREAMING_SNAKE_CASE : Any=3_0_7_2 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : List[str]=0.0 , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : List[str]=0.02 , SCREAMING_SNAKE_CASE : str=1e-5 , SCREAMING_SNAKE_CASE : List[Any]="group" , SCREAMING_SNAKE_CASE : Optional[int]="gelu" , SCREAMING_SNAKE_CASE : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE : str=(1_0, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE : List[Any]=False , SCREAMING_SNAKE_CASE : str=1_2_8 , SCREAMING_SNAKE_CASE : Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE : Optional[Any]=3_2_0 , SCREAMING_SNAKE_CASE : List[Any]=8_0_0 , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=0.05 , SCREAMING_SNAKE_CASE : Any=1_0 , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : List[Any]=0.0 , SCREAMING_SNAKE_CASE : List[Any]=1_0 , SCREAMING_SNAKE_CASE : int=3_2_0 , SCREAMING_SNAKE_CASE : Tuple=2 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Tuple=1_0_0 , SCREAMING_SNAKE_CASE : Tuple=2_5_6 , SCREAMING_SNAKE_CASE : int=2_5_6 , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]="mean" , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : List[str]=2_5_6 , SCREAMING_SNAKE_CASE : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , SCREAMING_SNAKE_CASE : List[str]=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE : Any=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE : List[Any]=5_1_2 , SCREAMING_SNAKE_CASE : List[str]=8_0 , SCREAMING_SNAKE_CASE : List[str]=0 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : List[Any]=False , SCREAMING_SNAKE_CASE : int=3 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : int=3 , SCREAMING_SNAKE_CASE : Optional[Any]=None , **SCREAMING_SNAKE_CASE : str , ) -> List[Any]: '''simple docstring''' super().__init__(**A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ ) __snake_case = hidden_size __snake_case = feat_extract_norm __snake_case = feat_extract_activation __snake_case = list(A__ ) __snake_case = list(A__ ) __snake_case = list(A__ ) __snake_case = conv_bias __snake_case = num_buckets __snake_case = max_bucket_distance __snake_case = num_conv_pos_embeddings __snake_case = num_conv_pos_embedding_groups __snake_case = len(self.conv_dim ) __snake_case = num_hidden_layers __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_attention_heads __snake_case = hidden_dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = feat_proj_dropout __snake_case = final_dropout __snake_case = layerdrop __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = num_ctc_classes __snake_case = vocab_size __snake_case = do_stable_layer_norm __snake_case = use_weighted_layer_sum __snake_case = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case = apply_spec_augment __snake_case = mask_time_prob __snake_case = mask_time_length __snake_case = mask_time_min_masks __snake_case = mask_feature_prob __snake_case = mask_feature_length # parameters for pretraining with codevector quantized representations __snake_case = num_codevectors_per_group __snake_case = num_codevector_groups __snake_case = contrastive_logits_temperature __snake_case = num_negatives __snake_case = codevector_dim __snake_case = proj_codevector_dim __snake_case = diversity_loss_weight # ctc loss __snake_case = ctc_loss_reduction __snake_case = ctc_zero_infinity # adapter __snake_case = add_adapter __snake_case = adapter_kernel_size __snake_case = adapter_stride __snake_case = num_adapter_layers __snake_case = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __snake_case = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __snake_case = list(A__ ) __snake_case = list(A__ ) __snake_case = list(A__ ) __snake_case = xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
371
'''simple docstring''' from torch import nn def __lowercase (_lowercase ) -> Union[str, Any]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
150
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowercase : def __init__( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any]=1_3 , __lowerCamelCase : Optional[Any]=3_0 , __lowerCamelCase : Any=2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : str=True , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=3_2 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Union[str, Any]=3_7 , __lowerCamelCase : str="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=1_0 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Any=2 , ) -> Tuple: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 2 def _lowercase ( self : Tuple ) -> int: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self : Tuple ) -> str: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowercase ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : int ) -> Any: """simple docstring""" UpperCAmelCase = TFDeiTModel(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = TFDeiTForMaskedImageModeling(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFDeiTForMaskedImageModeling(__lowerCamelCase ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int ) -> Any: """simple docstring""" UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = TFDeiTForImageClassification(__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFDeiTForImageClassification(__lowerCamelCase ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): UpperCamelCase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowercase ( self : str ) -> str: """simple docstring""" UpperCAmelCase = TFDeiTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _lowercase ( self : List[Any] ) -> Dict: """simple docstring""" pass def _lowercase ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , tf.keras.layers.Dense ) ) def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowercase ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _lowercase ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any=False ) -> int: """simple docstring""" UpperCAmelCase = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFDeiTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) ->Tuple: UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowercase ( unittest.TestCase ): @cached_property def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _lowercase ( self : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=__lowerCamelCase , return_tensors="""tf""" ) # forward pass UpperCAmelCase = model(**__lowerCamelCase ) # verify the logits UpperCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) UpperCAmelCase = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
708
import math import qiskit def _UpperCamelCase ( lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 ) ->qiskit.result.counts.Counts: if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(lowerCAmelCase_ ) != input_a) or (math.floor(lowerCAmelCase_ ) != input_a) or (math.floor(lowerCAmelCase_ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers UpperCAmelCase = qiskit.QuantumRegister(4 , """qr""" ) UpperCAmelCase = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries UpperCAmelCase = [input_a, input_a, carry_in] UpperCAmelCase = qiskit.QuantumCircuit(lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCAmelCase_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCAmelCase_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCAmelCase_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCAmelCase_ ) # measure the last two qbits UpperCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" ) UpperCAmelCase = qiskit.execute(lowerCAmelCase_ , lowerCAmelCase_ , shots=1_0_0_0 ) return job.result().get_counts(lowerCAmelCase_ ) if __name__ == "__main__": print(F"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
627
0
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = TypeVar('''DatasetType''', Dataset, IterableDataset) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = "first_exhausted" , ) ->DatasetType: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , (Dataset, IterableDataset) ): if isinstance(UpperCAmelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(UpperCAmelCase_ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCAmelCase_ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCAmelCase_ ).__name__}.''' ) if i == 0: snake_case__ , snake_case__ = ( (Dataset, IterableDataset) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , info=UpperCAmelCase_ , split=UpperCAmelCase_ , stopping_strategy=UpperCAmelCase_ ) else: return _interleave_iterable_datasets( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , info=UpperCAmelCase_ , split=UpperCAmelCase_ , stopping_strategy=UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = 0 , ) ->DatasetType: if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , (Dataset, IterableDataset) ): if isinstance(UpperCAmelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(UpperCAmelCase_ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCAmelCase_ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCAmelCase_ ).__name__}.''' ) if i == 0: snake_case__ , snake_case__ = ( (Dataset, IterableDataset) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCAmelCase_ , info=UpperCAmelCase_ , split=UpperCAmelCase_ , axis=UpperCAmelCase_ ) else: return _concatenate_iterable_datasets(UpperCAmelCase_ , info=UpperCAmelCase_ , split=UpperCAmelCase_ , axis=UpperCAmelCase_ )
368
'''simple docstring''' a__ : Optional[Any] = '''Alexander Joslin''' import operator as op from .stack import Stack def __lowerCamelCase ( UpperCAmelCase_ ) ->int: snake_case__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(UpperCAmelCase_ ) ) elif i in operators: # RULE 2 operator_stack.push(UpperCAmelCase_ ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](UpperCAmelCase_ , UpperCAmelCase_ ) operand_stack.push(UpperCAmelCase_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a__ : Any = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
368
1
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : List[Any] ) -> Union[str, Any]: _lowerCAmelCase : int = int(__lowerCAmelCase ) assert noofclusters < len(__lowerCAmelCase ) # Find out the dimensionality _lowerCAmelCase : int = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : List[Any] = list(range(len(__lowerCAmelCase ) ) ) shuffle(__lowerCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : Any = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : Optional[int] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__lowerCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Dict = [] for centroid in centroids: cent_assigns.append(tf.assign(__lowerCAmelCase ,__lowerCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Optional[Any] = [tf.Variable(0 ) for i in range(len(__lowerCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : Dict = tf.placeholder("""int32""" ) _lowerCAmelCase : List[str] = [] for assignment in assignments: cluster_assigns.append(tf.assign(__lowerCAmelCase ,__lowerCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : List[Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : List[Any] = tf.reduce_mean(__lowerCAmelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Tuple = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Optional[int] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__lowerCAmelCase ,__lowerCAmelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Optional[Any] = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : Any = tf.argmin(__lowerCAmelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Any = tf.initialize_all_variables() # Initialize all variables sess.run(__lowerCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : Union[str, Any] = 100 for _ in range(__lowerCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__lowerCAmelCase ) ): _lowerCAmelCase : Dict = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : int = [ sess.run(__lowerCAmelCase ,feed_dict={va: vect, va: sess.run(__lowerCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Optional[Any] = sess.run( __lowerCAmelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__lowerCAmelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : Any = [ vectors[i] for i in range(len(__lowerCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( __lowerCAmelCase ,feed_dict={mean_input: array(__lowerCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Dict = sess.run(__lowerCAmelCase ) _lowerCAmelCase : List[str] = sess.run(__lowerCAmelCase ) return centroids, assignments
712
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : List[str] , __snake_case : List[Any] , __snake_case : int=13 , __snake_case : Tuple=7 , __snake_case : Union[str, Any]=True , __snake_case : List[str]=True , __snake_case : List[str]=True , __snake_case : Optional[int]=True , __snake_case : Optional[Any]=99 , __snake_case : str=32 , __snake_case : Dict=5 , __snake_case : List[str]=4 , __snake_case : Dict=37 , __snake_case : Dict="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Tuple=5_12 , __snake_case : Optional[Any]=16 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=0.02 , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : Optional[int]="None" , __snake_case : Optional[Any]=3 , __snake_case : Dict=4 , __snake_case : str=None , )-> List[Any]: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = relative_attention snake_case = position_biased_input snake_case = pos_att_type snake_case = scope def lowerCAmelCase ( self : Dict )-> Tuple: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = ids_tensor([self.batch_size] , self.num_choices ) snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict )-> Tuple: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCAmelCase ( self : Dict )-> List[Any]: snake_case = self.get_config() snake_case = 3_00 return config def lowerCAmelCase ( self : int , __snake_case : Optional[Any] )-> str: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCAmelCase ( self : List[str] , __snake_case : Dict , __snake_case : Dict , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[Any] )-> Union[str, Any]: snake_case = DebertaModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )[0] snake_case = model(__snake_case , token_type_ids=__snake_case )[0] snake_case = model(__snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCAmelCase ( self : List[Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : Tuple , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Dict )-> str: snake_case = DebertaForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : List[str] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : int , __snake_case : str , __snake_case : List[Any] )-> Union[str, Any]: snake_case = self.num_labels snake_case = DebertaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : Dict , __snake_case : Tuple , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Any , __snake_case : Tuple )-> Union[str, Any]: snake_case = self.num_labels snake_case = DebertaForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] , __snake_case : int , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : int , __snake_case : str , __snake_case : Optional[Any] )-> Any: snake_case = DebertaForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[str] )-> Dict: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowerCAmelCase ( self : int )-> str: snake_case = DebertaModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowerCAmelCase ( self : str )-> List[str]: self.config_tester.run_common_tests() def lowerCAmelCase ( self : int )-> Optional[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__snake_case ) def lowerCAmelCase ( self : List[str] )-> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__snake_case ) def lowerCAmelCase ( self : Optional[int] )-> Any: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__snake_case ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__snake_case ) @slow def lowerCAmelCase ( self : Optional[int] )-> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = DebertaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def lowerCAmelCase ( self : Any )-> Tuple: pass @slow def lowerCAmelCase ( self : int )-> Any: snake_case = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) snake_case = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) snake_case = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case = model(__snake_case , attention_mask=__snake_case )[0] # compare the actual values for a slice. snake_case = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __snake_case , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
369
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , ) -> float: if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( __lowerCAmelCase , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
369
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCamelCase : Optional[int] = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
216
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = KandinskyImgaImgPipeline a_ = ["prompt", "image_embeds", "negative_image_embeds", "image"] a_ = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] a_ = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a_ = False @property def A ( self : Optional[Any] ) -> Tuple: return 32 @property def A ( self : Tuple ) -> Tuple: return 32 @property def A ( self : str ) -> List[str]: return self.time_input_dim @property def A ( self : List[str] ) -> int: return self.time_input_dim * 4 @property def A ( self : int ) -> str: return 1_00 @property def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def A ( self : Optional[Any] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) UpperCAmelCase_ : str = MultilingualCLIP(_A ) UpperCAmelCase_ : Tuple = text_encoder.eval() return text_encoder @property def A ( self : int ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase_ : Tuple = UNetaDConditionModel(**_A ) return model @property def A ( self : List[str] ) -> Tuple: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self : str ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : Any = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : Any ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase_ : Optional[int] = self.dummy_tokenizer UpperCAmelCase_ : Optional[int] = self.dummy_unet UpperCAmelCase_ : Optional[Any] = self.dummy_movq UpperCAmelCase_ : Optional[int] = { '''num_train_timesteps''': 10_00, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } UpperCAmelCase_ : Tuple = DDIMScheduler(**_A ) UpperCAmelCase_ : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A ( self : str , _A : Optional[int] , _A : Union[str, Any]=0 ) -> str: UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image UpperCAmelCase_ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[Any] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((2_56, 2_56) ) if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Tuple = torch.manual_seed(_A ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Union[str, Any] = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def A ( self : Dict ) -> int: UpperCAmelCase_ : str = '''cpu''' UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_A ) UpperCAmelCase_ : Tuple = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : List[str] = pipe(**self.get_dummy_inputs(_A ) ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : List[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class snake_case__ ( unittest.TestCase): def A ( self : Tuple ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) UpperCAmelCase_ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase_ : Tuple = '''A red cartoon frog, 4k''' UpperCAmelCase_ : Dict = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) UpperCAmelCase_ : Any = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) UpperCAmelCase_ : Optional[int] = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ : str = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase_ : Any = pipeline( _A , image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='''np''' , ) UpperCAmelCase_ : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_A , _A )
216
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :List[str] = logging.get_logger(__name__) lowerCAmelCase :Dict = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[Any] = """vit_msn""" def __init__( self : Union[str, Any] , _A : Optional[int]=768 , _A : List[str]=12 , _A : Optional[Any]=12 , _A : Tuple=3072 , _A : Optional[Any]="gelu" , _A : Any=0.0 , _A : List[str]=0.0 , _A : str=0.02 , _A : str=1E-06 , _A : Tuple=224 , _A : Any=16 , _A : int=3 , _A : List[str]=True , **_A : Union[str, Any] , ) -> Union[str, Any]: super().__init__(**lowerCamelCase__ ) __magic_name__ : str = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : List[str] = num_attention_heads __magic_name__ : str = intermediate_size __magic_name__ : Optional[int] = hidden_act __magic_name__ : Any = hidden_dropout_prob __magic_name__ : str = attention_probs_dropout_prob __magic_name__ : Optional[Any] = initializer_range __magic_name__ : List[Any] = layer_norm_eps __magic_name__ : Any = image_size __magic_name__ : Tuple = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : Tuple = qkv_bias
561
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCAmelCase = { 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
240
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class snake_case_ ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A_ = field(default='summarization' ,metadata={'include_in_asdict_even_if_is_default': True} ) A_ = Features({'text': Value('string' )} ) A_ = Features({'summary': Value('string' )} ) A_ = "text" A_ = "summary" @property def UpperCAmelCase__ ( self : int )->Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
240
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu a = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: a = json.load(f) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[Any] ): return FSMTTokenizer.from_pretrained(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : int ): _A = FSMTForConditionalGeneration.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _A = F'''facebook/wmt19-{pair}''' _A = self.get_tokenizer(_UpperCAmelCase ) _A = self.get_model(_UpperCAmelCase ) _A = bleu_data[pair]['src'] _A = bleu_data[pair]['tgt'] _A = tokenizer(_UpperCAmelCase , return_tensors='pt' , truncation=_UpperCAmelCase , padding='longest' ).to(_UpperCAmelCase ) _A = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _A = tokenizer.batch_decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) _A = calculate_bleu(_UpperCAmelCase , _UpperCAmelCase ) print(_UpperCAmelCase ) self.assertGreaterEqual(scores['bleu'] , _UpperCAmelCase )
7
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __magic_name__ : Optional[int] = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[int] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __magic_name__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
"""simple docstring""" import requests UpperCAmelCase : str = "YOUR API KEY" def __a ( _lowercase , _lowercase = giphy_api_key ): """simple docstring""" lowerCamelCase__ : Optional[int] = '''+'''.join(query.split() ) lowerCamelCase__ : Optional[int] = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" lowerCamelCase__ : Dict = requests.get(_lowercase ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
121
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : UpperCAmelCase = 42 UpperCAmelCase = None UpperCAmelCase = None def __a ( _lowercase ): """simple docstring""" def is_valid_tree(_lowercase ) -> bool: if node is None: return True if not isinstance(_lowercase , _lowercase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_lowercase ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( _lowercase , _lowercase , _lowercase ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _lowercase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _lowercase ) ) return is_binary_search_tree_recursive_check(_lowercase , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
121
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = "▁" _UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} _UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } _UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : Tuple="</s>" , UpperCamelCase__ : Optional[Any]="<s>" , UpperCamelCase__ : int="<unk>" , UpperCamelCase__ : Dict="<pad>" , UpperCamelCase__ : Optional[Dict[str, Any]] = None , **UpperCamelCase__ : Tuple , ): A = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer A = 7 A = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] A = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A = 1 # Mimic fairseq token-to-id alignment for the first 4 token A = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} A = len(self.sp_model ) A = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(UpperCamelCase__ ) A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[Any] ): A = self.__dict__.copy() A = None A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , UpperCamelCase__ : Any ): A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a A = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) def UpperCamelCase ( self : Union[str, Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): A = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCamelCase ( self : str ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCamelCase ( self : int ): A = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : str ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A = self.sp_model.PieceToId(UpperCamelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase ( self : Dict , UpperCamelCase__ : str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str ): A = ''.join(UpperCamelCase__ ).replace(UpperCamelCase__ , ' ' ).strip() return out_string def UpperCamelCase ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , 'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
699
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[Any], lowerCAmelCase : str ) -> int: for attribute in key.split('.' ): A = getattr(lowerCAmelCase, lowerCAmelCase ) if weight_type is not None: A = getattr(lowerCAmelCase, lowerCAmelCase ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase (lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] ) -> Dict: A = [] A = fairseq_model.state_dict() A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, hf_model.config.feat_extract_norm == 'group', ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue A = True if "*" in mapped_key: A = name.split(lowerCAmelCase )[0].split('.' )[-2] A = mapped_key.replace('*', lowerCAmelCase ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int ) -> Dict: A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: if config_path is not None: A = UniSpeechSatConfig.from_pretrained(lowerCAmelCase ) else: A = UniSpeechSatConfig() A = '' if is_finetuned: A = UniSpeechSatForCTC(lowerCAmelCase ) else: A = UniSpeechSatForPreTraining(lowerCAmelCase ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A = model[0].eval() recursively_load_weights(lowerCAmelCase, lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
699
1
'''simple docstring''' def _lowerCAmelCase ( lowercase : int ) ->Tuple: """simple docstring""" if length <= 0 or not isinstance(lowercase , lowercase ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
717
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __A ( a ): """simple docstring""" A_ = '' A_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) A_ = None # compression type in fsspec. ex: "gzip" A_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowerCamelCase = "" , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase )-> List[str]: super().__init__(self , **_lowerCamelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowercase__ = fsspec.open( _lowerCamelCase , mode='''rb''' , protocol=_lowerCamelCase , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowercase__ = os.path.basename(self.file.path.split('''::''' )[0] ) lowercase__ = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowercase__ = None @classmethod def snake_case_( cls , _lowerCamelCase )-> List[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(_lowerCamelCase ).lstrip('''/''' ) def snake_case_( self )-> List[str]: if self.dir_cache is None: lowercase__ = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowercase__ = {f['''name''']: f} def snake_case_( self , _lowerCamelCase )-> List[str]: return self.file.open().read() def snake_case_( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , )-> Tuple: lowercase__ = self._strip_protocol(_lowerCamelCase ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class __A ( a ): """simple docstring""" A_ = 'bz2' A_ = 'bz2' A_ = '.bz2' class __A ( a ): """simple docstring""" A_ = 'gzip' A_ = 'gzip' A_ = '.gz' class __A ( a ): """simple docstring""" A_ = 'lz4' A_ = 'lz4' A_ = '.lz4' class __A ( a ): """simple docstring""" A_ = 'xz' A_ = 'xz' A_ = '.xz' class __A ( a ): """simple docstring""" A_ = 'zstd' A_ = 'zstd' A_ = '.zst' def __init__( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = DEFAULT_BLOCK_SIZE , **_lowerCamelCase , )-> Tuple: super().__init__( fo=_lowerCamelCase , mode=_lowerCamelCase , target_protocol=_lowerCamelCase , target_options=_lowerCamelCase , block_size=_lowerCamelCase , **_lowerCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowercase__ = self.file.__enter__ class __A : """simple docstring""" def __init__( self , _lowerCamelCase )-> Union[str, Any]: lowercase__ = file_ def __enter__( self )-> int: self._file.__enter__() return self def __exit__( self , *_lowerCamelCase , **_lowerCamelCase )-> List[str]: self._file.__exit__(*_lowerCamelCase , **_lowerCamelCase ) def __iter__( self )-> int: return iter(self._file ) def snake_case_( self )-> List[Any]: return next(self._file ) def __getattr__( self , _lowerCamelCase )-> Any: return getattr(self._file , _lowerCamelCase ) def fixed_enter(*_lowerCamelCase , **_lowerCamelCase ): return WrappedFile(_enter(*_lowerCamelCase , **_lowerCamelCase ) ) lowercase__ = fixed_enter
318
0
"""simple docstring""" import math def a ( __UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( __UpperCAmelCase : float = 0.1 ) -> int: __magic_name__: Tuple = 3 __magic_name__: Optional[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__UpperCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
96
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _A ( __snake_case :Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = VideoMAEConfig() set_architecture_configs(__snake_case , __snake_case ) if "finetuned" not in model_name: __SCREAMING_SNAKE_CASE = False if "finetuned" in model_name: __SCREAMING_SNAKE_CASE = "huggingface/label-files" if "kinetics" in model_name: __SCREAMING_SNAKE_CASE = 400 __SCREAMING_SNAKE_CASE = "kinetics400-id2label.json" elif "ssv2" in model_name: __SCREAMING_SNAKE_CASE = 174 __SCREAMING_SNAKE_CASE = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) __SCREAMING_SNAKE_CASE = {int(__snake_case ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def _A ( __snake_case :Dict , __snake_case :Optional[Any] ) -> List[Any]: """simple docstring""" if "small" in model_name: __SCREAMING_SNAKE_CASE = 384 __SCREAMING_SNAKE_CASE = 1536 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 192 __SCREAMING_SNAKE_CASE = 768 elif "large" in model_name: __SCREAMING_SNAKE_CASE = 1024 __SCREAMING_SNAKE_CASE = 4096 __SCREAMING_SNAKE_CASE = 24 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 8 __SCREAMING_SNAKE_CASE = 512 __SCREAMING_SNAKE_CASE = 2048 elif "huge" in model_name: __SCREAMING_SNAKE_CASE = 1280 __SCREAMING_SNAKE_CASE = 5120 __SCREAMING_SNAKE_CASE = 32 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 8 __SCREAMING_SNAKE_CASE = 640 __SCREAMING_SNAKE_CASE = 2560 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def _A ( __snake_case :List[Any] ) -> Optional[int]: """simple docstring""" if "encoder." in name: __SCREAMING_SNAKE_CASE = name.replace("encoder." , "" ) if "cls_token" in name: __SCREAMING_SNAKE_CASE = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: __SCREAMING_SNAKE_CASE = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: __SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.self" ) if "attn" in name: __SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.attention" ) if "norm1" in name: __SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __SCREAMING_SNAKE_CASE = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __SCREAMING_SNAKE_CASE = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: __SCREAMING_SNAKE_CASE = name.replace("head" , "classifier" ) return name def _A ( __snake_case :Union[str, Any] , __snake_case :Optional[int] ) -> Optional[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = orig_state_dict.pop(__snake_case ) if key.startswith("encoder." ): __SCREAMING_SNAKE_CASE = key.replace("encoder." , "" ) if "qkv" in key: __SCREAMING_SNAKE_CASE = key.split("." ) if key.startswith("decoder.blocks" ): __SCREAMING_SNAKE_CASE = config.decoder_hidden_size __SCREAMING_SNAKE_CASE = int(key_split[2] ) __SCREAMING_SNAKE_CASE = "decoder.decoder_layers." if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = config.hidden_size __SCREAMING_SNAKE_CASE = int(key_split[1] ) __SCREAMING_SNAKE_CASE = "videomae.encoder.layer." if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = val return orig_state_dict def _A ( ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) __SCREAMING_SNAKE_CASE = np.load(__snake_case ) return list(__snake_case ) def _A ( __snake_case :Optional[int] , __snake_case :List[str] , __snake_case :Union[str, Any] , __snake_case :Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = get_videomae_config(__snake_case ) if "finetuned" in model_name: __SCREAMING_SNAKE_CASE = VideoMAEForVideoClassification(__snake_case ) else: __SCREAMING_SNAKE_CASE = VideoMAEForPreTraining(__snake_case ) # download original checkpoint, hosted on Google Drive __SCREAMING_SNAKE_CASE = "pytorch_model.bin" gdown.cached_download(__snake_case , __snake_case , quiet=__snake_case ) __SCREAMING_SNAKE_CASE = torch.load(__snake_case , map_location="cpu" ) if "model" in files: __SCREAMING_SNAKE_CASE = files["model"] else: __SCREAMING_SNAKE_CASE = files["module"] __SCREAMING_SNAKE_CASE = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) model.eval() # verify model on basic input __SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __SCREAMING_SNAKE_CASE = prepare_video() __SCREAMING_SNAKE_CASE = image_processor(__snake_case , return_tensors="pt" ) if "finetuned" not in model_name: __SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) __SCREAMING_SNAKE_CASE = torch.load(__snake_case ) __SCREAMING_SNAKE_CASE = model(**__snake_case ) __SCREAMING_SNAKE_CASE = outputs.logits __SCREAMING_SNAKE_CASE = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 174] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one __SCREAMING_SNAKE_CASE = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 174] ) __SCREAMING_SNAKE_CASE = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 174] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __snake_case , atol=1e-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": __SCREAMING_SNAKE_CASE = outputs.loss assert torch.allclose(__snake_case , __snake_case , atol=1e-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) model.save_pretrained(__snake_case ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(__snake_case , organization="nielsr" ) if __name__ == "__main__": _snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : Optional[int] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
693
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants UpperCamelCase_ = Mapping[str, np.ndarray] UpperCamelCase_ = Mapping[str, Any] # Is a nested dict. UpperCamelCase_ = 0.01 @dataclasses.dataclass(frozen=_snake_case ) class a_ : UpperCamelCase__ : Optional[int] =42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. UpperCamelCase__ : int =42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. UpperCamelCase__ : str =42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. UpperCamelCase__ : Union[str, Any] =42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. UpperCamelCase__ : Tuple =42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions UpperCamelCase__ : Dict =None # Optional remark about the protein. Included as a comment in output PDB # files UpperCamelCase__ : Any =None # Templates used to generate this protein (prediction-only) UpperCamelCase__ : Optional[int] =None # Chain corresponding to each parent UpperCamelCase__ : int =None def A ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = r'''(\[[A-Z]+\]\n)''' UpperCAmelCase_ = [tag.strip() for tag in re.split(__A , __A ) if len(__A ) > 0] UpperCAmelCase_ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) UpperCAmelCase_ = ['''N''', '''CA''', '''C'''] UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None for g in groups: if "[PRIMARY]" == g[0]: UpperCAmelCase_ = g[1][0].strip() for i in range(len(__A ) ): if seq[i] not in residue_constants.restypes: UpperCAmelCase_ = '''X''' # FIXME: strings are immutable UpperCAmelCase_ = np.array( [residue_constants.restype_order.get(__A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: UpperCAmelCase_ = [] for axis in range(3 ): tertiary.append(list(map(__A , g[1][axis].split() ) ) ) UpperCAmelCase_ = np.array(__A ) UpperCAmelCase_ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__A ): UpperCAmelCase_ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: UpperCAmelCase_ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) UpperCAmelCase_ = np.zeros( ( len(__A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__A ): UpperCAmelCase_ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__A , atom_mask=__A , aatype=__A , residue_index=np.arange(len(__A ) ) , b_factors=__A , ) def A ( __UpperCAmelCase , __UpperCAmelCase = 0 ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) UpperCAmelCase_ = prot.parents UpperCAmelCase_ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: UpperCAmelCase_ = [p for i, p in zip(__A , __A ) if i == chain_id] if parents is None or len(__A ) == 0: UpperCAmelCase_ = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(__A )}" ) return pdb_headers def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = pdb_str.split('''\n''' ) UpperCAmelCase_ = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) UpperCAmelCase_ = 42 if prot.parents is not None and len(prot.parents ) > 0: UpperCAmelCase_ = [] if prot.parents_chain_index is not None: UpperCAmelCase_ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__A ) , [] ) parent_dict[str(__A )].append(__A ) UpperCAmelCase_ = max([int(__A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): UpperCAmelCase_ = parent_dict.get(str(__A ) , ['''N/A'''] ) parents_per_chain.append(__A ) else: parents_per_chain.append(list(prot.parents ) ) else: UpperCAmelCase_ = [['''N/A''']] def make_parent_line(__UpperCAmelCase ) -> str: return f"PARENT {' '.join(__A )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) UpperCAmelCase_ = 0 for i, l in enumerate(__A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__A ): UpperCAmelCase_ = parents_per_chain[chain_counter] else: UpperCAmelCase_ = ['''N/A'''] out_pdb_lines.append(make_parent_line(__A ) ) return "\n".join(__A ) def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = residue_constants.restypes + ['''X'''] def res_atoa(__UpperCAmelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) UpperCAmelCase_ = residue_constants.atom_types UpperCAmelCase_ = [] UpperCAmelCase_ = prot.atom_mask UpperCAmelCase_ = prot.aatype UpperCAmelCase_ = prot.atom_positions UpperCAmelCase_ = prot.residue_index.astype(np.intaa ) UpperCAmelCase_ = prot.b_factors UpperCAmelCase_ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) UpperCAmelCase_ = get_pdb_headers(__A ) if len(__A ) > 0: pdb_lines.extend(__A ) UpperCAmelCase_ = aatype.shape[0] UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = string.ascii_uppercase UpperCAmelCase_ = None # Add all atom sites. for i in range(__A ): UpperCAmelCase_ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue UpperCAmelCase_ = '''ATOM''' UpperCAmelCase_ = atom_name if len(__A ) == 4 else f" {atom_name}" UpperCAmelCase_ = '''''' UpperCAmelCase_ = '''''' UpperCAmelCase_ = 1.00 UpperCAmelCase_ = atom_name[0] # Protein supports only C, N, O, S, this works. UpperCAmelCase_ = '''''' UpperCAmelCase_ = '''A''' if chain_index is not None: UpperCAmelCase_ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! UpperCAmelCase_ = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(__A ) atom_index += 1 UpperCAmelCase_ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: UpperCAmelCase_ = True UpperCAmelCase_ = chain_index[i + 1] if should_terminate: # Close the chain. UpperCAmelCase_ = '''TER''' UpperCAmelCase_ = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(__A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__A , __A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(__A ) def A ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> Any: '''simple docstring''' return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=__A , remark=__A , parents=__A , parents_chain_index=__A , )
701
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] ="bert" def __init__( self :Any , _lowercase :Optional[int]=30522 , _lowercase :str=768 , _lowercase :Union[str, Any]=12 , _lowercase :Dict=12 , _lowercase :Optional[Any]=3072 , _lowercase :List[Any]="gelu" , _lowercase :Dict=0.1 , _lowercase :Union[str, Any]=0.1 , _lowercase :Optional[int]=512 , _lowercase :List[str]=2 , _lowercase :List[str]=0.02 , _lowercase :Union[str, Any]=1E-1_2 , _lowercase :Dict=0 , _lowercase :List[str]="absolute" , _lowercase :Union[str, Any]=True , _lowercase :str=None , **_lowercase :Union[str, Any] , ) -> Dict: super().__init__(pad_token_id=_lowercase , **_lowercase) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class a_ ( _snake_case ): @property def __a ( self :str) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
561
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''informer''' lowerCAmelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Tuple , _A : Optional[int] = None , _A : Optional[int] = None , _A : str = "student_t" , _A : str = "nll" , _A : int = 1 , _A : List[int] = None , _A : Optional[Union[str, bool]] = "mean" , _A : int = 0 , _A : int = 0 , _A : int = 0 , _A : int = 0 , _A : Optional[List[int]] = None , _A : Optional[List[int]] = None , _A : int = 64 , _A : int = 32 , _A : int = 32 , _A : int = 2 , _A : int = 2 , _A : int = 2 , _A : int = 2 , _A : bool = True , _A : str = "gelu" , _A : float = 0.05 , _A : float = 0.1 , _A : float = 0.1 , _A : float = 0.1 , _A : float = 0.1 , _A : int = 100 , _A : float = 0.02 , _A : Union[str, Any]=True , _A : str = "prob" , _A : int = 5 , _A : bool = True , **_A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = prediction_length __SCREAMING_SNAKE_CASE : Union[str, Any] = context_length or prediction_length __SCREAMING_SNAKE_CASE : Optional[int] = distribution_output __SCREAMING_SNAKE_CASE : Optional[int] = loss __SCREAMING_SNAKE_CASE : Union[str, Any] = input_size __SCREAMING_SNAKE_CASE : Any = num_time_features __SCREAMING_SNAKE_CASE : Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __SCREAMING_SNAKE_CASE : Tuple = scaling __SCREAMING_SNAKE_CASE : List[Any] = num_dynamic_real_features __SCREAMING_SNAKE_CASE : str = num_static_real_features __SCREAMING_SNAKE_CASE : Union[str, Any] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __SCREAMING_SNAKE_CASE : List[Any] = cardinality else: __SCREAMING_SNAKE_CASE : int = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __SCREAMING_SNAKE_CASE : Any = embedding_dimension else: __SCREAMING_SNAKE_CASE : Optional[int] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __SCREAMING_SNAKE_CASE : str = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE : List[Any] = input_size * len(self.lags_sequence ) + self._number_of_features __SCREAMING_SNAKE_CASE : Optional[int] = d_model __SCREAMING_SNAKE_CASE : Any = encoder_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = encoder_ffn_dim __SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim __SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers __SCREAMING_SNAKE_CASE : List[str] = decoder_layers __SCREAMING_SNAKE_CASE : List[str] = dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout __SCREAMING_SNAKE_CASE : Any = activation_dropout __SCREAMING_SNAKE_CASE : int = encoder_layerdrop __SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop __SCREAMING_SNAKE_CASE : Optional[Any] = activation_function __SCREAMING_SNAKE_CASE : Optional[Any] = init_std __SCREAMING_SNAKE_CASE : List[str] = use_cache # Informer __SCREAMING_SNAKE_CASE : Optional[int] = attention_type __SCREAMING_SNAKE_CASE : int = sampling_factor __SCREAMING_SNAKE_CASE : Optional[Any] = distil super().__init__(is_encoder_decoder=_A , **_A ) @property def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
