code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @slow def _lowercase (self : List[Any] ): UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCAmelCase_ = model(__a , labels=__a ).loss UpperCAmelCase_ = -tf.math.reduce_mean(__a ).numpy() UpperCAmelCase_ = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
78
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _a = logging.get_logger(__name__) _a = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'van' def __init__( self , __a=2_24 , __a=3 , __a=[7, 3, 3, 3] , __a=[4, 2, 2, 2] , __a=[64, 1_28, 3_20, 5_12] , __a=[3, 3, 12, 3] , __a=[8, 8, 4, 4] , __a="gelu" , __a=0.02 , __a=1e-6 , __a=1e-2 , __a=0.0 , __a=0.0 , **__a , ) -> Dict: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = patch_sizes _UpperCamelCase = strides _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = mlp_ratios _UpperCamelCase = hidden_act _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = layer_scale_init_value _UpperCamelCase = drop_path_rate _UpperCamelCase = dropout_rate
78
"""simple docstring""" from math import sqrt def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" _UpperCamelCase = True # 0 and 1 are none primes. if number <= 1: _UpperCamelCase = False for divisor in range(2, int(round(sqrt(__snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _UpperCamelCase = False break # precondition assert isinstance(__snake_case, __snake_case ), "'status' must been from type bool" return status def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _UpperCamelCase = list(range(2, n + 1 ) ) _UpperCamelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__snake_case ) ): for j in range(i + 1, len(__snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _UpperCamelCase = 0 # filters actual prime numbers. _UpperCamelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(__snake_case, __snake_case ), "'ans' must been from type list" return ans def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and (n > 2), "'N' must been an int and > 2" _UpperCamelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1 ): if is_prime(__snake_case ): ans.append(__snake_case ) # precondition assert isinstance(__snake_case, __snake_case ), "'ans' must been from type list" return ans def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and number >= 0, "'number' must been an int and >= 0" _UpperCamelCase = [] # this list will be returns of the function. # potential prime number factors. _UpperCamelCase = 2 _UpperCamelCase = number if number == 0 or number == 1: ans.append(__snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__snake_case ): while quotient != 1: if is_prime(__snake_case ) and (quotient % factor == 0): ans.append(__snake_case ) quotient /= factor else: factor += 1 else: ans.append(__snake_case ) # precondition assert isinstance(__snake_case, __snake_case ), "'ans' must been from type list" return ans def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCamelCase = 0 # prime factorization of 'number' _UpperCamelCase = prime_factorization(__snake_case ) _UpperCamelCase = max(__snake_case ) # precondition assert isinstance(__snake_case, __snake_case ), "'ans' must been from type int" return ans def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCamelCase = 0 # prime factorization of 'number' _UpperCamelCase = prime_factorization(__snake_case ) _UpperCamelCase = min(__snake_case ) # precondition assert isinstance(__snake_case, __snake_case ), "'ans' must been from type int" return ans def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" assert isinstance(__snake_case, __snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0, __snake_case ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" assert isinstance(__snake_case, __snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0, __snake_case ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" assert ( isinstance(__snake_case, __snake_case ) and (number > 2) and is_even(__snake_case ) ), "'number' must been an int, even and > 2" _UpperCamelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _UpperCamelCase = get_prime_numbers(__snake_case ) _UpperCamelCase = len(__snake_case ) # run variable for while-loops. _UpperCamelCase = 0 _UpperCamelCase = None # exit variable. for break up the loops _UpperCamelCase = True while i < len_pn and loop: _UpperCamelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _UpperCamelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__snake_case, __snake_case ) and (len(__snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" assert ( isinstance(__snake_case, __snake_case ) and isinstance(__snake_case, __snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _UpperCamelCase = 0 while numbera != 0: _UpperCamelCase = numbera % numbera _UpperCamelCase = numbera _UpperCamelCase = rest # precondition assert isinstance(__snake_case, __snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" assert ( isinstance(__snake_case, __snake_case ) and isinstance(__snake_case, __snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _UpperCamelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _UpperCamelCase = prime_factorization(__snake_case ) _UpperCamelCase = prime_factorization(__snake_case ) elif numbera == 1 or numbera == 1: _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = max(__snake_case, __snake_case ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _UpperCamelCase = prime_fac_a.count(__snake_case ) _UpperCamelCase = prime_fac_a.count(__snake_case ) for _ in range(max(__snake_case, __snake_case ) ): ans *= n else: _UpperCamelCase = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _UpperCamelCase = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # precondition assert isinstance(__snake_case, __snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and (n >= 0), "'number' must been a positive int" _UpperCamelCase = 0 _UpperCamelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__snake_case ): ans += 1 # precondition assert isinstance(__snake_case, __snake_case ) and is_prime( __snake_case ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase__ ( __snake_case, __snake_case ) -> Tuple: """simple docstring""" assert ( is_prime(__snake_case ) and is_prime(__snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _UpperCamelCase = p_number_a + 1 # jump to the next number _UpperCamelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__snake_case ): number += 1 while number < p_number_a: ans.append(__snake_case ) number += 1 # fetch the next prime number. while not is_prime(__snake_case ): number += 1 # precondition assert ( isinstance(__snake_case, __snake_case ) and ans[0] != p_number_a and ans[len(__snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and (n >= 1), "'n' must been int and >= 1" _UpperCamelCase = [] # will be returned. for divisor in range(1, n + 1 ): if n % divisor == 0: ans.append(__snake_case ) # precondition assert ans[0] == 1 and ans[len(__snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" _UpperCamelCase = get_divisors(__snake_case ) # precondition assert ( isinstance(__snake_case, __snake_case ) and (divisors[0] == 1) and (divisors[len(__snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" assert ( isinstance(__snake_case, __snake_case ) and isinstance(__snake_case, __snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _UpperCamelCase = gcd(abs(__snake_case ), abs(__snake_case ) ) # precondition assert ( isinstance(__snake_case, __snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and (n >= 0), "'n' must been a int and >= 0" _UpperCamelCase = 1 # this will be return. for factor in range(1, n + 1 ): ans *= factor return ans def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and (n >= 0), "'n' must been an int and >= 0" _UpperCamelCase = 0 _UpperCamelCase = 1 _UpperCamelCase = 1 # this will be return for _ in range(n - 1 ): _UpperCamelCase = ans ans += fiba _UpperCamelCase = tmp return ans
78
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _a ( lowercase__ : NDArray[floataa] , lowercase__ : NDArray[floataa] , lowercase__ : list[int] , lowercase__ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = coefficient_matrix.shape SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE__ : int = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(lowercase__ ) if colsa != 1: SCREAMING_SNAKE_CASE__ : Optional[int] = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(lowercase__ ) if rowsa != rowsa: SCREAMING_SNAKE_CASE__ : Optional[Any] = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(lowercase__ ) if len(lowercase__ ) != rowsa: SCREAMING_SNAKE_CASE__ : int = ( 'Number of initial values must be equal to number of rows in coefficient ' f'''matrix but received {len(lowercase__ )} and {rowsa}''' ) raise ValueError(lowercase__ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) SCREAMING_SNAKE_CASE__ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = table.shape strictly_diagonally_dominant(lowercase__ ) # Iterates the whole matrix for given number of times for _ in range(lowercase__ ): SCREAMING_SNAKE_CASE__ : Tuple = [] for row in range(lowercase__ ): SCREAMING_SNAKE_CASE__ : Dict = 0 for col in range(lowercase__ ): if col == row: SCREAMING_SNAKE_CASE__ : Any = table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE__ : Dict = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE__ : Tuple = (temp + val) / denom new_val.append(lowercase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_val return [float(lowercase__ ) for i in new_val] def _a ( lowercase__ : NDArray[floataa] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = table.shape SCREAMING_SNAKE_CASE__ : List[Any] = True for i in range(0 , lowercase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
85
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
677
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = ['pixel_values'] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = None , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , lowercase = True , **lowercase , ) -> None: '''simple docstring''' super().__init__(**lowercase ) A__ = size if size is not None else {"shortest_edge": 224} A__ = get_size_dict(lowercase , default_to_square=lowercase ) A__ = crop_size if crop_size is not None else {"height": 224, "width": 224} A__ = get_size_dict(lowercase , default_to_square=lowercase , param_name="crop_size" ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ = image_std if image_std is not None else OPENAI_CLIP_STD A__ = do_convert_rgb def UpperCamelCase ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' A__ = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A__ = get_resize_output_image_size(lowercase , size=size["shortest_edge"] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' A__ = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> List[str]: '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: '''simple docstring''' A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(lowercase , param_name="size" , default_to_square=lowercase ) A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(lowercase , param_name="crop_size" , default_to_square=lowercase ) A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(lowercase ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(lowercase ) for image in images] if do_resize: A__ = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: A__ = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: A__ = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: A__ = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] A__ = [to_channel_dimension_format(lowercase , lowercase ) for image in images] A__ = {"pixel_values": images} return BatchFeature(data=lowercase , tensor_type=lowercase )
712
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: str=1_0_2_4 ) -> Any: '''simple docstring''' A__ , A__ = [], [] A__ = list(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) A__ , A__ = sorted_examples[0] def is_too_big(SCREAMING_SNAKE_CASE_: List[str] ): return tok(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): A__ = new_src + " " + src A__ = new_tgt + " " + tgt if is_too_big(SCREAMING_SNAKE_CASE_ ) or is_too_big(SCREAMING_SNAKE_CASE_ ): # cant fit, finalize example finished_src.append(SCREAMING_SNAKE_CASE_ ) finished_tgt.append(SCREAMING_SNAKE_CASE_ ) A__ , A__ = src, tgt else: # can fit, keep adding A__ , A__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(SCREAMING_SNAKE_CASE_ ) finished_tgt.append(SCREAMING_SNAKE_CASE_ ) return finished_src, finished_tgt def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Path , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Tuple ) -> Union[str, Any]: '''simple docstring''' A__ = Path(SCREAMING_SNAKE_CASE_ ) save_path.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) for split in ["train"]: A__ , A__ = data_dir / F'{split}.source', data_dir / F'{split}.target' A__ = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE_ ).open().readlines()] A__ = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE_ ).open().readlines()] A__ , A__ = pack_examples(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F'packed {split} split from {len(SCREAMING_SNAKE_CASE_ )} examples -> {len(SCREAMING_SNAKE_CASE_ )}.' ) Path(save_path / F'{split}.source' ).open("w" ).write("\n".join(SCREAMING_SNAKE_CASE_ ) ) Path(save_path / F'{split}.target' ).open("w" ).write("\n".join(SCREAMING_SNAKE_CASE_ ) ) for split in ["val", "test"]: A__ , A__ = data_dir / F'{split}.source', data_dir / F'{split}.target' shutil.copyfile(SCREAMING_SNAKE_CASE_ , save_path / F'{split}.source' ) shutil.copyfile(SCREAMING_SNAKE_CASE_ , save_path / F'{split}.target' ) def lowerCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' A__ = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=SCREAMING_SNAKE_CASE_ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=SCREAMING_SNAKE_CASE_ , default=1_2_8 ) parser.add_argument("--data_dir" , type=SCREAMING_SNAKE_CASE_ ) parser.add_argument("--save_path" , type=SCREAMING_SNAKE_CASE_ ) A__ = parser.parse_args() A__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(SCREAMING_SNAKE_CASE_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
626
0
from numpy import exp, pi, sqrt def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
32
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _A ( _a : Optional[Any] , _a : Optional[Any] ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A = flax_key_tuple[:-1] + ("""weight""",) A = torch.permute(_a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_a ): # linear layer A = flax_key_tuple[:-1] + ("""weight""",) A = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def _A ( _a : Tuple , _a : Any , _a : Any ): """simple docstring""" if "metadata" in layer: A = layer.split("""metadata""" ) A = """""".join(split_layer[0] )[:-1] A = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: A = layer.split("""kvstore""" ) A = """""".join(split_layer[0] )[:-1] A = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: A = layer.split("""/""" ) A = """/""".join(split_layer[:-1] ) A = (split_layer[-1],) if "kvstore/path" in layer: A = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: A = """file""" else: A = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _A ( _a : Optional[Any] , _a : Optional[int] ): """simple docstring""" A = rename_keys(_a ) A = {} for k, v in current_block.items(): A = v A = new_current_block torch.save(_a , _a ) def _A ( _a : str , _a : Optional[Any] , _a : int , _a : Optional[int] , _a : str = WEIGHTS_NAME ): """simple docstring""" A = convert_file_size_to_int(_a ) A = [] A = {} A = 0 A = 0 os.makedirs(_a , exist_ok=_a ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: A = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] A = flatten_dict(_a , sep="""/""" ) A = {} for layer in checkpoint_info.keys(): A , A , A = get_key_and_tensorstore_dict( _a , _a , _a ) if curr_real_layer_name in all_layers: A = content else: A = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A = torch.tensor(_a ) A = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A , A = rename_base_flax_keys(tuple(key.split("""/""" ) ) , _a ) A = """/""".join(_a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A = os.path.join( _a , weights_name.replace(""".bin""" , f'-{len(_a )+1:05d}-of-???.bin' ) ) rename_and_save_block(_a , _a ) sharded_state_dicts.append(current_block.keys() ) del current_block A = {} A = 0 A = raw_weights.to(getattr(_a , _a ) ) current_block_size += weight_size total_size += weight_size # Add the last block A = os.path.join(_a , weights_name.replace(""".bin""" , f'-{len(_a )+1:05d}-of-???.bin' ) ) rename_and_save_block(_a , _a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A = {} A = {} for idx, shard in enumerate(_a ): A = weights_name.replace( """.bin""" , f'-{idx+1:05d}-of-{len(_a ):05d}.bin' ) # len(sharded_state_dicts):05d} A = os.path.join(_a , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(_a , os.path.join(_a , _a ) ) A = shard for key in shard: A = shard_file # Add the metadata A = {"""total_size""": total_size} A = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_a , _a ) , """w""" , encoding="""utf-8""" ) as f: A = json.dumps(_a , indent=2 , sort_keys=_a ) + """\n""" f.write(_a ) return metadata, index if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) UpperCAmelCase =parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _A ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) A = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) A = TaTokenizer.from_pretrained("""t5-small""" ) A = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" A = tokenizer(_a , return_tensors="""pt""" ).input_ids A = model.generate(_a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
617
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__snake_case ) , """Tatoeba directory does not exist.""" ) class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self :List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=__UpperCamelCase ) @slow def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' self.resolver.convert_models(['''heb-eng'''] ) @slow def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=__UpperCamelCase ) assert mmeta["long_pair"] == "heb-eng"
701
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCamelCase__ : Optional[Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __A ( a_ : Optional[int] )-> Dict: '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __A ( a_ : List[Any] , a_ : Optional[int] , a_ : Optional[int] )-> Dict: '''simple docstring''' return max(metric_fn(a_ , a_ ) for gt in ground_truths ) def __A ( a_ : List[Any] , a_ : Union[str, Any] , a_ : str )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Optional[Any] = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE : List[Any] = pd.read_csv(a_ , sep='''\t''' , header=a_ ) for answer_list in data[1]: SCREAMING_SNAKE_CASE : str = ast.literal_eval(a_ ) answers.append(a_ ) else: SCREAMING_SNAKE_CASE : Any = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Dict = [[reference] for reference in references] SCREAMING_SNAKE_CASE : Dict = 0 for prediction, ground_truths in zip(a_ , a_ ): total += 1 em += metric_max_over_ground_truths(a_ , a_ , a_ ) fa += metric_max_over_ground_truths(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : Any = 100.0 * em / total SCREAMING_SNAKE_CASE : Optional[int] = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def __A ( a_ : Any , a_ : Any , a_ : List[Any] )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = args.k SCREAMING_SNAKE_CASE : Tuple = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Dict = 0 for hypo, reference in zip(a_ , a_ ): SCREAMING_SNAKE_CASE : Optional[int] = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE : List[str] = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE : Dict = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def __A ( a_ : Any , a_ : List[str] , a_ : str )-> int: '''simple docstring''' def strip_title(a_ : Optional[Any] ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE : Tuple = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE : Any = title[:-1] return title SCREAMING_SNAKE_CASE : Tuple = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_ , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE : Any = rag_model.rag.question_encoder(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = question_enc_outputs[0] SCREAMING_SNAKE_CASE : Dict = rag_model.retriever( a_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE : Dict = [] for docs in all_docs: SCREAMING_SNAKE_CASE : List[Any] = [strip_title(a_ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(a_ ) ) return provenance_strings def __A ( a_ : List[Any] , a_ : int , a_ : str )-> Tuple: '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_ ) SCREAMING_SNAKE_CASE : Dict = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE : Any = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE : Tuple = rag_model.generate( # rag_model overwrites generate a_ , attention_mask=a_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=a_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE : Dict = rag_model.retriever.generator_tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) if args.print_predictions: for q, a in zip(a_ , a_ ): logger.info('''Q: {} - A: {}'''.format(a_ , a_ ) ) return answers def __A ( )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=a_ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=a_ , choices=['''exact''', '''compressed''', '''legacy'''] , type=a_ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=a_ , type=a_ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=a_ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=a_ , type=a_ , required=a_ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=a_ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=a_ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=a_ , type=a_ , required=a_ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=a_ , type=a_ , required=a_ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=a_ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=a_ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=a_ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=a_ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=a_ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=a_ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def __A ( a_ : Optional[Any] )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = {} if args.model_type is None: SCREAMING_SNAKE_CASE : List[str] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE : List[str] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE : Optional[Any] = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE : Tuple = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE : List[Any] = args.index_path else: SCREAMING_SNAKE_CASE : str = BartForConditionalGeneration SCREAMING_SNAKE_CASE : Optional[int] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , a_ ) SCREAMING_SNAKE_CASE : int = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE : str = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(a_ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(a_ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE : Dict = RagRetriever.from_pretrained(a_ , **a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_class.from_pretrained(a_ , retriever=a_ , **a_ ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE : str = model_class.from_pretrained(a_ , **a_ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE : Dict = [] for line in tqdm(a_ ): questions.append(line.strip() ) if len(a_ ) == args.eval_batch_size: SCREAMING_SNAKE_CASE : str = evaluate_batch_fn(a_ , a_ , a_ ) preds_file.write('''\n'''.join(a_ ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE : Union[str, Any] = [] if len(a_ ) > 0: SCREAMING_SNAKE_CASE : str = evaluate_batch_fn(a_ , a_ , a_ ) preds_file.write('''\n'''.join(a_ ) ) preds_file.flush() score_fn(a_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCamelCase__ : List[str] = get_args() main(args)
18
0
import qiskit def __UpperCAmelCase( lowercase_ , lowercase_ ): _lowerCamelCase : Dict = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _lowerCamelCase : List[Any] = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowerCamelCase : List[Any] = qiskit.execute(lowercase_ , lowercase_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": _lowerCamelCase = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
114
import os def __UpperCAmelCase( ): with open(os.path.dirname(lowercase_ ) + '''/p022_names.txt''' ) as file: _lowerCamelCase : Optional[int] = str(file.readlines()[0] ) _lowerCamelCase : List[Any] = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Tuple = 0 for i, name in enumerate(lowercase_ ): for letter in name: name_score += ord(lowercase_ ) - 64 total_score += (i + 1) * name_score _lowerCamelCase : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