74
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase (a_ ): snake_case_ = ["""image_processor""", """tokenizer"""] snake_case_ = """FlavaImageProcessor""" snake_case_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase )-> Tuple: __lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCamelCase , ) __lowerCAmelCase = kwargs.pop("feature_extractor" ) __lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = self.image_processor def __call__( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , )-> int: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __lowerCAmelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) if images is not None: __lowerCAmelCase = self.image_processor( __UpperCamelCase , return_image_mask=__UpperCamelCase , return_codebook_pixels=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) if text is not None and images is not None: encoding.update(__UpperCamelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def __UpperCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase )-> int: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def __UpperCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase )-> Optional[int]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def __UpperCAmelCase ( self )-> Any: __lowerCAmelCase = self.tokenizer.model_input_names __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCAmelCase ( self )-> Dict: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCamelCase , ) return self.image_processor_class @property def __UpperCAmelCase ( self )-> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCamelCase , ) return self.image_processor
367
0
'''simple docstring''' import csv import tweepy # Twitter API credentials lowerCAmelCase = """""" lowerCAmelCase = """""" lowerCAmelCase = """""" lowerCAmelCase = """""" def __A ( a_ : str ): # authorize twitter, initialize tweepy lowerCAmelCase : Tuple = tweepy.OAuthHandler(a_ ,a_ ) auth.set_access_token(a_ ,a_ ) lowerCAmelCase : Optional[int] = tweepy.API(a_ ) # initialize a list to hold all the tweepy Tweets lowerCAmelCase : int = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowerCAmelCase : List[Any] = api.user_timeline(screen_name=a_ ,count=2_0_0 ) # save most recent tweets alltweets.extend(a_ ) # save the id of the oldest tweet less one lowerCAmelCase : Dict = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a_ ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates lowerCAmelCase : Any = api.user_timeline( screen_name=a_ ,count=2_0_0 ,max_id=a_ ) # save most recent tweets alltweets.extend(a_ ) # update the id of the oldest tweet less one lowerCAmelCase : Dict = alltweets[-1].id - 1 print(f'''...{len(a_ )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv lowerCAmelCase : Union[str, Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"w" ) as f: lowerCAmelCase : Dict = csv.writer(a_ ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(a_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
551
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCamelCase ( _A ): snake_case_ = "microsoft/speecht5_tts" snake_case_ = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) snake_case_ = "text_reader" snake_case_ = SpeechTaProcessor snake_case_ = SpeechTaForTextToSpeech snake_case_ = SpeechTaHifiGan snake_case_ = ["text"] snake_case_ = ["audio"] def _lowerCamelCase ( self ): if self.post_processor is None: lowerCAmelCase : str = "microsoft/speecht5_hifigan" super().setup() def _lowerCamelCase ( self , a_ , a_=None ): lowerCAmelCase : str = self.pre_processor(text=a_ , return_tensors="pt" , truncation=a_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase : Tuple = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) lowerCAmelCase : Union[str, Any] = torch.tensor(embeddings_dataset[7_305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _lowerCamelCase ( self , a_ ): with torch.no_grad(): return self.model.generate_speech(**a_ ) def _lowerCamelCase ( self , a_ ): with torch.no_grad(): return self.post_processor(a_ ).cpu().detach()
551
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = StableUnCLIPPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : List[str] = 3_2 snake_case__ : List[Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) snake_case__ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) snake_case__ : Optional[int] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=__SCREAMING_SNAKE_CASE , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) snake_case__ : int = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=__SCREAMING_SNAKE_CASE , num_layers=1 , ) torch.manual_seed(0 ) snake_case__ : Tuple = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1_0_0_0 , clip_sample=__SCREAMING_SNAKE_CASE , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) snake_case__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=__SCREAMING_SNAKE_CASE ) snake_case__ : str = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) snake_case__ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) snake_case__ : Optional[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) snake_case__ : Dict = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__SCREAMING_SNAKE_CASE , layers_per_block=1 , upcast_attention=__SCREAMING_SNAKE_CASE , use_linear_projection=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) snake_case__ : List[Any] = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , ) torch.manual_seed(0 ) snake_case__ : Dict = AutoencoderKL() snake_case__ : Optional[int] = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): snake_case__ : List[str] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __UpperCamelCase ( self ): snake_case__ : List[str] = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Any = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): snake_case__ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) snake_case__ : Optional[Any] = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case__ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case__ : int = pipe("""anime turle""" , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" ) snake_case__ : Union[str, Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) snake_case__ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case__ : int = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) snake_case__ : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
38
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Dict = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''bit''' lowerCamelCase__ = ['''preactivation''', '''bottleneck'''] lowerCamelCase__ = ['''SAME''', '''VALID'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case__ : Tuple = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) snake_case__ : List[str] = num_channels snake_case__ : Tuple = embedding_size snake_case__ : str = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : List[Any] = layer_type snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = global_padding snake_case__ : List[str] = num_groups snake_case__ : str = drop_path_rate snake_case__ : List[Any] = embedding_dynamic_padding snake_case__ : List[str] = output_stride snake_case__ : Dict = width_factor snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
38
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' snake_case__ : List[Any] = MODEL_FOR_CAUSAL_LM_MAPPING snake_case__ : Dict = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a_ ( self ): __SCREAMING_SNAKE_CASE : Tuple = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output __SCREAMING_SNAKE_CASE : List[str] = text_generator("This is a test" , do_sample=a__ ) self.assertEqual( a__ , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) __SCREAMING_SNAKE_CASE : Dict = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( a__ , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) __SCREAMING_SNAKE_CASE : str = text_generator("This is a test" , do_sample=a__ , num_return_sequences=2 , return_tensors=a__ ) self.assertEqual( a__ , [ {"generated_token_ids": ANY(a__ )}, {"generated_token_ids": ANY(a__ )}, ] , ) __SCREAMING_SNAKE_CASE : Any = text_generator.model.config.eos_token_id __SCREAMING_SNAKE_CASE : str = "<pad>" __SCREAMING_SNAKE_CASE : Optional[int] = text_generator( ["This is a test", "This is a second test"] , do_sample=a__ , num_return_sequences=2 , batch_size=2 , return_tensors=a__ , ) self.assertEqual( a__ , [ [ {"generated_token_ids": ANY(a__ )}, {"generated_token_ids": ANY(a__ )}, ], [ {"generated_token_ids": ANY(a__ )}, {"generated_token_ids": ANY(a__ )}, ], ] , ) @require_tf def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output __SCREAMING_SNAKE_CASE : Union[str, Any] = text_generator("This is a test" , do_sample=a__ ) self.assertEqual( a__ , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) __SCREAMING_SNAKE_CASE : Any = text_generator(["This is a test", "This is a second test"] , do_sample=a__ ) self.assertEqual( a__ , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def a_ ( self , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = TextGenerationPipeline(model=a__ , tokenizer=a__ ) return text_generator, ["This is a test", "Another test"] def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[int] = "Hello I believe in" __SCREAMING_SNAKE_CASE : Tuple = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) __SCREAMING_SNAKE_CASE : int = text_generator(a__ ) self.assertEqual( a__ , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) __SCREAMING_SNAKE_CASE : List[Any] = text_generator(a__ , stop_sequence=" fe" ) self.assertEqual(a__ , [{"generated_text": "Hello I believe in fe"}] ) def a_ ( self , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[Any] = text_generator.model __SCREAMING_SNAKE_CASE : Any = text_generator.tokenizer __SCREAMING_SNAKE_CASE : Tuple = text_generator("This is a test" ) self.assertEqual(a__ , [{"generated_text": ANY(a__ )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) __SCREAMING_SNAKE_CASE : str = text_generator("This is a test" , return_full_text=a__ ) self.assertEqual(a__ , [{"generated_text": ANY(a__ )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) __SCREAMING_SNAKE_CASE : List[Any] = pipeline(task="text-generation" , model=a__ , tokenizer=a__ , return_full_text=a__ ) __SCREAMING_SNAKE_CASE : int = text_generator("This is a test" ) self.assertEqual(a__ , [{"generated_text": ANY(a__ )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) __SCREAMING_SNAKE_CASE : List[str] = text_generator("This is a test" , return_full_text=a__ ) self.assertEqual(a__ , [{"generated_text": ANY(a__ )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) __SCREAMING_SNAKE_CASE : List[Any] = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{"generated_text": ANY(a__ )}, {"generated_text": ANY(a__ )}], [{"generated_text": ANY(a__ )}, {"generated_text": ANY(a__ )}], ] , ) if text_generator.tokenizer.pad_token is not None: __SCREAMING_SNAKE_CASE : Any = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{"generated_text": ANY(a__ )}, {"generated_text": ANY(a__ )}], [{"generated_text": ANY(a__ )}, {"generated_text": ANY(a__ )}], ] , ) with self.assertRaises(a__ ): __SCREAMING_SNAKE_CASE : Any = text_generator("test" , return_full_text=a__ , return_text=a__ ) with self.assertRaises(a__ ): __SCREAMING_SNAKE_CASE : Dict = text_generator("test" , return_full_text=a__ , return_tensors=a__ ) with self.assertRaises(a__ ): __SCREAMING_SNAKE_CASE : Tuple = text_generator("test" , return_text=a__ , return_tensors=a__ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __SCREAMING_SNAKE_CASE : Tuple = text_generator("" ) self.assertEqual(a__ , [{"generated_text": ANY(a__ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __SCREAMING_SNAKE_CASE : str = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __SCREAMING_SNAKE_CASE : Union[str, Any] = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 500 , max_new_tokens=20 ) __SCREAMING_SNAKE_CASE : List[str] = text_generator("This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(a__ ): text_generator( "This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a_ ( self ): import torch # Classic `model_kwargs` __SCREAMING_SNAKE_CASE : Any = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __SCREAMING_SNAKE_CASE : str = pipe("This is a test" ) self.assertEqual( a__ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __SCREAMING_SNAKE_CASE : Dict = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __SCREAMING_SNAKE_CASE : List[str] = pipe("This is a test" ) self.assertEqual( a__ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __SCREAMING_SNAKE_CASE : List[str] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe("This is a test" ) self.assertEqual( a__ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def a_ ( self ): import torch __SCREAMING_SNAKE_CASE : Optional[int] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def a_ ( self ): import torch __SCREAMING_SNAKE_CASE : Tuple = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=a__ , top_p=0.5 ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[int] = "Hello world" __SCREAMING_SNAKE_CASE : str = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger("transformers.generation.tf_utils" ) else: __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger("transformers.generation.utils" ) __SCREAMING_SNAKE_CASE : Optional[Any] = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(a__ ) as cl: __SCREAMING_SNAKE_CASE : str = text_generator(a__ , max_length=10 , max_new_tokens=1 ) self.assertIn(a__ , cl.out ) # The user only sets one -> no warning with CaptureLogger(a__ ) as cl: __SCREAMING_SNAKE_CASE : List[str] = text_generator(a__ , max_new_tokens=1 ) self.assertNotIn(a__ , cl.out ) with CaptureLogger(a__ ) as cl: __SCREAMING_SNAKE_CASE : Dict = text_generator(a__ , max_length=10 ) self.assertNotIn(a__ , cl.out )
564
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : '''simple docstring''' def __init__( self , a__ , a__=13 , a__=7 , a__=6 , a__=17 , a__=23 , a__=11 , a__=True , ): __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Optional[int] = batch_size __SCREAMING_SNAKE_CASE : str = seq_length __SCREAMING_SNAKE_CASE : str = act_dim __SCREAMING_SNAKE_CASE : Optional[int] = state_dim __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : Union[str, Any] = max_length __SCREAMING_SNAKE_CASE : int = is_training def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __SCREAMING_SNAKE_CASE : int = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __SCREAMING_SNAKE_CASE : Dict = floats_tensor((self.batch_size, self.seq_length, 1) ) __SCREAMING_SNAKE_CASE : int = floats_tensor((self.batch_size, self.seq_length, 1) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) __SCREAMING_SNAKE_CASE : Tuple = random_attention_mask((self.batch_size, self.seq_length) ) __SCREAMING_SNAKE_CASE : List[str] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a_ ( self ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = DecisionTransformerModel(config=a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(a__ , a__ , a__ , a__ , a__ , a__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : Any = config_and_inputs __SCREAMING_SNAKE_CASE : int = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : List[Any] = (DecisionTransformerModel,) if is_torch_available() else () snake_case__ : Optional[Any] = () snake_case__ : List[str] = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids snake_case__ : List[str] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features snake_case__ : Optional[Any] = False snake_case__ : str = False snake_case__ : List[str] = False snake_case__ : Optional[int] = False snake_case__ : Union[str, Any] = False snake_case__ : Any = False snake_case__ : str = False snake_case__ : Dict = False snake_case__ : List[Any] = False def a_ ( self ): __SCREAMING_SNAKE_CASE : int = DecisionTransformerModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) @slow def a_ ( self ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Any = DecisionTransformerModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(a__ ) __SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : Union[str, Any] = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(a__ )] , a__ ) @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = 2 # number of steps of autoregressive prediction we will perform __SCREAMING_SNAKE_CASE : str = 10 # defined by the RL environment, may be normalized __SCREAMING_SNAKE_CASE : str = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) __SCREAMING_SNAKE_CASE : List[Any] = model.to(a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model.config torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = torch.randn(1 , 1 , config.state_dim ).to(device=a__ , dtype=torch.floataa ) # env.reset() __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=a__ ) __SCREAMING_SNAKE_CASE : Any = torch.tensor(a__ , device=a__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __SCREAMING_SNAKE_CASE : Tuple = state __SCREAMING_SNAKE_CASE : List[str] = torch.zeros(1 , 0 , config.act_dim , device=a__ , dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Tuple = torch.zeros(1 , 0 , device=a__ , dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Dict = torch.tensor(0 , device=a__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(a__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=a__ )] , dim=1 ) __SCREAMING_SNAKE_CASE : Dict = torch.cat([rewards, torch.zeros(1 , 1 , device=a__ )] , dim=1 ) __SCREAMING_SNAKE_CASE : List[Any] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = model( states=a__ , actions=a__ , rewards=a__ , returns_to_go=a__ , timesteps=a__ , attention_mask=a__ , return_dict=a__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=a__ , dtype=torch.floataa ), 1.0, False, {}, ) __SCREAMING_SNAKE_CASE : Tuple = action_pred[0, -1] __SCREAMING_SNAKE_CASE : int = torch.cat([states, state] , dim=1 ) __SCREAMING_SNAKE_CASE : List[str] = returns_to_go[0, -1] - reward __SCREAMING_SNAKE_CASE : Any = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat( [timesteps, torch.ones((1, 1) , device=a__ , dtype=torch.long ) * (step + 1)] , dim=1 )
564
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : Optional[Any] = FlaxAutoencoderKL @property def __A ( self : List[Any] ) -> str: __lowerCamelCase = 4 __lowerCamelCase = 3 __lowerCamelCase = (32, 32) __lowerCamelCase = jax.random.PRNGKey(0 ) __lowerCamelCase = jax.random.uniform(SCREAMING_SNAKE_CASE__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __A ( self : str ) -> Tuple: __lowerCamelCase = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __lowerCamelCase = self.dummy_input return init_dict, inputs_dict
298
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Tuple ) -> Optional[int]: __lowerCamelCase = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) __lowerCamelCase = { '''input_ids''': tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice. __lowerCamelCase = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
298
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ :Dict = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = XLMProphetNetTokenizer _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = True def lowercase_ ( self : List[str] ) ->Optional[int]: super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Union[str, Any] = XLMProphetNetTokenizer(_snake_case, keep_accents=_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Dict ) ->Tuple: snake_case__ : str = '[PAD]' snake_case__ : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ), _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ), _snake_case ) def lowercase_ ( self : Any ) ->Any: snake_case__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '[PAD]' ) self.assertEqual(vocab_keys[1], '[CLS]' ) self.assertEqual(vocab_keys[-1], 'j' ) self.assertEqual(len(_snake_case ), 1_0_1_2 ) def lowercase_ ( self : int ) ->List[Any]: self.assertEqual(self.get_tokenizer().vocab_size, 1_0_1_2 ) def lowercase_ ( self : Union[str, Any] ) ->List[Any]: snake_case__ : str = XLMProphetNetTokenizer(_snake_case, keep_accents=_snake_case ) snake_case__ : int = tokenizer.tokenize('This is a test' ) self.assertListEqual(_snake_case, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ), [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]], ) snake_case__ : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _snake_case, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ], ) snake_case__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case, [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ], ) snake_case__ : str = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ], ) @cached_property def lowercase_ ( self : str ) ->Any: return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def lowercase_ ( self : Optional[Any] ) ->Optional[Any]: snake_case__ : Optional[int] = 'Hello World!' snake_case__ : Dict = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_snake_case, self.big_tokenizer.encode(_snake_case ) ) @slow def lowercase_ ( self : List[str] ) ->Union[str, Any]: # fmt: off snake_case__ : List[Any] = {'input_ids': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case, model_name='microsoft/xprophetnet-large-wiki100-cased', revision='1acad1643ddd54a44df6a1b797ada8373685d90e', )
243
from __future__ import annotations def lowercase_ (A : list[int] ): return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
243
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
514
from PIL import Image def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Image , SCREAMING_SNAKE_CASE_: int ) -> Image: '''simple docstring''' A__ = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(SCREAMING_SNAKE_CASE_: int ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 lowerCAmelCase__ = change_contrast(img, 1_7_0) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
514
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('google/mt5-small' ) lowerCamelCase_ = tokenizer('Hello there' , return_tensors='tf' ).input_ids lowerCamelCase_ = tokenizer('Hi I am' , return_tensors='tf' ).input_ids lowerCamelCase_ = model(lowerCamelCase_ , labels=lowerCamelCase_ ).loss lowerCamelCase_ = -tf.math.reduce_mean(lowerCamelCase_ ).numpy() lowerCamelCase_ = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
710
'''simple docstring''' import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = GPTaTokenizer SCREAMING_SNAKE_CASE_ = GPTaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = {'add_prefix_space': True} SCREAMING_SNAKE_CASE_ = False def UpperCamelCase( self ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] lowerCamelCase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCamelCase_ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = 'lower newer' lowerCamelCase_ = 'lower newer' return input_text, output_text def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = 'lower newer' lowerCamelCase_ = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 'lower newer' # Testing tokenization lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens lowerCamelCase_ = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing the unknown token lowerCamelCase_ = tokens + [rust_tokenizer.unk_token] lowerCamelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase( self , SCREAMING_SNAKE_CASE_=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # Simple input lowerCamelCase_ = 'This is a simple input' lowerCamelCase_ = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase_ = ('This is a simple input', 'This is a pair') lowerCamelCase_ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' , ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input lowerCamelCase_ = 'This is a simple input' lowerCamelCase_ = ['This is a simple input looooooooong', 'This is a simple input'] lowerCamelCase_ = ('This is a simple input', 'This is a pair') lowerCamelCase_ = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] lowerCamelCase_ = tokenizer.pad_token_id lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=30 , return_tensors='np' ) lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncate=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) lowerCamelCase_ = tokenizer(*SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=60 , return_tensors='np' ) lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncate=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = '$$$' lowerCamelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=SCREAMING_SNAKE_CASE_ , add_bos_token=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 'This is a simple input' lowerCamelCase_ = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase_ = tokenizer.bos_token_id lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ ) self.assertEqual(out_s.input_ids[0] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCamelCase_ = tokenizer.decode(out_s.input_ids ) lowerCamelCase_ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' pass def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = [self.get_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , add_bos_token=SCREAMING_SNAKE_CASE_ )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase_ = 'Encode this.' lowerCamelCase_ = 'This one too please.' lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) encoded_sequence += tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.encode_plus( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_special_tokens_mask=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = encoded_sequence_dict['input_ids'] lowerCamelCase_ = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(SCREAMING_SNAKE_CASE_ ) ] lowerCamelCase_ = [x for x in filtered_sequence if x is not None] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 'A photo of a cat' lowerCamelCase_ = tokenizer.encode( SCREAMING_SNAKE_CASE_ , ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('./test_opt' ) lowerCamelCase_ = tokenizer.encode( SCREAMING_SNAKE_CASE_ , ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [2, 250, 1345, 9, 10, 4758] ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 'A photo of a cat' lowerCamelCase_ = tokenizer.encode( SCREAMING_SNAKE_CASE_ , ) # Same as above self.assertEqual(SCREAMING_SNAKE_CASE_ , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 'bos' lowerCamelCase_ = tokenizer.get_vocab()['bos'] lowerCamelCase_ = 'A photo of a cat' lowerCamelCase_ = tokenizer.encode( SCREAMING_SNAKE_CASE_ , ) # We changed the bos token self.assertEqual(SCREAMING_SNAKE_CASE_ , [31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) lowerCamelCase_ = tokenizer.encode( SCREAMING_SNAKE_CASE_ , ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [31957, 250, 1345, 9, 10, 4758] )
384
0
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __lowerCAmelCase : Tuple = '''scheduler_config.json''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 1 _lowerCamelCase = 2 _lowerCamelCase = 3 _lowerCamelCase = 4 _lowerCamelCase = 5 @dataclass class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = SCHEDULER_CONFIG_NAME _lowerCamelCase = ['''dtype'''] _lowerCamelCase = [] _lowerCamelCase = True @classmethod def UpperCAmelCase__ ( cls , _lowercase = None , _lowercase = None , _lowercase=False , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ , snake_case_ : int = cls.load_config( pretrained_model_name_or_path=_lowercase , subfolder=_lowercase , return_unused_kwargs=_lowercase , **_lowercase , ) snake_case_ , snake_case_ : Dict = cls.from_config(_lowercase , return_unused_kwargs=_lowercase , **_lowercase ) if hasattr(_lowercase , """create_state""" ) and getattr(_lowercase , """has_state""" , _lowercase ): snake_case_ : Any = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase__ ( self , _lowercase , _lowercase = False , **_lowercase ) -> Optional[Any]: '''simple docstring''' self.save_config(save_directory=_lowercase , push_to_hub=_lowercase , **_lowercase ) @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return self._get_compatibles() @classmethod def UpperCAmelCase__ ( cls ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) snake_case_ : str = importlib.import_module(__name__.split(""".""" )[0] ) snake_case_ : Optional[int] = [ getattr(_lowercase , _lowercase ) for c in compatible_classes_str if hasattr(_lowercase , _lowercase ) ] return compatible_classes def __lowerCAmelCase ( __UpperCamelCase : jnp.ndarray , __UpperCamelCase : Tuple[int] ): '''simple docstring''' assert len(__UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__UpperCamelCase ) - x.ndim) ) , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Any=0.999 , __UpperCamelCase : Optional[int]=jnp.floataa ): '''simple docstring''' def alpha_bar(__UpperCamelCase : Optional[int] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 snake_case_ : Optional[Any] = [] for i in range(__UpperCamelCase ): snake_case_ : Dict = i / num_diffusion_timesteps snake_case_ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__UpperCamelCase ) / alpha_bar(__UpperCamelCase ) , __UpperCamelCase ) ) return jnp.array(__UpperCamelCase , dtype=__UpperCamelCase ) @flax.struct.dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 @classmethod def UpperCAmelCase__ ( cls , _lowercase ) -> int: '''simple docstring''' snake_case_ : Any = scheduler.config if config.trained_betas is not None: snake_case_ : Optional[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": snake_case_ : int = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case_ : str = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case_ : int = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) snake_case_ : Optional[Any] = 1.0 - betas snake_case_ : Any = jnp.cumprod(_lowercase , axis=0 ) return cls( alphas=_lowercase , betas=_lowercase , alphas_cumprod=_lowercase , ) def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ : Tuple = state.alphas_cumprod snake_case_ : Optional[int] = alphas_cumprod[timesteps] ** 0.5 snake_case_ : Dict = sqrt_alpha_prod.flatten() snake_case_ : int = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) snake_case_ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case_ : Dict = sqrt_one_minus_alpha_prod.flatten() snake_case_ : Tuple = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ , snake_case_ : str = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
58
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE ={ "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
425
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCamelCase__ : '''simple docstring''' def __init__( self : Tuple ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Any=16 ,lowerCamelCase__ : str=13 ,lowerCamelCase__ : Union[str, Any]=7 ,lowerCamelCase__ : List[str]=14 ,lowerCamelCase__ : Tuple=10 ,lowerCamelCase__ : int=19 ,lowerCamelCase__ : Optional[int]=5 ,lowerCamelCase__ : str=4 ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : str=16 ,lowerCamelCase__ : int=2 ,lowerCamelCase__ : List[str]=4 ,lowerCamelCase__ : Union[str, Any]=4 ,lowerCamelCase__ : Optional[int]="gelu" ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : int=[1, 2, 3, 4, 5] ,lowerCamelCase__ : Any=25 ,lowerCamelCase__ : List[Any]=5 ,) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = prediction_length SCREAMING_SNAKE_CASE = context_length SCREAMING_SNAKE_CASE = cardinality SCREAMING_SNAKE_CASE = num_time_features SCREAMING_SNAKE_CASE = lags_sequence SCREAMING_SNAKE_CASE = embedding_dimension SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = context_length SCREAMING_SNAKE_CASE = prediction_length + label_length SCREAMING_SNAKE_CASE = label_length SCREAMING_SNAKE_CASE = moving_average SCREAMING_SNAKE_CASE = autocorrelation_factor def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' return AutoformerConfig( d_model=self.d_model ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,prediction_length=self.prediction_length ,context_length=self.context_length ,label_length=self.label_length ,lags_sequence=self.lags_sequence ,num_time_features=self.num_time_features ,num_static_categorical_features=1 ,cardinality=[self.cardinality] ,embedding_dimension=[self.embedding_dimension] ,moving_average=self.moving_average ,) def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = config.context_length + max(config.lags_sequence ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, 1] ,config.cardinality[0] ) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, _past_length] ) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, config.prediction_length] ) SCREAMING_SNAKE_CASE = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_config() SCREAMING_SNAKE_CASE = self.prepare_autoformer_inputs_dict(lowerCamelCase__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : str ,lowerCamelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoformerModel(config=lowerCamelCase__ ).to(lowerCamelCase__ ).eval() SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = model.get_encoder() encoder.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoformerEncoder.from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = model.create_network_inputs(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) SCREAMING_SNAKE_CASE = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) ,dim=-1 ,) SCREAMING_SNAKE_CASE = encoder(inputs_embeds=lowerCamelCase__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) SCREAMING_SNAKE_CASE = ( torch.mean(transformer_inputs[:, : config.context_length, ...] ,dim=1 ) .unsqueeze(1 ) .repeat(1 ,config.prediction_length ,1 ) ) SCREAMING_SNAKE_CASE = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] ,device=enc_input.device ,) SCREAMING_SNAKE_CASE = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) ,dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) ,dim=-1 ,) SCREAMING_SNAKE_CASE = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) ,dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) ,dim=-1 ,) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = model.get_decoder() decoder.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoformerDecoder.from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = decoder( trend=lowerCamelCase__ ,inputs_embeds=lowerCamelCase__ ,encoder_hidden_states=lowerCamelCase__ ,)[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : str = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __snake_case : Union[str, Any] = (AutoformerForPrediction,) if is_torch_available() else () __snake_case : str = {"feature-extraction": AutoformerModel} if is_torch_available() else {} __snake_case : Optional[Any] = False __snake_case : List[Any] = False __snake_case : Tuple = False __snake_case : Union[str, Any] = False __snake_case : Union[str, Any] = False __snake_case : Dict = False def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = model_class.from_pretrained(lowerCamelCase__ ,output_loading_info=lowerCamelCase__ ) self.assertEqual(info["""missing_keys"""] ,[] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCamelCase__ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = inspect.signature(getattr(lowerCamelCase__ ,"""forward""" ) ) # The main input is the name of the argument after `self` SCREAMING_SNAKE_CASE = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(lowerCamelCase__ )] ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = getattr(self.model_tester ,"""seq_length""" ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = getattr(self.model_tester ,"""decoder_seq_length""" ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = getattr(self.model_tester ,"""encoder_seq_length""" ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = getattr(self.model_tester ,"""d_model""" ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = getattr(self.model_tester ,"""num_attention_heads""" ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = d_model // num_attention_heads for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = outputs.encoder_attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,) SCREAMING_SNAKE_CASE = len(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) # decoder attentions SCREAMING_SNAKE_CASE = outputs.decoder_attentions self.assertIsInstance(lowerCamelCase__ ,(list, tuple) ) self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,) # cross attentions SCREAMING_SNAKE_CASE = outputs.cross_attentions self.assertIsInstance(lowerCamelCase__ ,(list, tuple) ) self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(out_len + 2 ,len(lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,) @is_flaky() def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[str]: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def __lowercase ( _SCREAMING_SNAKE_CASE="train-batch.pt" ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) SCREAMING_SNAKE_CASE = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = prepare_batch() with torch.no_grad(): SCREAMING_SNAKE_CASE = model( past_values=batch["""past_values"""] ,past_time_features=batch["""past_time_features"""] ,past_observed_mask=batch["""past_observed_mask"""] ,static_categorical_features=batch["""static_categorical_features"""] ,future_values=batch["""future_values"""] ,future_time_features=batch["""future_time_features"""] ,)[0] SCREAMING_SNAKE_CASE = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] ,device=lowerCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] ,lowerCamelCase__ ,atol=lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model( past_values=batch["""past_values"""] ,past_time_features=batch["""past_time_features"""] ,past_observed_mask=batch["""past_observed_mask"""] ,static_categorical_features=batch["""static_categorical_features"""] ,).encoder_last_hidden_state SCREAMING_SNAKE_CASE = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] ,device=lowerCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] ,lowerCamelCase__ ,atol=lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model.generate( static_categorical_features=batch["""static_categorical_features"""] ,past_time_features=batch["""past_time_features"""] ,past_values=batch["""past_values"""] ,future_time_features=batch["""future_time_features"""] ,past_observed_mask=batch["""past_observed_mask"""] ,) SCREAMING_SNAKE_CASE = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor([3130.6763, 4056.5293, 7053.0786] ,device=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] ,lowerCamelCase__ ,rtol=1e-1 ) )
706