114
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : Tuple ,lowercase__ : List[str] ,lowercase__ : Any=7 ,lowercase__ : Optional[Any]=3 ,lowercase__ : Optional[Any]=1_0 ,lowercase__ : Any=1_8 ,lowercase__ : Optional[int]=3_0 ,lowercase__ : List[str]=4_0_0 ,lowercase__ : Optional[int]=True ,lowercase__ : str=None ,lowercase__ : Dict=True ,lowercase__ : int=[0.5, 0.5, 0.5] ,lowercase__ : List[str]=[0.5, 0.5, 0.5] ,lowercase__ : Tuple=None ,): __lowercase = size if size is not None else {'shortest_edge': 1_8} __lowercase = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = num_frames __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std __lowercase = crop_size def SCREAMING_SNAKE_CASE ( self : Tuple ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase_ (__lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = VivitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = VivitImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ ,'''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,'''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,'''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,'''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,'''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,'''size''' ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 1_8} ) self.assertEqual(image_processor.crop_size ,{'''height''': 1_8, '''width''': 1_8} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ,crop_size=8_4 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size ,{'''height''': 8_4, '''width''': 8_4} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __lowercase = prepare_video_inputs(self.image_processor_tester ,equal_resolution=UpperCAmelCase_ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertIsInstance(video[0] ,Image.Image ) # Test not batched input __lowercase = image_processing(video_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched __lowercase = image_processing(UpperCAmelCase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_video_inputs(self.image_processor_tester ,equal_resolution=UpperCAmelCase_ ,numpify=UpperCAmelCase_ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertIsInstance(video[0] ,np.ndarray ) # Test not batched input __lowercase = image_processing(video_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched __lowercase = image_processing(UpperCAmelCase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def SCREAMING_SNAKE_CASE ( self : Tuple ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_video_inputs(self.image_processor_tester ,equal_resolution=UpperCAmelCase_ ,torchify=UpperCAmelCase_ ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertIsInstance(video[0] ,torch.Tensor ) # Test not batched input __lowercase = image_processing(video_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched __lowercase = image_processing(UpperCAmelCase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
706
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def _A ( A__ ): """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : ArgumentParser ): __lowercase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' ,type=lowercase__ ,default=lowercase__ ,help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' ,action='''store_true''' ,help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' ,action='''store_true''' ,help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' ,) download_parser.add_argument('''model''' ,type=lowercase__ ,help='''Name of the model to download''' ) download_parser.set_defaults(func=lowercase__ ) def __init__( self : str ,lowercase__ : str ,lowercase__ : str ,lowercase__ : bool ,lowercase__ : bool ): __lowercase = model __lowercase = cache __lowercase = force __lowercase = trust_remote_code def SCREAMING_SNAKE_CASE ( self : Any ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
624
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase=False , _lowercase=False , _lowercase=6.0 , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=None , _lowercase="fp4" , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = load_in_abit _lowerCAmelCase = load_in_abit _lowerCAmelCase = llm_inta_threshold _lowerCAmelCase = llm_inta_skip_modules _lowerCAmelCase = llm_inta_enable_fpaa_cpu_offload _lowerCAmelCase = llm_inta_has_fpaa_weight _lowerCAmelCase = bnb_abit_quant_type _lowerCAmelCase = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _lowerCAmelCase = torch.floataa elif isinstance(_lowercase , _lowercase ): _lowerCAmelCase = getattr(_lowercase , _lowercase ) elif isinstance(_lowercase , torch.dtype ): _lowerCAmelCase = bnb_abit_compute_dtype else: raise ValueError("""bnb_4bit_compute_dtype must be a string or a torch.dtype""" ) self.post_init() def _lowercase ( self ): """simple docstring""" if not isinstance(self.llm_inta_threshold , _lowercase ): raise ValueError("""llm_int8_threshold must be a float""" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _lowercase ): raise ValueError("""llm_int8_skip_modules must be a list of strings""" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _lowercase ): raise ValueError("""llm_int8_enable_fp32_cpu_offload must be a boolean""" ) if not isinstance(self.llm_inta_has_fpaa_weight , _lowercase ): raise ValueError("""llm_int8_has_fp16_weight must be a boolean""" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("""bnb_4bit_compute_dtype must be torch.dtype""" ) if not isinstance(self.bnb_abit_quant_type , _lowercase ): raise ValueError("""bnb_4bit_quant_type must be a string""" ) if not isinstance(self.bnb_abit_use_double_quant , _lowercase ): raise ValueError("""bnb_4bit_use_double_quant must be a boolean""" ) if self.load_in_abit and not version.parse(importlib.metadata.version("""bitsandbytes""" ) ) >= version.parse( """0.39.0""" ): raise ValueError( """4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version""" ) def _lowercase ( self ): """simple docstring""" return self.load_in_abit or self.load_in_abit def _lowercase ( self ): """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _lowercase ( cls , _lowercase , _lowercase , **_lowercase ): """simple docstring""" _lowerCAmelCase = cls(**_lowercase ) _lowerCAmelCase = [] for key, value in kwargs.items(): if hasattr(_lowercase , _lowercase ): setattr(_lowercase , _lowercase , _lowercase ) to_remove.append(_lowercase ) for key in to_remove: kwargs.pop(_lowercase , _lowercase ) if return_unused_kwargs: return config, kwargs else: return config def _lowercase ( self , _lowercase ): """simple docstring""" with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: _lowerCAmelCase = self.to_dict() _lowerCAmelCase = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + '''\n''' writer.write(_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = str(output["""bnb_4bit_compute_dtype"""] ).split(""".""" )[1] return output def __repr__( self ): """simple docstring""" return F'{self.__class__.__name__} {self.to_json_string()}' def _lowercase ( self , _lowercase = True ): """simple docstring""" if use_diff is True: _lowerCAmelCase = self.to_diff_dict() else: _lowerCAmelCase = self.to_dict() return json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + "\n" def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.to_dict() # get the default config dict _lowerCAmelCase = BitsAndBytesConfig().to_dict() _lowerCAmelCase = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _lowerCAmelCase = value return serializable_config_dict
5
def lowerCAmelCase_ ( __UpperCAmelCase: float ) -> float: return 10 - x * x def lowerCAmelCase_ ( __UpperCAmelCase: float , __UpperCAmelCase: float ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(__UpperCAmelCase ) * equation(__UpperCAmelCase ) >= 0: raise ValueError('''Wrong space!''' ) UpperCamelCase__ : Optional[int] = a while (b - a) >= 0.01: # Find middle point UpperCamelCase__ : int = (a + b) / 2 # Check if middle point is root if equation(__UpperCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__UpperCAmelCase ) * equation(__UpperCAmelCase ) < 0: UpperCamelCase__ : str = c else: UpperCamelCase__ : Optional[int] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
253
0
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __lowercase : List[Any] = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __lowercase : int = "https://storage.googleapis.com/cvdf-datasets/mnist/" def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = numpy.dtype(numpy.uintaa).newbyteorder('''>''') return numpy.frombuffer(bytestream.read(4), dtype=snake_case)[0] @deprecated(snake_case, '''Please use tf.data to implement this functionality.''') def SCREAMING_SNAKE_CASE ( snake_case): print('''Extracting''', f.name) with gzip.GzipFile(fileobj=snake_case) as bytestream: __snake_case = _readaa(snake_case) if magic != 20_51: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name)) __snake_case = _readaa(snake_case) __snake_case = _readaa(snake_case) __snake_case = _readaa(snake_case) __snake_case = bytestream.read(rows * cols * num_images) __snake_case = numpy.frombuffer(snake_case, dtype=numpy.uinta) __snake_case = data.reshape(snake_case, snake_case, snake_case, 1) return data @deprecated(snake_case, '''Please use tf.one_hot on tensors.''') def SCREAMING_SNAKE_CASE ( snake_case, snake_case): __snake_case = labels_dense.shape[0] __snake_case = numpy.arange(snake_case) * num_classes __snake_case = numpy.zeros((num_labels, num_classes)) __snake_case = 1 return labels_one_hot @deprecated(snake_case, '''Please use tf.data to implement this functionality.''') def SCREAMING_SNAKE_CASE ( snake_case, snake_case=False, snake_case=10): print('''Extracting''', f.name) with gzip.GzipFile(fileobj=snake_case) as bytestream: __snake_case = _readaa(snake_case) if magic != 20_49: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name)) __snake_case = _readaa(snake_case) __snake_case = bytestream.read(snake_case) __snake_case = numpy.frombuffer(snake_case, dtype=numpy.uinta) if one_hot: return _dense_to_one_hot(snake_case, snake_case) return labels class _A : """simple docstring""" @deprecated( A_ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : List[str] , A_ : int , A_ : Tuple , A_ : Optional[int]=False , A_ : int=False , A_ : Dict=dtypes.floataa , A_ : Tuple=True , A_ : Any=None , ) -> Any: __snake_case , __snake_case = random_seed.get_seed(A_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __snake_case = dtypes.as_dtype(A_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __snake_case = 10_000 __snake_case = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"images.shape: {images.shape} labels.shape: {labels.shape}" __snake_case = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __snake_case = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __snake_case = images.astype(numpy.floataa ) __snake_case = numpy.multiply(A_ , 1.0 / 255.0 ) __snake_case = images __snake_case = labels __snake_case = 0 __snake_case = 0 @property def lowercase ( self : int ) -> Dict: return self._images @property def lowercase ( self : Dict ) -> Optional[int]: return self._labels @property def lowercase ( self : int ) -> Tuple: return self._num_examples @property def lowercase ( self : int ) -> Tuple: return self._epochs_completed def lowercase ( self : int , A_ : Optional[int] , A_ : Tuple=False , A_ : Tuple=True ) -> List[Any]: if fake_data: __snake_case = [1] * 784 __snake_case = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(A_ )], [fake_label for _ in range(A_ )], ) __snake_case = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) __snake_case = self.images[perma] __snake_case = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __snake_case = self._num_examples - start __snake_case = self._images[start : self._num_examples] __snake_case = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) __snake_case = self.images[perm] __snake_case = self.labels[perm] # Start next epoch __snake_case = 0 __snake_case = batch_size - rest_num_examples __snake_case = self._index_in_epoch __snake_case = self._images[start:end] __snake_case = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __snake_case = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(snake_case, '''Please write your own downloading logic.''') def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): if not gfile.Exists(snake_case): gfile.MakeDirs(snake_case) __snake_case = os.path.join(snake_case, snake_case) if not gfile.Exists(snake_case): urllib.request.urlretrieve(snake_case, snake_case) # noqa: S310 with gfile.GFile(snake_case) as f: __snake_case = f.size() print('''Successfully downloaded''', snake_case, snake_case, '''bytes.''') return filepath @deprecated( snake_case, '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''') def SCREAMING_SNAKE_CASE ( snake_case, snake_case=False, snake_case=False, snake_case=dtypes.floataa, snake_case=True, snake_case=50_00, snake_case=None, snake_case=DEFAULT_SOURCE_URL, ): if fake_data: def fake(): return _DataSet( [], [], fake_data=snake_case, one_hot=snake_case, dtype=snake_case, seed=snake_case) __snake_case = fake() __snake_case = fake() __snake_case = fake() return _Datasets(train=snake_case, validation=snake_case, test=snake_case) if not source_url: # empty string check __snake_case = DEFAULT_SOURCE_URL __snake_case = '''train-images-idx3-ubyte.gz''' __snake_case = '''train-labels-idx1-ubyte.gz''' __snake_case = '''t10k-images-idx3-ubyte.gz''' __snake_case = '''t10k-labels-idx1-ubyte.gz''' __snake_case = _maybe_download( snake_case, snake_case, source_url + train_images_file) with gfile.Open(snake_case, '''rb''') as f: __snake_case = _extract_images(snake_case) __snake_case = _maybe_download( snake_case, snake_case, source_url + train_labels_file) with gfile.Open(snake_case, '''rb''') as f: __snake_case = _extract_labels(snake_case, one_hot=snake_case) __snake_case = _maybe_download( snake_case, snake_case, source_url + test_images_file) with gfile.Open(snake_case, '''rb''') as f: __snake_case = _extract_images(snake_case) __snake_case = _maybe_download( snake_case, snake_case, source_url + test_labels_file) with gfile.Open(snake_case, '''rb''') as f: __snake_case = _extract_labels(snake_case, one_hot=snake_case) if not 0 <= validation_size <= len(snake_case): __snake_case = ( '''Validation size should be between 0 and ''' f"{len(snake_case)}. Received: {validation_size}." ) raise ValueError(snake_case) __snake_case = train_images[:validation_size] __snake_case = train_labels[:validation_size] __snake_case = train_images[validation_size:] __snake_case = train_labels[validation_size:] __snake_case = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __snake_case = _DataSet(snake_case, snake_case, **snake_case) __snake_case = _DataSet(snake_case, snake_case, **snake_case) __snake_case = _DataSet(snake_case, snake_case, **snake_case) return _Datasets(train=snake_case, validation=snake_case, test=snake_case)
700
"""simple docstring""" def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = len(snake_case) for i in range(length - 1): __snake_case = i for k in range(i + 1, snake_case): if collection[k] < collection[least]: __snake_case = k if least != i: __snake_case , __snake_case = (collection[i], collection[least]) return collection if __name__ == "__main__": __lowercase : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() __lowercase : Tuple = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
93
0
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) UpperCamelCase : str = logging.getLogger() def __snake_case ( UpperCamelCase__ ) -> Tuple: """simple docstring""" A = {} A = os.path.join(UpperCamelCase__ , 'all_results.json' ) if os.path.exists(UpperCamelCase__ ): with open(UpperCamelCase__ , 'r' ) as f: A = json.load(UpperCamelCase__ ) else: raise ValueError(f'can\'t find {path}' ) return results UpperCamelCase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCamelCase__ ( UpperCAmelCase_ ): def __a ( self : Union[str, Any] ): import xla_spawn A = self.get_auto_remove_tmp_dir() A = f'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(_lowercase , 'argv' , _lowercase ): A = time() xla_spawn.main() A = time() A = get_results(_lowercase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def __a ( self : List[Any] ): import xla_spawn A = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(_lowercase , 'argv' , _lowercase ): xla_spawn.main()
690
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
1
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = 'ybelkada/fonts' def __lowerCAmelCase( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' 'Pix2StructImageProcessor. Please upgrade torch.' ) def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ): """simple docstring""" requires_backends(__UpperCAmelCase ,['torch'] ) _check_torch_version() _lowercase : List[Any] = image_tensor.unsqueeze(0 ) _lowercase : Dict = torch.nn.functional.unfold(__UpperCAmelCase ,(patch_height, patch_width) ,stride=(patch_height, patch_width) ) _lowercase : List[Any] = patches.reshape(image_tensor.size(0 ) ,image_tensor.size(1 ) ,__UpperCAmelCase ,__UpperCAmelCase ,-1 ) _lowercase : List[str] = patches.permute(0 ,4 ,2 ,3 ,1 ).reshape( image_tensor.size(2 ) // patch_height ,image_tensor.size(3 ) // patch_width ,image_tensor.size(1 ) * patch_height * patch_width ,) return patches.unsqueeze(0 ) def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase = 36 ,__UpperCAmelCase = "black" ,__UpperCAmelCase = "white" ,__UpperCAmelCase = 5 ,__UpperCAmelCase = 5 ,__UpperCAmelCase = 5 ,__UpperCAmelCase = 5 ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,): """simple docstring""" requires_backends(__UpperCAmelCase ,'vision' ) # Add new lines so that each line is no more than 80 characters. _lowercase : List[Any] = textwrap.TextWrapper(width=80 ) _lowercase : int = wrapper.wrap(text=__UpperCAmelCase ) _lowercase : Optional[int] = '\n'.join(__UpperCAmelCase ) if font_bytes is not None and font_path is None: _lowercase : List[str] = io.BytesIO(__UpperCAmelCase ) elif font_path is not None: _lowercase : int = font_path else: _lowercase : List[Any] = hf_hub_download(__UpperCAmelCase ,'Arial.TTF' ) _lowercase : Optional[Any] = ImageFont.truetype(__UpperCAmelCase ,encoding='UTF-8' ,size=__UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _lowercase : Tuple = ImageDraw.Draw(Image.new('RGB' ,(1, 1) ,__UpperCAmelCase ) ) _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = temp_draw.textbbox((0, 0) ,__UpperCAmelCase ,__UpperCAmelCase ) # Create the actual image with a bit of padding around the text. _lowercase : Optional[int] = text_width + left_padding + right_padding _lowercase : int = text_height + top_padding + bottom_padding _lowercase : Any = Image.new('RGB' ,(image_width, image_height) ,__UpperCAmelCase ) _lowercase : Optional[Any] = ImageDraw.Draw(__UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) ,text=__UpperCAmelCase ,fill=__UpperCAmelCase ,font=__UpperCAmelCase ) return image def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ): """simple docstring""" requires_backends(__UpperCAmelCase ,'vision' ) # Convert to PIL image if necessary _lowercase : Optional[int] = to_pil_image(__UpperCAmelCase ) _lowercase : Dict = render_text(__UpperCAmelCase ,**__UpperCAmelCase ) _lowercase : Dict = max(header_image.width ,image.width ) _lowercase : Union[str, Any] = int(image.height * (new_width / image.width) ) _lowercase : Optional[Any] = int(header_image.height * (new_width / header_image.width) ) _lowercase : Union[str, Any] = Image.new('RGB' ,(new_width, new_height + new_header_height) ,'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) ,(0, 0) ) new_image.paste(image.resize((new_width, new_height) ) ,(0, new_header_height) ) # Convert back to the original framework if necessary _lowercase : Dict = to_numpy_array(__UpperCAmelCase ) if infer_channel_dimension_format(__UpperCAmelCase ) == ChannelDimension.LAST: _lowercase : int = to_channel_dimension_format(__UpperCAmelCase ,ChannelDimension.LAST ) return new_image class _lowerCamelCase (__lowerCamelCase ): _snake_case = ["flattened_patches"] def __init__( self : Any , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : int = 2_0_4_8 , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) _lowercase : Union[str, Any] = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} _lowercase : Optional[Any] = do_normalize _lowercase : str = do_convert_rgb _lowercase : Union[str, Any] = max_patches _lowercase : int = is_vqa def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : int , lowerCamelCase_ : dict , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" requires_backends(self.extract_flattened_patches , 'torch' ) _check_torch_version() # convert to torch _lowercase : str = to_channel_dimension_format(lowerCamelCase_ , ChannelDimension.FIRST ) _lowercase : List[Any] = torch.from_numpy(lowerCamelCase_ ) _lowercase , _lowercase : str = patch_size['height'], patch_size['width'] _lowercase , _lowercase : Optional[Any] = get_image_size(lowerCamelCase_ ) # maximize scale s.t. _lowercase : str = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _lowercase : Dict = max(min(math.floor(scale * image_height / patch_height ) , lowerCamelCase_ ) , 1 ) _lowercase : List[str] = max(min(math.floor(scale * image_width / patch_width ) , lowerCamelCase_ ) , 1 ) _lowercase : Any = max(num_feasible_rows * patch_height , 1 ) _lowercase : Optional[int] = max(num_feasible_cols * patch_width , 1 ) _lowercase : Dict = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=lowerCamelCase_ , antialias=lowerCamelCase_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _lowercase : Any = torch_extract_patches(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowercase : str = patches.shape _lowercase : List[Any] = patches_shape[1] _lowercase : List[str] = patches_shape[2] _lowercase : int = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _lowercase : Dict = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _lowercase : Optional[int] = torch.arange(lowerCamelCase_ ).reshape([rows, 1] ).repeat(1 , lowerCamelCase_ ).reshape([rows * columns, 1] ) _lowercase : List[Any] = torch.arange(lowerCamelCase_ ).reshape([1, columns] ).repeat(lowerCamelCase_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _lowercase : Any = row_ids.to(torch.floataa ) _lowercase : Optional[Any] = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _lowercase : Dict = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _lowercase : Dict = torch.nn.functional.pad(lowerCamelCase_ , [0, 0, 0, max_patches - (rows * columns)] ).float() _lowercase : Tuple = to_numpy_array(lowerCamelCase_ ) return result def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" if image.dtype == np.uinta: _lowercase : str = image.astype(np.floataa ) # take mean across the whole `image` _lowercase : List[Any] = np.mean(lowerCamelCase_ ) _lowercase : Any = np.std(lowerCamelCase_ ) _lowercase : Dict = max(lowerCamelCase_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : ImageInput , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[Dict[str, int]] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase_ : Tuple , ): """simple docstring""" _lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowercase : str = patch_size if patch_size is not None else self.patch_size _lowercase : Dict = max_patches if max_patches is not None else self.max_patches _lowercase : List[str] = self.is_vqa if kwargs.get('data_format' , lowerCamelCase_ ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) _lowercase : Any = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowercase : Tuple = [convert_to_rgb(lowerCamelCase_ ) for image in images] # All transformations expect numpy arrays. _lowercase : Any = [to_numpy_array(lowerCamelCase_ ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) _lowercase : str = kwargs.pop('font_bytes' , lowerCamelCase_ ) _lowercase : str = kwargs.pop('font_path' , lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _lowercase : Any = [header_text] * len(lowerCamelCase_ ) _lowercase : Dict = [ render_header(lowerCamelCase_ , header_text[i] , font_bytes=lowerCamelCase_ , font_path=lowerCamelCase_ ) for i, image in enumerate(lowerCamelCase_ ) ] if do_normalize: _lowercase : Tuple = [self.normalize(image=lowerCamelCase_ ) for image in images] # convert to torch tensor and permute _lowercase : List[Any] = [ self.extract_flattened_patches(image=lowerCamelCase_ , max_patches=lowerCamelCase_ , patch_size=lowerCamelCase_ ) for image in images ] # create attention mask in numpy _lowercase : Union[str, Any] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _lowercase : str = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=lowerCamelCase_ ) return encoded_outputs
283
"""simple docstring""" import math def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ): _lowercase : List[Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCAmelCase ) if number < 1: _lowercase : List[Any] = F'''Input value of [number={number}] must be > 0''' raise ValueError(__UpperCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: _lowercase : str = int(math.log(number // 3 ,2 ) ) + 2 _lowercase : Union[str, Any] = [3, 5] _lowercase : Optional[int] = 2 _lowercase : List[Any] = 3 for block in range(1 ,__UpperCAmelCase ): for _ in range(__UpperCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): SCREAMING_SNAKE_CASE = 0 try: SCREAMING_SNAKE_CASE = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
283
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _a () -> Any: """simple docstring""" __snake_case = HfArgumentParser(lowercase__ ) __snake_case = parser.parse_args_into_dataclasses()[0] __snake_case = TensorFlowBenchmark(args=lowercase__ ) try: __snake_case = parser.parse_args_into_dataclasses()[0] except ValueError as e: __snake_case = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' __snake_case = ' '.join(str(lowercase__ ).split(' ' )[:-1] ) __snake_case = '' __snake_case = eval(str(lowercase__ ).split(' ' )[-1] ) __snake_case = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase__ ) if len(lowercase__ ) > 0: __snake_case = full_error_msg + begin_error_msg + str(lowercase__ ) raise ValueError(lowercase__ ) benchmark.run() if __name__ == "__main__": main()
56
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys a : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
63
0
a =[ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
337
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a ={ """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
337
1
from collections.abc import Sequence from queue import Queue class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): UpperCamelCase_: Tuple = start UpperCamelCase_: Tuple = end UpperCamelCase_: Optional[Any] = val UpperCamelCase_: List[str] = (start + end) // 2 UpperCamelCase_: List[str] = left UpperCamelCase_: List[Any] = right def __repr__( self ): return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = collection UpperCamelCase_: Optional[Any] = function if self.collection: UpperCamelCase_: str = self._build_tree(0 , len(_lowerCamelCase ) - 1 ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): self._update_tree(self.root , _lowerCamelCase , _lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): return self._query_range(self.root , _lowerCamelCase , _lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): if start == end: return SegmentTreeNode(_lowerCamelCase , _lowerCamelCase , self.collection[start] ) UpperCamelCase_: int = (start + end) // 2 UpperCamelCase_: List[str] = self._build_tree(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Any = self._build_tree(mid + 1 , _lowerCamelCase ) return SegmentTreeNode(_lowerCamelCase , _lowerCamelCase , self.fn(left.val , right.val ) , _lowerCamelCase , _lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if node.start == i and node.end == i: UpperCamelCase_: List[Any] = val return if i <= node.mid: self._update_tree(node.left , _lowerCamelCase , _lowerCamelCase ) else: self._update_tree(node.right , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Any = self.fn(node.left.val , node.right.val ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _lowerCamelCase , _lowerCamelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _lowerCamelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , _lowerCamelCase ) , ) else: # range in right child tree return self._query_range(node.right , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): if self.root is not None: UpperCamelCase_: Union[str, Any] = Queue() queue.put(self.root ) while not queue.empty(): UpperCamelCase_: List[str] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('*' * 50) A_ : List[str] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
57
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MobileNetV2FeatureExtractor'] UpperCAmelCase_ = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
603
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu SCREAMING_SNAKE_CASE : int = False class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self ): return 12 @property def UpperCamelCase ( self ): return 12 @property def UpperCamelCase ( self ): return 32 @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase ( self ): lowercase_ :Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCamelCase_ ) @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :int = 12 lowercase_ :List[Any] = 12 lowercase_ :Dict = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } lowercase_ :int = TransformeraDModel(**UpperCamelCase_ ) return model def UpperCamelCase ( self ): lowercase_ :List[str] = '''cpu''' lowercase_ :int = self.dummy_vqvae lowercase_ :int = self.dummy_text_encoder lowercase_ :Any = self.dummy_tokenizer lowercase_ :Optional[int] = self.dummy_transformer lowercase_ :List[str] = VQDiffusionScheduler(self.num_embed ) lowercase_ :int = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase_ ) lowercase_ :List[Any] = VQDiffusionPipeline( vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) lowercase_ :Union[str, Any] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :Dict = '''teddy bear playing in the pool''' lowercase_ :Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Any = output.images lowercase_ :Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :str = pipe( [prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0] lowercase_ :Optional[Any] = image[0, -3:, -3:, -1] lowercase_ :Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase_ :str = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :int = '''cpu''' lowercase_ :Dict = self.dummy_vqvae lowercase_ :str = self.dummy_text_encoder lowercase_ :List[Any] = self.dummy_tokenizer lowercase_ :Any = self.dummy_transformer lowercase_ :Optional[Any] = VQDiffusionScheduler(self.num_embed ) lowercase_ :List[str] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCamelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) lowercase_ :Optional[int] = VQDiffusionPipeline( vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) lowercase_ :Dict = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :int = '''teddy bear playing in the pool''' lowercase_ :Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Optional[Any] = output.images lowercase_ :Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Dict = pipe( [prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0] lowercase_ :List[str] = image[0, -3:, -3:, -1] lowercase_ :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase_ :Dict = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): lowercase_ :List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) lowercase_ :int = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) lowercase_ :Tuple = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowercase_ :Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :int = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=UpperCamelCase_ , output_type='''np''' , ) lowercase_ :List[str] = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
441
def UpperCamelCase ( _a , _a ) -> int: '''simple docstring''' while a != 0: lowercase_ , lowercase_ :Union[str, Any] = b % a, a return b def UpperCamelCase ( _a , _a ) -> int: '''simple docstring''' if gcd(_a , _a ) != 1: lowercase_ :Union[str, Any] = f"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(_a ) lowercase_ , lowercase_ , lowercase_ :Any = 1, 0, a lowercase_ , lowercase_ , lowercase_ :List[str] = 0, 1, m while va != 0: lowercase_ :Tuple = ua // va lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ :Optional[int] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
441
1
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : int = 10**9 ) -> int: '''simple docstring''' _UpperCAmelCase : Dict = 1 _UpperCAmelCase : int = 2 _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : str = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _UpperCAmelCase : Tuple = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"{solution() = }")
289
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( _UpperCamelCase ): def snake_case_ ( self : str ): _UpperCAmelCase : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A , "width_multiplier" ) ) class UpperCAmelCase_ : def __init__( self : Dict , A : Union[str, Any] , A : Dict=1_3 , A : Union[str, Any]=6_4 , A : int=2 , A : Tuple=3 , A : int="swish" , A : Optional[int]=3 , A : Tuple=3_2 , A : Tuple=0.1 , A : List[Any]=0.02 , A : Dict=True , A : str=True , A : Any=1_0 , A : Optional[int]=None , A : int=0.25 , A : int=0.0 , A : Dict=0.0 , ): _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Optional[Any] = batch_size _UpperCAmelCase : Dict = image_size _UpperCAmelCase : int = patch_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : Optional[int] = make_divisible(5_1_2 * width_multiplier , divisor=8 ) _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : List[str] = conv_kernel_size _UpperCAmelCase : Optional[int] = output_stride _UpperCAmelCase : Union[str, Any] = classifier_dropout_prob _UpperCAmelCase : str = use_labels _UpperCAmelCase : Dict = is_training _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Tuple = scope _UpperCAmelCase : List[Any] = width_multiplier _UpperCAmelCase : List[str] = ffn_dropout _UpperCAmelCase : List[Any] = attn_dropout def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : str = None _UpperCAmelCase : List[Any] = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self : List[Any] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def snake_case_ ( self : int , A : Optional[Any] , A : Optional[int] , A : Any , A : int ): _UpperCAmelCase : List[str] = MobileViTVaModel(config=A ) model.to(A ) model.eval() _UpperCAmelCase : str = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ ( self : Any , A : Optional[int] , A : Optional[Any] , A : str , A : List[str] ): _UpperCAmelCase : List[str] = self.num_labels _UpperCAmelCase : int = MobileViTVaForImageClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : str = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self : Optional[int] , A : Tuple , A : Any , A : Any , A : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : Optional[int] = MobileViTVaForSemanticSegmentation(A ) model.to(A ) model.eval() _UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _UpperCAmelCase : Optional[int] = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ ( self : Any ): _UpperCAmelCase : Any = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = config_and_inputs _UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : Dict = MobileViTVaModelTester(self ) _UpperCAmelCase : Optional[Any] = MobileViTVaConfigTester(self , config_class=A , has_text_modality=A ) def snake_case_ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def snake_case_ ( self : Optional[int] ): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def snake_case_ ( self : Optional[Any] ): pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def snake_case_ ( self : int ): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def snake_case_ ( self : Any ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case_ ( self : str ): pass def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = model_class(A ) _UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : int = [*signature.parameters.keys()] _UpperCAmelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , A ) def snake_case_ ( self : int ): _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def snake_case_ ( self : Optional[Any] ): def check_hidden_states_output(A : Union[str, Any] , A : Dict , A : str ): _UpperCAmelCase : int = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _UpperCAmelCase : Tuple = model(**self._prepare_for_class(A , A ) ) _UpperCAmelCase : List[str] = outputs.hidden_states _UpperCAmelCase : int = 5 self.assertEqual(len(A ) , A ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _UpperCAmelCase : Optional[int] = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Optional[Any] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def snake_case_ ( self : int ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Union[str, Any] = MobileViTVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __snake_case ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self : Any ): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def snake_case_ ( self : Dict ): _UpperCAmelCase : Dict = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( A ) _UpperCAmelCase : Optional[Any] = self.default_image_processor _UpperCAmelCase : Tuple = prepare_img() _UpperCAmelCase : Union[str, Any] = image_processor(images=A , return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): _UpperCAmelCase : Tuple = model(**A ) # verify the logits _UpperCAmelCase : Tuple = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A ) _UpperCAmelCase : Optional[Any] = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @slow def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : List[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) _UpperCAmelCase : Any = model.to(A ) _UpperCAmelCase : Optional[Any] = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) _UpperCAmelCase : Dict = prepare_img() _UpperCAmelCase : Union[str, Any] = image_processor(images=A , return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): _UpperCAmelCase : int = model(**A ) _UpperCAmelCase : Any = outputs.logits # verify the logits _UpperCAmelCase : Optional[int] = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , A ) _UpperCAmelCase : Union[str, Any] = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A , atol=1e-4 ) ) @slow def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) _UpperCAmelCase : Tuple = model.to(A ) _UpperCAmelCase : Dict = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) _UpperCAmelCase : Optional[int] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=A , return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): _UpperCAmelCase : Tuple = model(**A ) _UpperCAmelCase : Optional[int] = outputs.logits.detach().cpu() _UpperCAmelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(5_0, 6_0)] ) _UpperCAmelCase : Dict = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , A ) _UpperCAmelCase : Dict = image_processor.post_process_semantic_segmentation(outputs=A ) _UpperCAmelCase : Union[str, Any] = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , A )
289
1
'''simple docstring''' def A (__lowerCamelCase :str , __lowerCamelCase :str ): assert x is not None assert y is not None _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = len(__lowerCamelCase ) # declaring the array for storing the dp values _lowerCAmelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 _lowerCAmelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _lowerCAmelCase = """""" _lowerCAmelCase , _lowerCAmelCase = m, n while i > 0 and j > 0: _lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _lowerCAmelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _lowercase = """AGGTAB""" _lowercase = """GXTXAYB""" _lowercase = 4 _lowercase = """GTAB""" _lowercase , _lowercase = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
162
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants _lowercase = 300 # TEMPERATURE (unit = K) def A (__lowerCamelCase :float , __lowerCamelCase :float , __lowerCamelCase :float , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
162
1
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) UpperCAmelCase__ : Optional[int] = logging.getLogger(__name__) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=3_05_22, type=int) UpperCAmelCase__ : Union[str, Any] = parser.parse_args() logger.info(F"Loading data from {args.data_file}") with open(args.data_file, "rb") as fp: UpperCAmelCase__ : Optional[int] = pickle.load(fp) logger.info("Counting occurrences for MLM.") UpperCAmelCase__ : Optional[int] = Counter() for tk_ids in data: counter.update(tk_ids) UpperCAmelCase__ : str = [0] * args.vocab_size for k, v in counter.items(): UpperCAmelCase__ : Dict = v logger.info(F"Dump to {args.token_counts_dump}") with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A ( UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase__ = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase__ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase__ = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase__ = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase__ = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[ dim : dim * 2, : ] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] else: lowerCAmelCase__ = rename_key(UpperCamelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ = val.squeeze_() else: lowerCAmelCase__ = val return orig_state_dict def A ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any: '''simple docstring''' lowerCAmelCase__ = GroupViTConfig() lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval() lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"] lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0) # verify result lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase_ ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 ) processor.save_pretrained(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) print("Successfully saved processor and model to" , UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(UpperCamelCase_ , organization="nielsr" ) model.push_to_hub(UpperCamelCase_ , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) UpperCAmelCase__ : Any = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
48
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _a ( metaclass=lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""speech"""] def __init__( self : List[str] , *__UpperCamelCase : int , **__UpperCamelCase : Any )->Optional[int]: requires_backends(self , ['''speech'''] ) class _a ( metaclass=lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""speech"""] def __init__( self : Optional[Any] , *__UpperCamelCase : Dict , **__UpperCamelCase : Any )->List[Any]: requires_backends(self , ['''speech'''] )
718
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """bit""" UpperCamelCase__ = ["""preactivation""", """bottleneck"""] UpperCamelCase__ = ["""SAME""", """VALID"""] def __init__( self : List[Any] , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Optional[int]=6_4 , __UpperCamelCase : List[Any]=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __UpperCamelCase : Any=[3, 4, 6, 3] , __UpperCamelCase : str="preactivation" , __UpperCamelCase : Union[str, Any]="relu" , __UpperCamelCase : str=None , __UpperCamelCase : Dict=3_2 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : Any=False , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=1 , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : List[str] , )->List[Any]: super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _UpperCAmelCase = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) _UpperCAmelCase = num_channels _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = layer_type _UpperCAmelCase = hidden_act _UpperCAmelCase = global_padding _UpperCAmelCase = num_groups _UpperCAmelCase = drop_path_rate _UpperCAmelCase = embedding_dynamic_padding _UpperCAmelCase = output_stride _UpperCAmelCase = width_factor _UpperCAmelCase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(__UpperCamelCase ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
95
0
from math import ceil def UpperCamelCase_ ( __a = 1_001 ) -> int: a__ : Optional[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): a__ : List[str] = 2 * i + 1 a__ : Optional[int] = 2 * i a__ : Dict = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: UpperCamelCase : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
37
import math def snake_case__ ( UpperCAmelCase : int ): assert isinstance(UpperCAmelCase , UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowerCAmelCase__ :Tuple = range(3 , int(math.sqrt(UpperCAmelCase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def snake_case__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict=1 , **UpperCAmelCase : List[str] ): lowerCAmelCase__ :Dict = factor * value lowerCAmelCase__ :Optional[Any] = value while not is_prime(UpperCAmelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **UpperCAmelCase ) return value
145
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''blenderbot-small''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : str , _A : List[str]=5_0265 , _A : Tuple=512 , _A : Optional[Any]=8 , _A : Any=2048 , _A : List[str]=16 , _A : str=8 , _A : Optional[int]=2048 , _A : Tuple=16 , _A : Any=0.0 , _A : Any=0.0 , _A : int=True , _A : Union[str, Any]=True , _A : str="gelu" , _A : Tuple=512 , _A : int=0.1 , _A : Dict=0.0 , _A : List[str]=0.0 , _A : Union[str, Any]=0.02 , _A : List[Any]=1 , _A : Tuple=False , _A : Optional[Any]=0 , _A : Optional[Any]=1 , _A : str=2 , _A : Optional[int]=2 , **_A : Any , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : List[Any] = encoder_ffn_dim __SCREAMING_SNAKE_CASE : Tuple = encoder_layers __SCREAMING_SNAKE_CASE : int = encoder_attention_heads __SCREAMING_SNAKE_CASE : Tuple = decoder_ffn_dim __SCREAMING_SNAKE_CASE : Tuple = decoder_layers __SCREAMING_SNAKE_CASE : Optional[Any] = decoder_attention_heads __SCREAMING_SNAKE_CASE : Tuple = dropout __SCREAMING_SNAKE_CASE : str = attention_dropout __SCREAMING_SNAKE_CASE : List[Any] = activation_dropout __SCREAMING_SNAKE_CASE : Optional[int] = activation_function __SCREAMING_SNAKE_CASE : Any = init_std __SCREAMING_SNAKE_CASE : int = encoder_layerdrop __SCREAMING_SNAKE_CASE : str = decoder_layerdrop __SCREAMING_SNAKE_CASE : List[Any] = use_cache __SCREAMING_SNAKE_CASE : List[str] = encoder_layers __SCREAMING_SNAKE_CASE : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , forced_eos_token_id=_A , **_A , ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" @property def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE : Tuple = {0: '''batch'''} __SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''decoder_sequence'''} __SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_A , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __SCREAMING_SNAKE_CASE : Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers for i in range(_A ): __SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} __SCREAMING_SNAKE_CASE : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __SCREAMING_SNAKE_CASE : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def UpperCAmelCase__ ( self : Any ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : Any = super().outputs else: __SCREAMING_SNAKE_CASE : int = super(_A , self ).outputs if self.use_past: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers for i in range(_A ): __SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} __SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def UpperCAmelCase__ ( self : Tuple , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) # Generate decoder inputs __SCREAMING_SNAKE_CASE : List[Any] = seq_length if not self.use_past else 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) __SCREAMING_SNAKE_CASE : str = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __SCREAMING_SNAKE_CASE : Optional[int] = dict(**_A , **_A ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __SCREAMING_SNAKE_CASE : Tuple = common_inputs['''input_ids'''].shape __SCREAMING_SNAKE_CASE : List[Any] = common_inputs['''decoder_input_ids'''].shape[1] __SCREAMING_SNAKE_CASE : str = self.num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE : List[str] = decoder_seq_length + 3 __SCREAMING_SNAKE_CASE : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __SCREAMING_SNAKE_CASE : str = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_A , _A )] , dim=1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers __SCREAMING_SNAKE_CASE : Tuple = min(_A , _A ) __SCREAMING_SNAKE_CASE : int = max(_A , _A ) - min_num_layers __SCREAMING_SNAKE_CASE : int = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_A ): common_inputs["past_key_values"].append( ( torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), ) ) # TODO: test this. __SCREAMING_SNAKE_CASE : Dict = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_A , _A ): common_inputs["past_key_values"].append((torch.zeros(_A ), torch.zeros(_A )) ) return common_inputs def UpperCAmelCase__ ( self : Optional[Any] , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __SCREAMING_SNAKE_CASE : Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE : Optional[int] = seqlen + 2 __SCREAMING_SNAKE_CASE : str = self.num_layers __SCREAMING_SNAKE_CASE : Any = self.num_attention_heads __SCREAMING_SNAKE_CASE : int = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE : Any = common_inputs['''attention_mask'''].dtype __SCREAMING_SNAKE_CASE : Any = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_A , _A , dtype=_A )] , dim=1 ) __SCREAMING_SNAKE_CASE : List[str] = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(_A ) ] return common_inputs def UpperCAmelCase__ ( self : Tuple , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.num_special_tokens_to_add(_A ) __SCREAMING_SNAKE_CASE : Any = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence __SCREAMING_SNAKE_CASE : str = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __SCREAMING_SNAKE_CASE : List[str] = dict(tokenizer(_A , return_tensors=_A ) ) return common_inputs def UpperCAmelCase__ ( self : Optional[int] , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) elif self.task == "causal-lm": __SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_causal_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) return common_inputs def UpperCAmelCase__ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[int] , _A : Tuple ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : Dict = super()._flatten_past_key_values_(_A , _A , _A , _A ) else: __SCREAMING_SNAKE_CASE : int = super(_A , self )._flatten_past_key_values_( _A , _A , _A , _A )