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = "summarization" __snake_case : List[str] = ["loss"] __snake_case : Optional[int] = ROUGE_KEYS __snake_case : List[Any] = "rouge2" def __init__( self : Union[str, Any] ,lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCamelCase__ ,num_labels=lowerCamelCase__ ,mode=self.mode ,**lowerCamelCase__ ) use_task_specific_params(self.model ,"""summarization""" ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE = Path(self.output_dir ) / """metrics.json""" SCREAMING_SNAKE_CASE = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams ,self.hparams_save_path ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = defaultdict(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.config.model_type SCREAMING_SNAKE_CASE = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size SCREAMING_SNAKE_CASE = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } SCREAMING_SNAKE_CASE = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], F"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE = get_git_info()["""repo_sha"""] SCREAMING_SNAKE_CASE = hparams.num_workers SCREAMING_SNAKE_CASE = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE = self.decoder_start_token_id SCREAMING_SNAKE_CASE = ( SeqaSeqDataset if hasattr(self.tokenizer ,"""prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE = self.model.config.max_length SCREAMING_SNAKE_CASE = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: '''simple docstring''' SCREAMING_SNAKE_CASE = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCamelCase__ ,Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} ,Path(self.output_dir ) / """tok_batch.json""" ) SCREAMING_SNAKE_CASE = True return readable_batch def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : str ,**lowerCamelCase__ : Union[str, Any] ) -> int: '''simple docstring''' return self.model(lowerCamelCase__ ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : List[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode( lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ,clean_up_tokenization_spaces=lowerCamelCase__ ) return lmap(str.strip ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = batch["""input_ids"""], batch["""attention_mask"""] SCREAMING_SNAKE_CASE = batch["""labels"""] if isinstance(self.model ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = self.model._shift_right(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = shift_tokens_right(lowerCamelCase__ ,lowerCamelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE = decoder_input_ids self.save_readable_batch(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,decoder_input_ids=lowerCamelCase__ ,use_cache=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE = nn.CrossEntropyLoss(ignore_index=lowerCamelCase__ ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE = ce_loss_fct(lm_logits.view(-1 ,lm_logits.shape[-1] ) ,tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE = nn.functional.log_softmax(lowerCamelCase__ ,dim=-1 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = label_smoothed_nll_loss( lowerCamelCase__ ,lowerCamelCase__ ,self.hparams.label_smoothing ,ignore_index=lowerCamelCase__ ) return (loss,) @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> int: '''simple docstring''' return self.tokenizer.pad_token_id def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self._step(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = dict(zip(self.loss_names ,lowerCamelCase__ ) ) # tokens per batch SCREAMING_SNAKE_CASE = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() SCREAMING_SNAKE_CASE = batch["""input_ids"""].shape[0] SCREAMING_SNAKE_CASE = batch["""input_ids"""].eq(self.pad ).sum() SCREAMING_SNAKE_CASE = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[int] ) -> Dict: '''simple docstring''' return self._generative_step(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : List[str]="val" ) -> Dict: '''simple docstring''' self.step_count += 1 SCREAMING_SNAKE_CASE = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE = losses["""loss"""] SCREAMING_SNAKE_CASE = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } SCREAMING_SNAKE_CASE = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE = torch.tensor(lowerCamelCase__ ).type_as(lowerCamelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = {F"""{prefix}_avg_{k}""": x for k, x in losses.items()} SCREAMING_SNAKE_CASE = self.step_count self.metrics[prefix].append(lowerCamelCase__ ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"""{prefix}_loss""": loss, F"""{prefix}_{self.val_metric}""": metric_tensor, } def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' return calculate_rouge(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : dict ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE = self.model.generate( batch["""input_ids"""] ,attention_mask=batch["""attention_mask"""] ,use_cache=lowerCamelCase__ ,decoder_start_token_id=self.decoder_start_token_id ,num_beams=self.eval_beams ,max_length=self.eval_max_length ,) SCREAMING_SNAKE_CASE = (time.time() - ta) / batch["""input_ids"""].shape[0] SCREAMING_SNAKE_CASE = self.ids_to_clean_text(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.ids_to_clean_text(batch["""labels"""] ) SCREAMING_SNAKE_CASE = self._step(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = dict(zip(self.loss_names ,lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = self.calc_generative_metrics(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = np.mean(lmap(lowerCamelCase__ ,lowerCamelCase__ ) ) base_metrics.update(gen_time=lowerCamelCase__ ,gen_len=lowerCamelCase__ ,preds=lowerCamelCase__ ,target=lowerCamelCase__ ,**lowerCamelCase__ ) return base_metrics def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : int ,lowerCamelCase__ : List[Any] ) -> Any: '''simple docstring''' return self._generative_step(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.validation_epoch_end(lowerCamelCase__ ,prefix="""test""" ) def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Tuple ) -> SeqaSeqDataset: '''simple docstring''' SCREAMING_SNAKE_CASE = self.n_obs[type_path] SCREAMING_SNAKE_CASE = self.target_lens[type_path] SCREAMING_SNAKE_CASE = self.dataset_class( self.tokenizer ,type_path=lowerCamelCase__ ,n_obs=lowerCamelCase__ ,max_target_length=lowerCamelCase__ ,**self.dataset_kwargs ,) return dataset def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : str ,lowerCamelCase__ : int ,lowerCamelCase__ : bool = False ) -> DataLoader: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_dataset(lowerCamelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE = dataset.make_sortish_sampler(lowerCamelCase__ ,distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase__ ,batch_size=lowerCamelCase__ ,collate_fn=dataset.collate_fn ,shuffle=lowerCamelCase__ ,num_workers=self.num_workers ,sampler=lowerCamelCase__ ,) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch ,distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase__ ,batch_sampler=lowerCamelCase__ ,collate_fn=dataset.collate_fn ,num_workers=self.num_workers ,) else: return DataLoader( lowerCamelCase__ ,batch_size=lowerCamelCase__ ,collate_fn=dataset.collate_fn ,shuffle=lowerCamelCase__ ,num_workers=self.num_workers ,sampler=lowerCamelCase__ ,) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> DataLoader: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_dataloader("""train""" ,batch_size=self.hparams.train_batch_size ,shuffle=lowerCamelCase__ ) return dataloader def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> DataLoader: '''simple docstring''' return self.get_dataloader("""val""" ,batch_size=self.hparams.eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> DataLoader: '''simple docstring''' return self.get_dataloader("""test""" ,batch_size=self.hparams.eval_batch_size ) @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : int ,lowerCamelCase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' BaseTransformer.add_model_specific_args(lowerCamelCase__ ,lowerCamelCase__ ) add_generic_args(lowerCamelCase__ ,lowerCamelCase__ ) parser.add_argument( """--max_source_length""" ,default=1024 ,type=lowerCamelCase__ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--max_target_length""" ,default=56 ,type=lowerCamelCase__ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--val_max_target_length""" ,default=142 ,type=lowerCamelCase__ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--test_max_target_length""" ,default=142 ,type=lowerCamelCase__ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument("""--freeze_encoder""" ,action="""store_true""" ) parser.add_argument("""--freeze_embeds""" ,action="""store_true""" ) parser.add_argument("""--sortish_sampler""" ,action="""store_true""" ,default=lowerCamelCase__ ) parser.add_argument("""--overwrite_output_dir""" ,action="""store_true""" ,default=lowerCamelCase__ ) parser.add_argument("""--max_tokens_per_batch""" ,type=lowerCamelCase__ ,default=lowerCamelCase__ ) parser.add_argument("""--logger_name""" ,type=lowerCamelCase__ ,choices=["""default""", """wandb""", """wandb_shared"""] ,default="""default""" ) parser.add_argument("""--n_train""" ,type=lowerCamelCase__ ,default=-1 ,required=lowerCamelCase__ ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" ,type=lowerCamelCase__ ,default=500 ,required=lowerCamelCase__ ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" ,type=lowerCamelCase__ ,default=-1 ,required=lowerCamelCase__ ,help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" ,type=lowerCamelCase__ ,default="""summarization""" ,required=lowerCamelCase__ ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" ,type=lowerCamelCase__ ,default=0.0 ,required=lowerCamelCase__ ) parser.add_argument("""--src_lang""" ,type=lowerCamelCase__ ,default="""""" ,required=lowerCamelCase__ ) parser.add_argument("""--tgt_lang""" ,type=lowerCamelCase__ ,default="""""" ,required=lowerCamelCase__ ) parser.add_argument("""--eval_beams""" ,type=lowerCamelCase__ ,default=lowerCamelCase__ ,required=lowerCamelCase__ ) parser.add_argument( """--val_metric""" ,type=lowerCamelCase__ ,default=lowerCamelCase__ ,required=lowerCamelCase__ ,choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" ,type=lowerCamelCase__ ,default=lowerCamelCase__ ,help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" ,type=lowerCamelCase__ ,default=1 ,required=lowerCamelCase__ ,help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" ,type=lowerCamelCase__ ,default=-1 ,required=lowerCamelCase__ ,help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) ,) return parser class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = "translation" __snake_case : Tuple = ["loss"] __snake_case : Union[str, Any] = ["bleu"] __snake_case : str = "bleu" def __init__( self : str ,lowerCamelCase__ : Optional[int] ,**lowerCamelCase__ : Tuple ) -> List[str]: '''simple docstring''' super().__init__(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = hparams.src_lang SCREAMING_SNAKE_CASE = hparams.tgt_lang def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple ) -> dict: '''simple docstring''' return calculate_bleu(lowerCamelCase__ ,lowerCamelCase__ ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) check_output_dir(_SCREAMING_SNAKE_CASE , expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE = SummarizationModule(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE = TranslationModule(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): SCREAMING_SNAKE_CASE = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE = os.environ.get("""WANDB_PROJECT""" , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = WandbLogger(name=model.output_dir.name , project=_SCREAMING_SNAKE_CASE ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE = WandbLogger(name=model.output_dir.name , project=F"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = args.val_metric == """loss""" SCREAMING_SNAKE_CASE = generic_train( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _SCREAMING_SNAKE_CASE ) , early_stopping_callback=_SCREAMING_SNAKE_CASE , logger=_SCREAMING_SNAKE_CASE , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model SCREAMING_SNAKE_CASE = """""" SCREAMING_SNAKE_CASE = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=_SCREAMING_SNAKE_CASE ) ) if checkpoints: SCREAMING_SNAKE_CASE = checkpoints[-1] SCREAMING_SNAKE_CASE = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() SCREAMING_SNAKE_CASE_ = pl.Trainer.add_argparse_args(parser) SCREAMING_SNAKE_CASE_ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) SCREAMING_SNAKE_CASE_ = parser.parse_args() main(args)
116
0
'''simple docstring''' from statistics import mean import numpy as np def _A ( A ,A ,A ,A ) -> Optional[int]: lowercase : Dict = 0 # Number of processes finished lowercase : Tuple = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase : Any = [0] * no_of_process # List to include calculation results lowercase : Union[str, Any] = [0] * no_of_process # Sort by arrival time. lowercase : Union[str, Any] = [burst_time[i] for i in np.argsort(a__ )] lowercase : Union[str, Any] = [process_name[i] for i in np.argsort(a__ )] arrival_time.sort() while no_of_process > finished_process_count: lowercase : Optional[Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase : Optional[Any] = arrival_time[i] lowercase : Optional[Any] = 0 # Index showing the location of the process being performed lowercase : Optional[int] = 0 # Saves the current response ratio. lowercase : Tuple = 0 for i in range(0 ,a__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase : List[Any] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase : int = temp lowercase : List[str] = i # Calculate the turn around time lowercase : int = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase : Dict = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def _A ( A ,A ,A ,A ) -> Tuple: lowercase : Tuple = [0] * no_of_process for i in range(0 ,a__ ): lowercase : Optional[int] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = 5 lowerCAmelCase : Union[str, Any] = ["""A""", """B""", """C""", """D""", """E"""] lowerCAmelCase : int = [1, 2, 3, 4, 5] lowerCAmelCase : Optional[int] = [1, 2, 3, 4, 5] lowerCAmelCase : Tuple = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCAmelCase : str = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
372
from random import randint from tempfile import TemporaryFile import numpy as np def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : List[Any] = 0 if start < end: a_ : Dict = randint(a__ , a__) a_ : List[str] = a[end] a_ : Tuple = a[pivot] a_ : Tuple = temp a_ , a_ : List[Any] = _in_place_partition(a__ , a__ , a__) count += _in_place_quick_sort(a__ , a__ , p - 1) count += _in_place_quick_sort(a__ , p + 1 , a__) return count def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : Optional[int] = 0 a_ : Union[str, Any] = randint(a__ , a__) a_ : Union[str, Any] = a[end] a_ : Any = a[pivot] a_ : Any = temp a_ : int = start - 1 for index in range(a__ , a__): count += 1 if a[index] < a[end]: # check if current val is less than pivot value a_ : str = new_pivot_index + 1 a_ : Optional[Any] = a[new_pivot_index] a_ : str = a[index] a_ : Union[str, Any] = temp a_ : Union[str, Any] = a[new_pivot_index + 1] a_ : Tuple = a[end] a_ : Any = temp return new_pivot_index + 1, count __snake_case : Union[str, Any] = TemporaryFile() __snake_case : Dict = 1_00 # 1000 elements are to be sorted __snake_case , __snake_case : int = 0, 1 # mean and standard deviation __snake_case : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array __snake_case : str = np.load(outfile) __snake_case : Dict = len(M) - 1 __snake_case : Dict = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
540
0
def A ( UpperCAmelCase ): if n == 1 or not isinstance(UpperCAmelCase , UpperCAmelCase ): return 0 elif n == 2: return 1 else: _snake_case : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def A ( UpperCAmelCase ): _snake_case : Tuple = 0 _snake_case : Optional[Any] = 2 while digits < n: index += 1 _snake_case : str = len(str(fibonacci(UpperCAmelCase ) ) ) return index def A ( UpperCAmelCase = 1_000 ): return fibonacci_digits_index(UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
278
import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def A ( UpperCAmelCase ): if hor == 128: _snake_case : int = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") _snake_case : Tuple = (32, 128, 256) _snake_case : str = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: _snake_case : List[Any] = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") _snake_case : Optional[int] = (32, 64, 128, 256) _snake_case : int = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") _snake_case : Dict = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) _snake_case : Dict = model.state_dict() _snake_case : Tuple = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65_536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } _snake_case : Any = UNetaDModel(**UpperCAmelCase ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _snake_case : List[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : Optional[int] = state_dict.pop(UpperCAmelCase ) hf_value_function.load_state_dict(UpperCAmelCase ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , "w" ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) def A ( ): _snake_case : Any = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65_536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } _snake_case : Dict = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) _snake_case : Optional[int] = model _snake_case : List[str] = UNetaDModel(**UpperCAmelCase ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _snake_case : Optional[int] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : Any = state_dict.pop(UpperCAmelCase ) hf_value_function.load_state_dict(UpperCAmelCase ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
278
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCamelCase : Union[str, Any] =logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCamelCase : List[str] ={ '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCamelCase : Optional[int] ={ '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCamelCase : Any =sorted(arg_to_scheduler.keys()) lowerCamelCase : str ='''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class __a ( pl.LightningModule ): def __init__( self : str , SCREAMING_SNAKE_CASE : argparse.Namespace , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Tuple="base" , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , **SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = Path(self.hparams.output_dir ) UpperCamelCase__ : List[Any] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCamelCase__ : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) else: UpperCamelCase__ : PretrainedConfig = config UpperCamelCase__ : List[Any] = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert hasattr(self.config , SCREAMING_SNAKE_CASE ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , SCREAMING_SNAKE_CASE , getattr(self.hparams , SCREAMING_SNAKE_CASE ) ) if tokenizer is None: UpperCamelCase__ : str = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=SCREAMING_SNAKE_CASE , ) else: UpperCamelCase__ : PreTrainedTokenizer = tokenizer UpperCamelCase__ : str = MODEL_MODES[mode] if model is None: UpperCamelCase__ : Optional[int] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=SCREAMING_SNAKE_CASE , ) else: UpperCamelCase__ : Tuple = model def __lowercase ( self : Optional[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.model_type.from_pretrained(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : str = arg_to_scheduler[self.hparams.lr_scheduler] UpperCamelCase__ : Any = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCamelCase__ : List[str] = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = self.model UpperCamelCase__ : Tuple = ["bias", "LayerNorm.weight"] UpperCamelCase__ : Tuple = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: UpperCamelCase__ : List[Any] = Adafactor( SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , scale_parameter=SCREAMING_SNAKE_CASE , relative_step=SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : Dict = AdamW( SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCamelCase__ : List[Any] = optimizer UpperCamelCase__ : Optional[int] = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' return self.validation_step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return self.validation_end(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Dict = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCamelCase__ : Optional[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if stage == "test": UpperCamelCase__ : Tuple = len(self.test_dataloader().dataset ) else: UpperCamelCase__ : List[Any] = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = len(self.train_dataloader().dataset ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' raise NotImplementedError("You must implement this for your task" ) def __lowercase ( self : Dict ): '''simple docstring''' return self.train_loader def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=SCREAMING_SNAKE_CASE ) def __lowercase ( self : str ): '''simple docstring''' return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( SCREAMING_SNAKE_CASE , list(filter(SCREAMING_SNAKE_CASE , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Dict[str, Any] ): '''simple docstring''' UpperCamelCase__ : Tuple = self.output_dir.joinpath("best_tfmr" ) UpperCamelCase__ : Optional[Any] = self.step_count self.model.save_pretrained(SCREAMING_SNAKE_CASE ) self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) @staticmethod def __lowercase ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' parser.add_argument( "--model_name_or_path" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=SCREAMING_SNAKE_CASE , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(SCREAMING_SNAKE_CASE ).parent / "test_run" / "cache" ) , type=SCREAMING_SNAKE_CASE , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=SCREAMING_SNAKE_CASE , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=SCREAMING_SNAKE_CASE , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=SCREAMING_SNAKE_CASE , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=SCREAMING_SNAKE_CASE , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=SCREAMING_SNAKE_CASE , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=SCREAMING_SNAKE_CASE , metavar=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=SCREAMING_SNAKE_CASE , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=SCREAMING_SNAKE_CASE , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=SCREAMING_SNAKE_CASE ) parser.add_argument("--train_batch_size" , default=32 , type=SCREAMING_SNAKE_CASE ) parser.add_argument("--eval_batch_size" , default=32 , type=SCREAMING_SNAKE_CASE ) parser.add_argument("--adafactor" , action="store_true" ) class __a ( pl.Callback ): def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __a ( pl.Callback ): def __lowercase ( self : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(SCREAMING_SNAKE_CASE ) class __a ( pl.Callback ): def __lowercase ( self : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = trainer.lr_schedulers[0]["scheduler"] UpperCamelCase__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : pl.Trainer , SCREAMING_SNAKE_CASE : pl.LightningModule ): '''simple docstring''' rank_zero_info("***** Validation results *****" ) UpperCamelCase__ : Dict = trainer.callback_metrics # Log results for key in sorted(SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : pl.Trainer , SCREAMING_SNAKE_CASE : pl.LightningModule ): '''simple docstring''' rank_zero_info("***** Test results *****" ) UpperCamelCase__ : Optional[int] = trainer.callback_metrics # Log and save results to file UpperCamelCase__ : Optional[int] = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: for key in sorted(SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir" , default=str(Path(__lowerCAmelCase ).parent / "test_run" / "model_checkpoints" ) , type=__lowerCAmelCase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__lowerCAmelCase , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=__lowerCAmelCase ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=__lowerCAmelCase , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=__lowerCAmelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=__lowerCAmelCase , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(__lowerCAmelCase ).parent / "test_run" / "dummy-train-data" ) , type=__lowerCAmelCase , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=[] , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> List[str]: pl.seed_everything(args.seed ) # init model UpperCamelCase__ : Optional[Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: UpperCamelCase__ : List[str] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__lowerCAmelCase ) if logging_callback is None: UpperCamelCase__ : str = LoggingCallback() UpperCamelCase__ : Optional[int] = {} if args.fpaa: UpperCamelCase__ : Union[str, Any] = 16 if args.gpus > 1: UpperCamelCase__ : List[str] = "auto" UpperCamelCase__ : int = "ddp" UpperCamelCase__ : str = args.accumulate_grad_batches UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : int = "auto" UpperCamelCase__ : Tuple = pl.Trainer.from_argparse_args( __lowerCAmelCase , weights_summary=__lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **__lowerCAmelCase , ) if args.do_train: trainer.fit(__lowerCAmelCase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
228
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a ( unittest.TestCase ): @property def __lowercase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : List[str] = self.dummy_uncond_unet UpperCamelCase__ : List[str] = ScoreSdeVeScheduler() UpperCamelCase__ : Union[str, Any] = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) sde_ve.to(SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE ).images UpperCamelCase__ : str = torch.manual_seed(0 ) UpperCamelCase__ : Any = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE )[ 0 ] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __a ( unittest.TestCase ): def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = "google/ncsnpp-church-256" UpperCamelCase__ : Tuple = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) sde_ve.to(SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = torch.manual_seed(0 ) UpperCamelCase__ : Tuple = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE ).images UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCamelCase__ : Any = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
228
1
"""simple docstring""" import unittest from transformers import DonutProcessor A = 'naver-clova-ix/donut-base' class UpperCAmelCase__ ( unittest.TestCase ): def A_ ( self : int ) -> str: '''simple docstring''' A = DonutProcessor.from_pretrained(snake_case ) def A_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } A = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) A = self.processor.tokenajson(snake_case ) self.assertDictEqual(snake_case , snake_case )
713
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ : int = MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase_ : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def A_ ( self : Tuple ) -> int: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def A_ ( self : int ) -> Optional[int]: '''simple docstring''' A = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) A = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1E-0_5, 'token': 38_015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1E-0_5, 'token': 25_506, 'token_str': ' accuser'}, ] , ) A = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1E-0_5, 'token': 38_015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1E-0_5, 'token': 25_506, 'token_str': ' accuser', }, ] , ) A = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2E-0_5, 'token': 13_606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2E-0_5, 'token': 3_499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9E-0_5, 'token': 2_941, 'token_str': ' Te'}, ] , ) @require_torch def A_ ( self : str ) -> int: '''simple docstring''' A = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) A = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2E-0_5, 'token': 35_676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2E-0_5, 'token': 16_416, 'token_str': 'ELS'}, ] , ) A = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2E-0_5, 'token': 35_676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2E-0_5, 'token': 16_416, 'token_str': 'ELS'}, ] , ) A = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1E-0_5, 'token': 3_499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2E-0_5, 'token': 2_941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2E-0_5, 'token': 13_606, 'token_str': ' Clara'}, ] , ) A = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ [ { 'score': 2.2E-0_5, 'token': 35_676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2E-0_5, 'token': 16_416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2E-0_5, 'token': 35_676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2E-0_5, 'token': 16_416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def A_ ( self : Tuple ) -> List[str]: '''simple docstring''' A = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() A = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(snake_case , snake_case ) @slow @require_torch def A_ ( self : List[Any] ) -> int: '''simple docstring''' A = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(snake_case ) @slow @require_tf def A_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' A = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(snake_case ) def A_ ( self : Dict , snake_case : List[Any] ) -> Optional[int]: '''simple docstring''' A = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(snake_case ) , [ {'sequence': 'My name is John', 'score': 0.008, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.007, 'token': 1_573, 'token_str': ' Chris'}, ] , ) A = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(snake_case ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.251, 'token': 2_201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.214, 'token': 12_790, 'token_str': ' Lyon', }, ] , ) A = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(snake_case ) , [ {'sequence': 'My name is Patrick', 'score': 0.005, 'token': 3_499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.000, 'token': 13_606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.000, 'token': 2_941, 'token_str': ' Te'}, ] , ) @require_torch def A_ ( self : List[str] ) -> Any: '''simple docstring''' A = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) A = None A = None self.run_pipeline_test(snake_case , [] ) @require_tf def A_ ( self : Tuple ) -> Dict: '''simple docstring''' A = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) A = None A = None self.run_pipeline_test(snake_case , [] ) def A_ ( self : str , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) A = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) A = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def A_ ( self : Any , snake_case : Any , snake_case : Optional[Any] ) -> Optional[int]: '''simple docstring''' A = fill_masker.tokenizer A = fill_masker.model A = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( snake_case , [ {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, ] , ) A = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( snake_case , [ {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, ] , ) A = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( snake_case , [ [ {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, ], [ {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, ], ] , ) with self.assertRaises(snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(snake_case ): fill_masker('This is' ) self.run_test_top_k(snake_case , snake_case ) self.run_test_targets(snake_case , snake_case ) self.run_test_top_k_targets(snake_case , snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(snake_case , snake_case ) self.fill_mask_with_multiple_masks(snake_case , snake_case ) def A_ ( self : str , snake_case : Any , snake_case : Optional[int] ) -> str: '''simple docstring''' A = tokenizer.get_vocab() A = sorted(vocab.keys() )[:2] # Pipeline argument A = FillMaskPipeline(model=snake_case , tokenizer=snake_case , targets=snake_case ) A = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( snake_case , [ {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, ] , ) A = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , snake_case ) A = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(snake_case ) ) # Call argument A = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case ) self.assertEqual( snake_case , [ {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, ] , ) A = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , snake_case ) A = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(snake_case ) ) # Score equivalence A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case ) A = [top_mask['token_str'] for top_mask in outputs] A = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case ) == set(snake_case ): A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case ) A = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(snake_case ) , nested_simplify(snake_case ) ) # Raises with invalid with self.assertRaises(snake_case ): A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(snake_case ): A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(snake_case ): A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def A_ ( self : Any , snake_case : Optional[Any] , snake_case : int ) -> List[Any]: '''simple docstring''' A = FillMaskPipeline(model=snake_case , tokenizer=snake_case , top_k=2 ) A = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( snake_case , [ {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, ] , ) A = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) A = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( snake_case , [ {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, ] , ) self.assertEqual(nested_simplify(snake_case ) , nested_simplify(snake_case ) ) def A_ ( self : str , snake_case : List[str] , snake_case : Dict ) -> Tuple: '''simple docstring''' A = tokenizer.get_vocab() A = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) # top_k=2, ntargets=3 A = sorted(vocab.keys() )[:3] A = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results A = [el['token_str'] for el in sorted(snake_case , key=lambda snake_case : x["score"] , reverse=snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case ).issubset(snake_case ): A = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(snake_case ) , nested_simplify(snake_case ) ) def A_ ( self : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Dict ) -> int: '''simple docstring''' A = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) A = tokenizer.get_vocab() # String duplicates + id duplicates A = sorted(vocab.keys() )[:3] A = [targets[0], targets[1], targets[0], targets[2], targets[1]] A = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=snake_case , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(snake_case ) , 3 ) def A_ ( self : str , snake_case : List[Any] , snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) A = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( snake_case , [ [ {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, ], [ {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, ], [ {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, {'sequence': ANY(snake_case ), 'score': ANY(snake_case ), 'token': ANY(snake_case ), 'token_str': ANY(snake_case )}, ], ] , )
109
0
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _a ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(A ): SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A, A ) SCREAMING_SNAKE_CASE : Tuple = FlaxAutoModel.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A, A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(A ): SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A, A ) SCREAMING_SNAKE_CASE : str = FlaxAutoModel.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A, A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(A ) SCREAMING_SNAKE_CASE : List[str] = FlaxBertModel.from_pretrained(A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer('Do you support jax jitted function?', return_tensors=TensorType.JAX ) @jax.jit def eval(**A ): return model(**A ) eval(**A ).block_until_ready() @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = FlaxRobertaModel.from_pretrained(A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer('Do you support jax jitted function?', return_tensors=TensorType.JAX ) @jax.jit def eval(**A ): return model(**A ) eval(**A ).block_until_ready() def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaisesRegex( A, 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE : Optional[int] = FlaxAutoModel.from_pretrained('bert-base' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaisesRegex( A, r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxAutoModel.from_pretrained(A, revision='aaaaaa' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaisesRegex( A, 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack', ): SCREAMING_SNAKE_CASE : Optional[int] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaisesRegex(A, 'Use `from_pt=True` to load this model' ): SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
28
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
0
def _lowerCAmelCase( __A ): if number > 0: raise ValueError("input must be a negative integer" ) UpperCAmelCase = len(bin(__A )[3:] ) UpperCAmelCase = bin(abs(__A ) - (1 << binary_number_length) )[3:] UpperCAmelCase = ( ( "1" + "0" * (binary_number_length - len(__A )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
1
def _lowerCAmelCase( __A , __A , __A ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod else: UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A ) return (b * b) % mod # a prime number lowerCAmelCase__ = 701 lowerCAmelCase__ = 1000000000 lowerCAmelCase__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
1
1
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
52
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> list: a = False while is_sorted is False: # Until all the indices are traversed keep looping a = True for i in range(0 , len(__UpperCamelCase) - 1 , 2): # iterating over all even indices if input_list[i] > input_list[i + 1]: a , a = input_list[i + 1], input_list[i] # swapping if elements not in order a = False for i in range(1 , len(__UpperCamelCase) - 1 , 2): # iterating over all odd indices if input_list[i] > input_list[i + 1]: a , a = input_list[i + 1], input_list[i] # swapping if elements not in order a = False return input_list if __name__ == "__main__": print("Enter list to be sorted") lowercase__ : Dict = [int(x) for x in input().split()] # inputing elements of the list in one line lowercase__ : Any = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
515
0
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function A = 1.054_571_817E-34 # unit of ℏ : J * s A = 3E8 # unit of c : m * s^-1 def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: A = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: A = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: A = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
109
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCAmelCase__ ( ) -> Optional[Any]: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join A = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , lowerCamelCase__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCAmelCase__ ( ) -> str: assert _test_patching.open is open A = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , lowerCamelCase__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCAmelCase__ ( ) -> List[Any]: # pandas.read_csv is not present in _test_patching A = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , lowerCamelCase__ ): pass def lowerCAmelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point A = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , lowerCamelCase__ ) is None with patch_submodule(_test_patching , 'len' , lowerCamelCase__ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCAmelCase__ ( ) -> Union[str, Any]: A = '__test_patch_submodule_start_and_stop_mock__' A = patch_submodule(_test_patching , 'open' , lowerCamelCase__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCAmelCase__ ( ) -> int: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join A = '__test_patch_submodule_successive_join__' A = '__test_patch_submodule_successive_dirname__' A = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.rename' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.path.dirname' , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.path.join' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.path.dirname' , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCAmelCase__ ( ) -> Optional[Any]: A = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , lowerCamelCase__ ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , lowerCamelCase__ ): pass
109
1
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( __A : Any , __A : Optional[Any] , __A : List[Any] ): def get_masked_lm_array(__A : str ): a_ : Any = f'masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE' a_ : Dict = tf.train.load_variable(a_ , a_ ) if "kernel" in name: a_ : Tuple = array.transpose() return torch.from_numpy(a_ ) def get_encoder_array(__A : List[str] ): a_ : str = f'encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE' a_ : List[str] = tf.train.load_variable(a_ , a_ ) if "kernel" in name: a_ : Dict = array.transpose() return torch.from_numpy(a_ ) def get_encoder_layer_array(__A : List[str] , __A : Union[str, Any] ): a_ : Optional[int] = f'encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE' a_ : str = tf.train.load_variable(a_ , a_ ) if "kernel" in name: a_ : Dict = array.transpose() return torch.from_numpy(a_ ) def get_encoder_attention_layer_array(__A : Optional[int] , __A : Tuple , __A : Optional[Any] ): a_ : Optional[int] = f'encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE' a_ : str = tf.train.load_variable(a_ , a_ ) a_ : List[Any] = array.reshape(a_ ) if "kernel" in name: a_ : Any = array.transpose() return torch.from_numpy(a_ ) print(f'Loading model based on config from {config_path}...' ) a_ : Any = BertConfig.from_json_file(a_ ) a_ : int = BertForMaskedLM(a_ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): a_ : Optional[Any] = model.bert.encoder.layer[layer_index] # Self-attention a_ : List[str] = layer.attention.self a_ : int = get_encoder_attention_layer_array( a_ , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) a_ : Dict = get_encoder_attention_layer_array( a_ , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) a_ : int = get_encoder_attention_layer_array( a_ , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) a_ : List[str] = get_encoder_attention_layer_array( a_ , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) a_ : str = get_encoder_attention_layer_array( a_ , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) a_ : Optional[Any] = get_encoder_attention_layer_array( a_ , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output a_ : int = layer.attention.output a_ : List[Any] = get_encoder_attention_layer_array( a_ , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) a_ : int = get_encoder_attention_layer_array( a_ , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) a_ : Union[str, Any] = get_encoder_layer_array(a_ , '''_attention_layer_norm/gamma''' ) a_ : Union[str, Any] = get_encoder_layer_array(a_ , '''_attention_layer_norm/beta''' ) # Intermediate a_ : Dict = layer.intermediate a_ : Union[str, Any] = get_encoder_layer_array(a_ , '''_intermediate_dense/kernel''' ) a_ : Any = get_encoder_layer_array(a_ , '''_intermediate_dense/bias''' ) # Output a_ : List[str] = layer.output a_ : Tuple = get_encoder_layer_array(a_ , '''_output_dense/kernel''' ) a_ : int = get_encoder_layer_array(a_ , '''_output_dense/bias''' ) a_ : Any = get_encoder_layer_array(a_ , '''_output_layer_norm/gamma''' ) a_ : str = get_encoder_layer_array(a_ , '''_output_layer_norm/beta''' ) # Embeddings a_ : Optional[Any] = get_encoder_array('''_position_embedding_layer/embeddings''' ) a_ : List[Any] = get_encoder_array('''_type_embedding_layer/embeddings''' ) a_ : Dict = get_encoder_array('''_embedding_norm_layer/gamma''' ) a_ : Optional[int] = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head a_ : str = model.cls.predictions.transform a_ : List[Any] = get_masked_lm_array('''dense/kernel''' ) a_ : int = get_masked_lm_array('''dense/bias''' ) a_ : Union[str, Any] = get_masked_lm_array('''layer_norm/gamma''' ) a_ : str = get_masked_lm_array('''layer_norm/beta''' ) a_ : Optional[Any] = get_masked_lm_array('''embedding_table''' ) # Pooling a_ : Optional[int] = BertPooler(config=a_ ) a_ : Optional[Any] = get_encoder_array('''_pooler_layer/kernel''' ) a_ : List[str] = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(a_ ) # Integration test - should load without any errors ;) a_ : List[Any] = BertForMaskedLM.from_pretrained(a_ ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) __lowerCAmelCase = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
466
def lowerCamelCase ( a_ , a_ , a_ ) -> int: def update_area_of_max_square(a_ , a_ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowerCAmelCase_ = update_area_of_max_square(a_ , col + 1 ) lowerCAmelCase_ = update_area_of_max_square(row + 1 , col + 1 ) lowerCAmelCase_ = update_area_of_max_square(row + 1 , a_ ) if mat[row][col]: lowerCAmelCase_ = 1 + min([right, diagonal, down] ) lowerCAmelCase_ = max(largest_square_area[0] , a_ ) return sub_problem_sol else: return 0 lowerCAmelCase_ = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowerCamelCase ( a_ , a_ , a_ ) -> int: def update_area_of_max_square_using_dp_array( a_ , a_ , a_ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowerCAmelCase_ = update_area_of_max_square_using_dp_array(a_ , col + 1 , a_ ) lowerCAmelCase_ = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , a_ ) lowerCAmelCase_ = update_area_of_max_square_using_dp_array(row + 1 , a_ , a_ ) if mat[row][col]: lowerCAmelCase_ = 1 + min([right, diagonal, down] ) lowerCAmelCase_ = max(largest_square_area[0] , a_ ) lowerCAmelCase_ = sub_problem_sol return sub_problem_sol else: return 0 lowerCAmelCase_ = [0] lowerCAmelCase_ = [[-1] * cols for _ in range(a_ )] update_area_of_max_square_using_dp_array(0 , 0 , a_ ) return largest_square_area[0] def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = [[0] * (cols + 1) for _ in range(rows + 1 )] lowerCAmelCase_ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase_ = dp_array[row][col + 1] lowerCAmelCase_ = dp_array[row + 1][col + 1] lowerCAmelCase_ = dp_array[row + 1][col] if mat[row][col] == 1: lowerCAmelCase_ = 1 + min(a_ , a_ , a_ ) lowerCAmelCase_ = max(dp_array[row][col] , a_ ) else: lowerCAmelCase_ = 0 return largest_square_area def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = [0] * (cols + 1) lowerCAmelCase_ = [0] * (cols + 1) lowerCAmelCase_ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase_ = current_row[col + 1] lowerCAmelCase_ = next_row[col + 1] lowerCAmelCase_ = next_row[col] if mat[row][col] == 1: lowerCAmelCase_ = 1 + min(a_ , a_ , a_ ) lowerCAmelCase_ = max(current_row[col] , a_ ) else: lowerCAmelCase_ = 0 lowerCAmelCase_ = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
318