700
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""DeiTFeatureExtractor"""] lowercase_ = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
131
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCamelCase_ ( ): lowerCamelCase_ = 9 lowerCamelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCamelCase_ = kruskal(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_lowerCamelCase ) == sorted(_lowerCamelCase )
142
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase : int = 6_0_0_8_5_1_4_7_5_1_4_3 ): try: lowerCamelCase_ = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowerCamelCase_ = 1 lowerCamelCase_ = 2 while i * i <= n: while n % i == 0: lowerCamelCase_ = i n //= i i += 1 if n > 1: lowerCamelCase_ = n return int(_lowerCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
142
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __lowercase = logging.get_logger(__name__) # TODO: upload to AWS __lowercase = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Dict = '''retribert''' def __init__( self , __lowerCAmelCase=30522 , __lowerCAmelCase=768 , __lowerCAmelCase=8 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-1_2 , __lowerCAmelCase=True , __lowerCAmelCase=128 , __lowerCAmelCase=0 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = share_encoders lowerCAmelCase = projection_dim
605
'''simple docstring''' from math import ceil, sqrt def snake_case__ ( _A: int = 1000000 ) -> int: '''simple docstring''' lowerCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
605
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : Any = logging.get_logger(__name__) class A ( a ): __UpperCAmelCase : str = """linear""" __UpperCAmelCase : List[str] = """cosine""" __UpperCAmelCase : Optional[int] = """cosine_with_restarts""" __UpperCAmelCase : str = """polynomial""" __UpperCAmelCase : Tuple = """constant""" __UpperCAmelCase : List[Any] = """constant_with_warmup""" __UpperCAmelCase : Dict = """piecewise_constant""" def _lowercase ( lowerCamelCase__ : Optimizer, lowerCamelCase__ : int = -1 ): return LambdaLR(lowerCamelCase__, lambda lowerCamelCase__ : 1, last_epoch=lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optimizer, lowerCamelCase__ : int, lowerCamelCase__ : int = -1 ): def lr_lambda(lowerCamelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1.0, lowerCamelCase__ ) ) return 1.0 return LambdaLR(lowerCamelCase__, lowerCamelCase__, last_epoch=lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optimizer, lowerCamelCase__ : str, lowerCamelCase__ : int = -1 ): _a = {} _a = step_rules.split("," ) for rule_str in rule_list[:-1]: _a , _a = rule_str.split(":" ) _a = int(lowerCamelCase__ ) _a = float(lowerCamelCase__ ) _a = value _a = float(rule_list[-1] ) def create_rules_function(lowerCamelCase__ : str, lowerCamelCase__ : Dict ): def rule_func(lowerCamelCase__ : int ) -> float: _a = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCamelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _a = create_rules_function(lowerCamelCase__, lowerCamelCase__ ) return LambdaLR(lowerCamelCase__, lowerCamelCase__, last_epoch=lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str]=-1 ): def lr_lambda(lowerCamelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1, lowerCamelCase__ ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optimizer, lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : float = 0.5, lowerCamelCase__ : int = -1 ): def lr_lambda(lowerCamelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1, lowerCamelCase__ ) ) _a = float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase__ ) * 2.0 * progress )) ) return LambdaLR(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optimizer, lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : int = 1, lowerCamelCase__ : int = -1 ): def lr_lambda(lowerCamelCase__ : Optional[Any] ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1, lowerCamelCase__ ) ) _a = float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase__ ) * progress) % 1.0) )) ) return LambdaLR(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict, lowerCamelCase__ : Any=1e-7, lowerCamelCase__ : str=1.0, lowerCamelCase__ : Optional[int]=-1 ): _a = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(lowerCamelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1, lowerCamelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _a = lr_init - lr_end _a = num_training_steps - num_warmup_steps _a = 1 - (current_step - num_warmup_steps) / decay_steps _a = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) __snake_case : Union[str, Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def _lowercase ( lowerCamelCase__ : Union[str, SchedulerType], lowerCamelCase__ : Optimizer, lowerCamelCase__ : Optional[str] = None, lowerCamelCase__ : Optional[int] = None, lowerCamelCase__ : Optional[int] = None, lowerCamelCase__ : int = 1, lowerCamelCase__ : float = 1.0, lowerCamelCase__ : int = -1, ): _a = SchedulerType(lowerCamelCase__ ) _a = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCamelCase__, last_epoch=lowerCamelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCamelCase__, step_rules=lowerCamelCase__, last_epoch=lowerCamelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCamelCase__, num_warmup_steps=lowerCamelCase__, last_epoch=lowerCamelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCamelCase__, num_warmup_steps=lowerCamelCase__, num_training_steps=lowerCamelCase__, num_cycles=lowerCamelCase__, last_epoch=lowerCamelCase__, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCamelCase__, num_warmup_steps=lowerCamelCase__, num_training_steps=lowerCamelCase__, power=lowerCamelCase__, last_epoch=lowerCamelCase__, ) return schedule_func( lowerCamelCase__, num_warmup_steps=lowerCamelCase__, num_training_steps=lowerCamelCase__, last_epoch=lowerCamelCase__ )
131
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class A ( a , a , a , unittest.TestCase ): __UpperCAmelCase : List[Any] = StableDiffusionControlNetImgaImgPipeline __UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) __UpperCAmelCase : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) _a = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) torch.manual_seed(0 ) _a = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _a = CLIPTextModel(snake_case_ ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Optional[int]: if str(snake_case_ ).startswith("mps" ): _a = torch.manual_seed(snake_case_ ) else: _a = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _a = 2 _a = randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ) _a = floats_tensor(control_image.shape , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(snake_case_ ) ).convert("RGB" ).resize((6_4, 6_4) ) _a = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def __lowerCAmelCase ( self ) -> str: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __lowerCAmelCase ( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class A ( a , a , unittest.TestCase ): __UpperCAmelCase : Dict = StableDiffusionControlNetImgaImgPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase : List[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __lowerCAmelCase ( self ) -> str: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) def init_weights(snake_case_ ): if isinstance(snake_case_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _a = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(snake_case_ ) torch.manual_seed(0 ) _a = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(snake_case_ ) torch.manual_seed(0 ) _a = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _a = CLIPTextModel(snake_case_ ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = MultiControlNetModel([controlneta, controlneta] ) _a = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Optional[int]: if str(snake_case_ ).startswith("mps" ): _a = torch.manual_seed(snake_case_ ) else: _a = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _a = 2 _a = [ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=snake_case_ , device=torch.device(snake_case_ ) , ), ] _a = floats_tensor(control_image[0].shape , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(snake_case_ ) ).convert("RGB" ).resize((6_4, 6_4) ) _a = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def __lowerCAmelCase ( self ) -> Tuple: _a = self.get_dummy_components() _a = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) _a = 10.0 _a = 4 _a = self.get_dummy_inputs(snake_case_ ) _a = steps _a = scale _a = pipe(**snake_case_ )[0] _a = self.get_dummy_inputs(snake_case_ ) _a = steps _a = scale _a = pipe(**snake_case_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _a = self.get_dummy_inputs(snake_case_ ) _a = steps _a = scale _a = pipe(**snake_case_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _a = self.get_dummy_inputs(snake_case_ ) _a = steps _a = scale _a = pipe(**snake_case_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __lowerCAmelCase ( self ) -> Optional[int]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __lowerCAmelCase ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> List[Any]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_dummy_components() _a = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(snake_case_ ) except NotImplementedError: pass @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Optional[int]: _a = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) _a = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=snake_case_ , controlnet=snake_case_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case_ ) _a = torch.Generator(device="cpu" ).manual_seed(0 ) _a = "evil space-punk bird" _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((5_1_2, 5_1_2) ) _a = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((5_1_2, 5_1_2) ) _a = pipe( snake_case_ , snake_case_ , control_image=snake_case_ , generator=snake_case_ , output_type="np" , num_inference_steps=5_0 , strength=0.6 , ) _a = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9E-2
131
1
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a : Optional[int] = logging.getLogger(__name__) class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def __init__( self , __lowercase=-1 ): UpperCAmelCase__ = label_idx def A__ ( self , __lowercase , __lowercase ): if isinstance(__a , __a ): UpperCAmelCase__ = mode.value UpperCAmelCase__ = os.path.join(__a , F'''{mode}.txt''' ) UpperCAmelCase__ = 1 UpperCAmelCase__ = [] with open(__a , encoding="""utf-8""" ) as f: UpperCAmelCase__ = [] UpperCAmelCase__ = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) guid_index += 1 UpperCAmelCase__ = [] UpperCAmelCase__ = [] else: UpperCAmelCase__ = line.split(""" """ ) words.append(splits[0] ) if len(__a ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) return examples def A__ ( self , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(__a ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: UpperCAmelCase__ = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(__a ) else: logger.warning("""Maximum sequence length exceeded: No prediction for \'%s\'.""" , line.split()[0] ) def A__ ( self , __lowercase ): if path: with open(__a , """r""" ) as f: UpperCAmelCase__ = f.read().splitlines() if "O" not in labels: UpperCAmelCase__ = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def __init__( self ): super().__init__(label_idx=-2 ) def A__ ( self , __lowercase ): if path: with open(__a , """r""" ) as f: UpperCAmelCase__ = f.read().splitlines() if "O" not in labels: UpperCAmelCase__ = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def A__ ( self , __lowercase , __lowercase ): if isinstance(__a , __a ): UpperCAmelCase__ = mode.value UpperCAmelCase__ = os.path.join(__a , F'''{mode}.txt''' ) UpperCAmelCase__ = 1 UpperCAmelCase__ = [] with open(__a , encoding="""utf-8""" ) as f: for sentence in parse_incr(__a ): UpperCAmelCase__ = [] UpperCAmelCase__ = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(__a ) == len(__a ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) guid_index += 1 return examples def A__ ( self , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = 0 for sentence in parse_incr(__a ): UpperCAmelCase__ = preds_list[example_id] UpperCAmelCase__ = """""" for token in sentence: out += F'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(__a ) example_id += 1 def A__ ( self , __lowercase ): if path: with open(__a , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
712
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: UpperCAmelCase__ = old_name if "patch_embed" in old_name: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = old_name.split(""".""" ) if layer == "0": UpperCAmelCase__ = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": UpperCAmelCase__ = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": UpperCAmelCase__ = old_name.replace("""3""" , """convolution2""" ) else: UpperCAmelCase__ = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(r"""\d\.\d""" , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = r"""\b\d{2}\b""" if bool(re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): UpperCAmelCase__ = re.search(r"""\d\.\d\d.""" , _SCREAMING_SNAKE_CASE ).group() else: UpperCAmelCase__ = re.search(r"""\d\.\d.""" , _SCREAMING_SNAKE_CASE ).group() if int(match[0] ) < 6: UpperCAmelCase__ = old_name.replace(_SCREAMING_SNAKE_CASE , """""" ) UpperCAmelCase__ = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) UpperCAmelCase__ = """intermediate_stages.""" + trimmed_name else: UpperCAmelCase__ = old_name.replace(_SCREAMING_SNAKE_CASE , """""" ) if int(match[2] ) < num_meta4D_last_stage: UpperCAmelCase__ = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: UpperCAmelCase__ = str(int(match[2] ) - num_meta4D_last_stage ) UpperCAmelCase__ = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: UpperCAmelCase__ = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: UpperCAmelCase__ = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: UpperCAmelCase__ = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: UpperCAmelCase__ = trimmed_name.replace("""fc2""" , """linear_out""" ) UpperCAmelCase__ = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(r""".\d.""" , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: UpperCAmelCase__ = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): UpperCAmelCase__ = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): UpperCAmelCase__ = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: UpperCAmelCase__ = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: UpperCAmelCase__ = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: UpperCAmelCase__ = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: UpperCAmelCase__ = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": UpperCAmelCase__ = new_name.replace("""norm""" , """layernorm""" ) UpperCAmelCase__ = """efficientformer.""" + new_name else: UpperCAmelCase__ = """efficientformer.encoder.""" + new_name return new_name def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: for key in checkpoint.copy().keys(): UpperCAmelCase__ = checkpoint.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = val return checkpoint def snake_case__ ( ) ->Optional[Any]: UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: UpperCAmelCase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""] UpperCAmelCase__ = EfficientFormerConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = EfficientFormerForImageClassificationWithTeacher(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) UpperCAmelCase__ = config.depths[-1] - config.num_metaad_blocks + 1 UpperCAmelCase__ = convert_torch_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__ = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = 2_5_6 UpperCAmelCase__ = 2_2_4 UpperCAmelCase__ = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) UpperCAmelCase__ = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values # original processing pipeline UpperCAmelCase__ = Compose( [ Resize(_SCREAMING_SNAKE_CASE , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(_SCREAMING_SNAKE_CASE ), ToTensor(), Normalize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), ] ) UpperCAmelCase__ = image_transforms(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = (1, 1_0_0_0) if "l1" in model_name: UpperCAmelCase__ = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :1_0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: UpperCAmelCase__ = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :1_0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: UpperCAmelCase__ = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add model""" , use_temp_dir=_SCREAMING_SNAKE_CASE , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add image processor""" , use_temp_dir=_SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) a : Optional[int] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
422
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
210
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' f"""{test_file} instead.""" ) UpperCAmelCase = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) UpperCAmelCase = components[:-1] + [test_fn.replace('''.py''' , '''''' )] UpperCAmelCase = '''.'''.join(A ) return test_module_path def lowerCamelCase__ ( A : Any ): '''simple docstring''' UpperCAmelCase = get_module_path(A ) UpperCAmelCase = importlib.import_module(A ) return test_module def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = get_test_module(A ) for attr in dir(A ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(A , A ) ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def lowerCamelCase__ ( A : Any ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = get_test_module(A ) for attr in dir(A ): UpperCAmelCase = getattr(A , A ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). UpperCAmelCase = getattr(A , '''all_model_classes''' , [] ) if len(A ) > 0: test_classes.append(A ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = get_test_classes(A ) UpperCAmelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' UpperCAmelCase = test_class() if hasattr(A , '''setUp''' ): test.setUp() UpperCAmelCase = None if hasattr(A , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: UpperCAmelCase = test.model_tester.__class__ return model_tester def lowerCamelCase__ ( A : Tuple , A : int ): '''simple docstring''' UpperCAmelCase = get_test_classes(A ) UpperCAmelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(A ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def lowerCamelCase__ ( A : Any , A : Tuple ): '''simple docstring''' UpperCAmelCase = get_test_classes_for_model(A , A ) UpperCAmelCase = [] for test_class in test_classes: UpperCAmelCase = get_model_tester_from_test_class(A ) if tester_class is not None: tester_classes.append(A ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def lowerCamelCase__ ( A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = get_test_classes(A ) UpperCAmelCase = {test_class: get_model_tester_from_test_class(A ) for test_class in test_classes} return test_tester_mapping def lowerCamelCase__ ( A : Any ): '''simple docstring''' UpperCAmelCase = get_model_classes(A ) UpperCAmelCase = { model_class: get_test_classes_for_model(A , A ) for model_class in model_classes } return model_test_mapping def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = get_model_classes(A ) UpperCAmelCase = { model_class: get_tester_classes_for_model(A , A ) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase__ ( A : Dict ): '''simple docstring''' if isinstance(A , A ): return o elif isinstance(A , A ): return o.__name__ elif isinstance(A , (list, tuple) ): return [to_json(A ) for x in o] elif isinstance(A , A ): return {to_json(A ): to_json(A ) for k, v in o.items()} else: return o
210
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowercase ( _A ): _a : Tuple = 'audio-spectrogram-transformer' def __init__( self , a=7_6_8 , a=1_2 , a=1_2 , a=3_0_7_2 , a="gelu" , a=0.0 , a=0.0 , a=0.02 , a=1e-12 , a=1_6 , a=True , a=1_0 , a=1_0 , a=1_0_2_4 , a=1_2_8 , **a , ): super().__init__(**a ) snake_case__ : List[str] =hidden_size snake_case__ : Union[str, Any] =num_hidden_layers snake_case__ : Tuple =num_attention_heads snake_case__ : Optional[int] =intermediate_size snake_case__ : Any =hidden_act snake_case__ : Tuple =hidden_dropout_prob snake_case__ : str =attention_probs_dropout_prob snake_case__ : Dict =initializer_range snake_case__ : str =layer_norm_eps snake_case__ : str =patch_size snake_case__ : str =qkv_bias snake_case__ : str =frequency_stride snake_case__ : List[Any] =time_stride snake_case__ : str =max_length snake_case__ : Optional[Any] =num_mel_bins
448
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) __lowerCamelCase : Optional[Any] = parser.parse_args() __lowerCamelCase : Optional[int] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
448
1
import socket def __lowerCAmelCase ( ): """simple docstring""" _lowercase = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) _lowercase = socket.gethostname() _lowercase = 12_312 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" ,"""wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: _lowercase = sock.recv(1_024 ) if not data: break out_file.write(_A ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
398
def __lowerCAmelCase ( _A ): """simple docstring""" if not isinstance(_A ,_A ): _lowercase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_A ) if number < 0: return False _lowercase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
398
1
'''simple docstring''' import os import sys import unittest __snake_case : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case : Optional[int] = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') __snake_case : List[str] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : int ) -> int: '''simple docstring''' A__ : Optional[Any] =get_test_to_tester_mapping(lowerCAmelCase_ ) A__ : int =get_test_to_tester_mapping(lowerCAmelCase_ ) A__ : List[Any] ={"""BertModelTest""": """BertModelTester"""} A__ : Any ={ """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(get_test_info.to_json(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> Dict: '''simple docstring''' A__ : Tuple =get_model_to_test_mapping(lowerCAmelCase_ ) A__ : List[str] =get_model_to_test_mapping(lowerCAmelCase_ ) A__ : Optional[Any] ={ """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } A__ : int ={ """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(get_test_info.to_json(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : int =get_model_to_tester_mapping(lowerCAmelCase_ ) A__ : List[str] =get_model_to_tester_mapping(lowerCAmelCase_ ) A__ : List[str] ={ """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } A__ : Optional[Any] ={ """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(get_test_info.to_json(lowerCAmelCase_ ) , lowerCAmelCase_ )
687
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
1