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Dict = {"""vocab_file""": """vocab.txt"""} __lowerCamelCase : Tuple = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } __lowerCamelCase : Optional[int] = { """openbmb/cpm-ant-10b""": 10_24, } def A__ ( _a : int ): '''simple docstring''' snake_case__ : Any =collections.OrderedDict() with open(_a , """r""" , encoding="""utf-8""" ) as reader: snake_case__ : str =reader.readlines() for index, token in enumerate(_a ): snake_case__ : Dict =token.rstrip("""\n""" ) snake_case__ : Dict =index return vocab class _lowercase ( _A ): def __init__( self , a , a="<unk>" , a=2_0_0 ): snake_case__ : Any =vocab snake_case__ : List[str] =unk_token snake_case__ : int =max_input_chars_per_word def lowercase__ ( self , a ): snake_case__ : int =list(a ) if len(a ) > self.max_input_chars_per_word: return [self.unk_token] snake_case__ : int =0 snake_case__ : List[str] =[] while start < len(a ): snake_case__ : Union[str, Any] =len(a ) snake_case__ : int =None while start < end: snake_case__ : Optional[Any] ="""""".join(chars[start:end] ) if substr in self.vocab: snake_case__ : int =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a ) snake_case__ : Dict =end return sub_tokens class _lowercase ( _A ): _a : List[str] = VOCAB_FILES_NAMES _a : Any = PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : List[str] = ['input_ids', 'attention_mask'] _a : List[Any] = False def __init__( self , a , a="<d>" , a="</d>" , a="<s>" , a="</s>" , a="<pad>" , a="<unk>" , a="</n>" , a="</_>" , a="left" , **a , ): requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=a , eod_token=a , bos_token=a , eos_token=a , pad_token=a , unk_token=a , line_token=a , space_token=a , padding_side=a , **a , ) snake_case__ : int =bod_token snake_case__ : Union[str, Any] =eod_token snake_case__ : Tuple =load_vocab(a ) snake_case__ : Union[str, Any] =self.encoder[space_token] snake_case__ : Optional[Any] =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case__ : List[Any] =collections.OrderedDict(sorted(self.encoder.items() , key=lambda a : x[1] ) ) snake_case__ : str ={v: k for k, v in self.encoder.items()} snake_case__ : Dict =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowercase__ ( self ): return self.encoder[self.bod_token] @property def lowercase__ ( self ): return self.encoder[self.eod_token] @property def lowercase__ ( self ): return self.encoder["\n"] @property def lowercase__ ( self ): return len(self.encoder ) def lowercase__ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self , a ): snake_case__ : Dict =[] for x in jieba.cut(a , cut_all=a ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a ) ) return output_tokens def lowercase__ ( self , a , **a ): snake_case__ : Any =[i for i in token_ids if i >= 0] snake_case__ : int =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a , **a ) def lowercase__ ( self , a ): return token in self.encoder def lowercase__ ( self , a ): return "".join(a ) def lowercase__ ( self , a ): return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def lowercase__ ( self , a ): return self.decoder.get(a , self.unk_token ) def lowercase__ ( self , a , a = None ): if os.path.isdir(a ): snake_case__ : Union[str, Any] =os.path.join( a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case__ : Dict =(filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case__ : Any =0 if " " in self.encoder: snake_case__ : int =self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case__ : Tuple =self.encoder["""\n"""] del self.encoder["\n"] snake_case__ : Optional[int] =collections.OrderedDict(sorted(self.encoder.items() , key=lambda a : x[1] ) ) with open(a , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) snake_case__ : str =token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowercase__ ( self , a , a = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowercase__ ( self , a , a = None , a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is not None: return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) return [1] + ([0] * len(a ))
448
def A__ ( _a : Optional[Any] , _a : Tuple , _a : List[str]=False ): '''simple docstring''' if isinstance(_a , _a ) and isinstance(_a , _a ): snake_case__ : int =len(set_a.intersection(_a ) ) if alternative_union: snake_case__ : int =len(_a ) + len(_a ) else: snake_case__ : Tuple =len(set_a.union(_a ) ) return intersection / union if isinstance(_a , (list, tuple) ) and isinstance(_a , (list, tuple) ): snake_case__ : Optional[int] =[element for element in set_a if element in set_b] if alternative_union: snake_case__ : Optional[Any] =len(_a ) + len(_a ) return len(_a ) / union else: snake_case__ : Dict =set_a + [element for element in set_b if element not in set_a] return len(_a ) / len(_a ) return len(_a ) / len(_a ) return None if __name__ == "__main__": __lowerCamelCase : List[Any] = {"""a""", """b""", """c""", """d""", """e"""} __lowerCamelCase : Optional[int] = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
448
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowercase__: """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str=1_3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=7 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Tuple=9_9 , SCREAMING_SNAKE_CASE_ : List[str]=3_2 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Tuple=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE_ : str=1_6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]="None" , SCREAMING_SNAKE_CASE_ : Optional[Any]=3 , SCREAMING_SNAKE_CASE_ : List[Any]=4 , SCREAMING_SNAKE_CASE_ : str=None , ) -> str: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = relative_attention lowercase_ = position_biased_input lowercase_ = pos_att_type lowercase_ = scope def _lowercase ( self : List[Any] ) -> List[Any]: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=SCREAMING_SNAKE_CASE_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[Any]: lowercase_ = TFDebertaVaModel(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ = [input_ids, input_mask] lowercase_ = model(SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: lowercase_ = TFDebertaVaForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[str]: lowercase_ = self.num_labels lowercase_ = TFDebertaVaForSequenceClassification(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: lowercase_ = self.num_labels lowercase_ = TFDebertaVaForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: lowercase_ = TFDebertaVaForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : List[str] ) -> Optional[int]: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :str = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) a :int = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) a :int = False a :Any = False def _lowercase ( self : Dict ) -> str: lowercase_ = TFDebertaVaModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def _lowercase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ) -> int: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> List[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> str: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Tuple ) -> Dict: lowercase_ = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_tf class lowercase__( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: pass @slow def _lowercase ( self : List[Any] ) -> Dict: lowercase_ = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) lowercase_ = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowercase_ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
97
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case: def __init__(self : Any , a : str , a : Union[str, Any]=12 , a : List[str]=7 , a : Dict=True , a : Tuple=True , a : Any=True , a : Optional[Any]=99 , a : Optional[Any]=32 , a : Tuple=32 , a : List[Any]=2 , a : str=4 , a : Dict=37 , a : Optional[Any]=0.1 , a : List[Any]=0.1 , a : Dict=5_12 , a : List[Any]=0.02 , a : Any=0 , a : Optional[int]=None , ) -> List[Any]: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = scope A__ = bos_token_id def _UpperCamelCase (self : Union[str, Any] ) -> List[Any]: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A__ = input_mask.numpy() A__ , A__ = input_mask.shape A__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a ): A__ = 1 A__ = 0 A__ = self.get_config() return config, input_ids, tf.convert_to_tensor(a ) def _UpperCamelCase (self : Tuple ) -> Union[str, Any]: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCamelCase (self : Optional[int] , a : Any , a : List[Any] , a : Union[str, Any] ) -> Any: """simple docstring""" A__ = TFBlipTextModel(config=a ) A__ = model(a , attention_mask=a , training=a ) A__ = model(a , training=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase (self : str ) -> List[Any]: """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _snake_case( UpperCAmelCase , unittest.TestCase ): __snake_case: Optional[int] = (TFBlipTextModel,) if is_tf_available() else () __snake_case: Union[str, Any] = False __snake_case: Any = False __snake_case: Union[str, Any] = False def _UpperCamelCase (self : Optional[Any] ) -> List[Any]: """simple docstring""" A__ = BlipTextModelTester(self ) A__ = ConfigTester(self , config_class=a , hidden_size=37 ) def _UpperCamelCase (self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase (self : Any ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCamelCase (self : Dict ) -> Dict: """simple docstring""" pass def _UpperCamelCase (self : str ) -> int: """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCamelCase (self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase (self : int ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase (self : int ) -> Optional[Any]: """simple docstring""" pass @slow def _UpperCamelCase (self : int ) -> Optional[Any]: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFBlipTextModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCamelCase (self : str , a : Optional[int]=True ) -> List[Any]: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=a )
531
0
import math def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Tuple = len(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) ) lowerCamelCase : str = 0 while arr[min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) - 1] < x: lowerCamelCase : Any = step step += int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) ) if prev >= n: return -1 while arr[prev] < x: lowerCamelCase : int = prev + 1 if prev == min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case = input('''Enter numbers separated by a comma:\n''').strip() _snake_case = [int(item) for item in user_input.split(''',''')] _snake_case = int(input('''Enter the number to be searched:\n''')) _snake_case = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
231
from __future__ import annotations import numpy as np def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase , lowerCamelCase : Dict = np.shape(SCREAMING_SNAKE_CASE_ ) if rows != columns: lowerCamelCase : int = ( "'table' has to be of square shaped array but got a " f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = np.zeros((rows, columns) ) lowerCamelCase : List[str] = np.zeros((rows, columns) ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Dict = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) lowerCamelCase : Dict = (table[i][j] - total) / upper[j][j] lowerCamelCase : Dict = 1 for j in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase : int = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase : Any = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
231
1
'''simple docstring''' # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ = "allenai" def A_ ( snake_case ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} SCREAMING_SNAKE_CASE:Optional[Any] = dict((re.sub(r"@@$" , "" , snake_case ), v) if k.endswith("@@" ) else (re.sub(r"$" , "</w>" , snake_case ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE:Any = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] SCREAMING_SNAKE_CASE:int = d[k] # restore return da def A_ ( snake_case , snake_case ): # prep assert os.path.exists(snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models SCREAMING_SNAKE_CASE:Any = basename(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = dirname(snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE:Optional[Any] = cls.hub_models() SCREAMING_SNAKE_CASE:List[Any] = {"bpe": "fastbpe", "tokenizer": "moses"} SCREAMING_SNAKE_CASE:Union[str, Any] = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) SCREAMING_SNAKE_CASE:Tuple = hub_utils.from_pretrained( snake_case , snake_case , snake_case , archive_map=snake_case , **snake_case ) SCREAMING_SNAKE_CASE:Any = vars(chkpt["args"]["model"] ) SCREAMING_SNAKE_CASE:Tuple = args["source_lang"] SCREAMING_SNAKE_CASE:List[Any] = args["target_lang"] SCREAMING_SNAKE_CASE:Tuple = dirname(snake_case ) SCREAMING_SNAKE_CASE:Any = basename(snake_case ) # dicts SCREAMING_SNAKE_CASE:str = os.path.join(snake_case , F'''dict.{src_lang}.txt''' ) SCREAMING_SNAKE_CASE:Optional[int] = os.path.join(snake_case , F'''dict.{tgt_lang}.txt''' ) SCREAMING_SNAKE_CASE:Optional[Any] = Dictionary.load(snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE:Optional[int] = len(snake_case ) SCREAMING_SNAKE_CASE:List[Any] = os.path.join(snake_case , "vocab-src.json" ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE:List[str] = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE:Any = False break SCREAMING_SNAKE_CASE:Union[str, Any] = Dictionary.load(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE:Optional[Any] = len(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = os.path.join(snake_case , "vocab-tgt.json" ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE:Any = os.path.join(snake_case , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE:str = os.path.join(snake_case , snake_case ) if os.path.exists(snake_case ): break with open(snake_case , encoding="utf-8" ) as fin: SCREAMING_SNAKE_CASE:Optional[Any] = fin.read() SCREAMING_SNAKE_CASE:Any = re.sub(r" \d+$" , "" , snake_case , 0 , re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(snake_case , "w" , encoding="utf-8" ) as fout: fout.write(snake_case ) # model config SCREAMING_SNAKE_CASE:int = os.path.join(snake_case , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args["bpe"]}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args["tokenizer"]}''' SCREAMING_SNAKE_CASE:Optional[int] = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with SCREAMING_SNAKE_CASE:Optional[int] = 5 SCREAMING_SNAKE_CASE:Dict = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE:Union[str, Any] = best_score_hparams[model_dir]["length_penalty"] else: SCREAMING_SNAKE_CASE:Optional[int] = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # tokenizer config SCREAMING_SNAKE_CASE:str = os.path.join(snake_case , snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = { "langs": [src_lang, tgt_lang], "model_max_length": 1024, "do_lower_case": do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # model SCREAMING_SNAKE_CASE:List[Any] = chkpt["models"][0] SCREAMING_SNAKE_CASE:Optional[Any] = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE:Optional[Any] = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE:Dict = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(snake_case , snake_case ) SCREAMING_SNAKE_CASE:int = FSMTConfig.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = FSMTForConditionalGeneration(snake_case ) # check that it loads ok model_new.load_state_dict(snake_case , strict=snake_case ) # save SCREAMING_SNAKE_CASE:Tuple = os.path.join(snake_case , snake_case ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(snake_case , snake_case ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
143
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _snake_case ( _a ): _A : List[str] = '''camembert''' def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=30_522 ,SCREAMING_SNAKE_CASE__ : int=768 ,SCREAMING_SNAKE_CASE__ : List[Any]=12 ,SCREAMING_SNAKE_CASE__ : Any=12 ,SCREAMING_SNAKE_CASE__ : Tuple=3_072 ,SCREAMING_SNAKE_CASE__ : str="gelu" ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Dict=512 ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,SCREAMING_SNAKE_CASE__ : Tuple=0.02 ,SCREAMING_SNAKE_CASE__ : Any=1e-12 ,SCREAMING_SNAKE_CASE__ : str=1 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 ,SCREAMING_SNAKE_CASE__ : Any="absolute" ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,**SCREAMING_SNAKE_CASE__ : Tuple ,): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE:str = hidden_size SCREAMING_SNAKE_CASE:str = num_hidden_layers SCREAMING_SNAKE_CASE:List[str] = num_attention_heads SCREAMING_SNAKE_CASE:Optional[int] = hidden_act SCREAMING_SNAKE_CASE:int = intermediate_size SCREAMING_SNAKE_CASE:List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE:Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:str = max_position_embeddings SCREAMING_SNAKE_CASE:Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE:Optional[int] = initializer_range SCREAMING_SNAKE_CASE:Tuple = layer_norm_eps SCREAMING_SNAKE_CASE:Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE:Optional[int] = use_cache SCREAMING_SNAKE_CASE:List[Any] = classifier_dropout class _snake_case ( _a ): @property def __UpperCamelCase ( self : List[str] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE:Any = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE:str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
143
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A_ ( ) -> Dict: UpperCamelCase : Tuple = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_lowerCAmelCase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_lowerCAmelCase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_lowerCAmelCase ) return parser.parse_args() def A_ ( ) -> Optional[int]: UpperCamelCase : Tuple = parse_args() # Import training_script as a module. UpperCamelCase : Union[str, Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase : List[Any] = script_fpath.stem UpperCamelCase : Optional[Any] = importlib.import_module(_lowerCAmelCase ) # Patch sys.argv UpperCamelCase : List[Any] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
38
def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> int: return int(input_a == input_a == 0 ) def A_ ( ) -> None: print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
38
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : str = 'philschmid/bart-large-cnn-samsum' __lowerCAmelCase : List[str] = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) __lowerCAmelCase : List[Any] = 'summarizer' __lowerCAmelCase : List[str] = AutoTokenizer __lowerCAmelCase : int = AutoModelForSeqaSeqLM __lowerCAmelCase : Tuple = ['text'] __lowerCAmelCase : Union[str, Any] = ['text'] def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.pre_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , truncation=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.model.generate(**SCREAMING_SNAKE_CASE_)[0] def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.pre_processor.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_)
12
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a_ : def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int]=1_3 , __lowerCAmelCase : Tuple=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Union[str, Any]=9_9 , __lowerCAmelCase : Any=3_2 , __lowerCAmelCase : Tuple=5 , __lowerCAmelCase : int=4 , __lowerCAmelCase : List[str]=3_7 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Any=5_1_2 , __lowerCAmelCase : Dict=1_6 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : str=4 , __lowerCAmelCase : List[str]=None , ): __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope __snake_case = self.vocab_size - 1 def lowercase__ ( self : Union[str, Any] ): __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , *__lowerCAmelCase : List[str] ): __snake_case = OpenAIGPTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __snake_case = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , head_mask=__lowerCAmelCase ) __snake_case = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , *__lowerCAmelCase : str ): __snake_case = OpenAIGPTLMHeadModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __snake_case = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , *__lowerCAmelCase : Tuple ): __snake_case = OpenAIGPTDoubleHeadsModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __snake_case = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , *__lowerCAmelCase : int ): __snake_case = self.num_labels __snake_case = OpenAIGPTForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[str] ): __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowercase_ : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase_ : Union[str, Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase_ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : Any ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowercase__ ( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=False ): __snake_case = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase , ) __snake_case = inputs_dict['labels'] __snake_case = inputs_dict['labels'] __snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCAmelCase , ) __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def lowercase__ ( self : Tuple ): __snake_case = OpenAIGPTModelTester(self ) __snake_case = ConfigTester(self , config_class=__lowerCAmelCase , n_embd=3_7 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCAmelCase ) def lowercase__ ( self : int ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCAmelCase ) def lowercase__ ( self : Any ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCAmelCase ) def lowercase__ ( self : str ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCAmelCase ) @slow def lowercase__ ( self : str ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = OpenAIGPTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch class a_ ( unittest.TestCase ): @slow def lowercase__ ( self : int ): __snake_case = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(__lowerCAmelCase ) __snake_case = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=__lowerCAmelCase ) # the president is __snake_case = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the __snake_case = model.generate(__lowerCAmelCase , do_sample=__lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCAmelCase )
356
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCamelCase_ = logging.getLogger(__name__) def A ( ) -> str: '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=__UpperCAmelCase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=__UpperCAmelCase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=__UpperCAmelCase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=__UpperCAmelCase , default=1000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=__UpperCAmelCase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=__UpperCAmelCase , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=__UpperCAmelCase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) UpperCAmelCase_ = parser.parse_args() return args def A ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' def fn(__UpperCAmelCase ): return tokenizer(examples['''text'''] ) return fn def A ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = [] for i in range(len(tokenized_data['''input_ids'''] ) ): UpperCAmelCase_ = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } UpperCAmelCase_ = tf.train.Features(feature=__UpperCAmelCase ) UpperCAmelCase_ = tf.train.Example(features=__UpperCAmelCase ) UpperCAmelCase_ = example.SerializeToString() records.append(__UpperCAmelCase ) return records def A ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: UpperCAmelCase_ = min(len(__UpperCAmelCase ) , args.limit ) UpperCAmelCase_ = dataset.select(range(__UpperCAmelCase ) ) print(f"Limiting the dataset to {args.limit} entries." ) UpperCAmelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) UpperCAmelCase_ = os.path.join(args.output_dir , args.split ) if not os.path.exists(__UpperCAmelCase ): os.makedirs(__UpperCAmelCase ) else: UpperCAmelCase_ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. UpperCAmelCase_ = tokenize_function(__UpperCAmelCase ) UpperCAmelCase_ = dataset.map(__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__UpperCAmelCase ): # Concatenate all texts. UpperCAmelCase_ = {k: sum(examples[k] , [] ) for k in examples.keys()} UpperCAmelCase_ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 UpperCAmelCase_ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. UpperCAmelCase_ = { k: [t[i : i + args.max_length] for i in range(0 , __UpperCAmelCase , args.max_length )] for k, t in concatenated_examples.items() } return result UpperCAmelCase_ = dataset_tokenized.map(__UpperCAmelCase , batched=__UpperCAmelCase , batch_size=1000 , num_proc=4 ) UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for shard in range(0 , len(__UpperCAmelCase ) , args.shard_size ): UpperCAmelCase_ = grouped_dataset[shard : shard + args.shard_size] UpperCAmelCase_ = len(dataset_snapshot['''input_ids'''] ) UpperCAmelCase_ = os.path.join(__UpperCAmelCase , f"dataset-{shard_count}-{records_containing}.tfrecord" ) UpperCAmelCase_ = get_serialized_examples(__UpperCAmelCase ) with tf.io.TFRecordWriter(__UpperCAmelCase ) as out_file: for i in range(len(__UpperCAmelCase ) ): UpperCAmelCase_ = serialized_examples[i] out_file.write(__UpperCAmelCase ) print('''Wrote file {} containing {} records'''.format(__UpperCAmelCase , __UpperCAmelCase ) ) shard_count += 1 total_records += records_containing with open(f"split-{args.split}-records-count.txt" , '''w''' ) as f: print(f"Total {args.split} records: {total_records}" , file=__UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = parse_args() main(args)
561
def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(__UpperCAmelCase , x % y ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(__UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(__UpperCAmelCase , __UpperCAmelCase ) return g if __name__ == "__main__": print(f"{solution() = }")
561
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> List[Any]: _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : int = batch_size _lowerCamelCase : Any = seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : List[str] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[Any] = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : List[str] = num_labels _lowerCamelCase : Tuple = num_choices _lowerCamelCase : Optional[int] = scope _lowerCamelCase : Any = self.vocab_size - 1 def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : int = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None _lowerCamelCase : Optional[Any] = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) _lowerCamelCase : str = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _lowerCamelCase : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : List[Any] = OpenAIGPTModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : int = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE) -> Any: _lowerCamelCase : Optional[Any] = OpenAIGPTLMHeadModel(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : Any = OpenAIGPTDoubleHeadsModel(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE) -> Union[str, Any]: _lowerCamelCase : Any = self.num_labels _lowerCamelCase : List[Any] = OpenAIGPTForSequenceClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase_ ( self) -> Any: _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Any = config_and_inputs _lowerCamelCase : Any = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class lowercase__ ( A_ ,A_ ,A_ ,unittest.TestCase ): __UpperCAmelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __UpperCAmelCase = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False) -> Union[str, Any]: _lowerCamelCase : List[str] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _lowerCamelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE , ) _lowerCamelCase : Optional[int] = inputs_dict["""labels"""] _lowerCamelCase : Dict = inputs_dict["""labels"""] _lowerCamelCase : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=SCREAMING_SNAKE_CASE , ) _lowerCamelCase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE) return inputs_dict def UpperCamelCase_ ( self) -> List[Any]: _lowerCamelCase : Optional[int] = OpenAIGPTModelTester(self) _lowerCamelCase : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , n_embd=37) def UpperCamelCase_ ( self) -> str: self.config_tester.run_common_tests() def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*SCREAMING_SNAKE_CASE) @slow def UpperCamelCase_ ( self) -> str: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : List[Any] = OpenAIGPTModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) @require_torch class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : Optional[Any] = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""") model.to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE) # the president is _lowerCamelCase : Union[str, Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _lowerCamelCase : Optional[Any] = model.generate(SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE) self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE)
88
"""simple docstring""" from math import factorial class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = real if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase = [1] * rank else: _lowerCAmelCase = rank def __repr__( self : int ) -> List[Any]: """simple docstring""" return ( F"""{self.real}+""" F"""{'+'.join(str(UpperCAmelCase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def __lowerCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" _lowerCAmelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , UpperCAmelCase_ ) def __add__( self : List[Any] , UpperCAmelCase_ : List[Any] ) -> str: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return Dual(self.real + other , self.duals ) _lowerCAmelCase = self.duals.copy() _lowerCAmelCase = other.duals.copy() if len(UpperCAmelCase_ ) > len(UpperCAmelCase_ ): o_dual.extend([1] * (len(UpperCAmelCase_ ) - len(UpperCAmelCase_ )) ) elif len(UpperCAmelCase_ ) < len(UpperCAmelCase_ ): s_dual.extend([1] * (len(UpperCAmelCase_ ) - len(UpperCAmelCase_ )) ) _lowerCAmelCase = [] for i in range(len(UpperCAmelCase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_: str = __add__ def __sub__( self : Dict , UpperCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" return self + other * -1 def __mul__( self : List[Any] , UpperCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , UpperCAmelCase_ ) _lowerCAmelCase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_: int = __mul__ def __truediv__( self : str , UpperCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , UpperCAmelCase_ ) raise ValueError def __floordiv__( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , UpperCAmelCase_ ) raise ValueError def __pow__( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" if n < 0 or isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self _lowerCAmelCase = self for _ in range(n - 1 ): x *= self return x def __snake_case ( SCREAMING_SNAKE_CASE: Union[str, Any] , SCREAMING_SNAKE_CASE: List[str] , SCREAMING_SNAKE_CASE: Tuple ): """simple docstring""" if not callable(SCREAMING_SNAKE_CASE ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(SCREAMING_SNAKE_CASE , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('differentiate() requires an int as input for order' ) _lowerCAmelCase = Dual(SCREAMING_SNAKE_CASE , 1 ) _lowerCAmelCase = func(SCREAMING_SNAKE_CASE ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() def __snake_case ( SCREAMING_SNAKE_CASE: Tuple ): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
580
0
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp _UpperCAmelCase = 5 _UpperCAmelCase = 10 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowercase_ ,unittest.TestCase ): """simple docstring""" _UpperCamelCase = SpeechaTextTokenizer _UpperCamelCase = False _UpperCamelCase = True def _UpperCAmelCase ( self ): super().setUp() _lowerCamelCase = sp.SentencePieceProcessor() spm_model.Load(a__ ) _lowerCamelCase = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(a__ ) )] _lowerCamelCase = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCamelCase = Path(self.tmpdirname ) save_json(a__ , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(a__ , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) _lowerCamelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self ): _lowerCamelCase = '''<pad>''' _lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def _UpperCAmelCase ( self ): _lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(a__ ) , 10_01 ) def _UpperCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def _UpperCAmelCase ( self ): _lowerCamelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) _lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [2_89, 50, 14, 1_74, 3_86] , ) _lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a__ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) _lowerCamelCase = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual(a__ , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) _lowerCamelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def _UpperCAmelCase ( self ): # fmt: off _lowerCamelCase = {'''input_ids''': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''facebook/s2t-small-mustc-en-de-st''' , revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''' , ) @require_sentencepiece class __magic_name__ ( unittest.TestCase ): """simple docstring""" _UpperCamelCase = "valhalla/s2t_mustc_multilinguial_medium" _UpperCamelCase = "C'est trop cool" _UpperCamelCase = "Esto es genial" @classmethod def _UpperCAmelCase ( cls ): _lowerCamelCase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def _UpperCAmelCase ( self ): self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''] , 11 ) def _UpperCAmelCase ( self ): self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def _UpperCAmelCase ( self ): self.assertIn(a__ , self.tokenizer.all_special_ids ) _lowerCamelCase = [ES_CODE, 4, 16_01, 47, 76_47, 2] _lowerCamelCase = self.tokenizer.decode(a__ , skip_special_tokens=a__ ) _lowerCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ ) self.assertNotIn(self.tokenizer.eos_token , a__ ) def _UpperCAmelCase ( self ): _lowerCamelCase = '''fr''' _lowerCamelCase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , a__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def _UpperCAmelCase ( self ): _lowerCamelCase = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) _lowerCamelCase = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
706
from __future__ import annotations def _lowerCamelCase ( _a , _a , _a ): """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
_snake_case = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _snake_case = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _snake_case = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: assert len(str(_lowercase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase = year // 100 UpperCamelCase = (5 * (century % 4) + 2) % 7 UpperCamelCase = year % 100 UpperCamelCase = centurian % 12 UpperCamelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
282
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> str: UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): UpperCamelCase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): UpperCamelCase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase = key[key.find('patch_embed' ) + len('patch_embed' )] UpperCamelCase = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(_lowercase )-1}' ) if "norm" in key: UpperCamelCase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] UpperCamelCase = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(_lowercase )-1}' ) if "layer_norm1" in key: UpperCamelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: UpperCamelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase = key[key.find('block' ) + len('block' )] UpperCamelCase = key.replace(F'block{idx}' , F'block.{int(_lowercase )-1}' ) if "attn.q" in key: UpperCamelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: UpperCamelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: UpperCamelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: UpperCamelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: UpperCamelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: UpperCamelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: UpperCamelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) UpperCamelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase = key[key.find('linear_c' ) + len('linear_c' )] UpperCamelCase = key.replace(F'linear_c{idx}' , F'linear_c.{int(_lowercase )-1}' ) if "bot_conv" in key: UpperCamelCase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: UpperCamelCase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: UpperCamelCase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: UpperCamelCase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: UpperCamelCase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: UpperCamelCase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: UpperCamelCase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): UpperCamelCase = key.replace('module.last_layer_depth' , 'head.head' ) UpperCamelCase = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) UpperCamelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict UpperCamelCase = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase = kv_bias[: config.hidden_sizes[i]] UpperCamelCase = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase = kv_bias[config.hidden_sizes[i] :] def __lowerCamelCase ( ) -> Any: UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return image @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False , _lowercase=None ) -> Tuple: UpperCamelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) UpperCamelCase = GLPNImageProcessor() # prepare image UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=_lowercase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict UpperCamelCase = torch.load(_lowercase , map_location=torch.device('cpu' ) ) # rename keys UpperCamelCase = rename_keys(_lowercase ) # key and value matrices need special treatment read_in_k_v(_lowercase , _lowercase ) # create HuggingFace model and load state dict UpperCamelCase = GLPNForDepthEstimation(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # forward pass UpperCamelCase = model(_lowercase ) UpperCamelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCamelCase = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCamelCase = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) UpperCamelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _lowercase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_lowercase , _lowercase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_lowercase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowercase , _lowercase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_lowercase , ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) _snake_case = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
282
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _A ( unittest.TestCase ): def __a ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase : Optional[int] = tempfile.mkdtemp() lowercase : List[Any] = SamImageProcessor() lowercase : Any = SamProcessor(_A ) processor.save_pretrained(self.tmpdirname ) def __a ( self : Tuple , **_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def __a ( self : Dict ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __a ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase : int = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self : List[str] ) -> List[str]: """simple docstring""" lowercase : List[str] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : int = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) lowercase : Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.get_image_processor() lowercase : Tuple = SamProcessor(image_processor=_A ) lowercase : Tuple = self.prepare_image_inputs() lowercase : Any = image_processor(_A , return_tensors='''np''' ) lowercase : List[str] = processor(images=_A , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def __a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase : Any = self.get_image_processor() lowercase : str = SamProcessor(image_processor=_A ) lowercase : Any = [torch.ones((1, 3, 5, 5) )] lowercase : Union[str, Any] = [[1_764, 2_646]] lowercase : Union[str, Any] = [[683, 1_024]] lowercase : Any = processor.post_process_masks(_A , _A , _A ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) lowercase : Optional[int] = processor.post_process_masks( _A , torch.tensor(_A ) , torch.tensor(_A ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np lowercase : List[Any] = [np.ones((1, 3, 5, 5) )] lowercase : Optional[Any] = processor.post_process_masks(_A , np.array(_A ) , np.array(_A ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) lowercase : Optional[int] = [[1, 0], [0, 1]] with self.assertRaises(_A ): lowercase : Tuple = processor.post_process_masks(_A , np.array(_A ) , np.array(_A ) ) @require_vision @require_tf class _A ( unittest.TestCase ): def __a ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[Any] = tempfile.mkdtemp() lowercase : Union[str, Any] = SamImageProcessor() lowercase : Optional[int] = SamProcessor(_A ) processor.save_pretrained(self.tmpdirname ) def __a ( self : List[Any] , **_A : Optional[Any] ) -> Dict: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def __a ( self : int ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __a ( self : List[Any] ) -> Any: """simple docstring""" lowercase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase : Optional[Any] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self : Tuple ) -> int: """simple docstring""" lowercase : Dict = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : int = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) lowercase : Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Optional[int] = self.get_image_processor() lowercase : Any = SamProcessor(image_processor=_A ) lowercase : Dict = self.prepare_image_inputs() lowercase : List[str] = image_processor(_A , return_tensors='''np''' ) lowercase : Optional[Any] = processor(images=_A , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def __a ( self : str ) -> Tuple: """simple docstring""" lowercase : List[str] = self.get_image_processor() lowercase : Tuple = SamProcessor(image_processor=_A ) lowercase : int = [tf.ones((1, 3, 5, 5) )] lowercase : int = [[1_764, 2_646]] lowercase : Union[str, Any] = [[683, 1_024]] lowercase : int = processor.post_process_masks(_A , _A , _A , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) lowercase : int = processor.post_process_masks( _A , tf.convert_to_tensor(_A ) , tf.convert_to_tensor(_A ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np lowercase : Dict = [np.ones((1, 3, 5, 5) )] lowercase : Any = processor.post_process_masks( _A , np.array(_A ) , np.array(_A ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) lowercase : Any = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): lowercase : Optional[Any] = processor.post_process_masks( _A , np.array(_A ) , np.array(_A ) , return_tensors='''tf''' ) @require_vision @require_torchvision class _A ( unittest.TestCase ): def __a ( self : Tuple ) -> str: """simple docstring""" lowercase : Union[str, Any] = tempfile.mkdtemp() lowercase : Optional[Any] = SamImageProcessor() lowercase : Optional[Any] = SamProcessor(_A ) processor.save_pretrained(self.tmpdirname ) def __a ( self : List[Any] , **_A : List[Any] ) -> str: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def __a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" lowercase : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase : Tuple = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase : Optional[Any] = self.get_image_processor() lowercase : List[str] = SamProcessor(image_processor=_A ) lowercase : Tuple = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) lowercase : Dict = [tf.convert_to_tensor(_A )] lowercase : int = [torch.tensor(_A )] lowercase : List[Any] = [[1_764, 2_646]] lowercase : Tuple = [[683, 1_024]] lowercase : Optional[int] = processor.post_process_masks( _A , _A , _A , return_tensors='''tf''' ) lowercase : List[str] = processor.post_process_masks( _A , _A , _A , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __a ( self : List[Any] ) -> int: """simple docstring""" lowercase : Tuple = self.get_image_processor() lowercase : Optional[int] = SamProcessor(image_processor=_A ) lowercase : Dict = self.prepare_image_inputs() lowercase : Optional[Any] = image_processor(_A , return_tensors='''pt''' )['''pixel_values'''].numpy() lowercase : Any = processor(images=_A , return_tensors='''pt''' )['''pixel_values'''].numpy() lowercase : List[Any] = image_processor(_A , return_tensors='''tf''' )['''pixel_values'''].numpy() lowercase : Tuple = processor(images=_A , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(_A , _A ) ) self.assertTrue(np.allclose(_A , _A ) ) self.assertTrue(np.allclose(_A , _A ) )
701
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _A ( unittest.TestCase ): def __a ( self : Any ) -> str: """simple docstring""" lowercase : Dict = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase : Optional[int] = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_A ) , torch_builtin(_A ) ) ) self.assertFalse(torch.allclose(gelu_python(_A ) , gelu_new(_A ) ) ) def __a ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase : Union[str, Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase : str = get_activation('''gelu''' ) lowercase : str = get_activation('''gelu_10''' ) lowercase : Dict = torch_builtin(_A ) lowercase : List[Any] = geluaa(_A ) lowercase : List[str] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_A ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_A ): get_activation('''bogus''' ) with self.assertRaises(_A ): get_activation(_A ) def __a ( self : str ) -> int: """simple docstring""" lowercase : Optional[Any] = get_activation('''gelu''' ) lowercase : Any = 1 lowercase : Tuple = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_A ): lowercase : str = acta.a
596
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """CLIPImageProcessor""" _lowercase = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self: List[str],A_: int=None,A_: str=None,**A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.',A_,) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_,A_ ) def __call__( self: Tuple,A_: Any=None,A_: str=None,A_: List[Any]=None,**A_: Tuple ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __UpperCamelCase = self.tokenizer(A_,return_tensors=A_,**A_ ) if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: int,*A_: Dict,**A_: int ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Union[str, Any],**A_: str ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
1
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Dict=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Union[str, Any]=1_28 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[Any]=None , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = self.prepare_config_and_inputs() UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = NezhaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , ): """simple docstring""" UpperCAmelCase__ = True UpperCAmelCase__ = NezhaModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = NezhaForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = NezhaForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = NezhaForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = NezhaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = NezhaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = NezhaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = NezhaForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ : Tuple = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Union[str, Any] = True def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=False ): """simple docstring""" UpperCAmelCase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): UpperCAmelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = NezhaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase__ = None self.model_tester.create_and_check_model_as_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = NezhaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return UpperCAmelCase__ = True UpperCAmelCase__ = model_class(config=_UpperCAmelCase ) UpperCAmelCase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """bert.pt""" ) ) UpperCAmelCase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """bert.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) UpperCAmelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] UpperCAmelCase__ = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) UpperCAmelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] UpperCAmelCase__ = torch.Size((1, 6, 2_11_28) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
603
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = """gpt_neox""" def __init__( self , UpperCAmelCase_=5_04_32 , UpperCAmelCase_=61_44 , UpperCAmelCase_=44 , UpperCAmelCase_=64 , UpperCAmelCase_=2_45_76 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.25 , UpperCAmelCase_=1_00_00 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_=20_48 , UpperCAmelCase_=0.02 , UpperCAmelCase_=1e-5 , UpperCAmelCase_=True , UpperCAmelCase_=0 , UpperCAmelCase_=2 , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=None , **UpperCAmelCase_ , ): super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = rotary_pct snake_case_ = rotary_emb_base snake_case_ = attention_dropout snake_case_ = hidden_dropout snake_case_ = classifier_dropout snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = tie_word_embeddings snake_case_ = use_parallel_residual snake_case_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def _lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) snake_case_ = self.rope_scaling.get("type" , UpperCAmelCase_ ) snake_case_ = self.rope_scaling.get("factor" , UpperCAmelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
703
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = """philschmid/bart-large-cnn-samsum""" snake_case = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) snake_case = """summarizer""" snake_case = AutoTokenizer snake_case = AutoModelForSeqaSeqLM snake_case = ["""text"""] snake_case = ["""text"""] def _lowercase ( self , UpperCAmelCase_ ): return self.pre_processor(UpperCAmelCase_ , return_tensors="pt" , truncation=UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ ): return self.model.generate(**UpperCAmelCase_ )[0] def _lowercase ( self , UpperCAmelCase_ ): return self.pre_processor.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ )
420
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class A ( A_ ): def __init__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__( features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= Generator( cache_dir=lowerCAmelCase , features=lowerCAmelCase , generator=lowerCAmelCase , gen_kwargs=lowerCAmelCase , **lowerCAmelCase , ) def _A (self ): # Build iterable dataset if self.streaming: __lowercase= self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: __lowercase= None __lowercase= None __lowercase= None __lowercase= None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) __lowercase= self.builder.as_dataset( split='train' , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset
230
1
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[Any] = int(UpperCAmelCase ) # Initialize Result lowercase__ : str = [] # Traverse through all denomination for denomination in reversed(UpperCAmelCase ): # Find denominations while int(UpperCAmelCase ) >= int(UpperCAmelCase ): total_value -= int(UpperCAmelCase ) answer.append(UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __a: List[str] = [] __a: Optional[Any] = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): __a: Optional[Any] = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) __a: Tuple = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter __a: str = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] __a: Optional[Any] = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'Following is minimal change for {value}: ') __a: List[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
709
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): _enforce_args(UpperCAmelCase , UpperCAmelCase ) if n == 0: return 0 lowercase__ : Optional[int] = float('''-inf''' ) for i in range(1 , n + 1 ): lowercase__ : str = max( UpperCAmelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , UpperCAmelCase ) ) return max_revue def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): _enforce_args(UpperCAmelCase , UpperCAmelCase ) lowercase__ : List[str] = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowercase__ : Union[str, Any] = float('''-inf''' ) for i in range(1 , n + 1 ): lowercase__ : Tuple = max( UpperCAmelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , UpperCAmelCase , UpperCAmelCase ) , ) lowercase__ : str = max_revenue return max_rev[n] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): _enforce_args(UpperCAmelCase , UpperCAmelCase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowercase__ : Optional[int] = [float('''-inf''' ) for _ in range(n + 1 )] lowercase__ : Any = 0 for i in range(1 , n + 1 ): lowercase__ : Optional[Any] = max_rev[i] for j in range(1 , i + 1 ): lowercase__ : Optional[Any] = max(UpperCAmelCase , prices[j - 1] + max_rev[i - j] ) lowercase__ : Tuple = max_revenue_i return max_rev[n] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if n < 0: lowercase__ : str = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(UpperCAmelCase ) if n > len(UpperCAmelCase ): lowercase__ : Dict = ( '''Each integral piece of rod must have a corresponding price. ''' F"""Got n = {n} but length of prices = {len(UpperCAmelCase )}""" ) raise ValueError(UpperCAmelCase ) def __UpperCamelCase ( ): lowercase__ : int = [6, 10, 12, 15, 20, 23] lowercase__ : Tuple = len(UpperCAmelCase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowercase__ : Optional[Any] = 36 lowercase__ : str = top_down_cut_rod(UpperCAmelCase , UpperCAmelCase ) lowercase__ : Optional[int] = bottom_up_cut_rod(UpperCAmelCase , UpperCAmelCase ) lowercase__ : List[str] = naive_cut_rod_recursive(UpperCAmelCase , UpperCAmelCase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
428
0
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : str=False ) -> Union[str, Any]: _lowerCAmelCase : Union[str, Any] = OmegaConf.load(snake_case__ ) if display: print(yaml.dump(OmegaConf.to_container(snake_case__ ) ) ) return config def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Any=None ) -> Tuple: if conf_path is None: _lowerCAmelCase : List[str] = """./model_checkpoints/vqgan_only.yaml""" _lowerCAmelCase : Any = load_config(snake_case__ , display=snake_case__ ) _lowerCAmelCase : Any = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : List[str] = """./model_checkpoints/vqgan_only.pt""" _lowerCAmelCase : str = torch.load(snake_case__ , map_location=snake_case__ ) if ".ckpt" in ckpt_path: _lowerCAmelCase : Optional[Any] = sd["""state_dict"""] model.load_state_dict(snake_case__ , strict=snake_case__ ) model.to(snake_case__ ) del sd return model def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ) -> Dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = model.encode(snake_case__ ) print(f'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) _lowerCAmelCase : Tuple = model.decode(snake_case__ ) return xrec def _UpperCAmelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int]=False ) -> str: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = string.rsplit(""".""" , 1 ) if reload: _lowerCAmelCase : str = importlib.import_module(snake_case__ ) importlib.reload(snake_case__ ) return getattr(importlib.import_module(snake_case__ , package=snake_case__ ) , cls ) def _UpperCAmelCase ( _lowerCamelCase : Optional[int] ) -> List[Any]: if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Union[str, Any]=True ) -> Union[str, Any]: _lowerCAmelCase : List[Any] = instantiate_from_config(snake_case__ ) if sd is not None: model.load_state_dict(snake_case__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Tuple ) -> Any: # load the specified checkpoint if ckpt: _lowerCAmelCase : Dict = torch.load(snake_case__ , map_location="""cpu""" ) _lowerCAmelCase : List[str] = pl_sd["""global_step"""] print(f'loaded model from global step {global_step}.' ) else: _lowerCAmelCase : List[str] = {"""state_dict""": None} _lowerCAmelCase : int = None _lowerCAmelCase : Any = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=snake_case__ , eval_mode=snake_case__ )["""model"""] return model, global_step
384
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def a__ ( snake_case__ ) -> Dict[str, torch.Tensor]: lowerCamelCase = [] lowerCamelCase = [] lowerCamelCase = [] for rt in rc.restypes: lowerCamelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowerCamelCase = {name: i for i, name in enumerate(snake_case__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowerCamelCase = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowerCamelCase = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowerCamelCase = torch.tensor( snake_case__ , dtype=torch.floataa , device=protein["""aatype"""].device , ) lowerCamelCase = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowerCamelCase = restype_atomaa_to_atomaa[protein_aatype] lowerCamelCase = restype_atomaa_mask[protein_aatype] lowerCamelCase = residx_atomaa_mask lowerCamelCase = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowerCamelCase = restype_atomaa_to_atomaa[protein_aatype] lowerCamelCase = residx_atomaa_to_atomaa.long() # create the corresponding mask lowerCamelCase = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): lowerCamelCase = rc.restype_atoa[restype_letter] lowerCamelCase = rc.residue_atoms[restype_name] for atom_name in atom_names: lowerCamelCase = rc.atom_order[atom_name] lowerCamelCase = 1 lowerCamelCase = restype_atomaa_mask[protein_aatype] lowerCamelCase = residx_atomaa_mask return protein def a__ ( snake_case__ ) -> Dict[str, np.ndarray]: lowerCamelCase = tree_map(lambda snake_case__ : torch.tensor(snake_case__ , device=batch["""aatype"""].device ) , snake_case__ , np.ndarray ) lowerCamelCase = tensor_tree_map(lambda snake_case__ : np.array(snake_case__ ) , make_atomaa_masks(snake_case__ ) ) return out
543
0
'''simple docstring''' from __future__ import annotations import math def __lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : bool , _UpperCamelCase : list[int] , _UpperCamelCase : float ): '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(_UpperCamelCase ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = [90, 23, 6, 33, 21, 65, 123, 3_4423] UpperCAmelCase_ = math.log(len(_UpperCamelCase ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Any ) ->Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : str ) ->List[str]: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) UpperCAmelCase_ = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('''sample_euler''' ) UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : List[str] ) ->int: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase_ = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('''sample_euler''' ) UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def lowerCAmelCase__ ( self : List[Any] ) ->Optional[int]: UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase_ = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) UpperCAmelCase_ = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=UpperCAmelCase__ , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
43
1
from math import pow, sqrt def a_ ( *_A ) -> List[str]: """simple docstring""" snake_case__ = len(_SCREAMING_SNAKE_CASE ) > 0 and all(value > 0.0 for value in values ) return result def a_ ( _A , _A ) -> str: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def a_ ( _A , _A , _A ) -> Optional[Any]: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def a_ ( _A , _A , _A ) -> Union[str, Any]: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def a_ ( _A , _A , _A ) -> Tuple: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def a_ ( _A , _A , _A ) -> Any: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
328
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class a__ : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : str , ) -> Optional[int]: __A= parent __A= 13 __A= 7 __A= True __A= True __A= False __A= True __A= 99 __A= 32 __A= 2 __A= 4 __A= 37 __A= 'gelu' __A= 0.1 __A= 0.1 __A= 512 __A= 16 __A= 2 __A= 0.02 __A= 3 __A= 4 __A= None def lowerCAmelCase ( self : Optional[Any] ) -> str: __A= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A= None if self.use_input_mask: __A= random_attention_mask([self.batch_size, self.seq_length] ) __A= None __A= None __A= None if self.use_labels: __A= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A= ids_tensor([self.batch_size] , self.num_choices ) __A= DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] ) -> Any: __A= TFDistilBertModel(config=lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) __A= [input_ids, input_mask] __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ) -> Optional[int]: __A= TFDistilBertForMaskedLM(config=lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> int: __A= TFDistilBertForQuestionAnswering(config=lowerCAmelCase_ ) __A= { 'input_ids': input_ids, 'attention_mask': input_mask, } __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: __A= self.num_labels __A= TFDistilBertForSequenceClassification(lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __A= self.num_choices __A= TFDistilBertForMultipleChoice(lowerCAmelCase_ ) __A= tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __A= tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __A= { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ) -> Dict: __A= self.num_labels __A= TFDistilBertForTokenClassification(lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: __A= self.prepare_config_and_inputs() ((__A), (__A), (__A), (__A), (__A), (__A))= config_and_inputs __A= {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a__ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' A : Optional[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) A : Optional[int] = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) A : str = False A : List[Any] = False def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __A= TFDistilBertModelTester(self ) __A= ConfigTester(self , config_class=lowerCAmelCase_ , dim=37 ) def lowerCAmelCase ( self : Dict ) -> Tuple: self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase_ ) def lowerCAmelCase ( self : str ) -> Any: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Any ) -> Optional[int]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : int ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __A= TFDistilBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_tf class a__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> List[Any]: __A= TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) __A= tf.constant([[0, 1, 2, 3, 4, 5]] ) __A= model(lowerCAmelCase_ )[0] __A= [1, 6, 768] self.assertEqual(output.shape , lowerCAmelCase_ ) __A= tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4 )
186
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = '''hf-internal-testing/tiny-random-t5''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer('''This is me''' , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE__ = model.generate(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE__ = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = '''hf-internal-testing/tiny-random-t5''' SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
709
from __future__ import annotations import collections import pprint from pathlib import Path def UpperCAmelCase_ ( _A ): '''simple docstring''' return "".join(sorted(_A ) ) def UpperCAmelCase_ ( _A ): '''simple docstring''' return word_by_signature[signature(_A )] _SCREAMING_SNAKE_CASE : str = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') _SCREAMING_SNAKE_CASE : str = sorted({word.strip().lower() for word in data.splitlines()}) _SCREAMING_SNAKE_CASE : List[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
472
0
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A_ : int = logging.get_logger(__name__) class lowerCamelCase (A__ ): def __init__( self : List[Any] , **__UpperCAmelCase : int ) -> Dict: requires_backends(self , ["""bs4"""] ) super().__init__(**__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag SCREAMING_SNAKE_CASE__ = parent.find_all(child.name , recursive=__UpperCAmelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__UpperCAmelCase ) else next(i for i, s in enumerate(__UpperCAmelCase , 1 ) if s is child ) ) SCREAMING_SNAKE_CASE__ = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = BeautifulSoup(__UpperCAmelCase , """html.parser""" ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for element in html_code.descendants: if type(__UpperCAmelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue SCREAMING_SNAKE_CASE__ = html.unescape(__UpperCAmelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.xpath_soup(__UpperCAmelCase ) stringaxtag_seq.append(__UpperCAmelCase ) stringaxsubs_seq.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = """""" for tagname, subs in zip(__UpperCAmelCase , __UpperCAmelCase ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : Tuple , __UpperCAmelCase : Optional[Any] ) -> BatchFeature: SCREAMING_SNAKE_CASE__ = False # Check that strings has a valid type if isinstance(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = True elif isinstance(__UpperCAmelCase , (list, tuple) ): if len(__UpperCAmelCase ) == 0 or isinstance(html_strings[0] , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F"""but is of type {type(__UpperCAmelCase )}.""" ) SCREAMING_SNAKE_CASE__ = bool(isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(html_strings[0] , __UpperCAmelCase )) ) if not is_batched: SCREAMING_SNAKE_CASE__ = [html_strings] # Get nodes + xpaths SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for html_string in html_strings: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.get_three_from_single(__UpperCAmelCase ) nodes.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [] for node, tag_list, sub_list in zip(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = self.construct_xpath(__UpperCAmelCase , __UpperCAmelCase ) xpath_strings.append(__UpperCAmelCase ) xpaths.append(__UpperCAmelCase ) # return as Dict SCREAMING_SNAKE_CASE__ = {"""nodes""": nodes, """xpaths""": xpaths} SCREAMING_SNAKE_CASE__ = BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) return encoded_inputs
196
"""simple docstring""" A_ : Any = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
196
1
import pprint import requests _UpperCamelCase = "https://zenquotes.io/api" def _lowercase ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def _lowercase ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _UpperCamelCase = random_quotes() pprint.pprint(response)
583
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["DPTFeatureExtractor"] _UpperCamelCase = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
583
1
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Tuple = logging.get_logger(__name__) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: List[Any] ) -> Optional[Any]: """simple docstring""" __a = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) __a = re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$', SCREAMING_SNAKE_CASE__ ) if matches: __a = float(matches[1] ) __a = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __a = 1001 __a = 'imagenet-1k-id2label.json' __a = 'huggingface/label-files' __a = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type='dataset' ), 'r' ) ) __a = {int(SCREAMING_SNAKE_CASE__ ) + 1: v for k, v in idalabel.items()} __a = 'background' __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" __a = 'http://images.cocodataset.org/val2017/000000039769.jpg' __a = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: int, SCREAMING_SNAKE_CASE__: Union[str, Any], SCREAMING_SNAKE_CASE__: Optional[int], SCREAMING_SNAKE_CASE__: str=False ) -> int: """simple docstring""" __a = get_mobilenet_va_config(SCREAMING_SNAKE_CASE__ ) # Load 🤗 model __a = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __a = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size}, size={'shortest_edge': config.image_size + 32}, ) __a = image_processor(images=prepare_img(), return_tensors='pt' ) __a = model(**SCREAMING_SNAKE_CASE__ ) __a = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __a = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __a = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __a = None if expected_logits is not None: assert torch.allclose(logits[0, :3], SCREAMING_SNAKE_CASE__, atol=1e-4 ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('Pushing to the hub...' ) __a = 'google/' + model_name image_processor.push_to_hub(SCREAMING_SNAKE_CASE__ ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : Any = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
448
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a =["pixel_values"] def __init__( self , lowerCamelCase = True , lowerCamelCase = 32 , lowerCamelCase=PILImageResampling.BILINEAR , lowerCamelCase = True , **lowerCamelCase , ) ->None: '''simple docstring''' __a = do_resize __a = do_rescale __a = size_divisor __a = resample super().__init__(**lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) ->np.ndarray: '''simple docstring''' __a , __a = get_image_size(lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __a = height // size_divisor * size_divisor __a = width // size_divisor * size_divisor __a = resize(lowerCamelCase , (new_h, new_w) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) return image def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) ->np.ndarray: '''simple docstring''' return rescale(image=lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) ->BatchFeature: '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = size_divisor if size_divisor is not None else self.size_divisor __a = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) __a = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. __a = [to_numpy_array(lowerCamelCase ) for img in images] if do_resize: __a = [self.resize(lowerCamelCase , size_divisor=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: __a = [self.rescale(lowerCamelCase , scale=1 / 255 ) for image in images] __a = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __a = {'pixel_values': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
448
1
from datetime import datetime import requests def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bytes: lowercase__ = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' lowercase__ = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(_SCREAMING_SNAKE_CASE ).content if __name__ == "__main__": lowercase_ = input("""Enter Video/IGTV url: """).strip() lowercase_ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
718
from scipy.stats import spearmanr import datasets lowercase_ = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowercase_ = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowercase_ = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : Any , a : str=False )-> Optional[int]: """simple docstring""" lowercase__ = spearmanr(a , a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
45
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Tuple ={'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =[ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
148
import logging import os from .state import PartialState class UpperCAmelCase_ ( logging.LoggerAdapter ): '''simple docstring''' @staticmethod def _A ( _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _A ( self , _A , _A , *_A , **_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) __SCREAMING_SNAKE_CASE = kwargs.pop('main_process_only' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('in_order' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: __SCREAMING_SNAKE_CASE = PartialState() for i in range(state.num_processes ): if i == state.process_index: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def __lowercase ( a__ , a__ = None ) -> Optional[Any]: if log_level is None: __SCREAMING_SNAKE_CASE = os.environ.get('ACCELERATE_LOG_LEVEL' , a__ ) __SCREAMING_SNAKE_CASE = logging.getLogger(a__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(a__ , {} )
148
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __A (unittest.TestCase): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : Union[str, Any]=400 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=[0.5, 0.5, 0.5] , UpperCAmelCase_ : int=[0.5, 0.5, 0.5] , ) ->int: """simple docstring""" snake_case_ = size if size is not None else {"""shortest_edge""": 30} snake_case_ = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize_and_center_crop snake_case_ = size snake_case_ = crop_pct snake_case_ = crop_size snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Dict = PoolFormerImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" snake_case_ = PoolFormerImageProcessingTester(self ) @property def lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """crop_pct""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) ) def lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
705
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Dict = KandinskyVaaControlnetPipeline __lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase: Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase: Tuple = False @property def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" return self.time_input_dim @property def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" return 100 @property def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) snake_case_ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Any ) ->int: """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) snake_case_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]: """simple docstring""" snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) # create hint snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("""mps""" ): snake_case_ = torch.manual_seed(UpperCAmelCase_ ) else: snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) snake_case_ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" snake_case_ = """cpu""" snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**UpperCAmelCase_ ) snake_case_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0 snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case_ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = """A robot, 4k photo""" snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ , snake_case_ = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) snake_case_ = pipeline( image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
2
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : list ) -> list: '''simple docstring''' UpperCAmelCase_ = len(snake_case_ ) for _ in range(snake_case_ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: UpperCAmelCase_ , UpperCAmelCase_ = arr[i + 1], arr[i] return arr if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =list(range(10, 0, -1)) print(f"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
78
def UpperCamelCase_ ( __a = 50 ) -> int: a__ : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
37
0
'''simple docstring''' def _a ( lowerCamelCase_ ): snake_case : int =[] if len(lowerCamelCase_ ) == 1: return [nums.copy()] for _ in range(len(lowerCamelCase_ ) ): snake_case : str =nums.pop(0 ) snake_case : Optional[int] =permute(lowerCamelCase_ ) for perm in permutations: perm.append(lowerCamelCase_ ) result.extend(lowerCamelCase_ ) nums.append(lowerCamelCase_ ) return result def _a ( lowerCamelCase_ ): def backtrack(lowerCamelCase_ ): if start == len(lowerCamelCase_ ) - 1: output.append(nums[:] ) else: for i in range(lowerCamelCase_ , len(lowerCamelCase_ ) ): snake_case : Dict =nums[i], nums[start] backtrack(start + 1 ) snake_case : Optional[Any] =nums[i], nums[start] # backtrack snake_case : Tuple =[] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function A : List[Any] = permutea([1, 2, 3]) print(res) doctest.testmod()
708
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers A : str = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _a ( ): snake_case : str =os.path.dirname(os.path.realpath(lowerCamelCase_ ) ) snake_case : Optional[Any] =os.path.join(lowerCamelCase_ , '''words.txt''' ) snake_case : List[Any] ='''''' with open(lowerCamelCase_ ) as f: snake_case : str =f.readline() snake_case : Union[str, Any] =[word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] snake_case : str =[ word for word in [sum(ord(lowerCamelCase_ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowerCamelCase_ ) if __name__ == "__main__": print(solution())
136
0
"""simple docstring""" from math import sqrt def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2 , int(round(sqrt(_UpperCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'status' must been from type bool" return status def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2 , n + 1 ) ) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_UpperCamelCase ) ): for j in range(i + 1 , len(_UpperCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_UpperCamelCase ): ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(_UpperCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_UpperCamelCase ): while quotient != 1: if is_prime(_UpperCamelCase ) and (quotient % factor == 0): ans.append(_UpperCamelCase ) quotient /= factor else: factor += 1 else: ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(_UpperCamelCase ) __lowerCAmelCase = max(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type int" return ans def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(_UpperCamelCase ) __lowerCAmelCase = min(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type int" return ans def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _UpperCamelCase ), "compare bust been from type bool" return number % 2 == 0 def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _UpperCamelCase ), "compare bust been from type bool" return number % 2 != 0 def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (number > 2) and is_even(_UpperCamelCase ) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(_UpperCamelCase ) __lowerCAmelCase = len(_UpperCamelCase ) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (len(_UpperCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(_UpperCamelCase ) __lowerCAmelCase = prime_factorization(_UpperCamelCase ) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(_UpperCamelCase ) __lowerCAmelCase = prime_fac_a.count(_UpperCamelCase ) for _ in range(max(_UpperCamelCase , _UpperCamelCase ) ): ans *= n else: __lowerCAmelCase = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_UpperCamelCase ): ans += 1 # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and is_prime( _UpperCamelCase ), "'ans' must been a prime number and from type int" return ans def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert ( is_prime(_UpperCamelCase ) and is_prime(_UpperCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 while number < p_number_a: ans.append(_UpperCamelCase ) number += 1 # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and ans[0] != p_number_a and ans[len(_UpperCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_UpperCamelCase ) # precondition assert ans[0] == 1 and ans[len(_UpperCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(_UpperCamelCase ) # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (divisors[0] == 1) and (divisors[len(_UpperCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(_UpperCamelCase ) , abs(_UpperCamelCase ) ) # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1 ): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
636
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A : Optional[Any] = None A : Any = logging.get_logger(__name__) A : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A : List[Any] = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } A : Union[str, Any] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } A : Optional[int] = "▁" # Segments (not really needed) A : str = 0 A : Dict = 1 A : List[str] = 2 A : Tuple = 3 A : Tuple = 4 class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =VOCAB_FILES_NAMES __UpperCAmelCase : Optional[int] =PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[Any] ="""left""" __UpperCAmelCase : List[str] =XLNetTokenizer def __init__( self , __a=None , __a=None , __a=False , __a=True , __a=False , __a="<s>" , __a="</s>" , __a="<unk>" , __a="<sep>" , __a="<pad>" , __a="<cls>" , __a="<mask>" , __a=["<eop>", "<eod>"] , **__a , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( vocab_file=__a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , additional_special_tokens=__a , **__a , ) __lowerCAmelCase = 3 __lowerCAmelCase = do_lower_case __lowerCAmelCase = remove_space __lowerCAmelCase = keep_accents __lowerCAmelCase = vocab_file __lowerCAmelCase = False if not self.vocab_file else True def snake_case ( self , __a , __a = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case ( self , __a , __a = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case ( self , __a , __a = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowerCAmelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
636
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __a = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
257
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): _UpperCAmelCase : int = ArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=a_ ) _UpperCAmelCase : Union[str, Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=a_ ) env_command_parser(subparsers=a_ ) launch_command_parser(subparsers=a_ ) tpu_command_parser(subparsers=a_ ) test_command_parser(subparsers=a_ ) # Let's go _UpperCAmelCase : List[Any] = parser.parse_args() if not hasattr(a_, "func" ): parser.print_help() exit(1 ) # Run args.func(a_ ) if __name__ == "__main__": main()
257
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "layer_norm" , UpperCamelCase__ : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(UpperCamelCase__ , UpperCamelCase__ ) else: A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = Attention( query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) ) A = Attention( query_dim=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , upcast_attention=UpperCamelCase__ , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = FeedForward(UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn=UpperCamelCase__ , final_dropout=UpperCamelCase__ ) # let chunk size default to None A = None A = 0 def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): # Sets chunk feed-forward A = chunk_size A = dim def UpperCamelCase ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=hidden_states.dtype ) else: A = self.norma(UpperCamelCase__ ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( UpperCamelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase__ ) ) A = self.attna( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(UpperCamelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(UpperCamelCase__ , UpperCamelCase__ ) if activation_fn == "gelu-approximate": A = GELU(UpperCamelCase__ , UpperCamelCase__ , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(UpperCamelCase__ , UpperCamelCase__ ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(UpperCamelCase__ , UpperCamelCase__ ) A = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase__ ) ) # project out self.net.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase__ ) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int ): for module in self.net: A = module(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str = "none" ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A = approximate def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int ): A = self.proj(UpperCamelCase__ ) A = self.gelu(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , dim_out * 2 ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase ( self : str , UpperCamelCase__ : str ): A , A = self.proj(UpperCamelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase__ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] ): A = self.proj(UpperCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): super().__init__() A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , embedding_dim * 2 ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): A = self.linear(self.silu(self.emb(UpperCamelCase__ ) ) ) A , A = torch.chunk(UpperCamelCase__ , 2 ) A = self.norm(UpperCamelCase__ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): super().__init__() A = CombinedTimestepLabelEmbeddings(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , 6 * embedding_dim , bias=UpperCamelCase__ ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ , eps=1e-6 ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): A = self.linear(self.silu(self.emb(UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=UpperCamelCase__ ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(UpperCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , out_dim * 2 ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str ): if self.act: A = self.act(UpperCamelCase__ ) A = self.linear(UpperCamelCase__ ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(UpperCamelCase__ , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
699
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
1
"""simple docstring""" class _SCREAMING_SNAKE_CASE : # Public class to implement a graph """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: lowercase__ : Any = row lowercase__ : Union[str, Any] = col lowercase__ : List[Any] = graph def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: # Checking all 8 elements surrounding nth element lowercase__ : Tuple = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ : str = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase__ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> int: # And finally, count all islands. lowercase__ : Union[str, Any] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ : Optional[int] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) count += 1 return count
714