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __snake_case : List[Any] = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 10_00, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __snake_case : Optional[int] = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 10_00, '''block_out_channels''': [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __snake_case : int = { '''sample_size''': 2_56, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __snake_case : Dict = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } __snake_case : Tuple = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } __snake_case : str = { '''num_train_timesteps''': 1_51, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def lowerCamelCase__ ( A_ ): if isinstance(A_ , A_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def lowerCamelCase__ ( A_ , A_ , A_ , A_ , A_=False ): UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.0.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.0.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.2.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.2.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.emb_layers.1.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.emb_layers.1.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.0.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.0.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.3.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.3.bias"""] if has_skip: UpperCAmelCase_ = checkpoint[F"""{old_prefix}.skip_connection.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def lowerCamelCase__ ( A_ , A_ , A_ , A_ , A_=None ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = checkpoint[F"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = checkpoint[F"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) UpperCAmelCase_ = checkpoint[F"""{old_prefix}.norm.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.norm.bias"""] UpperCAmelCase_ = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = ( checkpoint[F"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase_ = checkpoint[F"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase__ ( A_ , A_ ): UpperCAmelCase_ = torch.load(A_ , map_location="cpu" ) UpperCAmelCase_ = {} UpperCAmelCase_ = checkpoint["time_embed.0.weight"] UpperCAmelCase_ = checkpoint["time_embed.0.bias"] UpperCAmelCase_ = checkpoint["time_embed.2.weight"] UpperCAmelCase_ = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: UpperCAmelCase_ = checkpoint["label_emb.weight"] UpperCAmelCase_ = checkpoint["input_blocks.0.0.weight"] UpperCAmelCase_ = checkpoint["input_blocks.0.0.bias"] UpperCAmelCase_ = unet_config["down_block_types"] UpperCAmelCase_ = unet_config["layers_per_block"] UpperCAmelCase_ = unet_config["attention_head_dim"] UpperCAmelCase_ = unet_config["block_out_channels"] UpperCAmelCase_ = 1 UpperCAmelCase_ = channels_list[0] for i, layer_type in enumerate(A_ ): UpperCAmelCase_ = channels_list[i] UpperCAmelCase_ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(A_ ): UpperCAmelCase_ = F"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(A_ ): UpperCAmelCase_ = F"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) UpperCAmelCase_ = F"""down_blocks.{i}.attentions.{j}""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.1""" UpperCAmelCase_ = convert_attention( A_ , A_ , A_ , A_ , A_ ) current_layer += 1 if i != len(A_ ) - 1: UpperCAmelCase_ = F"""down_blocks.{i}.downsamplers.0""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) current_layer += 1 UpperCAmelCase_ = current_channels # hardcoded the mid-block for now UpperCAmelCase_ = "mid_block.resnets.0" UpperCAmelCase_ = "middle_block.0" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) UpperCAmelCase_ = "mid_block.attentions.0" UpperCAmelCase_ = "middle_block.1" UpperCAmelCase_ = convert_attention(A_ , A_ , A_ , A_ , A_ ) UpperCAmelCase_ = "mid_block.resnets.1" UpperCAmelCase_ = "middle_block.2" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) UpperCAmelCase_ = 0 UpperCAmelCase_ = unet_config["up_block_types"] for i, layer_type in enumerate(A_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ = F"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""output_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) current_layer += 1 if i != len(A_ ) - 1: UpperCAmelCase_ = F"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase_ = F"""output_blocks.{current_layer-1}.1""" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ = F"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""output_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) UpperCAmelCase_ = F"""up_blocks.{i}.attentions.{j}""" UpperCAmelCase_ = F"""output_blocks.{current_layer}.1""" UpperCAmelCase_ = convert_attention( A_ , A_ , A_ , A_ , A_ ) current_layer += 1 if i != len(A_ ) - 1: UpperCAmelCase_ = F"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase_ = F"""output_blocks.{current_layer-1}.2""" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) UpperCAmelCase_ = checkpoint["out.0.weight"] UpperCAmelCase_ = checkpoint["out.0.bias"] UpperCAmelCase_ = checkpoint["out.2.weight"] UpperCAmelCase_ = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') __snake_case : List[str] = parser.parse_args() __snake_case : Any = strabool(args.class_cond) __snake_case : List[str] = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: __snake_case : Optional[int] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __snake_case : Union[str, Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __snake_case : List[str] = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: __snake_case : Optional[Any] = None __snake_case : Optional[int] = con_pt_to_diffuser(args.unet_path, unet_config) __snake_case : str = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __snake_case : Tuple = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __snake_case : Optional[int] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __snake_case : Union[str, Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') __snake_case : Optional[Any] = CMStochasticIterativeScheduler(**scheduler_config) __snake_case : Dict = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
660
'''simple docstring''' def lowerCamelCase__ ( A_ , A_ ): _validate_point(A_ ) _validate_point(A_ ) if len(A_ ) != len(A_ ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(A_ , A_ ) ) ) def lowerCamelCase__ ( A_ ): if point: if isinstance(A_ , A_ ): for item in point: if not isinstance(A_ , (int, float) ): UpperCAmelCase_ = ( "Expected a list of numbers as input, found " F"""{type(A_ ).__name__}""" ) raise TypeError(A_ ) else: UpperCAmelCase_ = F"""Expected a list of numbers as input, found {type(A_ ).__name__}""" raise TypeError(A_ ) else: raise ValueError("Missing an input" ) def lowerCamelCase__ ( A_ , A_ ): _validate_point(A_ ) _validate_point(A_ ) if len(A_ ) != len(A_ ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(A_ , A_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
660
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCamelCase : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=99 , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=9 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase=8 , __UpperCamelCase=0.1 , __UpperCamelCase=0.002 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=0 , __UpperCamelCase=None , __UpperCamelCase=None , ): A_ = parent A_ = batch_size A_ = encoder_seq_length A_ = decoder_seq_length # For common tests A_ = self.decoder_seq_length A_ = is_training A_ = use_attention_mask A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = d_ff A_ = relative_attention_num_buckets A_ = dropout_rate A_ = initializer_factor A_ = eos_token_id A_ = pad_token_id A_ = decoder_start_token_id A_ = None A_ = decoder_layers def lowercase_ ( self ): return TaConfig.from_pretrained("google/umt5-base" ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ): if attention_mask is None: A_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: A_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: A_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase ) if decoder_head_mask is None: A_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) if cross_attn_head_mask is None: A_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowercase_ ( self ): A_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input A_ = input_ids.clamp(self.pad_token_id + 1 ) A_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) A_ = self.get_config() A_ = config.num_attention_heads A_ = self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, input_dict def lowercase_ ( self ): A_ , A_ = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase_ ( self ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): A_ = UMTaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A_ = model( input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , ) A_ = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ) A_ = result.last_hidden_state A_ = result.past_key_values A_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): A_ = UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval() # first forward pass A_ = model(__UpperCamelCase , use_cache=__UpperCamelCase ) A_ = model(__UpperCamelCase ) A_ = model(__UpperCamelCase , use_cache=__UpperCamelCase ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 ) A_ , A_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and A_ = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ = model(__UpperCamelCase )["last_hidden_state"] A_ = model(__UpperCamelCase , past_key_values=__UpperCamelCase )["last_hidden_state"] # select random slice A_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ = output_from_no_past[:, -1, random_slice_idx].detach() A_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , ): A_ = UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval() A_ = model(**__UpperCamelCase )["last_hidden_state"] self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() ) @require_torch class lowerCamelCase ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowerCAmelCase_ = (UMTaForConditionalGeneration,) if is_torch_available() else () lowerCAmelCase_ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = True # The small UMT5 model needs higher percentages for CPU/MP tests lowerCAmelCase_ = [0.8, 0.9] def lowercase_ ( self ): A_ = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def lowercase_ ( self ): A_ = self.model_tester.prepare_config_and_inputs() A_ = UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'{tmpdirname}/t5_test.onnx' , export_params=__UpperCamelCase , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def lowercase_ ( self ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase ) def lowercase_ ( self ): A_ = ["encoder_attentions", "decoder_attentions", "cross_attentions"] A_ = self.model_tester.prepare_config_and_inputs() A_ = config_and_inputs[0] A_ = UMTaForConditionalGeneration(__UpperCamelCase ).eval() model.to(__UpperCamelCase ) A_ = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), } for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ): A_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": A_ = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ) A_ = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step A_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def lowercase_ ( self ): pass @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def lowercase_ ( self ): A_ = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=__UpperCamelCase ).to(__UpperCamelCase ) A_ = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=__UpperCamelCase , legacy=__UpperCamelCase ) A_ = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] A_ = tokenizer(__UpperCamelCase , return_tensors="pt" , padding=__UpperCamelCase ).input_ids # fmt: off A_ = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase ) A_ = model.generate(input_ids.to(__UpperCamelCase ) ) A_ = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] A_ = tokenizer.batch_decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
608
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCAmelCase ( snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Any=1e-12 )-> List[str]: A_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(snake_case__ , axis=1 ) , a_min=snake_case__ ) ).T A_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(snake_case__ , axis=1 ) , a_min=snake_case__ ) ).T return jnp.matmul(snake_case__ , norm_emb_a.T ) class lowerCamelCase ( nn.Module ): """simple docstring""" lowerCAmelCase_ = 42 lowerCAmelCase_ = jnp.floataa def lowercase_ ( self ): A_ = FlaxCLIPVisionModule(self.config.vision_config ) A_ = nn.Dense(self.config.projection_dim , use_bias=__UpperCamelCase , dtype=self.dtype ) A_ = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) A_ = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) A_ = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) A_ = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self , __UpperCamelCase ): A_ = self.vision_model(__UpperCamelCase )[1] A_ = self.visual_projection(__UpperCamelCase ) A_ = jax_cosine_distance(__UpperCamelCase , self.special_care_embeds ) A_ = jax_cosine_distance(__UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs A_ = 0.0 A_ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment A_ = jnp.round(__UpperCamelCase , 3 ) A_ = jnp.any(special_scores > 0 , axis=1 , keepdims=__UpperCamelCase ) # Use a lower threshold if an image has any special care concept A_ = is_special_care * 0.01 A_ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment A_ = jnp.round(__UpperCamelCase , 3 ) A_ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class lowerCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase_ = CLIPConfig lowerCAmelCase_ = """clip_input""" lowerCAmelCase_ = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = jnp.floataa , __UpperCamelCase = True , **__UpperCamelCase , ): if input_shape is None: A_ = (1, 224, 224, 3) A_ = self.module_class(config=__UpperCamelCase , dtype=__UpperCamelCase , **__UpperCamelCase ) super().__init__(__UpperCamelCase , __UpperCamelCase , input_shape=__UpperCamelCase , seed=__UpperCamelCase , dtype=__UpperCamelCase , _do_init=_do_init ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None ): # init input tensor A_ = jax.random.normal(__UpperCamelCase , __UpperCamelCase ) A_ , A_ = jax.random.split(__UpperCamelCase ) A_ = {"params": params_rng, "dropout": dropout_rng} A_ = self.module.init(__UpperCamelCase , __UpperCamelCase )["params"] return random_params def __call__( self , __UpperCamelCase , __UpperCamelCase = None , ): A_ = jnp.transpose(__UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
608
1
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def __snake_case ( UpperCamelCase__ ) -> str: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) A = precision A = ceil(precision / 14 ) A = 426880 * Decimal(10005 ).sqrt() A = 1 A = 13591409 A = Decimal(__snake_case ) for k in range(1 , __snake_case ): A = factorial(6 * k ) // (factorial(3 * k ) * factorial(__snake_case ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCamelCase : Tuple = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
690
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class a__ ( a_, a_, unittest.TestCase ): __lowerCAmelCase = IFPipeline __lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} __lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} def __magic_name__ ( self ): return self._get_dummy_components() def __magic_name__ ( self , _a , _a=0 ): if str(_a ).startswith("mps" ): lowercase : List[str] = torch.manual_seed(_a ) else: lowercase : Dict = torch.Generator(device=_a ).manual_seed(_a ) lowercase : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __magic_name__ ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __magic_name__ ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __magic_name__ ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __magic_name__ ( self ): self._test_save_load_local() def __magic_name__ ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __magic_name__ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def __magic_name__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ): # if lowercase : Tuple = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) lowercase : List[str] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=_a , tokenizer=_a ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) lowercase , lowercase : int = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase : List[str] = None lowercase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_a , _a , _a , _a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) lowercase : Dict = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_a , _a , _a , _a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase : List[str] = IFInpaintingPipeline(**pipe_a.components ) lowercase : Optional[Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_a , _a , _a , _a ) def __magic_name__ ( self , _a , _a , _a , _a ): # pipeline 1 _start_torch_memory_measurement() lowercase : Optional[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Optional[Any] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , num_inference_steps=2 , generator=_a , output_type="np" , ) lowercase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) lowercase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowercase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() lowercase : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) lowercase : Optional[int] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , generator=_a , num_inference_steps=2 , output_type="np" , ) lowercase : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) lowercase : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_a , _a ) def __magic_name__ ( self , _a , _a , _a , _a ): # pipeline 1 _start_torch_memory_measurement() lowercase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) lowercase : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Union[str, Any] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , num_inference_steps=2 , generator=_a , output_type="np" , ) lowercase : Optional[Any] = output.images[0] assert image.shape == (64, 64, 3) lowercase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() lowercase : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Dict = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_a ) lowercase : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) lowercase : Dict = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , original_image=_a , generator=_a , num_inference_steps=2 , output_type="np" , ) lowercase : int = output.images[0] assert image.shape == (256, 256, 3) lowercase : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_a , _a ) def __magic_name__ ( self , _a , _a , _a , _a ): # pipeline 1 _start_torch_memory_measurement() lowercase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) lowercase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_a ) lowercase : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Dict = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , mask_image=_a , num_inference_steps=2 , generator=_a , output_type="np" , ) lowercase : Dict = output.images[0] assert image.shape == (64, 64, 3) lowercase : int = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() lowercase : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) lowercase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_a ) lowercase : str = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(_a ) lowercase : Dict = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , mask_image=_a , original_image=_a , generator=_a , num_inference_steps=2 , output_type="np" , ) lowercase : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) lowercase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_a , _a ) def __magic_name__ ( ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
361
0
"""simple docstring""" from __future__ import annotations def lowercase (_snake_case ) -> list[int]: '''simple docstring''' return [ord(_snake_case ) - 96 for elem in plain] def lowercase (_snake_case ) -> str: '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def lowercase () -> None: '''simple docstring''' __UpperCamelCase = encode(input("-> " ).strip().lower() ) print("Encoded: " ,_snake_case ) print("Decoded:" ,decode(_snake_case ) ) if __name__ == "__main__": main()
705
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : List[str] )-> Tuple: __UpperCamelCase = inspect.getfile(accelerate.test_utils ) __UpperCamelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __UpperCamelCase = test_metrics @require_cpu def A ( self : List[str] )-> Tuple: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def A ( self : Optional[Any] )-> Union[str, Any]: debug_launcher(self.test_metrics.main ) @require_single_gpu def A ( self : Tuple )-> Optional[int]: self.test_metrics.main() @require_multi_gpu def A ( self : str )-> List[Any]: print(f"""Found {torch.cuda.device_count()} devices.""" ) __UpperCamelCase = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ , env=os.environ.copy() )
228
0
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowercase_ = logging.get_logger(__name__) lowercase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowercase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : '''simple docstring''' __lowerCamelCase : str = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) __lowerCamelCase : str = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) __lowerCamelCase : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase : int = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) __lowerCamelCase : int = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) __lowerCamelCase : int = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) __lowerCamelCase : bool = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __lowerCamelCase : bool = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) __lowerCamelCase : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __lowerCamelCase : int = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __lowerCamelCase : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) __lowerCamelCase : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __A ( A ): '''simple docstring''' __lowerCamelCase : int = 'train' __lowerCamelCase : Union[str, Any] = 'dev' class __A ( A ): '''simple docstring''' __lowerCamelCase : SquadDataTrainingArguments __lowerCamelCase : List[SquadFeatures] __lowerCamelCase : Split __lowerCamelCase : bool def __init__(self , A , A , A = None , A = Split.train , A = False , A = None , A = "pt" , ) -> int: """simple docstring""" _a = args _a = is_language_sensitive _a = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(A , A ): try: _a = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) _a = mode # Load data features from cache or dataset file _a = '''v2''' if args.version_2_with_negative else '''v1''' _a = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a = cached_features_file + '''.lock''' with FileLock(A ): if os.path.exists(A ) and not args.overwrite_cache: _a = time.time() _a = torch.load(A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _a = self.old_features['''features'''] _a = self.old_features.get('''dataset''' , A ) _a = self.old_features.get('''examples''' , A ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: _a = self.processor.get_dev_examples(args.data_dir ) else: _a = self.processor.get_train_examples(args.data_dir ) _a , _a = squad_convert_examples_to_features( examples=self.examples , tokenizer=A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=A , ) _a = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__(self ) -> List[Any]: """simple docstring""" return len(self.features ) def __getitem__(self , A ) -> Dict[str, torch.Tensor]: """simple docstring""" _a = self.features[i] _a = torch.tensor(feature.input_ids , dtype=torch.long ) _a = torch.tensor(feature.attention_mask , dtype=torch.long ) _a = torch.tensor(feature.token_type_ids , dtype=torch.long ) _a = torch.tensor(feature.cls_index , dtype=torch.long ) _a = torch.tensor(feature.p_mask , dtype=torch.float ) _a = torch.tensor(feature.is_impossible , dtype=torch.float ) _a = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _a = torch.tensor(feature.start_position , dtype=torch.long ) _a = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
11
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowercase ( ): __A : Dict = ArgumentParser('Accelerate CLI tool', usage='accelerate <command> [<args>]', allow_abbrev=UpperCamelCase__ ) __A : Any = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=UpperCamelCase__ ) env_command_parser(subparsers=UpperCamelCase__ ) launch_command_parser(subparsers=UpperCamelCase__ ) tpu_command_parser(subparsers=UpperCamelCase__ ) test_command_parser(subparsers=UpperCamelCase__ ) # Let's go __A : Optional[Any] = parser.parse_args() if not hasattr(UpperCamelCase__, 'func' ): parser.print_help() exit(1 ) # Run args.func(UpperCamelCase__ ) if __name__ == "__main__": main()
365
0
'''simple docstring''' lowerCAmelCase : Tuple = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
720