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __snake_case = sys.version_info >= (3, 10) def _lowerCamelCase ( lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Any=None ): return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : int _a : float _a : str _a : bool @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : int = 42 _a : str = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : bool = False _a : bool = True _a : Optional[bool] = None class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Optional[Any] = '''titi''' _a : str = '''toto''' class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Union[str, Any] = '''titi''' _a : Union[str, Any] = '''toto''' _a : Tuple = 42 @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : BasicEnum = "toto" def UpperCAmelCase__( self ) -> Optional[Any]: lowercase__ : List[str] = BasicEnum(self.foo ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : MixedTypeEnum = "toto" def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : Any = MixedTypeEnum(self.foo ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : Optional[int] = None _a : Optional[float] = field(default=__UpperCAmelCase , metadata={'''help''': '''help message'''} ) _a : Optional[str] = None _a : Optional[List[str]] = list_field(default=[] ) _a : Optional[List[int]] = list_field(default=[] ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : List[int] = list_field(default=[] ) _a : List[int] = list_field(default=[1, 2, 3] ) _a : List[str] = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) _a : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : List[int] = field() _a : str = field() _a : BasicEnum = field() def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : Optional[Any] = BasicEnum(self.required_enum ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : int _a : "BasicEnum" = field() _a : "Optional[bool]" = None _a : "str" = field(default='''toto''' , metadata={'''help''': '''help message'''} ) _a : "List[str]" = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : bool = False _a : bool = True _a : bool | None = None @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : int | None = None _a : float | None = field(default=__UpperCAmelCase , metadata={'''help''': '''help message'''} ) _a : str | None = None _a : list[str] | None = list_field(default=[] ) _a : list[int] | None = list_field(default=[] ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowercase__ : int = {k: v for k, v in vars(lowerCamelCase__ ).items() if k != """container"""} lowercase__ : Any = {k: v for k, v in vars(lowerCamelCase__ ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , lowerCamelCase__ ) and yy.get("""choices""" , lowerCamelCase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](lowerCamelCase__ ) , yy["""type"""](lowerCamelCase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Tuple: lowercase__ : Any = HfArgumentParser(lowerCamelCase__ ) lowercase__ : int = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--bar""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--baz""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--flag""" , type=lowerCamelCase__ , default=lowerCamelCase__ , const=lowerCamelCase__ , nargs="""?""" ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Tuple = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((lowercase__) , ) : Optional[int] = parser.parse_args_into_dataclasses(lowerCamelCase__ , look_for_args_file=lowerCamelCase__ ) self.assertFalse(example.flag ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : List[str] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : int = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=lowerCamelCase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowerCamelCase__ , help="""help message""" ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowerCamelCase__ , default=lowerCamelCase__ , const=lowerCamelCase__ , nargs="""?""" ) expected.add_argument("""--baz""" , type=lowerCamelCase__ , default=lowerCamelCase__ , const=lowerCamelCase__ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=lowerCamelCase__ , dest="""baz""" ) expected.add_argument("""--opt""" , type=lowerCamelCase__ , default=lowerCamelCase__ ) lowercase__ : Any = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase__ ) for dataclass_type in dataclass_types: lowercase__ : Optional[int] = HfArgumentParser(lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[Any] = parser.parse_args([] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) lowercase__ : Optional[Any] = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) lowercase__ : str = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) lowercase__ : List[str] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) lowercase__ : Dict = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : Dict = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[int] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) lowercase__ : Optional[int] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowercase__ : Union[str, Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) lowercase__ : List[str] = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowercase__ : Tuple = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) lowercase__ : List[str] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCAmelCase__( self ) -> List[str]: @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : Literal["titi", "toto", 42] = "toto" lowercase__ : Tuple = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) lowercase__ : Any = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) lowercase__ : int = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def UpperCAmelCase__( self ) -> int: lowercase__ : Optional[Any] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=lowerCamelCase__ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=lowerCamelCase__ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowerCamelCase__ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : str = parser.parse_args([] ) self.assertEqual( lowerCamelCase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) lowercase__ : List[str] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(lowerCamelCase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def UpperCAmelCase__( self ) -> Dict: lowercase__ : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=lowerCamelCase__ , type=lowerCamelCase__ ) expected.add_argument("""--bar""" , default=lowerCamelCase__ , type=lowerCamelCase__ , help="""help message""" ) expected.add_argument("""--baz""" , default=lowerCamelCase__ , type=lowerCamelCase__ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=lowerCamelCase__ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=lowerCamelCase__ ) lowercase__ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase__ ) for dataclass_type in dataclass_types: lowercase__ : Dict = HfArgumentParser(lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : List[Any] = parser.parse_args([] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , bar=lowerCamelCase__ , baz=lowerCamelCase__ , ces=[] , des=[] ) ) lowercase__ : Optional[Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(lowerCamelCase__ , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : Optional[int] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--required_str""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowerCamelCase__ , ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : List[Any] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowerCamelCase__ , ) expected.add_argument("""--opt""" , type=lowerCamelCase__ , default=lowerCamelCase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowerCamelCase__ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> str: lowercase__ : Any = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Tuple = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } lowercase__ : int = parser.parse_dict(lowerCamelCase__ )[0] lowercase__ : List[str] = BasicExample(**lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Tuple: lowercase__ : Union[str, Any] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Dict = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(lowerCamelCase__ , parser.parse_dict , lowerCamelCase__ , allow_extra_keys=lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Tuple: lowercase__ : List[str] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : List[Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : int = os.path.join(lowerCamelCase__ , """temp_json""" ) os.mkdir(lowerCamelCase__ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Dict = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] lowercase__ : Any = BasicExample(**lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Union[str, Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Any = os.path.join(lowerCamelCase__ , """temp_yaml""" ) os.mkdir(lowerCamelCase__ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] lowercase__ : Dict = BasicExample(**lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : Optional[int] = HfArgumentParser(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
128
0
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __magic_name__ ( A__ ): '''simple docstring''' @slow @require_torch def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowerCamelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowerCamelCase = bertabert.config.encoder.vocab_size lowerCamelCase = tokenizer.sep_token_id lowerCamelCase = tokenizer.cls_token_id lowerCamelCase = 128 lowerCamelCase = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowerCamelCase = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowerCamelCase = train_dataset.select(range(32 ) ) lowerCamelCase = val_dataset.select(range(16 ) ) lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(_a ): # Tokenizer will automatically set [BOS] <text> [EOS] lowerCamelCase = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=__lowercase , max_length=512 ) lowerCamelCase = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=__lowercase , max_length=128 ) lowerCamelCase = inputs.input_ids lowerCamelCase = inputs.attention_mask lowerCamelCase = outputs.input_ids lowerCamelCase = outputs.input_ids.copy() lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowerCamelCase = outputs.attention_mask assert all(len(__lowercase ) == 512 for x in inputs.input_ids ) assert all(len(__lowercase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_a ): lowerCamelCase = pred.label_ids lowerCamelCase = pred.predictions # all unnecessary tokens are removed lowerCamelCase = tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase ) lowerCamelCase = tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase ) lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowercase ) )] ) / len(__lowercase ) return {"accuracy": accuracy} # map train dataset lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowercase , batch_size=__lowercase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowercase , batch_size=__lowercase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowerCamelCase = self.get_auto_remove_tmp_dir() lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__lowercase , per_device_train_batch_size=__lowercase , per_device_eval_batch_size=__lowercase , predict_with_generate=__lowercase , evaluation_strategy="""steps""" , do_train=__lowercase , do_eval=__lowercase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowerCamelCase = SeqaSeqTrainer( model=__lowercase , args=__lowercase , compute_metrics=_compute_metrics , train_dataset=__lowercase , eval_dataset=__lowercase , tokenizer=__lowercase , ) # start training trainer.train()
543
from importlib import import_module from .logging import get_logger _lowercase : Optional[int] =get_logger(__name__) class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=None ) -> Dict: """simple docstring""" a__ : Union[str, Any] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , __lowercase , getattr(__lowercase , __lowercase ) ) a__ : Optional[int] = module._original_module if isinstance(__lowercase , _PatchedModuleObj ) else module class snake_case__ : """simple docstring""" __lowerCAmelCase :Union[str, Any] = [] def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase=None ) -> Dict: """simple docstring""" a__ : List[Any] = obj a__ : Dict = target a__ : List[Any] = new a__ : Tuple = target.split(""".""" )[0] a__ : Any = {} a__ : str = attrs or [] def __enter__( self ) -> Union[str, Any]: """simple docstring""" *a__ , a__ : Dict = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__lowercase ) ): try: a__ : Any = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ : List[Any] = getattr(self.obj , __lowercase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__lowercase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): a__ : str = obj_attr # patch at top level setattr(self.obj , __lowercase , _PatchedModuleObj(__lowercase , attrs=self.attrs ) ) a__ : str = getattr(self.obj , __lowercase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__lowercase , __lowercase , _PatchedModuleObj(getattr(__lowercase , __lowercase , __lowercase ) , attrs=self.attrs ) ) a__ : Optional[int] = getattr(__lowercase , __lowercase ) # finally set the target attribute setattr(__lowercase , __lowercase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ : str = getattr(import_module(""".""".join(__lowercase ) ) , __lowercase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __lowercase ) is attr_value: a__ : Tuple = getattr(self.obj , __lowercase ) setattr(self.obj , __lowercase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ : Union[str, Any] = globals()["""__builtins__"""][target_attr] setattr(self.obj , __lowercase , self.new ) else: raise RuntimeError(F'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *__lowercase ) -> List[str]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , __lowercase , self.original.pop(__lowercase ) ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
136
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( _UpperCamelCase ): SCREAMING_SNAKE_CASE__ = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE__ = 'Pix2StructImageProcessor' SCREAMING_SNAKE_CASE__ = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = False super().__init__(_UpperCAmelCase ,_UpperCAmelCase ) def __call__( self ,a_=None ,a_ = None ,a_ = True ,a_ = False ,a_ = None ,a_ = None ,a_ = 2048 ,a_ = 0 ,a_ = None ,a_ = None ,a_ = False ,a_ = False ,a_ = False ,a_ = False ,a_ = False ,a_ = True ,a_ = None ,**a_ ,): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: lowerCAmelCase__ = self.tokenizer lowerCAmelCase__ = self.tokenizer( text=_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,max_length=_UpperCAmelCase ,stride=_UpperCAmelCase ,pad_to_multiple_of=_UpperCAmelCase ,return_attention_mask=_UpperCAmelCase ,return_overflowing_tokens=_UpperCAmelCase ,return_special_tokens_mask=_UpperCAmelCase ,return_offsets_mapping=_UpperCAmelCase ,return_token_type_ids=_UpperCAmelCase ,return_length=_UpperCAmelCase ,verbose=_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,**_UpperCAmelCase ,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowerCAmelCase__ = self.image_processor( _UpperCAmelCase ,return_tensors=_UpperCAmelCase ,max_patches=_UpperCAmelCase ,**_UpperCAmelCase ) else: # add pixel_values and bbox lowerCAmelCase__ = self.image_processor( _UpperCAmelCase ,return_tensors=_UpperCAmelCase ,max_patches=_UpperCAmelCase ,header_text=_UpperCAmelCase ,**_UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: lowerCAmelCase__ = self.tokenizer( text=_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,max_length=_UpperCAmelCase ,stride=_UpperCAmelCase ,pad_to_multiple_of=_UpperCAmelCase ,return_attention_mask=_UpperCAmelCase ,return_overflowing_tokens=_UpperCAmelCase ,return_special_tokens_mask=_UpperCAmelCase ,return_offsets_mapping=_UpperCAmelCase ,return_token_type_ids=_UpperCAmelCase ,return_length=_UpperCAmelCase ,verbose=_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,**_UpperCAmelCase ,) if "attention_mask" in text_encoding: lowerCAmelCase__ = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: lowerCAmelCase__ = text_encoding.pop('input_ids' ) else: lowerCAmelCase__ = None if text_encoding is not None: encoding_image_processor.update(_UpperCAmelCase ) return encoding_image_processor def SCREAMING_SNAKE_CASE_ ( self ,*a_ ,**a_ ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase ,**_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self ,*a_ ,**a_ ): """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase ,**_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.model_input_names lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
713
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _lowerCAmelCase : Any = False class __snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger ' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=a_ ,generator=a_ ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) lowerCAmelCase__ = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase__ = generator.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=a_ ,generator=a_ ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' ,torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger ' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=a_ ,generator=a_ ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ).images lowerCAmelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
604
0
'''simple docstring''' def __UpperCamelCase( _A : list[list[float]] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] for data in source_data: for i, el in enumerate(__snake_case ): if len(__snake_case ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__snake_case ) ) return data_lists def __UpperCamelCase( _A : list[list[float]] , _A : list[int] ): '''simple docstring''' UpperCAmelCase__ : str = [] for dlist, weight in zip(__snake_case , __snake_case ): UpperCAmelCase__ : Tuple = min(__snake_case ) UpperCAmelCase__ : Optional[Any] = max(__snake_case ) UpperCAmelCase__ : Any = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: UpperCAmelCase__ : List[Any] = F'''Invalid weight of {weight:f} provided''' raise ValueError(__snake_case ) score_lists.append(__snake_case ) return score_lists def __UpperCamelCase( _A : list[list[float]] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__snake_case ): UpperCAmelCase__ : Any = final_scores[j] + ele return final_scores def __UpperCamelCase( _A : list[list[float]] , _A : list[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = get_data(__snake_case ) UpperCAmelCase__ : int = calculate_each_score(__snake_case , __snake_case ) UpperCAmelCase__ : int = generate_final_scores(__snake_case ) # append scores to source data for i, ele in enumerate(__snake_case ): source_data[i].append(__snake_case ) return source_data
614
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=2, lowerCAmelCase=99, lowerCAmelCase=0, lowerCAmelCase=32, lowerCAmelCase=5, lowerCAmelCase=4, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=12, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase="last", lowerCAmelCase=None, lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_lengths lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =gelu_activation lowerCamelCase_ =sinusoidal_embeddings lowerCamelCase_ =causal lowerCamelCase_ =asm lowerCamelCase_ =n_langs lowerCamelCase_ =vocab_size lowerCamelCase_ =n_special lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =summary_type lowerCamelCase_ =use_proj lowerCamelCase_ =scope def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_input_lengths: lowerCamelCase_ =( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.n_langs ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size], 2 ).float() lowerCamelCase_ =ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase_ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, lengths=lowerCAmelCase, langs=lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, langs=lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model( lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase, cls_index=lowerCAmelCase, is_impossible=lowerCAmelCase, p_mask=lowerCAmelCase, ) lowerCamelCase_ =model( lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase, cls_index=lowerCAmelCase, is_impossible=lowerCAmelCase, ) ((lowerCamelCase_), ) =result_with_labels.to_tuple() lowerCamelCase_ =model(lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase ) ((lowerCamelCase_), ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =FlaubertForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, attention_mask=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.num_choices lowerCamelCase_ =FlaubertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =model( lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =config_and_inputs lowerCamelCase_ ={ '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : List[Any] =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase : Tuple =( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=False ): """simple docstring""" lowerCamelCase_ =super()._prepare_for_class(lowerCAmelCase, lowerCAmelCase, return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase ) return inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =FlaubertModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, emb_dim=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =FlaubertModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @slow @require_torch_gpu def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=lowerCAmelCase ) lowerCamelCase_ =self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =torch.jit.trace( lowerCAmelCase, (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase, os.path.join(lowerCAmelCase, '''traced_model.pt''' ) ) lowerCamelCase_ =torch.jit.load(os.path.join(lowerCAmelCase, '''traced_model.pt''' ), map_location=lowerCAmelCase ) loaded(inputs_dict['''input_ids'''].to(lowerCAmelCase ), inputs_dict['''attention_mask'''].to(lowerCAmelCase ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) lowerCamelCase_ =torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase )[0] lowerCamelCase_ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape, lowerCAmelCase ) lowerCamelCase_ =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCAmelCase, atol=1e-4 ) )
676
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : Any = """swinv2""" lowerCAmelCase : Union[str, Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , UpperCAmelCase__=224 , UpperCAmelCase__=4 , UpperCAmelCase__=3 , UpperCAmelCase__=96 , UpperCAmelCase__=[2, 2, 6, 2] , UpperCAmelCase__=[3, 6, 12, 24] , UpperCAmelCase__=7 , UpperCAmelCase__=4.0 , UpperCAmelCase__=True , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.1 , UpperCAmelCase__="gelu" , UpperCAmelCase__=False , UpperCAmelCase__=0.02 , UpperCAmelCase__=1e-5 , UpperCAmelCase__=32 , **UpperCAmelCase__ , ): super().__init__(**UpperCAmelCase__ ) A__ = image_size A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(UpperCAmelCase__ ) A__ = num_heads A__ = window_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = use_absolute_embeddings A__ = layer_norm_eps A__ = initializer_range A__ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ = int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) ) A__ = (0, 0, 0, 0)
712
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @slow def __A ( self ): A__ = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) A__ = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(UpperCAmelCase__ ) from datasets import load_dataset A__ = load_dataset("nielsr/rvlcdip-demo" ) A__ = dataset["train"][0]["image"].convert("RGB" ) A__ = image_processor(UpperCAmelCase__ , return_tensors="pt" ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): A__ = model(**UpperCAmelCase__ ) A__ = outputs.logits A__ = torch.Size((1, 16) ) self.assertEqual(logits.shape , UpperCAmelCase__ ) A__ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=UpperCAmelCase__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase__ , atol=1e-4 ) )
232
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class __a ( _lowerCAmelCase ): def __init__( self : Any , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str )-> Optional[int]: """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None )-> Tuple: """simple docstring""" UpperCamelCase = {} if top_k is not None: UpperCamelCase = top_k return {}, {}, postprocess_params def __call__( self : Optional[Any] , UpperCAmelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase_ : Tuple )-> Dict: """simple docstring""" return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase_ : Dict )-> Optional[Any]: """simple docstring""" UpperCamelCase = load_image(UpperCAmelCase_ ) UpperCamelCase = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] )-> int: """simple docstring""" UpperCamelCase = self.model(**UpperCAmelCase_ ) return model_outputs def _SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=5 )-> Tuple: """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase = self.model.config.num_labels if self.framework == "pt": UpperCamelCase = model_outputs.logits.softmax(-1 )[0] UpperCamelCase , UpperCamelCase = probs.topk(UpperCAmelCase_ ) elif self.framework == "tf": UpperCamelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCamelCase = tf.math.top_k(UpperCAmelCase_ , k=UpperCAmelCase_ ) UpperCamelCase , UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCamelCase = scores.tolist() UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase_ , UpperCAmelCase_ )]
554
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip SCREAMING_SNAKE_CASE = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowerCamelCase__ ( UpperCAmelCase_ )-> Tuple: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> List[str]: """simple docstring""" return max(metric_fn(UpperCAmelCase_ , UpperCAmelCase_ ) for gt in ground_truths ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> List[Any]: """simple docstring""" UpperCamelCase = [line.strip() for line in open(UpperCAmelCase_ , "r" ).readlines()] UpperCamelCase = [] if args.gold_data_mode == "qa": UpperCamelCase = pd.read_csv(UpperCAmelCase_ , sep="\t" , header=UpperCAmelCase_ ) for answer_list in data[1]: UpperCamelCase = ast.literal_eval(UpperCAmelCase_ ) answers.append(UpperCAmelCase_ ) else: UpperCamelCase = [line.strip() for line in open(UpperCAmelCase_ , "r" ).readlines()] UpperCamelCase = [[reference] for reference in references] UpperCamelCase = UpperCamelCase = UpperCamelCase = 0 for prediction, ground_truths in zip(UpperCAmelCase_ , UpperCAmelCase_ ): total += 1 em += metric_max_over_ground_truths(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) fa += metric_max_over_ground_truths(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = 100.0 * em / total UpperCamelCase = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> List[Any]: """simple docstring""" UpperCamelCase = args.k UpperCamelCase = [line.strip() for line in open(UpperCAmelCase_ , "r" ).readlines()] UpperCamelCase = [line.strip() for line in open(UpperCAmelCase_ , "r" ).readlines()] UpperCamelCase = UpperCamelCase = 0 for hypo, reference in zip(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = set(hypo.split("\t" )[:k] ) UpperCamelCase = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCamelCase = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[int]: """simple docstring""" def strip_title(UpperCAmelCase_ ): if title.startswith("\"" ): UpperCamelCase = title[1:] if title.endswith("\"" ): UpperCamelCase = title[:-1] return title UpperCamelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase_ , return_tensors="pt" , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , )["input_ids"].to(args.device ) UpperCamelCase = rag_model.rag.question_encoder(UpperCAmelCase_ ) UpperCamelCase = question_enc_outputs[0] UpperCamelCase = rag_model.retriever( UpperCAmelCase_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) UpperCamelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCamelCase = [] for docs in all_docs: UpperCamelCase = [strip_title(UpperCAmelCase_ ) for title in docs["title"]] provenance_strings.append("\t".join(UpperCAmelCase_ ) ) return provenance_strings def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[int]: """simple docstring""" with torch.no_grad(): UpperCamelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase_ , return_tensors="pt" , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) UpperCamelCase = inputs_dict.input_ids.to(args.device ) UpperCamelCase = inputs_dict.attention_mask.to(args.device ) UpperCamelCase = rag_model.generate( # rag_model overwrites generate UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=UpperCAmelCase_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCamelCase = rag_model.retriever.generator_tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) if args.print_predictions: for q, a in zip(UpperCAmelCase_ , UpperCAmelCase_ ): logger.info("Q: {} - A: {}".format(UpperCAmelCase_ , UpperCAmelCase_ ) ) return answers def lowerCamelCase__ ( )-> Any: """simple docstring""" UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=UpperCAmelCase_ , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=UpperCAmelCase_ , choices=["exact", "compressed", "legacy"] , type=UpperCAmelCase_ , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=UpperCAmelCase_ , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=UpperCAmelCase_ , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=UpperCAmelCase_ , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=UpperCAmelCase_ , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=UpperCAmelCase_ , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=UpperCAmelCase_ , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=UpperCAmelCase_ , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=UpperCAmelCase_ , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=UpperCAmelCase_ , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) UpperCamelCase = parser.parse_args() UpperCamelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def lowerCamelCase__ ( UpperCAmelCase_ )-> List[Any]: """simple docstring""" UpperCamelCase = {} if args.model_type is None: UpperCamelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): UpperCamelCase = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration UpperCamelCase = args.n_docs if args.index_name is not None: UpperCamelCase = args.index_name if args.index_path is not None: UpperCamelCase = args.index_path else: UpperCamelCase = BartForConditionalGeneration UpperCamelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , UpperCAmelCase_ ) UpperCamelCase = get_scores if args.eval_mode == "e2e" else get_precision_at_k UpperCamelCase = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(UpperCAmelCase_ , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(UpperCAmelCase_ ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): UpperCamelCase = RagRetriever.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCamelCase = model_class.from_pretrained(UpperCAmelCase_ , retriever=UpperCAmelCase_ , **UpperCAmelCase_ ) model.retriever.init_retrieval() else: UpperCamelCase = model_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: UpperCamelCase = [] for line in tqdm(UpperCAmelCase_ ): questions.append(line.strip() ) if len(UpperCAmelCase_ ) == args.eval_batch_size: UpperCamelCase = evaluate_batch_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) preds_file.write("\n".join(UpperCAmelCase_ ) + "\n" ) preds_file.flush() UpperCamelCase = [] if len(UpperCAmelCase_ ) > 0: UpperCamelCase = evaluate_batch_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) preds_file.write("\n".join(UpperCAmelCase_ ) ) preds_file.flush() score_fn(UpperCAmelCase_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = get_args() main(args)
554
1
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __A : str = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Tuple = {} state_dict.pop("""pixel_mean""" , lowerCamelCase_ ) state_dict.pop("""pixel_std""" , lowerCamelCase_ ) snake_case_ : Optional[int] = R""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case_ : str = key.replace(lowerCamelCase_ , lowerCamelCase_ ) if re.match(lowerCamelCase_ , lowerCamelCase_ ): snake_case_ : Tuple = int(re.match(lowerCamelCase_ , lowerCamelCase_ ).group(2 ) ) if layer_nb == 0: snake_case_ : str = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: snake_case_ : Dict = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: snake_case_ : List[str] = key.replace("""layers.2""" , """proj_out""" ) snake_case_ : Union[str, Any] = value snake_case_ : Tuple = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :str="ybelkada/segment-anything" ): '''simple docstring''' snake_case_ : int = hf_hub_download(lowerCamelCase_ , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: snake_case_ : Any = SamConfig() elif "sam_vit_l" in model_name: snake_case_ : int = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case_ : int = SamConfig( vision_config=lowerCamelCase_ , ) elif "sam_vit_h" in model_name: snake_case_ : Optional[Any] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case_ : Tuple = SamConfig( vision_config=lowerCamelCase_ , ) snake_case_ : Optional[Any] = torch.load(lowerCamelCase_ , map_location="""cpu""" ) snake_case_ : Dict = replace_keys(lowerCamelCase_ ) snake_case_ : List[Any] = SamImageProcessor() snake_case_ : List[str] = SamProcessor(image_processor=lowerCamelCase_ ) snake_case_ : str = SamModel(lowerCamelCase_ ) hf_model.load_state_dict(lowerCamelCase_ ) snake_case_ : List[str] = hf_model.to("""cuda""" ) snake_case_ : Any = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" snake_case_ : Union[str, Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" ) snake_case_ : str = [[[4_00, 6_50]]] snake_case_ : List[Any] = [[1]] snake_case_ : Any = processor(images=np.array(lowerCamelCase_ ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case_ : str = hf_model(**lowerCamelCase_ ) snake_case_ : Optional[int] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 snake_case_ : Optional[Any] = processor( images=np.array(lowerCamelCase_ ) , input_points=lowerCamelCase_ , input_labels=lowerCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case_ : List[Any] = hf_model(**lowerCamelCase_ ) snake_case_ : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 snake_case_ : str = ((75, 2_75, 17_25, 8_50),) snake_case_ : str = processor(images=np.array(lowerCamelCase_ ) , input_boxes=lowerCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case_ : Optional[Any] = hf_model(**lowerCamelCase_ ) snake_case_ : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. snake_case_ : Dict = [[[4_00, 6_50], [8_00, 6_50]]] snake_case_ : Union[str, Any] = [[1, 1]] snake_case_ : List[Any] = processor( images=np.array(lowerCamelCase_ ) , input_points=lowerCamelCase_ , input_labels=lowerCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case_ : str = hf_model(**lowerCamelCase_ ) snake_case_ : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() __A : Any = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) __A : Optional[int] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
267
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[Any]=0 ): '''simple docstring''' # Format the message. if name is None: snake_case_ : Tuple = None else: snake_case_ : Optional[Any] = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" snake_case_ : Optional[Any] = fmt.format(lowerCamelCase_ ) # Print and recurse (if needed). if isinstance(lowerCamelCase_ , lowerCamelCase_ ): if msg is not None: print(lowerCamelCase_ ) for k in val.keys(): recursive_print(lowerCamelCase_ , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase_ , torch.Tensor ): print(lowerCamelCase_ , """:""" , val.size() ) else: print(lowerCamelCase_ , """:""" , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int ): '''simple docstring''' # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : List[Any] = param.view(*lowerCamelCase_ ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : List[str] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Tuple = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : int = param.view(*lowerCamelCase_ ) snake_case_ : str = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*lowerCamelCase_ ) return param def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Tuple ): '''simple docstring''' # The converted output model. snake_case_ : Tuple = {} # old versions did not store training args snake_case_ : Optional[Any] = input_state_dict.get("""args""" , lowerCamelCase_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Optional[int] = ds_args.padded_vocab_size snake_case_ : str = ds_args.max_position_embeddings snake_case_ : Tuple = ds_args.hidden_size snake_case_ : List[str] = ds_args.num_layers snake_case_ : Union[str, Any] = ds_args.num_attention_heads snake_case_ : Tuple = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : int = config.n_head # The hidden_size per head. snake_case_ : Any = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Tuple = input_state_dict["""checkpoint_version"""] else: snake_case_ : Dict = 0.0 # The model. snake_case_ : Optional[Any] = input_state_dict["""model"""] # The language model. snake_case_ : Optional[Any] = model["""language_model"""] # The embeddings. snake_case_ : int = lm["""embedding"""] # The word embeddings. snake_case_ : Any = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Any = word_embeddings[: config.vocab_size, :] snake_case_ : Union[str, Any] = word_embeddings # The position embeddings. snake_case_ : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : List[str] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. snake_case_ : List[str] = pos_embeddings # The transformer. snake_case_ : str = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Union[str, Any] = re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : Tuple = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : List[Any] = layer_re.match(lowerCamelCase_ ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Any = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : List[str] = m.group(3 ) # The name of the layer. snake_case_ : List[Any] = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : str = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : int = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : Any = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : List[str] = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : Optional[Any] = masked_bias snake_case_ : Optional[Any] = fix_query_key_value_ordering(lowerCamelCase_ , lowerCamelCase_ , 3 , lowerCamelCase_ , lowerCamelCase_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : Any = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : int = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Dict = fix_query_key_value_ordering(lowerCamelCase_ , lowerCamelCase_ , 3 , lowerCamelCase_ , lowerCamelCase_ ) # Store. No change of shape. snake_case_ : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : str = megatron_to_transformers[op_name] snake_case_ : Union[str, Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : str = megatron_to_transformers[op_name] snake_case_ : List[str] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : str = transformer["""final_layernorm.weight"""] snake_case_ : int = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def UpperCAmelCase ( ): '''simple docstring''' # Create the argument parser. snake_case_ : str = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=lowerCamelCase_ , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=lowerCamelCase_ , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : Tuple = parser.parse_args() # Extract the basename. snake_case_ : List[str] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Dict = torch.load(lowerCamelCase_ , map_location="""cpu""" ) else: snake_case_ : Optional[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Optional[int] = input_state_dict.get("""args""" , lowerCamelCase_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Tuple = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : int = """gelu_new""" else: snake_case_ : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : int = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : int = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=lowerCamelCase_ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=lowerCamelCase_ , summary_activation=lowerCamelCase_ , summary_proj_to_labels=lowerCamelCase_ , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: snake_case_ : int = GPTaConfig.from_json_file(args.config_file ) snake_case_ : Optional[int] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Optional[Any] = convert_megatron_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase_ , lowerCamelCase_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : List[str] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) snake_case_ : int = type(lowerCamelCase_ ).__name__ snake_case_ : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(lowerCamelCase_ ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase_ ) # Store the state_dict to file. snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """pytorch_model.bin""" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
267
1
"""simple docstring""" import os from distutils.util import strtobool def UpperCAmelCase ( _lowercase : Union[str, Any] , _lowercase : Optional[Any] ) -> str: """simple docstring""" for e in env_keys: lowerCAmelCase_ = int(os.environ.get(_lowercase , -1 ) ) if val >= 0: return val return default def UpperCAmelCase ( _lowercase : List[Any] , _lowercase : Dict=False ) -> Any: """simple docstring""" lowerCAmelCase_ = os.environ.get(_lowercase , str(_lowercase ) ) return strtobool(_lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def UpperCAmelCase ( _lowercase : Dict , _lowercase : Union[str, Any]="no" ) -> Dict: """simple docstring""" lowerCAmelCase_ = os.environ.get(_lowercase , str(_lowercase ) ) return value
552
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'vocab.txt'} lowercase_ = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } lowercase_ = { 'YituTech/conv-bert-base': 5_12, 'YituTech/conv-bert-medium-small': 5_12, 'YituTech/conv-bert-small': 5_12, } lowercase_ = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class __a ( __snake_case ): lowerCamelCase : Optional[int] =VOCAB_FILES_NAMES lowerCamelCase : List[str] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str =PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] =ConvBertTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ): '''simple docstring''' super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ = getattr(UpperCAmelCase , normalizer_state.pop('''type''' ) ) lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = strip_accents lowerCAmelCase_ = tokenize_chinese_chars lowerCAmelCase_ = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ = do_lower_case def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase=None ): '''simple docstring''' lowerCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
552
1
import warnings from functools import wraps from typing import Callable def __UpperCamelCase ( A ): @wraps(_lowerCamelCase ) def _inner_fn(*A , **A ): warnings.warn( (f"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , _lowerCamelCase , ) return fn(*_lowerCamelCase , **_lowerCamelCase ) return _inner_fn
717