'''simple docstring''' from collections import Counter from timeit import timeit def lowercase (_A = "" , ): """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def lowercase (_A = "" ): """simple docstring""" if len(_A ) == 0: return True _lowerCAmelCase : Union[str, Any] = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _lowerCAmelCase : dict[str, int] = {} for character in lower_case_input_str: _lowerCAmelCase : Union[str, Any] = character_freq_dict.get(_A , 0 ) + 1 _lowerCAmelCase : List[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowercase (_A = "" ): """simple docstring""" print('\nFor string = ' , _A , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_A ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_A ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": lowerCAmelCase : Tuple = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) lowerCAmelCase : Optional[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
630
0
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging lowerCAmelCase__ : Tuple =logging.get_logger(__name__) def __lowercase ( a__ , a__ , a__ ) -> None: __SCREAMING_SNAKE_CASE = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(a__ ) == len(a__ ), f"""{len(a__ )} != {len(a__ )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) lowerCAmelCase__ : Union[str, Any] ={ # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } lowerCAmelCase__ : Optional[Any] ={ # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __lowercase ( a__ , a__ ) -> Tuple: try: __SCREAMING_SNAKE_CASE = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" f""" {n_student}""" ) return list(range(a__ ) ) def __lowercase ( a__ , a__ ) -> List[int]: if n_student > n_teacher: raise ValueError(f"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(a__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __lowercase ( a__ , a__ = "student" , a__ = None , a__ = None , a__=False , a__=None , a__=None , **a__ , ) -> Tuple[PreTrainedModel, List[int], List[int]]: __SCREAMING_SNAKE_CASE = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(a__ , a__ ): AutoTokenizer.from_pretrained(a__ ).save_pretrained(a__ ) # purely for convenience __SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(a__ ).eval() else: assert isinstance(a__ , a__ ), f"""teacher must be a model or string got type {type(a__ )}""" __SCREAMING_SNAKE_CASE = teacher.config.to_diff_dict() try: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __SCREAMING_SNAKE_CASE = teacher_e if d is None: __SCREAMING_SNAKE_CASE = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __SCREAMING_SNAKE_CASE = teacher_e if d is None: __SCREAMING_SNAKE_CASE = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(a__ ) # Copy weights __SCREAMING_SNAKE_CASE = teacher.config_class(**a__ ) __SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_config(a__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __SCREAMING_SNAKE_CASE = student.load_state_dict(teacher.state_dict() , strict=a__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = list(range(a__ ) ), list(range(a__ ) ) logger.info( f"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" f""" {save_path}""" ) student.save_pretrained(a__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __SCREAMING_SNAKE_CASE = pick_layers_to_copy(a__ , a__ ) if d_layers_to_copy is None: __SCREAMING_SNAKE_CASE = pick_layers_to_copy(a__ , a__ ) try: if hasattr( a__ , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , a__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , a__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , a__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , a__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , a__ ) copy_layers(teacher.decoder.block , student.decoder.block , a__ ) logger.info( f"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) __SCREAMING_SNAKE_CASE = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(a__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
148
# Algorithm for the pigeonhole sorting def __lowercase ( a__ ) -> Tuple: __SCREAMING_SNAKE_CASE = min(a__ ) # min() finds the minimum value __SCREAMING_SNAKE_CASE = max(a__ ) # max() finds the maximum value __SCREAMING_SNAKE_CASE = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __SCREAMING_SNAKE_CASE = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(a__ , a__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __SCREAMING_SNAKE_CASE = 0 for count in range(a__ ): while holes[count] > 0: holes[count] -= 1 __SCREAMING_SNAKE_CASE = count + min_val i += 1 def __lowercase ( ) -> List[str]: __SCREAMING_SNAKE_CASE = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a__ ) print('Sorted order is:' , ' '.join(a__ ) ) if __name__ == "__main__": main()
148
1
"""simple docstring""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : torch.FloatTensor __lowercase : Optional[torch.FloatTensor] = None def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_=0.999 , UpperCamelCase_="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase_ ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) __SCREAMING_SNAKE_CASE = [] for i in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase_ ) / alpha_bar_fn(UpperCamelCase_ ) , UpperCamelCase_ ) ) return torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE_ ( __a , __a ): """simple docstring""" __lowercase : Any = 1 @register_to_config def __init__( self , lowerCAmelCase__ = 1_0_0_0 , lowerCAmelCase__ = 0.00_01 , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = "linear" , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = 0 , lowerCAmelCase__ = "epsilon" , lowerCAmelCase__ = 1.0 , **lowerCAmelCase__ , ): if kwargs.get("""set_alpha_to_one""" , lowerCAmelCase__) is not None: __SCREAMING_SNAKE_CASE = ( """The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.""" ) deprecate("""set_alpha_to_one""" , """1.0.0""" , lowerCAmelCase__ , standard_warn=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = kwargs["""set_alpha_to_one"""] if trained_betas is not None: __SCREAMING_SNAKE_CASE = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE = betas_for_alpha_bar(lowerCAmelCase__) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") __SCREAMING_SNAKE_CASE = 1.0 - self.betas __SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas , dim=0) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __SCREAMING_SNAKE_CASE = torch.tensor(0.0) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE = 1.0 # setable values __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = torch.from_numpy(np.arange(0 , lowerCAmelCase__).copy().astype(np.intaa)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): return sample def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps.") __SCREAMING_SNAKE_CASE = num_inference_steps __SCREAMING_SNAKE_CASE = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE = (np.arange(0 , lowerCAmelCase__) * step_ratio).round().copy().astype(np.intaa) __SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCAmelCase__).to(lowerCAmelCase__) self.timesteps += self.config.steps_offset def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = True , ): # 1. get previous step value (=t+1) __SCREAMING_SNAKE_CASE = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __SCREAMING_SNAKE_CASE = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __SCREAMING_SNAKE_CASE = model_output elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE = model_output __SCREAMING_SNAKE_CASE = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __SCREAMING_SNAKE_CASE = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" """ `v_prediction`""") # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__) def __len__( self): return self.config.num_train_timesteps
721
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): for j in range(i + 1 , UpperCamelCase_ ): if numbers[j] < numbers[i]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = numbers[j], numbers[i] return numbers if __name__ == "__main__": __magic_name__ = input("Enter numbers separated by a comma:\n").strip() __magic_name__ = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
248
0
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class _UpperCamelCase ( _A ): '''simple docstring''' @require_torch def lowerCAmelCase__ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCamelCase_: Optional[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCamelCase_: List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCamelCase_: Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCamelCase_: int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(snake_case_ ) BertModel.from_pretrained(snake_case_ ) BertTokenizer.from_pretrained(snake_case_ ) pipeline(task="""fill-mask""" , model=snake_case_ ) # baseline - just load from_pretrained with normal network UpperCamelCase_: Tuple = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCamelCase_: Optional[int] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase_: int = """1""" UpperCamelCase_: Optional[Any] = subprocess.run(snake_case_ , env=snake_case_ , check=snake_case_ , capture_output=snake_case_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCAmelCase__ ( self : Any ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCamelCase_: str = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCamelCase_: Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCamelCase_: Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCamelCase_: Optional[int] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(snake_case_ ) BertModel.from_pretrained(snake_case_ ) BertTokenizer.from_pretrained(snake_case_ ) pipeline(task="""fill-mask""" , model=snake_case_ ) # baseline - just load from_pretrained with normal network UpperCamelCase_: Optional[int] = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCamelCase_: List[str] = self.get_env() UpperCamelCase_: List[Any] = subprocess.run(snake_case_ , env=snake_case_ , check=snake_case_ , capture_output=snake_case_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCAmelCase__ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCamelCase_: Dict = """ from transformers import BertConfig, BertModel, BertTokenizer """ UpperCamelCase_: Optional[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ UpperCamelCase_: Dict = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network UpperCamelCase_: Union[str, Any] = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCamelCase_: Union[str, Any] = self.get_env() UpperCamelCase_: List[Any] = subprocess.run(snake_case_ , env=snake_case_ , check=snake_case_ , capture_output=snake_case_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network UpperCamelCase_: Optional[int] = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase_: Union[str, Any] = """1""" UpperCamelCase_: int = subprocess.run(snake_case_ , env=snake_case_ , check=snake_case_ , capture_output=snake_case_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Dict = """ from transformers import pipeline """ UpperCamelCase_: Union[str, Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ UpperCamelCase_: Dict = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ UpperCamelCase_: Optional[Any] = self.get_env() UpperCamelCase_: int = """1""" UpperCamelCase_: int = [sys.executable, """-c""", """\n""".join([load, mock, run] )] UpperCamelCase_: Any = subprocess.run(snake_case_ , env=snake_case_ , check=snake_case_ , capture_output=snake_case_ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: str = """ from transformers import AutoModel """ UpperCamelCase_: Dict = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network UpperCamelCase_: Optional[int] = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCamelCase_: Optional[Any] = self.get_env() UpperCamelCase_: int = subprocess.run(snake_case_ , env=snake_case_ , check=snake_case_ , capture_output=snake_case_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase_: Union[str, Any] = """1""" UpperCamelCase_: List[str] = subprocess.run(snake_case_ , env=snake_case_ , check=snake_case_ , capture_output=snake_case_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
548
0
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: __a = 1 - (matter_density + radiation_density + dark_energy) __a = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __a = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __snake_case :int = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
60
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __snake_case :Union[str, Any] = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :List[str] = ['''ViTFeatureExtractor'''] __snake_case :Optional[Any] = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :str = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Tuple = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Tuple = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __snake_case :Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = KandinskyVaaPriorPipeline UpperCamelCase = ['''prompt'''] UpperCamelCase = ['''prompt''', '''negative_prompt'''] UpperCamelCase = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" return 32 @property def a__ ( self : str ) -> Any: """simple docstring""" return 32 @property def a__ ( self : Tuple ) -> int: """simple docstring""" return self.time_input_dim @property def a__ ( self : str ) -> str: """simple docstring""" return self.time_input_dim * 4 @property def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return 100 @property def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a__ ( self : Any ) -> str: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(A_ ) @property def a__ ( self : Optional[int] ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } lowerCamelCase_ = PriorTransformer(**A_ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowerCamelCase_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def a__ ( self : int ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) lowerCamelCase_ = CLIPVisionModelWithProjection(A_ ) return model @property def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = CLIPImageProcessor( crop_size=224 , do_center_crop=A_ , do_normalize=A_ , do_resize=A_ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.dummy_prior lowerCamelCase_ = self.dummy_image_encoder lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = self.dummy_tokenizer lowerCamelCase_ = self.dummy_image_processor lowerCamelCase_ = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=A_ , clip_sample_range=10.0 , ) lowerCamelCase_ = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def a__ ( self : Dict , A_ : Optional[int] , A_ : Union[str, Any]=0 ) -> List[Any]: """simple docstring""" if str(A_ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(A_ ) else: lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCamelCase_ = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = 'cpu' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = pipe(**self.get_dummy_inputs(A_ ) ) lowerCamelCase_ = output.image_embeds lowerCamelCase_ = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] lowerCamelCase_ = image[0, -10:] lowerCamelCase_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) lowerCamelCase_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a__ ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = torch_device == 'cpu' lowerCamelCase_ = True lowerCamelCase_ = False self._test_inference_batch_single_identical( test_max_difference=A_ , relax_max_difference=A_ , test_mean_pixel_difference=A_ , ) @skip_mps def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = torch_device == 'cpu' lowerCamelCase_ = False self._test_attention_slicing_forward_pass( test_max_difference=A_ , test_mean_pixel_difference=A_ , )
70
import numpy as np def lowerCAmelCase_ (lowerCAmelCase__: np.ndarray , lowerCAmelCase__: float ): """simple docstring""" return np.where(vector > 0 , lowerCAmelCase__ , (alpha * (np.exp(lowerCAmelCase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
556
0
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCamelCase ( _lowerCAmelCase : Dict ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase ( ): __a = """mock-s3-bucket""" __a = f"""s3://{mock_bucket}""" __a = extract_path_from_uri(_lowerCAmelCase ) assert dataset_path.startswith("""s3://""" ) is False __a = """./local/path""" __a = extract_path_from_uri(_lowerCAmelCase ) assert dataset_path == new_dataset_path def UpperCamelCase ( _lowerCAmelCase : Tuple ): __a = is_remote_filesystem(_lowerCAmelCase ) assert is_remote is True __a = fsspec.filesystem("""file""" ) __a = is_remote_filesystem(_lowerCAmelCase ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , _lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int ): __a = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} __a = input_paths[compression_fs_class.protocol] if input_path is None: __a = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_lowerCAmelCase ) __a = fsspec.filesystem(compression_fs_class.protocol , fo=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) __a = os.path.basename(_lowerCAmelCase ) __a = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f, open(_lowerCAmelCase , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def UpperCamelCase ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): __a = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} __a = compressed_file_paths[protocol] __a = """dataset.jsonl""" __a = f"""{protocol}://{member_file_path}::{compressed_file_path}""" __a , *__a = fsspec.get_fs_token_paths(_lowerCAmelCase ) assert fs.isfile(_lowerCAmelCase ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def UpperCamelCase ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ): __a = hf_api.dataset_info(_lowerCAmelCase , token=_lowerCAmelCase ) __a = HfFileSystem(repo_info=_lowerCAmelCase , token=_lowerCAmelCase ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(_lowerCAmelCase ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def UpperCamelCase ( ): __a = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_lowerCAmelCase , _lowerCAmelCase , clobber=_lowerCAmelCase ) with pytest.warns(_lowerCAmelCase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_lowerCAmelCase ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
173
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) __a = (boundary[1] - boundary[0]) / steps __a = boundary[0] __a = boundary[1] __a = make_points(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __a = 0.0 y += (h / 2.0) * f(_lowerCAmelCase ) for i in x_i: # print(i) y += h * f(_lowerCAmelCase ) y += (h / 2.0) * f(_lowerCAmelCase ) return y def UpperCamelCase ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int ): __a = a + h while x < (b - h): yield x __a = x + h def UpperCamelCase ( _lowerCAmelCase : int ): # enter your function here __a = (x - 0) * (x - 0) return y def UpperCamelCase ( ): __a = 0.0 # Lower bound of integration __a = 1.0 # Upper bound of integration __a = 10.0 # define number of steps or resolution __a = [a, b] # define boundary of integration __a = method_a(_lowerCAmelCase , _lowerCAmelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
173
1
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class snake_case ( snake_case__ ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
675
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case = TypeVar("T") class __A ( Generic[T] ): '''simple docstring''' a_ = 42 # Cache store of keys a_ = 42 # References of the keys in cache a_ = 10 # Maximum capacity of cache def __init__( self , _snake_case ): _lowerCAmelCase : Tuple = deque() _lowerCAmelCase : List[Any] = set() if not n: _lowerCAmelCase : Any = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: _lowerCAmelCase : List[str] = n def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _lowerCAmelCase : Optional[int] = self.dq_store.pop() self.key_reference.remove(_snake_case ) else: self.dq_store.remove(_snake_case ) self.dq_store.appendleft(_snake_case ) self.key_reference.add(_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): for k in self.dq_store: print(_snake_case ) def __repr__( self ): return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
424
0
'''simple docstring''' import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __magic_name__ = logging.getLogger(__name__) __magic_name__ = '''pytorch_model.bin''' @dataclasses.dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) __UpperCAmelCase : Optional[str] = dataclasses.field( default=__lowerCamelCase, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''}, ) @dataclasses.dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) __UpperCAmelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) __UpperCAmelCase : Optional[str] = dataclasses.field( default=__lowerCamelCase, metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) __UpperCAmelCase : Optional[str] = dataclasses.field( default=__lowerCamelCase, metadata={'''help''': '''The name of the task to train on.'''}, ) __UpperCAmelCase : Optional[List[str]] = dataclasses.field( default=__lowerCamelCase, metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) __UpperCAmelCase : Optional[str] = dataclasses.field( default='''accuracy''', metadata={'''help''': '''The evaluation metric used for the task.'''} ) __UpperCAmelCase : Optional[str] = dataclasses.field( default='''no''', metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' }, ) __UpperCAmelCase : Optional[int] = dataclasses.field( default=10, metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''}, ) __UpperCAmelCase : Optional[float] = dataclasses.field( default=0.0, metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' }, ) __UpperCAmelCase : Optional[bool] = dataclasses.field( default=__lowerCamelCase, metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''}, ) __UpperCAmelCase : Optional[bool] = dataclasses.field( default=__lowerCamelCase, metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''}, ) __UpperCAmelCase : Optional[bool] = dataclasses.field( default=__lowerCamelCase, metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''}, ) __UpperCAmelCase : Optional[float] = dataclasses.field( default=0.0, metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''}, ) __UpperCAmelCase : Optional[int] = dataclasses.field( default=100, metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''}, ) __UpperCAmelCase : Optional[int] = dataclasses.field( default=__lowerCamelCase, metadata={'''help''': '''Random seed for initialization.'''}, ) def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : str = datasets.concatenate_datasets([infer_input, infer_output] , axis=1) if args.do_filter_by_confidence: lowerCamelCase_ : Optional[Any] = dataset.filter(lambda lowerCAmelCase_: example["probability"] > args.confidence_threshold) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 lowerCamelCase_ : Union[str, Any] = int(eval_result * len(lowerCAmelCase_)) print(lowerCAmelCase_) lowerCamelCase_ : Tuple = dataset.sort("probability" , reverse=lowerCAmelCase_) lowerCamelCase_ : Dict = dataset.select(range(lowerCAmelCase_)) lowerCamelCase_ : List[Any] = dataset.remove_columns(["label", "probability"]) lowerCamelCase_ : int = dataset.rename_column("prediction" , "label") lowerCamelCase_ : Dict = dataset.map(lambda lowerCAmelCase_: {"label": idalabel[example["label"]]}) lowerCamelCase_ : List[str] = dataset.shuffle(seed=args.seed) lowerCamelCase_ : Optional[Any] = os.path.join(lowerCAmelCase_ , F"""train_pseudo.{args.data_file_extension}""") if args.data_file_extension == "csv": dataset.to_csv(lowerCAmelCase_ , index=lowerCAmelCase_) else: dataset.to_json(lowerCAmelCase_) def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() lowerCamelCase_ : Any = STModelArguments(model_name_or_path=lowerCAmelCase_) lowerCamelCase_ : Tuple = STDataArguments(train_file=lowerCAmelCase_ , infer_file=lowerCAmelCase_) lowerCamelCase_ : Tuple = STTrainingArguments(output_dir=lowerCAmelCase_) lowerCamelCase_ : List[str] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowerCAmelCase_).items(): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) for key, value in kwargs.items(): if hasattr(lowerCAmelCase_ , lowerCAmelCase_): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # Sanity checks lowerCamelCase_ : Union[str, Any] = {} lowerCamelCase_ : Union[str, Any] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None lowerCamelCase_ : Optional[Any] = args.train_file lowerCamelCase_ : Optional[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None lowerCamelCase_ : Union[str, Any] = args.eval_file for key in data_files: lowerCamelCase_ : int = data_files[key].split(".")