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _A ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : "DiagonalGaussianDistribution" class _A ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : List[str] =True @register_to_config def __init__(self , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE_ = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE_ = (64,) , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = "silu" , SCREAMING_SNAKE_CASE_ = 4 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 0.18215 , ) -> Optional[int]: '''simple docstring''' super().__init__() # pass init params to Encoder UpperCamelCase__ = Encoder( in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , down_block_types=SCREAMING_SNAKE_CASE_ , block_out_channels=SCREAMING_SNAKE_CASE_ , layers_per_block=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , double_z=SCREAMING_SNAKE_CASE_ , ) # pass init params to Decoder UpperCamelCase__ = Decoder( in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , up_block_types=SCREAMING_SNAKE_CASE_ , block_out_channels=SCREAMING_SNAKE_CASE_ , layers_per_block=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCamelCase__ = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase__ = False UpperCamelCase__ = False # only relevant if vae tiling is enabled UpperCamelCase__ = self.config.sample_size UpperCamelCase__ = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCamelCase__ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCamelCase__ = 0.25 def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Dict: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , (Encoder, Decoder) ): UpperCamelCase__ = value def _a (self , SCREAMING_SNAKE_CASE_ = True ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = use_tiling def _a (self ) -> int: '''simple docstring''' self.enable_tiling(SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = True def _a (self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _a (self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' UpperCamelCase__ = {} def fn_recursive_add_processors(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if hasattr(SCREAMING_SNAKE_CASE_ , '''set_processor''' ): UpperCamelCase__ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return processors def _a (self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = len(self.attn_processors.keys() ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(SCREAMING_SNAKE_CASE_ )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if hasattr(SCREAMING_SNAKE_CASE_ , '''set_processor''' ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): module.set_processor(SCREAMING_SNAKE_CASE_ ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for name, module in self.named_children(): fn_recursive_attn_processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Tuple: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True ) -> AutoencoderKLOutput: '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) if self.use_slicing and x.shape[0] > 1: UpperCamelCase__ = [self.encoder(SCREAMING_SNAKE_CASE_ ) for x_slice in x.split(1 )] UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = self.encoder(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.quant_conv(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DiagonalGaussianDistribution(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.post_quant_conv(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.decoder(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE_ ) @apply_forward_hook def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_slicing and z.shape[0] > 1: UpperCamelCase__ = [self._decode(SCREAMING_SNAKE_CASE_ ).sample for z_slice in z.split(1 )] UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = self._decode(SCREAMING_SNAKE_CASE_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = min(a.shape[2] , b.shape[2] , SCREAMING_SNAKE_CASE_ ) for y in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = min(a.shape[3] , b.shape[3] , SCREAMING_SNAKE_CASE_ ) for x in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True ) -> AutoencoderKLOutput: '''simple docstring''' UpperCamelCase__ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCamelCase__ = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCamelCase__ = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCamelCase__ = [] for i in range(0 , x.shape[2] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for j in range(0 , x.shape[3] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCamelCase__ = self.encoder(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.quant_conv(SCREAMING_SNAKE_CASE_ ) row.append(SCREAMING_SNAKE_CASE_ ) rows.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [] for i, row in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for j, tile in enumerate(SCREAMING_SNAKE_CASE_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ = self.blend_v(rows[i - 1][j] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if j > 0: UpperCamelCase__ = self.blend_h(row[j - 1] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(SCREAMING_SNAKE_CASE_ , dim=3 ) ) UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=2 ) UpperCamelCase__ = DiagonalGaussianDistribution(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCamelCase__ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCamelCase__ = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCamelCase__ = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCamelCase__ = [] for i in range(0 , z.shape[2] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for j in range(0 , z.shape[3] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCamelCase__ = self.post_quant_conv(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.decoder(SCREAMING_SNAKE_CASE_ ) row.append(SCREAMING_SNAKE_CASE_ ) rows.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [] for i, row in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for j, tile in enumerate(SCREAMING_SNAKE_CASE_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ = self.blend_v(rows[i - 1][j] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if j > 0: UpperCamelCase__ = self.blend_h(row[j - 1] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(SCREAMING_SNAKE_CASE_ , dim=3 ) ) UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCamelCase__ = sample UpperCamelCase__ = self.encode(SCREAMING_SNAKE_CASE_ ).latent_dist if sample_posterior: UpperCamelCase__ = posterior.sample(generator=SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = posterior.mode() UpperCamelCase__ = self.decode(SCREAMING_SNAKE_CASE_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE_ )
469
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _A ( a_ ): '''simple docstring''' __lowerCamelCase : Optional[int] = "" __lowerCamelCase : Dict = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(self ,**SCREAMING_SNAKE_CASE_ ) snake_case : int = repo_info snake_case : Any = token snake_case : int = None def snake_case_ ( self ): '''simple docstring''' if self.dir_cache is None: snake_case : List[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes snake_case : int = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(SCREAMING_SNAKE_CASE_ ): {"""name""": str(SCREAMING_SNAKE_CASE_ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = "rb" ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' if not isinstance(self.repo_info ,SCREAMING_SNAKE_CASE_ ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) snake_case : str = hf_hub_url(self.repo_info.id ,SCREAMING_SNAKE_CASE_ ,revision=self.repo_info.sha ) return fsspec.open( SCREAMING_SNAKE_CASE_ ,mode=SCREAMING_SNAKE_CASE_ ,headers=get_authentication_headers_for_url(SCREAMING_SNAKE_CASE_ ,use_auth_token=self.token ) ,client_kwargs={"""trust_env""": True} ,).open() def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' self._get_dirs() snake_case : List[Any] = self._strip_protocol(SCREAMING_SNAKE_CASE_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=False ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' self._get_dirs() snake_case : Optional[int] = PurePosixPath(path.strip("""/""" ) ) snake_case : str = {} for p, f in self.dir_cache.items(): snake_case : Optional[Any] = PurePosixPath(p.strip("""/""" ) ) snake_case : int = p.parent if root == path: snake_case : int = f snake_case : Optional[int] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
36
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Optional[int] =field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCamelCase : bool =field( default=a_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) lowerCamelCase : Optional[int] =field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] =field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] =field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : str =field( default=a_ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : str =field( default=a_ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Train language if it is different from the evaluation language."} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : Optional[bool] =field( default=a_ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str =field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool =field( default=a_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def snake_case_ () -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""" , __A ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCAmelCase : int = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __lowerCAmelCase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __lowerCAmelCase : Union[str, Any] = load_dataset( """xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowerCAmelCase : List[str] = load_dataset( """xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Dict = train_dataset.features["""label"""].names if training_args.do_eval: __lowerCAmelCase : Tuple = load_dataset( """xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Optional[int] = eval_dataset.features["""label"""].names if training_args.do_predict: __lowerCAmelCase : List[Any] = load_dataset( """xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Optional[Any] = predict_dataset.features["""label"""].names # Labels __lowerCAmelCase : Optional[int] = len(__A ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , idalabel={str(__A ): label for i, label in enumerate(__A )} , labelaid={label: i for i, label in enumerate(__A )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase : List[str] = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase : int = False def preprocess_function(__A : List[str] ): # Tokenize the texts return tokenizer( examples["""premise"""] , examples["""hypothesis"""] , padding=__A , max_length=data_args.max_seq_length , truncation=__A , ) if training_args.do_train: if data_args.max_train_samples is not None: __lowerCAmelCase : Union[str, Any] = min(len(__A ) , data_args.max_train_samples ) __lowerCAmelCase : List[str] = train_dataset.select(range(__A ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): __lowerCAmelCase : Dict = train_dataset.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , ) # Log a few random samples from the training set: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: __lowerCAmelCase : str = min(len(__A ) , data_args.max_eval_samples ) __lowerCAmelCase : Optional[int] = eval_dataset.select(range(__A ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): __lowerCAmelCase : List[Any] = eval_dataset.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __lowerCAmelCase : Dict = min(len(__A ) , data_args.max_predict_samples ) __lowerCAmelCase : Optional[int] = predict_dataset.select(range(__A ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): __lowerCAmelCase : Union[str, Any] = predict_dataset.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , ) # Get the metric function __lowerCAmelCase : Optional[Any] = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): __lowerCAmelCase : Optional[int] = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions __lowerCAmelCase : Tuple = np.argmax(__A , axis=1 ) return metric.compute(predictions=__A , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase : Dict = default_data_collator elif training_args.fpaa: __lowerCAmelCase : Union[str, Any] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: __lowerCAmelCase : Optional[int] = None # Initialize our Trainer __lowerCAmelCase : Optional[int] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: __lowerCAmelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase : Tuple = last_checkpoint __lowerCAmelCase : List[str] = trainer.train(resume_from_checkpoint=__A ) __lowerCAmelCase : int = train_result.metrics __lowerCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) __lowerCAmelCase : Optional[int] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __A ) trainer.save_metrics("""train""" , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase : List[str] = trainer.evaluate(eval_dataset=__A ) __lowerCAmelCase : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) __lowerCAmelCase : List[Any] = min(__A , len(__A ) ) trainer.log_metrics("""eval""" , __A ) trainer.save_metrics("""eval""" , __A ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Any = trainer.predict(__A , metric_key_prefix="""predict""" ) __lowerCAmelCase : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__A ) ) __lowerCAmelCase : str = min(__A , len(__A ) ) trainer.log_metrics("""predict""" , __A ) trainer.save_metrics("""predict""" , __A ) __lowerCAmelCase : Any = np.argmax(__A , axis=1 ) __lowerCAmelCase : int = os.path.join(training_args.output_dir , """predictions.txt""" ) if trainer.is_world_process_zero(): with open(__A , """w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(__A ): __lowerCAmelCase : List[Any] = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
651
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Dict = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class _lowercase ( UpperCAmelCase__ ): _UpperCAmelCase = '''funnel''' _UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self : Tuple , __lowerCAmelCase : Tuple=3_0522 , __lowerCAmelCase : Optional[Any]=[4, 4, 4] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : List[Any]=768 , __lowerCAmelCase : Dict=12 , __lowerCAmelCase : List[str]=64 , __lowerCAmelCase : Optional[int]=3072 , __lowerCAmelCase : str="gelu_new" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=1E-9 , __lowerCAmelCase : Any="mean" , __lowerCAmelCase : List[str]="relative_shift" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=True , __lowerCAmelCase : Dict=True , **__lowerCAmelCase : str , ) -> int: """simple docstring""" a = vocab_size a = block_sizes a = [1] * len(__lowerCAmelCase ) if block_repeats is None else block_repeats assert len(__lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." a = num_decoder_layers a = d_model a = n_head a = d_head a = d_inner a = hidden_act a = hidden_dropout a = attention_dropout a = activation_dropout a = initializer_range a = initializer_std a = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" a = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" a = attention_type a = separate_cls a = truncate_seq a = pool_q_only super().__init__(**__lowerCAmelCase ) @property def A ( self : Tuple ) -> Any: """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def A ( self : str , __lowerCAmelCase : Dict ) -> Dict: """simple docstring""" raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def A ( self : List[Any] ) -> Optional[int]: """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def A ( self : List[str] , __lowerCAmelCase : int ) -> List[Any]: """simple docstring""" raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
32
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A_ : int = logging.getLogger(__name__) @dataclass class _lowercase : _UpperCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCAmelCase = field( default='''NER''', metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCAmelCase = field(default=UpperCAmelCase__, metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) @dataclass class _lowercase : _UpperCAmelCase = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''}, ) _UpperCAmelCase = field( default=128, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCAmelCase__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) a = import_module("tasks" ) try: a = getattr(UpperCAmelCase__ , model_args.task_type ) a = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , UpperCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task a = token_classification_task.get_labels(data_args.labels ) a = dict(enumerate(UpperCAmelCase__ ) ) a = len(UpperCAmelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase__ , idalabel=UpperCAmelCase__ , labelaid={label: i for i, label in enumerate(UpperCAmelCase__ )} , cache_dir=model_args.cache_dir , ) a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) a = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets a = ( TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a = ( TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(UpperCAmelCase__ :np.ndarray , UpperCAmelCase__ :np.ndarray ) -> Tuple[List[int], List[int]]: a = np.argmax(UpperCAmelCase__ , axis=2 ) a , a = preds.shape a = [[] for _ in range(UpperCAmelCase__ )] a = [[] for _ in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCAmelCase__ :EvalPrediction ) -> Dict: a , a = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(UpperCAmelCase__ , UpperCAmelCase__ ), "precision": precision_score(UpperCAmelCase__ , UpperCAmelCase__ ), "recall": recall_score(UpperCAmelCase__ , UpperCAmelCase__ ), "f1": fa_score(UpperCAmelCase__ , UpperCAmelCase__ ), } # Data collator a = DataCollatorWithPadding(UpperCAmelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , compute_metrics=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a = trainer.evaluate() a = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , UpperCAmelCase__ , UpperCAmelCase__ ) writer.write("%s = %s\n" % (key, value) ) results.update(UpperCAmelCase__ ) # Predict if training_args.do_predict: a = TokenClassificationDataset( token_classification_task=UpperCAmelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , labels=UpperCAmelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) a , a , a = trainer.predict(UpperCAmelCase__ ) a , a = align_predictions(UpperCAmelCase__ , UpperCAmelCase__ ) a = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , UpperCAmelCase__ , UpperCAmelCase__ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions a = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return results def UpperCAmelCase__ ( UpperCAmelCase__ :Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
32
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
'''simple docstring''' def lowercase__( _UpperCamelCase : str )-> str: """simple docstring""" return " ".join( "".join(word[::-1] ) if len(_UpperCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
138
0
"""simple docstring""" def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): A__ , A__ = len(__a ), len(grid[0] ) if ( min(__a ,__a ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A__ = 0 count += depth_first_search(__a ,row + 1 ,__a ,__a ) count += depth_first_search(__a ,row - 1 ,__a ,__a ) count += depth_first_search(__a ,__a ,col + 1 ,__a ) count += depth_first_search(__a ,__a ,col - 1 ,__a ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ = "cpu" ,lowerCAmelCase__ = None ): A__ = torch.load(lowerCAmelCase__ ,map_location=lowerCAmelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase__ ,torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) A__ = v.half() if save_path is None: # overwrite src_path A__ = src_path torch.save(lowerCAmelCase__ ,lowerCAmelCase__ ) if __name__ == "__main__": fire.Fire(convert)
554
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> Optional[Any]: _A = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] ) -> Optional[int]: _A , _A = emb.weight.shape _A = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) _A = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Tuple="facebook/mbart-large-en-ro" , _snake_case :Tuple=False , _snake_case :Optional[Any]=False ) -> Optional[int]: _A = torch.load(_snake_case , map_location='''cpu''' )['''model'''] remove_ignore_keys_(_snake_case ) _A = state_dict['''encoder.embed_tokens.weight'''].shape[0] _A = MBartConfig.from_pretrained(_snake_case , vocab_size=_snake_case ) if mbart_aa and finetuned: _A = '''relu''' _A = state_dict['''decoder.embed_tokens.weight'''] _A = MBartForConditionalGeneration(_snake_case ) model.model.load_state_dict(_snake_case ) if finetuned: _A = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
2
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def a_ ( _lowerCAmelCase : int = 200_0000 ): '''simple docstring''' lowercase__ : list[int] = [0] lowercase__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowercase__ : int = 0 # the area corresponding to the grid that gives the product closest to target lowercase__ : int = 0 # an estimate of b, using the quadratic formula lowercase__ : float # the largest integer less than b_estimate lowercase__ : int # the largest integer less than b_estimate lowercase__ : int # the triangle number corresponding to b_floor lowercase__ : int # the triangle number corresponding to b_ceil lowercase__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): lowercase__ : int = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowercase__ : Union[str, Any] = floor(_lowerCAmelCase ) lowercase__ : Tuple = ceil(_lowerCAmelCase ) lowercase__ : Optional[Any] = triangle_numbers[b_floor] lowercase__ : Optional[Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowercase__ : Union[str, Any] = triangle_b_first_guess * triangle_a lowercase__ : Optional[Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowercase__ : str = triangle_b_second_guess * triangle_a lowercase__ : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
599
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class __a : def __init__( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ,lowerCamelCase : str ,lowerCamelCase : float ): '''simple docstring''' if nodea not in self.connections: self.add_node(lowerCamelCase ) if nodea not in self.connections: self.add_node(lowerCamelCase ) __SCREAMING_SNAKE_CASE = probability def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list(self.connections ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> dict[str, int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = Counter(graph.get_nodes() ) __SCREAMING_SNAKE_CASE = start for _ in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = graph.transition(__UpperCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 ): '''simple docstring''' _lowerCAmelCase = right or len(SCREAMING_SNAKE_CASE_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: A__ : Tuple =1 for i in range(1, num + 1 ): fact *= i return fact def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: A__ : Optional[Any] =0 while number > 0: A__ : List[Any] =number % 1_0 sum_of_digits += last_digit A__ : str =number // 1_0 # Removing the last_digit from the given number return sum_of_digits def SCREAMING_SNAKE_CASE__ ( snake_case_ = 1_0_0 ) -> int: A__ : List[str] =factorial(snake_case_ ) A__ : str =split_and_add(snake_case_ ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
416
0
'''simple docstring''' def _UpperCAmelCase ( a : int ) -> bool: """simple docstring""" lowercase_ : Union[str, Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
7
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['transformers', 'torch', 'note_seq'] def __init__( self , *_lowercase , **_lowercase ) -> Dict: requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCamelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
7
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ : Union[str, Any] = """MobileNetV1Config""" # Base docstring SCREAMING_SNAKE_CASE__ : int = """google/mobilenet_v1_1.0_224""" SCREAMING_SNAKE_CASE__ : List[Any] = [1, 10_24, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ : Tuple = """google/mobilenet_v1_1.0_224""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """tabby, tabby cat""" SCREAMING_SNAKE_CASE__ : Tuple = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowercase ( snake_case, snake_case, snake_case=None ): """simple docstring""" __magic_name__ :str = {} if isinstance(snake_case, snake_case ): __magic_name__ :List[str] = model.mobilenet_va else: __magic_name__ :Union[str, Any] = model __magic_name__ :List[Any] = '''MobilenetV1/Conv2d_0/''' __magic_name__ :Union[str, Any] = backbone.conv_stem.convolution.weight __magic_name__ :str = backbone.conv_stem.normalization.bias __magic_name__ :Tuple = backbone.conv_stem.normalization.weight __magic_name__ :str = backbone.conv_stem.normalization.running_mean __magic_name__ :List[Any] = backbone.conv_stem.normalization.running_var for i in range(1_3 ): __magic_name__ :List[str] = i + 1 __magic_name__ :int = i * 2 __magic_name__ :Union[str, Any] = backbone.layer[pt_index] __magic_name__ :Any = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' __magic_name__ :Optional[int] = pointer.convolution.weight __magic_name__ :Union[str, Any] = pointer.normalization.bias __magic_name__ :Dict = pointer.normalization.weight __magic_name__ :Dict = pointer.normalization.running_mean __magic_name__ :List[str] = pointer.normalization.running_var __magic_name__ :Tuple = backbone.layer[pt_index + 1] __magic_name__ :Any = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' __magic_name__ :Tuple = pointer.convolution.weight __magic_name__ :int = pointer.normalization.bias __magic_name__ :int = pointer.normalization.weight __magic_name__ :Dict = pointer.normalization.running_mean __magic_name__ :int = pointer.normalization.running_var if isinstance(snake_case, snake_case ): __magic_name__ :Optional[int] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' __magic_name__ :Optional[int] = model.classifier.weight __magic_name__ :List[Any] = model.classifier.bias return tf_to_pt_map def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model __magic_name__ :Optional[Any] = tf.train.list_variables(snake_case ) __magic_name__ :Optional[Any] = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''' ) __magic_name__ :Optional[Any] = tf.train.load_variable(snake_case, snake_case ) __magic_name__ :str = array # Build TF to PyTorch weights loading map __magic_name__ :Any = _build_tf_to_pytorch_map(snake_case, snake_case, snake_case ) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''' ) if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''' ) continue __magic_name__ :List[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) __magic_name__ :Any = np.transpose(snake_case, (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer __magic_name__ :Dict = array.squeeze().transpose() else: __magic_name__ :Optional[Any] = np.transpose(snake_case, (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' ) __magic_name__ :List[str] = torch.from_numpy(snake_case ) tf_weights.pop(snake_case, snake_case ) tf_weights.pop(name + '''/RMSProp''', snake_case ) tf_weights.pop(name + '''/RMSProp_1''', snake_case ) tf_weights.pop(name + '''/ExponentialMovingAverage''', snake_case ) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ , __magic_name__ :int = features.shape[-2:] __magic_name__ , __magic_name__ :Optional[Any] = conv_layer.stride __magic_name__ , __magic_name__ :Dict = conv_layer.kernel_size if in_height % stride_height == 0: __magic_name__ :Optional[int] = max(kernel_height - stride_height, 0 ) else: __magic_name__ :List[Any] = max(kernel_height - (in_height % stride_height), 0 ) if in_width % stride_width == 0: __magic_name__ :Any = max(kernel_width - stride_width, 0 ) else: __magic_name__ :str = max(kernel_width - (in_width % stride_width), 0 ) __magic_name__ :Tuple = pad_along_width // 2 __magic_name__ :Any = pad_along_width - pad_left __magic_name__ :Union[str, Any] = pad_along_height // 2 __magic_name__ :str = pad_along_height - pad_top __magic_name__ :Optional[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case, snake_case, '''constant''', 0.0 ) class lowerCamelCase_ ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 , __lowerCAmelCase = 1 , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = True , ): """simple docstring""" super().__init__() __magic_name__ :List[str] = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) __magic_name__ :Union[str, Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __magic_name__ :Union[str, Any] = nn.Convad( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=__lowerCAmelCase , stride=__lowerCAmelCase , padding=__lowerCAmelCase , groups=__lowerCAmelCase , bias=__lowerCAmelCase , padding_mode='''zeros''' , ) if use_normalization: __magic_name__ :Tuple = nn.BatchNormad( num_features=__lowerCAmelCase , eps=config.layer_norm_eps , momentum=0.9997 , affine=__lowerCAmelCase , track_running_stats=__lowerCAmelCase , ) else: __magic_name__ :Optional[Any] = None if use_activation: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __magic_name__ :Optional[int] = ACTaFN[use_activation] elif isinstance(config.hidden_act , __lowerCAmelCase ): __magic_name__ :Any = ACTaFN[config.hidden_act] else: __magic_name__ :Union[str, Any] = config.hidden_act else: __magic_name__ :List[Any] = None def A ( self , __lowerCAmelCase ): """simple docstring""" if self.config.tf_padding: __magic_name__ :Optional[Any] = apply_tf_padding(__lowerCAmelCase , self.convolution ) __magic_name__ :str = self.convolution(__lowerCAmelCase ) if self.normalization is not None: __magic_name__ :Optional[int] = self.normalization(__lowerCAmelCase ) if self.activation is not None: __magic_name__ :int = self.activation(__lowerCAmelCase ) return features class lowerCamelCase_ ( lowerCamelCase ): a__ = MobileNetVaConfig a__ = load_tf_weights_in_mobilenet_va a__ = '''mobilenet_v1''' a__ = '''pixel_values''' a__ = False def A ( self , __lowerCAmelCase ): """simple docstring""" if isinstance(__lowerCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCAmelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) SCREAMING_SNAKE_CASE__ : str = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE__ : str = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , lowerCamelCase , ) class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = True ): """simple docstring""" super().__init__(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = config __magic_name__ :Optional[Any] = 3_2 __magic_name__ :List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) __magic_name__ :List[Any] = MobileNetVaConvLayer( __lowerCAmelCase , in_channels=config.num_channels , out_channels=__lowerCAmelCase , kernel_size=3 , stride=2 , ) __magic_name__ :Dict = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __magic_name__ :Dict = nn.ModuleList() for i in range(1_3 ): __magic_name__ :Optional[int] = out_channels if strides[i] == 2 or i == 0: depth *= 2 __magic_name__ :Union[str, Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __lowerCAmelCase , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=3 , stride=strides[i] , groups=__lowerCAmelCase , ) ) self.layer.append( MobileNetVaConvLayer( __lowerCAmelCase , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=1 , ) ) __magic_name__ :Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def A ( self , __lowerCAmelCase ): """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ): """simple docstring""" __magic_name__ :Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __magic_name__ :Dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) __magic_name__ :str = self.conv_stem(__lowerCAmelCase ) __magic_name__ :Optional[int] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __magic_name__ :int = layer_module(__lowerCAmelCase ) if output_hidden_states: __magic_name__ :List[str] = all_hidden_states + (hidden_states,) __magic_name__ :Tuple = hidden_states if self.pooler is not None: __magic_name__ :Optional[int] = torch.flatten(self.pooler(__lowerCAmelCase ) , start_dim=1 ) else: __magic_name__ :Optional[int] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCAmelCase , pooler_output=__lowerCAmelCase , hidden_states=__lowerCAmelCase , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowerCamelCase , ) class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) __magic_name__ :Optional[Any] = config.num_labels __magic_name__ :List[str] = MobileNetVaModel(__lowerCAmelCase ) __magic_name__ :Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __magic_name__ :int = nn.Dropout(config.classifier_dropout_prob , inplace=__lowerCAmelCase ) __magic_name__ :Union[str, Any] = nn.Linear(__lowerCAmelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ): """simple docstring""" __magic_name__ :Tuple = return_dict if return_dict is not None else self.config.use_return_dict __magic_name__ :List[str] = self.mobilenet_va(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase ) __magic_name__ :str = outputs.pooler_output if return_dict else outputs[1] __magic_name__ :Any = self.classifier(self.dropout(__lowerCAmelCase ) ) __magic_name__ :Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __magic_name__ :List[str] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __magic_name__ :Union[str, Any] = '''single_label_classification''' else: __magic_name__ :Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": __magic_name__ :int = MSELoss() if self.num_labels == 1: __magic_name__ :Dict = loss_fct(logits.squeeze() , labels.squeeze() ) else: __magic_name__ :str = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": __magic_name__ :Optional[Any] = CrossEntropyLoss() __magic_name__ :int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __magic_name__ :Optional[Any] = BCEWithLogitsLoss() __magic_name__ :Union[str, Any] = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) if not return_dict: __magic_name__ :Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states , )
0
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = CanineTokenizer __UpperCAmelCase : int = False def _UpperCamelCase ( self ): super().setUp() lowerCamelCase_ : int = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): return CanineTokenizer.from_pretrained("google/canine-s" ) def _UpperCamelCase ( self , **a_ ): lowerCamelCase_ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) lowerCamelCase_ : Dict = 1024 return tokenizer @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.canine_tokenizer lowerCamelCase_ : str = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off lowerCamelCase_ : Dict = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on lowerCamelCase_ : List[Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) self.assertIsInstance(a_ , a_ ) lowerCamelCase_ : List[str] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(a_ , a_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Any = self.canine_tokenizer lowerCamelCase_ : Tuple = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] lowerCamelCase_ : Union[str, Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , a_ ) self.assertIn("attention_mask" , a_ ) self.assertIn("token_type_ids" , a_ ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : int = self.canine_tokenizer lowerCamelCase_ : Tuple = [ "What's the weater?", "It's about 25 degrees.", ] lowerCamelCase_ : Optional[Any] = tokenizer( text_target=a_ , max_length=32 , padding="max_length" , truncation=a_ , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _UpperCamelCase ( self ): # safety check on max_len default value so we are sure the test works lowerCamelCase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : Optional[int] = tempfile.mkdtemp() lowerCamelCase_ : Dict = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Optional[int] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Union[str, Any] = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : List[Any] = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) shutil.rmtree(a_ ) lowerCamelCase_ : List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : List[Any] = tempfile.mkdtemp() lowerCamelCase_ : Tuple = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Dict = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCamelCase_ : List[str] = chr(0Xe007 ) additional_special_tokens.append(a_ ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Any = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : Any = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) self.assertIn(a_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase_ : int = tokenizer.__class__.from_pretrained(a_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ ,lowerCamelCase_ : str = self.get_clean_sequence(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Tuple = 0Xe005 lowerCamelCase_ : Dict = chr(a_ ) tokenizer.add_special_tokens({"cls_token": special_token} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(len(a_ ) , 1 ) lowerCamelCase_ : List[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=a_ ) lowerCamelCase_ : List[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(a_ , input_encoded + special_token_id ) lowerCamelCase_ : Optional[int] = tokenizer.decode(a_ , skip_special_tokens=a_ ) self.assertTrue(special_token not in decoded ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Optional[int] = chr(0Xe005 ) lowerCamelCase_ : str = chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=a_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) lowerCamelCase_ : Tuple = tokenizer.tokenize(a_ ) lowerCamelCase_ : List[Any] = tokenizer.tokenize(a_ ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(token_a[0] , a_ ) self.assertEqual(token_a[0] , a_ ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: lowerCamelCase_ : List[str] = 0Xe006 lowerCamelCase_ : Any = chr(a_ ) lowerCamelCase_ : str = AddedToken(a_ , lstrip=a_ ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(a_ ) tokenizer.from_pretrained(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : List[Any] = json.load(a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : int = json.load(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Any = 0Xe006 lowerCamelCase_ : List[Any] = chr(a_ ) lowerCamelCase_ : Any = [new_token_a] lowerCamelCase_ : Optional[Any] = [new_token_a] with open(os.path.join(a_ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase_ : str = tokenizer_class.from_pretrained(a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCamelCase_ : Optional[int] = 0Xe007 lowerCamelCase_ : List[str] = chr(a_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase_ : int = [AddedToken(a_ , lstrip=a_ )] lowerCamelCase_ : Dict = tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Union[str, Any] = "hello world" if self.space_between_special_tokens: lowerCamelCase_ : int = "[CLS] hello world [SEP]" else: lowerCamelCase_ : int = input lowerCamelCase_ : Optional[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.decode(a_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(a_ , [output, output.lower()] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Tuple = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowerCamelCase_ : Optional[int] = "a" lowerCamelCase_ : Dict = ord(a_ ) for attr in attributes_list: setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [] ) lowerCamelCase_ : Optional[int] = 0Xe006 lowerCamelCase_ : List[str] = chr(a_ ) setattr(a_ , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass
250
0
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) set_seed(770) lowerCamelCase__ : Union[str, Any] = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } lowerCamelCase__ : List[str] = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } lowerCamelCase__ : Optional[Any] = os.path.dirname(os.path.abspath(__file__)) lowerCamelCase__ : int = os.path.join(os.path.expanduser("~"), ".cache") lowerCamelCase__ : Dict = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def __A ( a_ : List[Any] , a_ : Dict=False )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = model_type if use_small: key += "_small" return os.path.join(a_ , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def __A ( a_ : List[Any] , a_ : Any )-> List[Any]: '''simple docstring''' os.makedirs(a_ , exist_ok=a_ ) hf_hub_download(repo_id=a_ , filename=a_ , local_dir=a_ ) def __A ( a_ : Dict , a_ : int , a_ : Dict=False , a_ : Dict="text" )-> str: '''simple docstring''' if model_type == "text": SCREAMING_SNAKE_CASE : List[Any] = BarkSemanticModel SCREAMING_SNAKE_CASE : int = BarkSemanticConfig SCREAMING_SNAKE_CASE : Any = BarkSemanticGenerationConfig elif model_type == "coarse": SCREAMING_SNAKE_CASE : Union[str, Any] = BarkCoarseModel SCREAMING_SNAKE_CASE : Optional[int] = BarkCoarseConfig SCREAMING_SNAKE_CASE : str = BarkCoarseGenerationConfig elif model_type == "fine": SCREAMING_SNAKE_CASE : Dict = BarkFineModel SCREAMING_SNAKE_CASE : Optional[Any] = BarkFineConfig SCREAMING_SNAKE_CASE : str = BarkFineGenerationConfig else: raise NotImplementedError() SCREAMING_SNAKE_CASE : Any = F"{model_type}_small" if use_small else model_type SCREAMING_SNAKE_CASE : List[Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(a_ ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) SCREAMING_SNAKE_CASE : List[Any] = torch.load(a_ , map_location=a_ ) # this is a hack SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: SCREAMING_SNAKE_CASE : Optional[Any] = model_args['vocab_size'] SCREAMING_SNAKE_CASE : Optional[Any] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments SCREAMING_SNAKE_CASE : Any = model_args.pop('''n_head''' ) SCREAMING_SNAKE_CASE : Tuple = model_args.pop('''n_embd''' ) SCREAMING_SNAKE_CASE : int = model_args.pop('''n_layer''' ) SCREAMING_SNAKE_CASE : str = ConfigClass(**checkpoint['''model_args'''] ) SCREAMING_SNAKE_CASE : List[str] = ModelClass(config=a_ ) SCREAMING_SNAKE_CASE : List[Any] = GenerationConfigClass() SCREAMING_SNAKE_CASE : Optional[Any] = model_generation_config SCREAMING_SNAKE_CASE : int = checkpoint['model'] # fixup checkpoint SCREAMING_SNAKE_CASE : Optional[Any] = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(a_ ): # replace part of the key with corresponding layer name in HF implementation SCREAMING_SNAKE_CASE : Union[str, Any] = k[len(a_ ) :] for old_layer_name in new_layer_name_dict: SCREAMING_SNAKE_CASE : List[Any] = new_k.replace(a_ , new_layer_name_dict[old_layer_name] ) SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) SCREAMING_SNAKE_CASE : List[str] = {k for k in extra_keys if not k.endswith('''.attn.bias''' )} SCREAMING_SNAKE_CASE : Union[str, Any] = set(model.state_dict().keys() ) - set(state_dict.keys() ) SCREAMING_SNAKE_CASE : Optional[Any] = {k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(a_ ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(a_ ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(a_ , strict=a_ ) SCREAMING_SNAKE_CASE : int = model.num_parameters(exclude_embeddings=a_ ) SCREAMING_SNAKE_CASE : List[Any] = checkpoint['best_val_loss'].item() logger.info(F"model loaded: {round(n_params/1E6 , 1 )}M params, {round(a_ , 3 )} loss" ) model.eval() model.to(a_ ) del checkpoint, state_dict return model def __A ( a_ : Optional[int] , a_ : Optional[int]=False , a_ : Union[str, Any]="text" )-> Dict: '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() SCREAMING_SNAKE_CASE : List[str] = 'cpu' # do conversion on cpu SCREAMING_SNAKE_CASE : str = _get_ckpt_path(a_ , use_small=a_ ) SCREAMING_SNAKE_CASE : List[Any] = _load_model(a_ , a_ , model_type=a_ , use_small=a_ ) # load bark initial model SCREAMING_SNAKE_CASE : Optional[int] = _bark_load_model(a_ , '''cpu''' , model_type=a_ , use_small=a_ ) if model_type == "text": SCREAMING_SNAKE_CASE : str = bark_model['model'] if model.num_parameters(exclude_embeddings=a_ ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model SCREAMING_SNAKE_CASE : Optional[Any] = 5 SCREAMING_SNAKE_CASE : Optional[Any] = 10 if model_type in ["text", "coarse"]: SCREAMING_SNAKE_CASE : Any = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) SCREAMING_SNAKE_CASE : Union[str, Any] = bark_model(a_ )[0] SCREAMING_SNAKE_CASE : Optional[int] = model(a_ ) # take last logits SCREAMING_SNAKE_CASE : List[Any] = output_new_model_total.logits[:, [-1], :] else: SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : List[str] = 8 SCREAMING_SNAKE_CASE : str = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a_ , a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = bark_model(a_ , a_ ) SCREAMING_SNAKE_CASE : List[str] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('''initial and new outputs are not equal''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) def __A ( a_ : List[str] , a_ : Dict , a_ : Optional[int] , a_ : int , a_ : List[str] , a_ : str , )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.join(a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = BarkSemanticConfig.from_pretrained(os.path.join(a_ , '''config.json''' ) ) SCREAMING_SNAKE_CASE : List[Any] = BarkCoarseConfig.from_pretrained(os.path.join(a_ , '''config.json''' ) ) SCREAMING_SNAKE_CASE : Any = BarkFineConfig.from_pretrained(os.path.join(a_ , '''config.json''' ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) SCREAMING_SNAKE_CASE : List[str] = BarkSemanticModel.from_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = BarkCoarseModel.from_pretrained(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = BarkFineModel.from_pretrained(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) SCREAMING_SNAKE_CASE : List[Any] = BarkConfig.from_sub_model_configs( a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : Optional[int] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) SCREAMING_SNAKE_CASE : Union[str, Any] = BarkModel(a_ ) SCREAMING_SNAKE_CASE : List[Any] = semantic SCREAMING_SNAKE_CASE : int = coarseAcoustic SCREAMING_SNAKE_CASE : Union[str, Any] = fineAcoustic SCREAMING_SNAKE_CASE : Any = codec SCREAMING_SNAKE_CASE : Dict = bark_generation_config Path(a_ ).mkdir(exist_ok=a_ ) bark.save_pretrained(a_ , repo_id=a_ , push_to_hub=a_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") lowerCamelCase__ : Optional[int] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
716