[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: lowerCamelCase_ : Optional[int] = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) logger.info("Creating the initial data directory for self-training...") lowerCamelCase_ : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format lowerCamelCase_ : str = data_dir_format(0) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_) accelerator.wait_for_everyone() lowerCamelCase_ : int = None lowerCamelCase_ : str = None lowerCamelCase_ : str = 0 lowerCamelCase_ : int = False # Show the progress bar lowerCamelCase_ : Optional[int] = tqdm(range(args.max_selftrain_iterations) , disable=not accelerator.is_local_main_process) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations)): lowerCamelCase_ : Dict = data_dir_format(lowerCAmelCase_) assert os.path.exists(lowerCAmelCase_) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 lowerCamelCase_ : Any = os.path.join(lowerCAmelCase_ , "stage-1") lowerCamelCase_ : Union[str, Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowerCAmelCase_ , lowerCAmelCase_): arguments_dict.update({key: value}) lowerCamelCase_ : Optional[Any] = os.path.join(lowerCAmelCase_ , "best-checkpoint" , lowerCAmelCase_) if os.path.exists(lowerCAmelCase_): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , lowerCAmelCase_ , lowerCAmelCase_ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , lowerCAmelCase_) finetune(**lowerCAmelCase_) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase_) logger.info("Self-training job completed: iteration: %d, stage: 1." , lowerCAmelCase_) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data lowerCamelCase_ : str = os.path.join(lowerCAmelCase_ , "best-checkpoint") lowerCamelCase_ : Optional[Any] = os.path.join(lowerCAmelCase_ , "stage-2") # Update arguments_dict lowerCamelCase_ : Tuple = model_path lowerCamelCase_ : Any = data_files["train"] lowerCamelCase_ : Optional[Any] = current_output_dir lowerCamelCase_ : List[str] = os.path.join(lowerCAmelCase_ , "best-checkpoint" , lowerCAmelCase_) if os.path.exists(lowerCAmelCase_): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , lowerCAmelCase_ , lowerCAmelCase_ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , lowerCAmelCase_) finetune(**lowerCAmelCase_) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase_) logger.info("Self-training job completed: iteration: %d, stage: 2." , lowerCAmelCase_) lowerCamelCase_ : int = iteration lowerCamelCase_ : Any = data_dir_format(iteration + 1) lowerCamelCase_ : Any = AutoConfig.from_pretrained(os.path.join(lowerCAmelCase_ , "best-checkpoint")) lowerCamelCase_ : Tuple = config.idalabel lowerCamelCase_ : Dict = os.path.join(lowerCAmelCase_ , "eval_results_best-checkpoint.json") lowerCamelCase_ : int = os.path.join(lowerCAmelCase_ , "test_results_best-checkpoint.json") assert os.path.exists(lowerCAmelCase_) with open(lowerCAmelCase_ , "r") as f: lowerCamelCase_ : List[str] = float(json.load(lowerCAmelCase_)[args.eval_metric]) lowerCamelCase_ : Union[str, Any] = os.path.join(lowerCAmelCase_ , "infer_output_best-checkpoint.csv") assert os.path.exists(lowerCAmelCase_) # Loading the dataset from local csv or json files. lowerCamelCase_ : Tuple = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]})["data"] lowerCamelCase_ : Any = load_dataset("csv" , data_files={"data": infer_output_file})["data"] if accelerator.is_main_process: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_) shutil.copy(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , F"""eval_results_iter-{iteration}.json""")) if os.path.exists(lowerCAmelCase_): shutil.copy(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , F"""test_results_iter-{iteration}.json""")) create_pseudo_labeled_data(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) accelerator.wait_for_everyone() lowerCamelCase_ : Dict = os.path.join(lowerCAmelCase_ , F"""train_pseudo.{args.data_file_extension}""") if args.evaluation_strategy != IntervalStrategy.NO.value: lowerCamelCase_ : Union[str, Any] = eval_result if best_iteration is None: lowerCamelCase_ : Dict = new_iteration lowerCamelCase_ : Union[str, Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: lowerCamelCase_ : Optional[int] = new_iteration lowerCamelCase_ : Dict = new_eval_result lowerCamelCase_ : Any = 0 else: if new_eval_result == best_eval_result: lowerCamelCase_ : Optional[int] = new_iteration lowerCamelCase_ : int = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: lowerCamelCase_ : Optional[Any] = True progress_bar.update(1) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , lowerCAmelCase_) logger.info("Best evaluation result: %s = %f" , args.eval_metric , lowerCAmelCase_) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase_ , F"""eval_results_iter-{iteration}.json""") , os.path.join(lowerCAmelCase_ , "eval_results_best-iteration.json") , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1) logger.info("Best evaluation result: %s = %f" , args.eval_metric , lowerCAmelCase_) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase_ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""") , os.path.join(lowerCAmelCase_ , "eval_results_best-iteration.json") , )
708
__magic_name__ = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.602_176_634E-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.35_58_18, } def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCamelCase_ : List[Any] = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(lowerCAmelCase_)}""" ) raise ValueError(lowerCAmelCase_) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
73
0
'''simple docstring''' def _lowerCAmelCase ( __snake_case : list , __snake_case : int , __snake_case : int = 0 , __snake_case : int = 0 ) -> int: __A : List[Any] = right or len(__snake_case ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__snake_case , __snake_case , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' def lowercase__ ( __lowercase : int | float | str ) -> tuple[int, int]: """simple docstring""" try: __UpperCamelCase = float(__lowercase ) except ValueError: raise ValueError('Please enter a valid number' ) __UpperCamelCase = decimal - int(__lowercase ) if fractional_part == 0: return int(__lowercase ), 1 else: __UpperCamelCase = len(str(__lowercase ).split('.' )[1] ) __UpperCamelCase = int(decimal * (10**number_of_frac_digits) ) __UpperCamelCase = 10**number_of_frac_digits __UpperCamelCase , __UpperCamelCase = denominator, numerator while True: __UpperCamelCase = dividend % divisor if remainder == 0: break __UpperCamelCase , __UpperCamelCase = divisor, remainder __UpperCamelCase , __UpperCamelCase = numerator / divisor, denominator / divisor return int(__lowercase ), int(__lowercase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
399
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "new-model" if is_tf_available(): class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = NewModelConfig @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = "bert-base-cased" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = "bert-base-cased" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForPreTraining.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : Optional[Any] ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : Union[str, Any] ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : str ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : str ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : int ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : Optional[int] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForQuestionAnswering.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow @require_tensorflow_probability def _snake_case ( self : int ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained( __lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 14410 ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 14410 ) def _snake_case ( self : List[str] ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = copy.deepcopy(model.config ) SCREAMING_SNAKE_CASE = ["FunnelBaseModel"] SCREAMING_SNAKE_CASE = TFAutoModel.from_config(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ): try: AutoConfig.register("new-model" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__lowerCamelCase ): auto_class.register(__lowerCamelCase , __lowerCamelCase ) auto_class.register(__lowerCamelCase , __lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): auto_class.register(__lowerCamelCase , __lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = BertModelTester(self ).get_config() SCREAMING_SNAKE_CASE = NewModelConfig(**tiny_config.to_dict() ) SCREAMING_SNAKE_CASE = auto_class.from_config(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = auto_class.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _snake_case ( self : Union[str, Any] ): with self.assertRaisesRegex( __lowerCamelCase , "bert-base is not a local folder and is not a valid model identifier" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("bert-base" ) def _snake_case ( self : List[Any] ): with self.assertRaisesRegex( __lowerCamelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase , revision="aaaaaa" ) def _snake_case ( self : Dict ): with self.assertRaisesRegex( __lowerCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def _snake_case ( self : List[str] ): with self.assertRaisesRegex(__lowerCamelCase , "Use `from_pt=True` to load this model" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def _snake_case ( self : Union[str, Any] ): # Make sure we have cached the model. SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
698
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
1
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __A : str = logging.get_logger(__name__) def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[int] ): '''simple docstring''' try: with open(snake_case_ ,"""rb""" ) as flax_state_f: UpperCamelCase : Optional[Any] = from_bytes(snake_case_ ,flax_state_f.read() ) except UnpicklingError as e: try: with open(snake_case_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(snake_case_ ,snake_case_ ) def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Tuple ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights UpperCamelCase : Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda snake_case_ : x.dtype == jnp.bfloataa ,snake_case_ ) ).values() if any(snake_case_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) UpperCamelCase : Optional[Any] = jax.tree_util.tree_map( lambda snake_case_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,snake_case_ ) UpperCamelCase : int = """""" UpperCamelCase : List[Any] = flatten_dict(snake_case_ ,sep=""".""" ) UpperCamelCase : Any = pt_model.state_dict() # keep track of unexpected & missing keys UpperCamelCase : int = [] UpperCamelCase : List[Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase : Dict = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: UpperCamelCase : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] UpperCamelCase : List[str] = jnp.transpose(snake_case_ ,(3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": UpperCamelCase : List[Any] = flax_key_tuple_array[:-1] + ["""weight"""] UpperCamelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": UpperCamelCase : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(snake_case_ ): UpperCamelCase : List[str] = ( flax_key_tuple_string.replace("""_0""" ,""".0""" ) .replace("""_1""" ,""".1""" ) .replace("""_2""" ,""".2""" ) .replace("""_3""" ,""".3""" ) .replace("""_4""" ,""".4""" ) .replace("""_5""" ,""".5""" ) .replace("""_6""" ,""".6""" ) .replace("""_7""" ,""".7""" ) .replace("""_8""" ,""".8""" ) .replace("""_9""" ,""".9""" ) ) UpperCamelCase : Union[str, Any] = """.""".join(snake_case_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase : int = np.asarray(snake_case_ ) if not isinstance(snake_case_ ,np.ndarray ) else flax_tensor UpperCamelCase : Any = torch.from_numpy(snake_case_ ) # remove from missing keys missing_keys.remove(snake_case_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case_ ) pt_model.load_state_dict(snake_case_ ) # re-transform missing_keys to list UpperCamelCase : Union[str, Any] = list(snake_case_ ) if len(snake_case_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(snake_case_ ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' """ use it for predictions and inference.""" ) return pt_model
499
"""simple docstring""" __A : Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __A : str = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __A : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
499
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCAmelCase__ ( nn.Module ): """simple docstring""" __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : float = 0.0 __UpperCAmelCase : int = 1 __UpperCAmelCase : int = 1 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = False __UpperCAmelCase : bool = False __UpperCAmelCase : jnp.dtype = jnp.floataa def __lowercase ( self : List[str] ): '''simple docstring''' _a : List[str] = [] _a : List[str] = [] for i in range(self.num_layers ): _a : Tuple = self.in_channels if i == 0 else self.out_channels _a : List[Any] = FlaxResnetBlockaD( in_channels=_a ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_a ) _a : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_a ) _a : Optional[int] = resnets _a : Optional[Any] = attentions if self.add_downsample: _a : Optional[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self : Union[str, Any] ,_a : List[Any] ,_a : Optional[int] ,_a : Any ,_a : List[Any]=True ): '''simple docstring''' _a : Any = () for resnet, attn in zip(self.resnets ,self.attentions ): _a : Any = resnet(_a ,_a ,deterministic=_a ) _a : int = attn(_a ,_a ,deterministic=_a ) output_states += (hidden_states,) if self.add_downsample: _a : int = self.downsamplers_a(_a ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : float = 0.0 __UpperCAmelCase : int = 1 __UpperCAmelCase : bool = True __UpperCAmelCase : jnp.dtype = jnp.floataa def __lowercase ( self : Tuple ): '''simple docstring''' _a : str = [] for i in range(self.num_layers ): _a : Optional[Any] = self.in_channels if i == 0 else self.out_channels _a : Tuple = FlaxResnetBlockaD( in_channels=_a ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_a ) _a : List[Any] = resnets if self.add_downsample: _a : Optional[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self : Dict ,_a : List[str] ,_a : str ,_a : str=True ): '''simple docstring''' _a : Any = () for resnet in self.resnets: _a : Optional[int] = resnet(_a ,_a ,deterministic=_a ) output_states += (hidden_states,) if self.add_downsample: _a : str = self.downsamplers_a(_a ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : float = 0.0 __UpperCAmelCase : int = 1 __UpperCAmelCase : int = 1 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = False __UpperCAmelCase : bool = False __UpperCAmelCase : jnp.dtype = jnp.floataa def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = [] _a : Optional[int] = [] for i in range(self.num_layers ): _a : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels _a : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels _a : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_a ) _a : str = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_a ) _a : Optional[Any] = resnets _a : Optional[int] = attentions if self.add_upsample: _a : Dict = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self : List[Any] ,_a : Tuple ,_a : Optional[Any] ,_a : Dict ,_a : Any ,_a : List[Any]=True ): '''simple docstring''' for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states _a : str = res_hidden_states_tuple[-1] _a : Dict = res_hidden_states_tuple[:-1] _a : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _a : Union[str, Any] = resnet(_a ,_a ,deterministic=_a ) _a : Union[str, Any] = attn(_a ,_a ,deterministic=_a ) if self.add_upsample: _a : Tuple = self.upsamplers_a(_a ) return hidden_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : float = 0.0 __UpperCAmelCase : int = 1 __UpperCAmelCase : bool = True __UpperCAmelCase : jnp.dtype = jnp.floataa def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = [] for i in range(self.num_layers ): _a : Union[str, Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _a : List[str] = self.prev_output_channel if i == 0 else self.out_channels _a : Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_a ) _a : Tuple = resnets if self.add_upsample: _a : Dict = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self : List[str] ,_a : List[str] ,_a : Optional[int] ,_a : Tuple ,_a : Any=True ): '''simple docstring''' for resnet in self.resnets: # pop res hidden states _a : Any = res_hidden_states_tuple[-1] _a : str = res_hidden_states_tuple[:-1] _a : Any = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _a : Dict = resnet(_a ,_a ,deterministic=_a ) if self.add_upsample: _a : Union[str, Any] = self.upsamplers_a(_a ) return hidden_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" __UpperCAmelCase : int __UpperCAmelCase : float = 0.0 __UpperCAmelCase : int = 1 __UpperCAmelCase : int = 1 __UpperCAmelCase : bool = False __UpperCAmelCase : bool = False __UpperCAmelCase : jnp.dtype = jnp.floataa def __lowercase ( self : Tuple ): '''simple docstring''' _a : Dict = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] _a : Dict = [] for _ in range(self.num_layers ): _a : Optional[int] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_a ) _a : Dict = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_a ) _a : List[str] = resnets _a : List[Any] = attentions def __call__( self : int ,_a : int ,_a : int ,_a : Optional[int] ,_a : List[Any]=True ): '''simple docstring''' _a : Optional[int] = self.resnets[0](_a ,_a ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): _a : Union[str, Any] = attn(_a ,_a ,deterministic=_a ) _a : Optional[int] = resnet(_a ,_a ,deterministic=_a ) return hidden_states
702
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Any ,*_a : Optional[Any] ,**_a : Union[str, Any] ): '''simple docstring''' warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' ,_a ,) super().__init__(*_a ,**_a )
319
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A_ ( lowercase ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = int(number**0.5 ) return number == sq * sq def A_ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: """simple docstring""" UpperCAmelCase_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase_ : Dict = x_den * y_den * z_den UpperCAmelCase_ : Union[str, Any] = gcd(lowercase , lowercase ) top //= hcf bottom //= hcf return top, bottom def A_ ( lowercase = 35 ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[str] = set() UpperCAmelCase_ : List[Any] = 42 UpperCAmelCase_ : Dict = Fraction(0 ) UpperCAmelCase_ : Optional[int] = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCAmelCase_ : Any = x_num * y_den + x_den * y_num UpperCAmelCase_ : Optional[Any] = x_den * y_den UpperCAmelCase_ : Union[str, Any] = gcd(lowercase , lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Dict = add_three( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) unique_s.add(lowercase ) # n=2 UpperCAmelCase_ : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase_ : Optional[int] = x_den * x_den * y_den * y_den if is_sq(lowercase ) and is_sq(lowercase ): UpperCAmelCase_ : int = int(sqrt(lowercase ) ) UpperCAmelCase_ : Optional[Any] = int(sqrt(lowercase ) ) UpperCAmelCase_ : int = gcd(lowercase , lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Dict = add_three( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) unique_s.add(lowercase ) # n=-1 UpperCAmelCase_ : Any = x_num * y_num UpperCAmelCase_ : List[Any] = x_den * y_num + x_num * y_den UpperCAmelCase_ : List[Any] = gcd(lowercase , lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Optional[int] = add_three( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) unique_s.add(lowercase ) # n=2 UpperCAmelCase_ : Optional[Any] = x_num * x_num * y_num * y_num UpperCAmelCase_ : Tuple = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowercase ) and is_sq(lowercase ): UpperCAmelCase_ : str = int(sqrt(lowercase ) ) UpperCAmelCase_ : Optional[int] = int(sqrt(lowercase ) ) UpperCAmelCase_ : Any = gcd(lowercase , lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Optional[Any] = add_three( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) unique_s.add(lowercase ) for num, den in unique_s: total += Fraction(lowercase , lowercase ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
470
"""simple docstring""" from __future__ import annotations _snake_case = [True] * 1_0_0_0_0_0_1 _snake_case = 2 while i * i <= 1_0_0_0_0_0_0: if seive[i]: for j in range(i * i, 1_0_0_0_0_0_1, i): _snake_case = False i += 1 def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" return seive[n] def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" return any(digit in '02468' for digit in str(SCREAMING_SNAKE_CASE ) ) def __snake_case ( SCREAMING_SNAKE_CASE: int = 100_0000 ): """simple docstring""" _lowerCAmelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(SCREAMING_SNAKE_CASE ) and not contains_an_even_digit(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = str(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(SCREAMING_SNAKE_CASE ) )] if all(is_prime(SCREAMING_SNAKE_CASE ) for i in list_nums ): result.append(SCREAMING_SNAKE_CASE ) return result def __snake_case ( ): """simple docstring""" return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
580
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): A : Any = params A : Tuple = np.array(_snake_case ) A : int = np.array([len(_snake_case ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self, lowerCamelCase__ ): return (self.token_ids[index], self.lengths[index]) def __len__( self ): return len(self.lengths ) def _lowerCAmelCase ( self ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _lowerCAmelCase ( self ): A : int = self.params.max_model_input_size A : Any = self.lengths > max_len logger.info(f'''Splitting {sum(_snake_case )} too long sequences.''' ) def divide_chunks(lowerCamelCase__, lowerCamelCase__ ): return [l[i : i + n] for i in range(0, len(_snake_case ), _snake_case )] A : Dict = [] A : Dict = [] if self.params.mlm: A , A : Optional[Any] = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: A , A : Any = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids, self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: A : List[str] = [] for sub_s in divide_chunks(seq_, max_len - 2 ): if sub_s[0] != cls_id: A : Union[str, Any] = np.insert(_snake_case, 0, _snake_case ) if sub_s[-1] != sep_id: A : int = np.insert(_snake_case, len(_snake_case ), _snake_case ) assert len(_snake_case ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_snake_case ) new_tok_ids.extend(_snake_case ) new_lengths.extend([len(_snake_case ) for l in sub_seqs] ) A : List[Any] = np.array(_snake_case ) A : Optional[Any] = np.array(_snake_case ) def _lowerCAmelCase ( self ): A : Any = len(self ) A : List[str] = self.lengths > 11 A : List[Any] = self.token_ids[indices] A : Any = self.lengths[indices] A : List[str] = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def _lowerCAmelCase ( self ): if "unk_token" not in self.params.special_tok_ids: return else: A : Any = self.params.special_tok_ids["""unk_token"""] A : int = len(self ) A : Optional[Any] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) A : Optional[Any] = (unk_occs / self.lengths) < 0.5 A : List[Any] = self.token_ids[indices] A : Tuple = self.lengths[indices] A : int = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def _lowerCAmelCase ( self ): if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _lowerCAmelCase ( self, lowerCamelCase__ ): A : str = [t[0] for t in batch] A : Dict = [t[1] for t in batch] assert len(_snake_case ) == len(_snake_case ) # Max for paddings A : Union[str, Any] = max(_snake_case ) # Pad token ids if self.params.mlm: A : Optional[Any] = self.params.special_tok_ids["""pad_token"""] else: A : int = self.params.special_tok_ids["""unk_token"""] A : Union[str, Any] = [list(t.astype(_snake_case ) ) + [pad_idx] * (max_seq_len_ - len(_snake_case )) for t in token_ids] assert len(tk_ ) == len(_snake_case ) assert all(len(_snake_case ) == max_seq_len_ for t in tk_ ) A : Optional[int] = torch.tensor(tk_ ) # (bs, max_seq_len_) A : Any = torch.tensor(_snake_case ) # (bs) return tk_t, lg_t
708