"""simple docstring""" from __future__ import annotations from fractions import Fraction def __A ( a_ : int , a_ : int )-> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __A ( a_ : int )-> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[str] = 11 SCREAMING_SNAKE_CASE : Union[str, Any] = int('''1''' + '''0''' * digit_len ) for num in range(a_ , a_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a_ , a_ ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 return solutions def __A ( a_ : int = 2 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 for fraction in fraction_list(a_ ): SCREAMING_SNAKE_CASE : List[str] = Fraction(a_ ) result *= frac.denominator / frac.numerator return int(a_ ) if __name__ == "__main__": print(solution())
18
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowerCAmelCase = "pt" elif is_tf_available(): __lowerCAmelCase = "tf" else: __lowerCAmelCase = "jax" class __SCREAMING_SNAKE_CASE (__A , unittest.TestCase ): """simple docstring""" _a : List[Any] = ByTaTokenizer _a : Optional[Any] = False def _a ( self ): """simple docstring""" super().setUp() a_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _a ( self ): """simple docstring""" return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _a ( self , **UpperCamelCase__ ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _a ( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=20 , UpperCamelCase__=5 ): """simple docstring""" a_ = [] for i in range(len(UpperCamelCase__ ) ): try: a_ = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) a_ = list(filter(lambda UpperCamelCase__ : re.match(R'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase__ ) ) a_ = list(filter(lambda UpperCamelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase__ ) , UpperCamelCase__ ) ) if max_length is not None and len(UpperCamelCase__ ) > max_length: a_ = toks[:max_length] if min_length is not None and len(UpperCamelCase__ ) < min_length and len(UpperCamelCase__ ) > 0: while len(UpperCamelCase__ ) < min_length: a_ = toks + toks # toks_str = [t[1] for t in toks] a_ = [t[0] for t in toks] # Ensure consistency a_ = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) if " " not in output_txt and len(UpperCamelCase__ ) > 1: a_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase__ ) ) if with_prefix_space: a_ = ' ' + output_txt a_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) return output_txt, output_ids def _a ( self ): """simple docstring""" a_ = self.ta_base_tokenizer a_ = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) a_ = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _a ( self ): """simple docstring""" a_ = self.ta_base_tokenizer a_ = 'Unicode €.' a_ = tokenizer(UpperCamelCase__ ) a_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase__ ) # decoding a_ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , 'Unicode €.</s>' ) a_ = tokenizer('e è é ê ë' ) a_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase__ ) # decoding a_ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _a ( self ): """simple docstring""" a_ = self.ta_base_tokenizer a_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off a_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on a_ = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) if FRAMEWORK != "jax": a_ = list(batch.input_ids.numpy()[0] ) else: a_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _a ( self ): """simple docstring""" a_ = self.ta_base_tokenizer a_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] a_ = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase__ ) self.assertIn('attention_mask' , UpperCamelCase__ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase__ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase__ ) def _a ( self ): """simple docstring""" a_ = self.ta_base_tokenizer a_ = [ 'Summary of the text.', 'Another summary.', ] a_ = tokenizer( text_target=UpperCamelCase__ , max_length=32 , padding='max_length' , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _a ( self ): """simple docstring""" a_ = self.ta_base_tokenizer a_ = ['A long paragraph for summarization. </s>'] a_ = ['Summary of the text. </s>'] # fmt: off a_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] a_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on a_ = tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase__ , batch['labels'][0] ) def _a ( self ): """simple docstring""" a_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test a_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc a_ = tempfile.mkdtemp() a_ = ' He is very happy, UNwant\u00E9d,running' a_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) a_ = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) a_ = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) a_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc a_ = tempfile.mkdtemp() a_ = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) a_ = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) a_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) a_ = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) a_ = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) a_ = tokenizer.__class__.from_pretrained(UpperCamelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase__ ) def _a ( self ): """simple docstring""" a_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: a_ = json.load(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: a_ = json.load(UpperCamelCase__ ) a_ = [f'<extra_id_{i}>' for i in range(125 )] a_ = added_tokens_extra_ids + [ 'an_additional_special_token' ] a_ = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a_ = tokenizer_class.from_pretrained( UpperCamelCase__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a_ = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase__ )] a_ = tokenizer_class.from_pretrained( UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _a ( self ): """simple docstring""" a_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) a_ = tokenizer_class.from_pretrained(UpperCamelCase__ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def _a ( self ): """simple docstring""" pass def _a ( self ): """simple docstring""" pass def _a ( self ): """simple docstring""" pass def _a ( self ): """simple docstring""" pass def _a ( self ): """simple docstring""" a_ = self.get_tokenizers(fast=UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): a_ = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] a_ = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def _a ( self ): """simple docstring""" a_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): a_ = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] a_ = 0 a_ = tokenizer.convert_ids_to_tokens( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for attr in attributes_list: setattr(UpperCamelCase__ , attr + '_id' , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + '_id' ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , attr + '_id' , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + '_id' ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase__ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
536
'''simple docstring''' import math import qiskit def __UpperCamelCase ( lowercase_ : int = 1 , lowercase_ : int = 1 , lowercase_ : int = 1 ): """simple docstring""" if ( isinstance(lowercase_ , lowercase_ ) or isinstance(lowercase_ , lowercase_ ) or isinstance(lowercase_ , lowercase_ ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(lowercase_ ) != input_a) or (math.floor(lowercase_ ) != input_a) or (math.floor(lowercase_ ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers a_ = qiskit.QuantumRegister(4 , 'qr' ) a_ = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries a_ = [input_a, input_a, carry_in] a_ = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowercase_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowercase_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowercase_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowercase_ ) # measure the last two qbits a_ = qiskit.Aer.get_backend('aer_simulator' ) a_ = qiskit.execute(lowercase_ , lowercase_ , shots=1_000 ) return job.result().get_counts(lowercase_ ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
536
1
'''simple docstring''' from collections import deque from .hash_table import HashTable class __magic_name__ ( lowerCAmelCase ): def __init__( self , *snake_case , **snake_case) -> Optional[int]: '''simple docstring''' super().__init__(*snake_case , **snake_case) def lowerCAmelCase ( self , snake_case , snake_case) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : int =deque([]) if self.values[key] is None else self.values[key] self.values[key].appendleft(snake_case) _UpperCAmelCase : List[Any] =self.values[key] def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' return ( sum(self.charge_factor - len(snake_case) for slot in self.values) / self.size_table * self.charge_factor ) def lowerCAmelCase ( self , snake_case , snake_case=None) -> int: '''simple docstring''' if not ( len(self.values[key]) == self.charge_factor and self.values.count(snake_case) == 0 ): return key return super()._collision_resolution(snake_case , snake_case)
331
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =None UpperCAmelCase =BloomTokenizerFast UpperCAmelCase =BloomTokenizerFast UpperCAmelCase =True UpperCAmelCase =False UpperCAmelCase ="tokenizer_file" UpperCAmelCase ={"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def lowerCAmelCase ( self) -> Any: '''simple docstring''' super().setUp() _UpperCAmelCase : Union[str, Any] =BloomTokenizerFast.from_pretrained('bigscience/tokenizer') tokenizer.save_pretrained(self.tmpdirname) def lowerCAmelCase ( self , **snake_case) -> List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **snake_case) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] =self.get_rust_tokenizer() _UpperCAmelCase : Any =['The quick brown fox</s>', 'jumps over the lazy dog</s>'] _UpperCAmelCase : int =[[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] _UpperCAmelCase : Tuple =tokenizer.batch_encode_plus(snake_case)['input_ids'] self.assertListEqual(snake_case , snake_case) _UpperCAmelCase : Any =tokenizer.batch_decode(snake_case) self.assertListEqual(snake_case , snake_case) def lowerCAmelCase ( self , snake_case=6) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase : Optional[int] =self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _UpperCAmelCase : Dict ='This is a simple input' _UpperCAmelCase : str =['This is a simple input 1', 'This is a simple input 2'] _UpperCAmelCase : List[Any] =('This is a simple input', 'This is a pair') _UpperCAmelCase : Union[str, Any] =[ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(snake_case , max_length=snake_case) tokenizer_r.encode_plus(snake_case , max_length=snake_case) tokenizer_r.batch_encode_plus(snake_case , max_length=snake_case) tokenizer_r.encode(snake_case , max_length=snake_case) tokenizer_r.batch_encode_plus(snake_case , max_length=snake_case) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding') _UpperCAmelCase : Tuple =None # Hotfixing padding = None self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length') # Simple input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length') # Simple input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length') # Pair input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length') # Pair input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict =self.get_rust_tokenizer() _UpperCAmelCase : List[Any] =load_dataset('xnli' , 'all_languages' , split='test' , streaming=snake_case) _UpperCAmelCase : List[Any] =next(iter(snake_case))['premise'] # pick up one data _UpperCAmelCase : Union[str, Any] =list(sample_data.values()) _UpperCAmelCase : Dict =list(map(tokenizer.encode , snake_case)) _UpperCAmelCase : Optional[Any] =[tokenizer.decode(snake_case , clean_up_tokenization_spaces=snake_case) for x in output_tokens] self.assertListEqual(snake_case , snake_case) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
331
1
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _snake_case : def __init__( self ,_snake_case ,_snake_case=13 ,_snake_case=30 ,_snake_case=2 ,_snake_case=3 ,_snake_case=True ,_snake_case=True ,_snake_case=32 ,_snake_case=5 ,_snake_case=4 ,_snake_case=37 ,_snake_case="gelu" ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=10 ,_snake_case=0.02 ,_snake_case=3 ,_snake_case=None ,_snake_case=2 ,): UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : List[Any] = image_size UpperCAmelCase_ : Dict = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = type_sequence_label_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase_ : List[str] = (image_size // patch_size) ** 2 UpperCAmelCase_ : Union[str, Any] = num_patches + 2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : int = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : List[str] = DeiTModel(config=_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase_ : Dict = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : int = DeiTForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase_ : Dict = model(_snake_case ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : int = DeiTForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Tuple = model(_snake_case ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Optional[int] = self.type_sequence_label_size UpperCAmelCase_ : List[Any] = DeiTForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase_ : Dict = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : Tuple = DeiTForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : int = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[str] = config_and_inputs UpperCAmelCase_ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Optional[Any] =( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __A : str =( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __A : Optional[int] =False __A : Optional[Any] =False __A : List[str] =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = DeiTModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ,hidden_size=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Any = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_snake_case ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case=False ): UpperCAmelCase_ : str = super()._prepare_for_class(_snake_case ,_snake_case ,return_labels=_snake_case ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ): if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : int = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_snake_case ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase_ : Dict = model_class(_snake_case ) model.to(_snake_case ) model.train() UpperCAmelCase_ : Any = self._prepare_for_class(_snake_case ,_snake_case ,return_labels=_snake_case ) UpperCAmelCase_ : Union[str, Any] = model(**_snake_case ).loss loss.backward() def UpperCamelCase__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase_ : Optional[Any] = model_class(_snake_case ) model.gradient_checkpointing_enable() model.to(_snake_case ) model.train() UpperCAmelCase_ : Union[str, Any] = self._prepare_for_class(_snake_case ,_snake_case ,return_labels=_snake_case ) UpperCAmelCase_ : Dict = model(**_snake_case ).loss loss.backward() def UpperCamelCase__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_snake_case ), *get_values(_snake_case ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): UpperCAmelCase_ : Tuple = problem_type["title"] UpperCAmelCase_ : Dict = problem_type["num_labels"] UpperCAmelCase_ : int = model_class(_snake_case ) model.to(_snake_case ) model.train() UpperCAmelCase_ : List[Any] = self._prepare_for_class(_snake_case ,_snake_case ,return_labels=_snake_case ) if problem_type["num_labels"] > 1: UpperCAmelCase_ : Tuple = inputs["labels"].unsqueeze(1 ).repeat(1 ,problem_type["num_labels"] ) UpperCAmelCase_ : Optional[Any] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_snake_case ) as warning_list: UpperCAmelCase_ : Dict = model(**_snake_case ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCamelCase__ ( self ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[str] = DeiTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def a__ ( ) -> str: """simple docstring""" UpperCAmelCase_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case (unittest.TestCase): @cached_property def UpperCamelCase__ ( self ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( _snake_case ) UpperCAmelCase_ : Union[str, Any] = self.default_image_processor UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=_snake_case ,return_tensors="pt" ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_snake_case ) # verify the logits UpperCAmelCase_ : Optional[int] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,_snake_case ) UpperCAmelCase_ : Tuple = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" ,torch_dtype=torch.floataa ,device_map="auto" ) UpperCAmelCase_ : Optional[Any] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[str] = image_processor(images=_snake_case ,return_tensors="pt" ) UpperCAmelCase_ : Union[str, Any] = inputs.pixel_values.to(_snake_case ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(_snake_case )
71
import datasets from .evaluate import evaluate SCREAMING_SNAKE_CASE : Union[str, Any] = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" SCREAMING_SNAKE_CASE : List[Any] = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" SCREAMING_SNAKE_CASE : Any = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): def A ( self ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def A ( self , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: """simple docstring""" a_ : Optional[int] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} a_ : Dict = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] a_ : Optional[Any] = evaluate(dataset=UpperCamelCase_ , predictions=UpperCamelCase_ ) return score
419
0
def _lowerCAmelCase ( _a : int = 10**9 ) -> Optional[Any]: lowerCAmelCase_ : Union[str, Any] = 1 lowerCAmelCase_ : Dict = 2 lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Dict = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase_ : List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
720
from collections.abc import Generator from math import sin def _lowerCAmelCase ( _a : bytes ) -> bytes: if len(_a ) != 32: raise ValueError("""Input must be of length 32""" ) lowerCAmelCase_ : Any = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _lowerCAmelCase ( _a : int ) -> bytes: if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCAmelCase_ : Tuple = format(_a , """08x""" )[-8:] lowerCAmelCase_ : Any = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def _lowerCAmelCase ( _a : bytes ) -> bytes: lowerCAmelCase_ : Tuple = B"""""" for char in message: bit_string += format(_a , """08b""" ).encode("""utf-8""" ) lowerCAmelCase_ : Dict = format(len(_a ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_a ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _lowerCAmelCase ( _a : bytes ) -> Generator[list[int], None, None]: if len(_a ) % 5_12 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(_a ) , 5_12 ): lowerCAmelCase_ : int = bit_string[pos : pos + 5_12] lowerCAmelCase_ : Any = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _lowerCAmelCase ( _a : int ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCAmelCase_ : List[str] = format(_a , """032b""" ) lowerCAmelCase_ : Optional[int] = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(_a , 2 ) def _lowerCAmelCase ( _a : int , _a : int ) -> int: return (a + b) % 2**32 def _lowerCAmelCase ( _a : int , _a : int ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _lowerCAmelCase ( _a : bytes ) -> bytes: lowerCAmelCase_ : Union[str, Any] = preprocess(_a ) lowerCAmelCase_ : Optional[int] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCAmelCase_ : Tuple = 0X67452301 lowerCAmelCase_ : Optional[int] = 0XEFCDAB89 lowerCAmelCase_ : Tuple = 0X98BADCFE lowerCAmelCase_ : Tuple = 0X10325476 lowerCAmelCase_ : Dict = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_a ): lowerCAmelCase_ : int = aa lowerCAmelCase_ : Any = ba lowerCAmelCase_ : List[str] = ca lowerCAmelCase_ : Optional[Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCAmelCase_ : int = d ^ (b & (c ^ d)) lowerCAmelCase_ : List[Any] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCAmelCase_ : List[Any] = c ^ (d & (b ^ c)) lowerCAmelCase_ : Optional[Any] = (5 * i + 1) % 16 elif i <= 47: lowerCAmelCase_ : Union[str, Any] = b ^ c ^ d lowerCAmelCase_ : Optional[Any] = (3 * i + 5) % 16 else: lowerCAmelCase_ : Any = c ^ (b | not_aa(_a )) lowerCAmelCase_ : List[str] = (7 * i) % 16 lowerCAmelCase_ : Tuple = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCAmelCase_ : Tuple = d lowerCAmelCase_ : Optional[Any] = c lowerCAmelCase_ : Dict = b lowerCAmelCase_ : List[Any] = sum_aa(_a , left_rotate_aa(_a , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCAmelCase_ : Optional[int] = sum_aa(_a , _a ) lowerCAmelCase_ : Optional[int] = sum_aa(_a , _a ) lowerCAmelCase_ : Dict = sum_aa(_a , _a ) lowerCAmelCase_ : Tuple = sum_aa(_a , _a ) lowerCAmelCase_ : int = reformat_hex(_a ) + reformat_hex(_a ) + reformat_hex(_a ) + reformat_hex(_a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
440
0
def a__ ( A__ = 6_0_0_8_5_1_4_7_5_1_4_3 ): try: SCREAMING_SNAKE_CASE_ : Optional[int] = int(A__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 SCREAMING_SNAKE_CASE_ : Tuple = i while n % i == 0: SCREAMING_SNAKE_CASE_ : Tuple = n // i i += 1 return int(A__ ) if __name__ == "__main__": print(F"""{solution() = }""")
101
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Dict = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
442
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default="cifar10", metadata={"help": "Name of a dataset from the datasets package"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The column name of the images in the files."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "A folder containing the training data."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "A folder containing the validation data."} ) UpperCAmelCase = field( default=0.1_5, metadata={"help": "Percent to split off of train for validation."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = {} if self.train_dir is not None: _UpperCamelCase = self.train_dir if self.validation_dir is not None: _UpperCamelCase = self.validation_dir _UpperCamelCase = data_files if data_files else None @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) UpperCAmelCase = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Name or path of preprocessor config."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) UpperCAmelCase = field( default=0.7_5, metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = field( default=1e-3, metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def _snake_case ( __snake_case ): _UpperCamelCase = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , __snake_case , __snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase = training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. _UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCamelCase = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __snake_case ) and data_args.train_val_split > 0.0: _UpperCamelCase = ds['''train'''].train_test_split(data_args.train_val_split ) _UpperCamelCase = split['''train'''] _UpperCamelCase = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCamelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **__snake_case ) elif model_args.model_name_or_path: _UpperCamelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: _UpperCamelCase = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _UpperCamelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__snake_case ) elif model_args.model_name_or_path: _UpperCamelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: _UpperCamelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: _UpperCamelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) _UpperCamelCase = ViTMAEForPreTraining(__snake_case ) if training_args.do_train: _UpperCamelCase = ds['''train'''].column_names else: _UpperCamelCase = ds['''validation'''].column_names if data_args.image_column_name is not None: _UpperCamelCase = data_args.image_column_name elif "image" in column_names: _UpperCamelCase = '''image''' elif "img" in column_names: _UpperCamelCase = '''img''' else: _UpperCamelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _UpperCamelCase = image_processor.size['''shortest_edge'''] else: _UpperCamelCase = (image_processor.size['''height'''], image_processor.size['''width''']) _UpperCamelCase = Compose( [ Lambda(lambda __snake_case : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(__snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__snake_case ): _UpperCamelCase = [transforms(__snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: _UpperCamelCase = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: _UpperCamelCase = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__snake_case ) # Compute absolute learning rate _UpperCamelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _UpperCamelCase = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: _UpperCamelCase = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase = last_checkpoint _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCamelCase = trainer.evaluate() trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) # Write model card and (optionally) push to hub _UpperCamelCase = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
71
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _lowerCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case , __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case , __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _UpperCamelCase = None for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCamelCase = True elif name.split('''.''' )[0] == "proj": _UpperCamelCase = fairseq_model.proj _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) def _snake_case ( __snake_case ): _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer def _snake_case ( __snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.split(''' ''' )[0] for line in lines] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__snake_case , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase = WavaVecaConfig.from_pretrained(__snake_case ) _UpperCamelCase = SpeechaTextaConfig.from_pretrained( __snake_case , vocab_size=__snake_case , decoder_layers=__snake_case , do_stable_layer_norm=__snake_case ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) _UpperCamelCase = model[0].eval() # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) _UpperCamelCase = recursively_load_weights_wavaveca(model.encoder , __snake_case ) _UpperCamelCase = SpeechaTextaForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__snake_case ) # set output linear layer unexpected_keys.remove('''embed_out''' ) _UpperCamelCase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case , decoder=__snake_case ) _UpperCamelCase = False # add projection layer _UpperCamelCase = nn.Parameter(projection_layer.weight ) _UpperCamelCase = nn.Parameter(projection_layer.bias ) _UpperCamelCase = create_vocab_dict(__snake_case ) with open(os.path.join(__snake_case , '''vocab.json''' ) , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) _UpperCamelCase = SpeechaTextaTokenizer(os.path.join(__snake_case , '''vocab.json''' ) ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''speech_to_text_2''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _lowerCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
71
1
def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> int: '''simple docstring''' def count_of_possible_combinations(lowercase__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( lowercase__ , lowercase__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __lowercase= sum( count_of_possible_combinations_with_dp_array(target - item , lowercase__ ) for item in array ) __lowercase= answer return answer __lowercase= [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> int: '''simple docstring''' __lowercase= [0] * (target + 1) __lowercase= 1 for i in range(1 , target + 1 ): for j in range(lowercase__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = 3 lowerCAmelCase = 5 lowerCAmelCase = [1, 2, 5] print(combination_sum_iv(n, array, target))
230
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''xlm-roberta-xl''' def __init__(self , lowerCAmelCase=2_5_0_8_8_0 , lowerCAmelCase=2_5_6_0 , lowerCAmelCase=3_6 , lowerCAmelCase=3_2 , lowerCAmelCase=1_0_2_4_0 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_4 , lowerCAmelCase=1 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-05 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= position_embedding_type __lowercase= use_cache __lowercase= classifier_dropout class A ( A_ ): @property def _A (self ): if self.task == "multiple-choice": __lowercase= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowercase= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
230
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a = get_logger() a = None class UpperCamelCase__ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : Optional[int] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : Any ): '''simple docstring''' super().__init__(features=UpperCamelCase__ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F'''Expected {device} to be a `str` not {type(UpperCamelCase__ )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) lowercase_ = device if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) lowercase_ = str(jax.devices()[0] ) lowercase_ = jnp_array_kwargs @staticmethod def UpperCAmelCase__ ( ): '''simple docstring''' import jax return {str(UpperCamelCase__ ): device for device in jax.devices()} def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[Any] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and column: if all( isinstance(UpperCamelCase__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCamelCase__ , axis=0 ) return column def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase__ , (str, bytes, type(UpperCamelCase__ )) ): return value elif isinstance(UpperCamelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase_ = {} if isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowercase_ = {"""dtype""": jnp.intaa} else: lowercase_ = {"""dtype""": jnp.intaa} elif isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase_ = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase__ , PIL.Image.Image ): lowercase_ = np.asarray(UpperCamelCase__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCamelCase__ , **{**default_dtype, **self.jnp_array_kwargs} ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCamelCase__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCamelCase__ , """__array__""" ) and not isinstance(UpperCamelCase__ , jax.Array ): lowercase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCamelCase__ , map_list=UpperCamelCase__ ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : pa.Table ): '''simple docstring''' lowercase_ = self.numpy_arrow_extractor().extract_row(UpperCamelCase__ ) lowercase_ = self.python_features_decoder.decode_row(UpperCamelCase__ ) return self.recursive_tensorize(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : pa.Table ): '''simple docstring''' lowercase_ = self.numpy_arrow_extractor().extract_column(UpperCamelCase__ ) lowercase_ = self.python_features_decoder.decode_column(UpperCamelCase__ , pa_table.column_names[0] ) lowercase_ = self.recursive_tensorize(UpperCamelCase__ ) lowercase_ = self._consolidate(UpperCamelCase__ ) return column def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : pa.Table ): '''simple docstring''' lowercase_ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase__ ) lowercase_ = self.python_features_decoder.decode_batch(UpperCamelCase__ ) lowercase_ = self.recursive_tensorize(UpperCamelCase__ ) for column_name in batch: lowercase_ = self._consolidate(batch[column_name] ) return batch
711
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : int=() , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : List[str]="no" , _UpperCamelCase : str="29500" ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _UpperCamelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = PrepareForLaunch(_UpperCamelCase , distributed_type='TPU' ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCamelCase , args=_UpperCamelCase , nprocs=_UpperCamelCase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCamelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCamelCase , master_addr='127.0.01' , master_port=_UpperCamelCase , mixed_precision=_UpperCamelCase ): SCREAMING_SNAKE_CASE = PrepareForLaunch(_UpperCamelCase , distributed_type='MULTI_GPU' ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCamelCase , args=_UpperCamelCase , nprocs=_UpperCamelCase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=() , _UpperCamelCase : Optional[Any]=2 ) -> str: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCamelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE = PrepareForLaunch(_UpperCamelCase , debug=_UpperCamelCase ) start_processes(_UpperCamelCase , args=_UpperCamelCase , nprocs=_UpperCamelCase , start_method='fork' )
439
from graphs.minimum_spanning_tree_kruskal import kruskal def __lowerCAmelCase ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = 9 SCREAMING_SNAKE_CASE = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE = kruskal(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_UpperCamelCase ) == sorted(_UpperCamelCase )
439
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
706
import csv import tweepy # Twitter API credentials __UpperCAmelCase = "" __UpperCAmelCase = "" __UpperCAmelCase = "" __UpperCAmelCase = "" def A__ ( __lowerCamelCase ): # authorize twitter, initialize tweepy SCREAMING_SNAKE_CASE_ = tweepy.OAuthHandler(__lowerCamelCase, __lowerCamelCase ) auth.set_access_token(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tweepy.API(__lowerCamelCase ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE_ = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE_ = api.user_timeline(screen_name=__lowerCamelCase, count=2_00 ) # save most recent tweets alltweets.extend(__lowerCamelCase ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE_ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__lowerCamelCase ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE_ = api.user_timeline( screen_name=__lowerCamelCase, count=2_00, max_id=__lowerCamelCase ) # save most recent tweets alltweets.extend(__lowerCamelCase ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE_ = alltweets[-1].id - 1 print(F'''...{len(__lowerCamelCase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE_ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''', '''w''' ) as f: SCREAMING_SNAKE_CASE_ = csv.writer(__lowerCamelCase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(__lowerCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
597
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowercase : Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowercase : str = [0, 25, 50] lowercase : Union[str, Any] = [25, 50, 75] lowercase : Tuple = fuzz.membership.trimf(X, abca) lowercase : List[str] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowercase : Dict = np.ones(75) lowercase : Union[str, Any] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) lowercase : Dict = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowercase : Tuple = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowercase : List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowercase : int = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowercase : Any = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowercase : int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowercase : str = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowercase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
568
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase : int = None lowercase : str = logging.get_logger(__name__) lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase : Dict = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } lowercase : Dict = { '''google/rembert''': 2_56, } lowercase : Dict = '''▁''' class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : Any = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = RemBertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ : Any = do_lower_case snake_case_ : Dict = remove_space snake_case_ : Optional[Any] = keep_accents snake_case_ : Tuple = vocab_file snake_case_ : Union[str, Any] = False if not self.vocab_file else True def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: snake_case_ : Dict = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("Vocabulary path ({}) should be a directory".format(_SCREAMING_SNAKE_CASE ) ) return snake_case_ : str = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
568
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase :int = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class _a( __A , unittest.TestCase ): lowerCamelCase__ :Union[str, Any] = BartphoTokenizer lowerCamelCase__ :Optional[int] = False lowerCamelCase__ :Tuple = True def lowercase ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() _snake_case : Any = ["▁This", "▁is", "▁a", "▁t", "est"] _snake_case : int = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _snake_case : int = {"unk_token": "<unk>"} _snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) _snake_case : Optional[int] = BartphoTokenizer(__snake_case , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , **__snake_case ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase ( self , __snake_case ) -> int: '''simple docstring''' _snake_case : List[str] = "This is a là test" _snake_case : List[Any] = "This is a<unk><unk> test" return input_text, output_text def lowercase ( self ) -> int: '''simple docstring''' _snake_case : List[str] = BartphoTokenizer(__snake_case , self.monolingual_vocab_file , **self.special_tokens_map ) _snake_case : List[Any] = "This is a là test" _snake_case : str = "▁This ▁is ▁a ▁l à ▁t est".split() _snake_case : Optional[Any] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _snake_case : Optional[Any] = tokens + [tokenizer.unk_token] _snake_case : List[str] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case )
278
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase :str = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase :Optional[int] = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __lowerCAmelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
278
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = ParquetDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A_ = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if issubclass(UpperCamelCase__ , UpperCamelCase__ ): A_ = parquet_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): A_ = [parquet_path] A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A_ = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=("train",) ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: A_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = ParquetDatasetReader({'''train''': parquet_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if split: A_ = {split: parquet_path} else: A_ = '''train''' A_ = {'''train''': parquet_path, '''test''': parquet_path} A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A_ = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): A_ = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 A_ = pq.ParquetFile(tmp_path / '''foo.parquet''' ) A_ = pf.read() assert dataset.data.table == output_table def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): A_ = str(shared_datadir / '''test_image_rgb.jpg''' ) A_ = {'''image''': [image_path]} A_ = Features({'''image''': Image()} ) A_ = Dataset.from_dict(UpperCamelCase__ , features=UpperCamelCase__ ) A_ = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 A_ = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features A_ = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=UpperCamelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): assert get_writer_batch_size(UpperCamelCase__ ) == expected
141
import random def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : List[Any] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = [], [], [] for element in data: if element < pivot: less.append(UpperCamelCase__ ) elif element > pivot: greater.append(UpperCamelCase__ ) else: equal.append(UpperCamelCase__ ) return less, equal, greater def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : int ): '''simple docstring''' if index >= len(UpperCamelCase__ ) or index < 0: return None UpperCamelCase__ = items[random.randint(0, len(UpperCamelCase__ ) - 1 )] UpperCamelCase__ = 0 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = _partition(UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase__ = len(UpperCamelCase__ ) UpperCamelCase__ = len(UpperCamelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCamelCase__, UpperCamelCase__ ) # must be in larger else: return quick_select(UpperCamelCase__, index - (m + count) )
240
0
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase__ : '''simple docstring''' @property def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' return self.get_dummy_input() @property def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=False , UpperCamelCase_ : Any=False , ) -> List[Any]: '''simple docstring''' _lowercase : Union[str, Any] = 4 _lowercase : List[str] = 32 _lowercase : Tuple = (32, 32) _lowercase : Any = torch.manual_seed(0 ) _lowercase : Tuple = torch.device(UpperCAmelCase__ ) _lowercase : int = (batch_size, num_channels) + sizes _lowercase : Tuple = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ) _lowercase : List[str] = {'''hidden_states''': hidden_states} if include_temb: _lowercase : Optional[int] = 128 _lowercase : Optional[Any] = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ) if include_res_hidden_states_tuple: _lowercase : Optional[Any] = torch.manual_seed(1 ) _lowercase : int = (randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ),) if include_encoder_hidden_states: _lowercase : Dict = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase__ ) if include_skip_sample: _lowercase : List[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ) return dummy_input def __UpperCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = { '''in_channels''': 32, '''out_channels''': 32, '''temb_channels''': 128, } if self.block_type == "up": _lowercase : Union[str, Any] = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _lowercase : Tuple = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : Dict ) -> int: '''simple docstring''' _lowercase : List[Any] = self.prepare_init_args_and_inputs_for_common() _lowercase : List[str] = self.block_class(**UpperCAmelCase__ ) unet_block.to(UpperCAmelCase__ ) unet_block.eval() with torch.no_grad(): _lowercase : Optional[int] = unet_block(**UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _lowercase : Optional[Any] = output[0] self.assertEqual(output.shape , self.output_shape ) _lowercase : List[str] = output[0, -1, -3:, -3:] _lowercase : Optional[Any] = torch.tensor(UpperCAmelCase__ ).to(UpperCAmelCase__ ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase__ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _lowercase : Any = self.prepare_init_args_and_inputs_for_common() _lowercase : Optional[int] = self.block_class(**UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.train() _lowercase : int = model(**UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _lowercase : Optional[int] = output[0] _lowercase : Dict = torch.device(UpperCAmelCase__ ) _lowercase : Tuple = randn_tensor(output.shape , device=UpperCAmelCase__ ) _lowercase : Union[str, Any] = torch.nn.functional.mse_loss(UpperCAmelCase__ , UpperCAmelCase__ ) loss.backward()
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0