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_:Dict = """▁""" SCREAMING_SNAKE_CASE_:Any = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = BigBirdTokenizer __lowerCamelCase : int = BigBirdTokenizerFast __lowerCamelCase : int = True __lowerCamelCase : List[Any] = True def _lowerCAmelCase ( self ): super().setUp() A : Optional[int] = self.tokenizer_class(lowerCamelCase__, keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self ): A : Optional[int] = """<s>""" A : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ), lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ), lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<unk>""" ) self.assertEqual(vocab_keys[1], """<s>""" ) self.assertEqual(vocab_keys[-1], """[MASK]""" ) self.assertEqual(len(lowerCamelCase__ ), 1004 ) def _lowerCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size, 1000 ) def _lowerCAmelCase ( self ): if not self.test_rust_tokenizer: return A : Tuple = self.get_tokenizer() A : Optional[int] = self.get_rust_tokenizer() A : Tuple = """I was born in 92000, and this is falsé.""" A : Optional[Any] = tokenizer.tokenize(lowerCamelCase__ ) A : int = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) A : Tuple = tokenizer.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) A : List[str] = rust_tokenizer.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) A : Union[str, Any] = self.get_rust_tokenizer() A : Tuple = tokenizer.encode(lowerCamelCase__ ) A : int = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : int = BigBirdTokenizer(lowerCamelCase__, keep_accents=lowerCamelCase__ ) A : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase__, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ), [285, 46, 10, 170, 382], ) A : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase__, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ], ) A : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) A : List[str] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ], ) @cached_property def _lowerCAmelCase ( self ): return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def _lowerCAmelCase ( self ): A : Union[str, Any] = """Hello World!""" A : Union[str, Any] = [65, 1_8536, 2260, 101, 66] self.assertListEqual(lowerCamelCase__, self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _lowerCAmelCase ( self ): A : int = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off A : Dict = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCamelCase__, self.big_tokenizer.encode(lowerCamelCase__ ) ) @require_torch @slow def _lowerCAmelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence A : Dict = list(self.big_tokenizer.get_vocab().keys() )[:10] A : Optional[Any] = """ """.join(lowerCamelCase__ ) A : int = self.big_tokenizer.encode_plus(lowerCamelCase__, return_tensors="""pt""", return_token_type_ids=lowerCamelCase__ ) A : int = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence], return_tensors="""pt""", return_token_type_ids=lowerCamelCase__ ) A : Tuple = BigBirdConfig(attention_type="""original_full""" ) A : List[str] = BigBirdModel(lowerCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase__ ) model(**lowerCamelCase__ ) @slow def _lowerCAmelCase ( self ): A : List[Any] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) A : Optional[Any] = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def _lowerCAmelCase ( self ): # fmt: off A : Any = {"""input_ids""": [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__, model_name="""google/bigbird-roberta-base""", revision="""215c99f1600e06f83acce68422f2035b2b5c3510""", )
520
0
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCAmelCase = logging.getLogger(__name__) def _snake_case ( A , A ) -> List[Any]: lowerCAmelCase__ = np.argmax(A , axis=1 ) return np.sum(outputs == labels ) def _snake_case ( A ) -> Dict: with open(A , encoding='''utf_8''' ) as f: lowerCAmelCase__ = csv.reader(A ) lowerCAmelCase__ = [] next(A ) # skip the first line for line in tqdm(A ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _snake_case ( A , A , A , A , A , A ) -> int: lowerCAmelCase__ = [] for dataset in encoded_datasets: lowerCAmelCase__ = len(A ) lowerCAmelCase__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(A ): lowerCAmelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ = with_conta lowerCAmelCase__ = with_conta lowerCAmelCase__ = len(A ) - 1 lowerCAmelCase__ = len(A ) - 1 lowerCAmelCase__ = with_conta lowerCAmelCase__ = with_conta lowerCAmelCase__ = mc_label lowerCAmelCase__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(A ) for t in all_inputs ) ) return tensor_datasets def _snake_case ( ) -> List[str]: lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=A , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=A , type=A , required=A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=A , default='''''' ) parser.add_argument('''--eval_dataset''' , type=A , default='''''' ) parser.add_argument('''--seed''' , type=A , default=42 ) parser.add_argument('''--num_train_epochs''' , type=A , default=3 ) parser.add_argument('''--train_batch_size''' , type=A , default=8 ) parser.add_argument('''--eval_batch_size''' , type=A , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=A , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=A , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=A , default=6.25E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=A , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=A , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=A , default=0.01 ) parser.add_argument('''--lm_coef''' , type=A , default=0.9 ) parser.add_argument('''--n_valid''' , type=A , default=374 ) parser.add_argument('''--server_ip''' , type=A , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=A , default='''''' , help='''Can be used for distant debugging.''' ) lowerCAmelCase__ = parser.parse_args() print(A ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowerCAmelCase__ = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(A , A ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(A ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(A ) lowerCAmelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(A ) ) model.to(A ) # Load and encode the datasets def tokenize_and_encode(A ): if isinstance(A , A ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(A ) ) elif isinstance(A , A ): return obj return [tokenize_and_encode(A ) for o in obj] logger.info('''Encoding dataset...''' ) lowerCAmelCase__ = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ = (train_dataset, eval_dataset) lowerCAmelCase__ = tokenize_and_encode(A ) # Compute the max input length for the Transformer lowerCAmelCase__ = model.config.n_positions // 2 - 2 lowerCAmelCase__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ = min(A , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ = pre_process_datasets(A , A , A , *A ) lowerCAmelCase__ = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ = TensorDataset(*A ) lowerCAmelCase__ = RandomSampler(A ) lowerCAmelCase__ = DataLoader(A , sampler=A , batch_size=args.train_batch_size ) lowerCAmelCase__ = TensorDataset(*A ) lowerCAmelCase__ = SequentialSampler(A ) lowerCAmelCase__ = DataLoader(A , sampler=A , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ = args.max_steps lowerCAmelCase__ = args.max_steps // (len(A ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ = len(A ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ = list(model.named_parameters() ) lowerCAmelCase__ = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ = AdamW(A , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ = get_linear_schedule_with_warmup( A , num_warmup_steps=args.warmup_steps , num_training_steps=A ) if args.do_train: lowerCAmelCase__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = tqdm(A , desc='''Training''' ) for step, batch in enumerate(A ): lowerCAmelCase__ = tuple(t.to(A ) for t in batch ) lowerCAmelCase__ = batch lowerCAmelCase__ = model(A , mc_token_ids=A , lm_labels=A , mc_labels=A ) lowerCAmelCase__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ = 'Training loss: {:.2e} lr: {:.2e}'.format(A , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ = model.module if hasattr(A , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ = os.path.join(args.output_dir , A ) lowerCAmelCase__ = os.path.join(args.output_dir , A ) torch.save(model_to_save.state_dict() , A ) model_to_save.config.to_json_file(A ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(A ) if args.do_eval: model.eval() lowerCAmelCase__ = 0, 0 lowerCAmelCase__ = 0, 0 for batch in tqdm(A , desc='''Evaluating''' ): lowerCAmelCase__ = tuple(t.to(A ) for t in batch ) lowerCAmelCase__ = batch with torch.no_grad(): lowerCAmelCase__ = model( A , mc_token_ids=A , lm_labels=A , mc_labels=A ) lowerCAmelCase__ = mc_logits.detach().cpu().numpy() lowerCAmelCase__ = mc_labels.to('''cpu''' ).numpy() lowerCAmelCase__ = accuracy(A , A ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ = eval_loss / nb_eval_steps lowerCAmelCase__ = eval_accuracy / nb_eval_examples lowerCAmelCase__ = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
90
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: SCREAMING_SNAKE_CASE_ : int = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Optional[int] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: SCREAMING_SNAKE_CASE_ : Optional[int] = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : List[str] = {'text': 'string'} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: SCREAMING_SNAKE_CASE_ : Dict = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : str = {'text': 'string'} SCREAMING_SNAKE_CASE_ : Union[str, Any] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : int = [text_path] SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Optional[int] = {'text': 'string'} SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=("train",) ) -> Dict: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: SCREAMING_SNAKE_CASE_ : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: SCREAMING_SNAKE_CASE_ : Optional[Any] = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Tuple = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : int = TextDatasetReader({'train': text_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Optional[Any] = {'text': 'string'} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Dict = TextDatasetReader({'train': text_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: if split: SCREAMING_SNAKE_CASE_ : Optional[Any] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : str = 'train' SCREAMING_SNAKE_CASE_ : int = {'train': text_path, 'test': text_path} SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Tuple = {'text': 'string'} SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
345
0
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } _UpperCamelCase = { 'allenai/led-base-16384': 1_6384, } class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : Dict = VOCAB_FILES_NAMES __snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = LEDTokenizer __snake_case : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self :List[str] , __lowercase :List[Any]=None , __lowercase :List[str]=None , __lowercase :int=None , __lowercase :List[str]="replace" , __lowercase :str="<s>" , __lowercase :Tuple="</s>" , __lowercase :List[Any]="</s>" , __lowercase :Tuple="<s>" , __lowercase :Any="<unk>" , __lowercase :Dict="<pad>" , __lowercase :str="<mask>" , __lowercase :Union[str, Any]=False , __lowercase :Union[str, Any]=True , **__lowercase :int , ): super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase , **__lowercase , ) __lowerCamelCase : str =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowercase ) != add_prefix_space: __lowerCamelCase : List[Any] =getattr(__lowercase , pre_tok_state.pop('''type''' ) ) __lowerCamelCase : Dict =add_prefix_space __lowerCamelCase : Dict =pre_tok_class(**__lowercase ) __lowerCamelCase : Dict =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowerCamelCase : Any ='''post_processor''' __lowerCamelCase : Tuple =getattr(self.backend_tokenizer , __lowercase , __lowercase ) if tokenizer_component_instance: __lowerCamelCase : List[Any] =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCamelCase : Optional[int] =tuple(state['''sep'''] ) if "cls" in state: __lowerCamelCase : Any =tuple(state['''cls'''] ) __lowerCamelCase : int =False if state.get('''add_prefix_space''' , __lowercase ) != add_prefix_space: __lowerCamelCase : List[str] =add_prefix_space __lowerCamelCase : int =True if state.get('''trim_offsets''' , __lowercase ) != trim_offsets: __lowerCamelCase : List[str] =trim_offsets __lowerCamelCase : Union[str, Any] =True if changes_to_apply: __lowerCamelCase : int =getattr(__lowercase , state.pop('''type''' ) ) __lowerCamelCase : Any =component_class(**__lowercase ) setattr(self.backend_tokenizer , __lowercase , __lowercase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowercase ( self :str ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowercase ( self :List[Any] , __lowercase :Any ): __lowerCamelCase : Any =AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else value __lowerCamelCase : Tuple =value def __lowercase ( self :List[Any] , *__lowercase :int , **__lowercase :Union[str, Any] ): __lowerCamelCase : List[str] =kwargs.get('''is_split_into_words''' , __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__lowercase , **__lowercase ) def __lowercase ( self :List[str] , *__lowercase :Any , **__lowercase :str ): __lowerCamelCase : Tuple =kwargs.get('''is_split_into_words''' , __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__lowercase , **__lowercase ) def __lowercase ( self :int , __lowercase :str , __lowercase :Optional[str] = None ): __lowerCamelCase : Optional[int] =self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def __lowercase ( self :Dict , __lowercase :str , __lowercase :Optional[Any]=None ): __lowerCamelCase : Any =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowercase ( self :Tuple , __lowercase :List[int] , __lowercase :Optional[List[int]] = None ): __lowerCamelCase : List[Any] =[self.sep_token_id] __lowerCamelCase : Union[str, Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self :Union[str, Any] , __lowercase :Union[Dict[str, EncodedInput], BatchEncoding] , __lowercase :Optional[int] = None , __lowercase :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowercase :Optional[int] = None , __lowercase :Optional[bool] = None , ): __lowerCamelCase : Optional[Any] =super()._pad( encoded_inputs=__lowercase , max_length=__lowercase , padding_strategy=__lowercase , pad_to_multiple_of=__lowercase , return_attention_mask=__lowercase , ) # Load from model defaults if return_attention_mask is None: __lowerCamelCase : Dict ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowerCamelCase : List[str] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowerCamelCase : Any =len(encoded_inputs['''global_attention_mask'''] ) != len(__lowercase ) if needs_to_be_padded: __lowerCamelCase : List[Any] =len(__lowercase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowerCamelCase : Dict =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __lowerCamelCase : Tuple =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
363
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :List[str] , __lowercase :Any , __lowercase :str=100 , __lowercase :Dict=13 , __lowercase :Tuple=30 , __lowercase :Tuple=2 , __lowercase :Dict=3 , __lowercase :Optional[Any]=True , __lowercase :int=True , __lowercase :List[Any]=32 , __lowercase :str=4 , __lowercase :int=4 , __lowercase :List[str]=37 , __lowercase :Dict="gelu" , __lowercase :List[Any]=0.1 , __lowercase :Tuple=0.1 , __lowercase :Union[str, Any]=10 , __lowercase :Any=0.02 , __lowercase :Tuple=3 , __lowercase :Any=None , __lowercase :Optional[int]=[0, 1, 2, 3] , ): __lowerCamelCase : int =parent __lowerCamelCase : Optional[Any] =100 __lowerCamelCase : Optional[int] =batch_size __lowerCamelCase : Tuple =image_size __lowerCamelCase : Tuple =patch_size __lowerCamelCase : Optional[Any] =num_channels __lowerCamelCase : Union[str, Any] =is_training __lowerCamelCase : int =use_labels __lowerCamelCase : Optional[int] =hidden_size __lowerCamelCase : Optional[Any] =num_hidden_layers __lowerCamelCase : List[Any] =num_attention_heads __lowerCamelCase : Any =intermediate_size __lowerCamelCase : int =hidden_act __lowerCamelCase : Tuple =hidden_dropout_prob __lowerCamelCase : List[Any] =attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] =type_sequence_label_size __lowerCamelCase : List[str] =initializer_range __lowerCamelCase : Tuple =scope __lowerCamelCase : Union[str, Any] =out_indices __lowerCamelCase : Tuple =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : Optional[int] =(image_size // patch_size) ** 2 __lowerCamelCase : Optional[Any] =num_patches + 1 def __lowercase ( self :int ): __lowerCamelCase : Dict =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Any =None __lowerCamelCase : str =None if self.use_labels: __lowerCamelCase : Dict =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCamelCase : List[str] =self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self :Tuple ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __lowercase ( self :Any , __lowercase :List[Any] , __lowercase :str , __lowercase :Union[str, Any] , __lowercase :Dict ): __lowerCamelCase : Tuple =BeitModel(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : int =model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self :Tuple , __lowercase :Dict , __lowercase :Tuple , __lowercase :Optional[Any] , __lowercase :Any ): __lowerCamelCase : List[str] =BeitForMaskedImageModeling(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : int =model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowercase ( self :Dict , __lowercase :str , __lowercase :Tuple , __lowercase :int , __lowercase :str ): __lowerCamelCase : int =self.type_sequence_label_size __lowerCamelCase : Optional[Any] =BeitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : Optional[Any] =model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : int =1 __lowerCamelCase : str =BeitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : Tuple =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : str =model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self :List[Any] , __lowercase :Dict , __lowercase :List[str] , __lowercase :int , __lowercase :str ): __lowerCamelCase : Union[str, Any] =self.num_labels __lowerCamelCase : Any =BeitForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : Any =model(__lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __lowerCamelCase : Optional[Any] =model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __lowercase ( self :Optional[int] ): __lowerCamelCase : Optional[int] =self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str =config_and_inputs __lowerCamelCase : List[Any] ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __snake_case : List[Any] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __snake_case : Any = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case : Union[str, Any] = False __snake_case : Optional[Any] = False __snake_case : str = False def __lowercase ( self :Tuple ): __lowerCamelCase : Optional[Any] =BeitModelTester(self ) __lowerCamelCase : Optional[int] =ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def __lowercase ( self :Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def __lowercase ( self :List[str] ): pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowercase ( self :Union[str, Any] ): pass def __lowercase ( self :Any ): __lowerCamelCase , __lowerCamelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[int] =model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Union[str, Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def __lowercase ( self :Any ): __lowerCamelCase , __lowerCamelCase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Tuple =model_class(__lowercase ) __lowerCamelCase : Tuple =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Tuple =[*signature.parameters.keys()] __lowerCamelCase : List[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def __lowercase ( self :str ): __lowerCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __lowercase ( self :str ): __lowerCamelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase ) def __lowercase ( self :Dict ): __lowerCamelCase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def __lowercase ( self :Tuple ): __lowerCamelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) def __lowercase ( self :str ): if not self.model_tester.is_training: return __lowerCamelCase , __lowerCamelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[Any] =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__lowercase ), BeitForMaskedImageModeling]: continue __lowerCamelCase : Any =model_class(__lowercase ) model.to(__lowercase ) model.train() __lowerCamelCase : Dict =self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) __lowerCamelCase : List[Any] =model(**__lowercase ).loss loss.backward() def __lowercase ( self :List[Any] ): __lowerCamelCase , __lowerCamelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCamelCase : str =False __lowerCamelCase : int =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__lowercase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __lowerCamelCase : Any =model_class(__lowercase ) model.gradient_checkpointing_enable() model.to(__lowercase ) model.train() __lowerCamelCase : Any =self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) __lowerCamelCase : Union[str, Any] =model(**__lowercase ).loss loss.backward() def __lowercase ( self :Dict ): __lowerCamelCase , __lowerCamelCase : str =self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Tuple =_config_zero_init(__lowercase ) for model_class in self.all_model_classes: __lowerCamelCase : List[Any] =model_class(config=__lowercase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __lowercase ( self :int ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : str =BeitModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase_ ( ): '''simple docstring''' __lowerCamelCase : Tuple =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self :Optional[Any] ): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowercase ( self :Any ): __lowerCamelCase : Union[str, Any] =BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(__lowercase ) __lowerCamelCase : Union[str, Any] =self.default_image_processor __lowerCamelCase : List[str] =prepare_img() __lowerCamelCase : Tuple =image_processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # prepare bool_masked_pos __lowerCamelCase : Dict =torch.ones((1, 196) , dtype=torch.bool ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCamelCase : List[Any] =model(pixel_values=__lowercase , bool_masked_pos=__lowercase ) __lowerCamelCase : List[Any] =outputs.logits # verify the logits __lowerCamelCase : str =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __lowercase ) __lowerCamelCase : Tuple =torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__lowercase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __lowercase , atol=1e-2 ) ) @slow def __lowercase ( self :Tuple ): __lowerCamelCase : Optional[int] =BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(__lowercase ) __lowerCamelCase : str =self.default_image_processor __lowerCamelCase : List[Any] =prepare_img() __lowerCamelCase : List[Any] =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCamelCase : int =model(**__lowercase ) __lowerCamelCase : List[Any] =outputs.logits # verify the logits __lowerCamelCase : Union[str, Any] =torch.Size((1, 1000) ) self.assertEqual(logits.shape , __lowercase ) __lowerCamelCase : Optional[Any] =torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , __lowercase , atol=1e-4 ) ) __lowerCamelCase : str =281 self.assertEqual(logits.argmax(-1 ).item() , __lowercase ) @slow def __lowercase ( self :int ): __lowerCamelCase : Optional[int] =BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( __lowercase ) __lowerCamelCase : str =self.default_image_processor __lowerCamelCase : str =prepare_img() __lowerCamelCase : int =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCamelCase : str =model(**__lowercase ) __lowerCamelCase : int =outputs.logits # verify the logits __lowerCamelCase : Dict =torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __lowercase ) __lowerCamelCase : List[Any] =torch.tensor([1.6881, -0.2787, 0.5901] ).to(__lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , __lowercase , atol=1e-4 ) ) __lowerCamelCase : List[Any] =2396 self.assertEqual(logits.argmax(-1 ).item() , __lowercase ) @slow def __lowercase ( self :Optional[int] ): __lowerCamelCase : Tuple =BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) __lowerCamelCase : int =model.to(__lowercase ) __lowerCamelCase : Tuple =BeitImageProcessor(do_resize=__lowercase , size=640 , do_center_crop=__lowercase ) __lowerCamelCase : Optional[Any] =load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __lowerCamelCase : Optional[int] =Image.open(ds[0]['''file'''] ) __lowerCamelCase : Union[str, Any] =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCamelCase : List[Any] =model(**__lowercase ) __lowerCamelCase : Tuple =outputs.logits # verify the logits __lowerCamelCase : Optional[Any] =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __lowercase ) __lowerCamelCase : List[Any] =version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: __lowerCamelCase : Any =torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__lowercase , ) else: __lowerCamelCase : int =torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1e-4 ) ) @slow def __lowercase ( self :Any ): __lowerCamelCase : Any =BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) __lowerCamelCase : Union[str, Any] =model.to(__lowercase ) __lowerCamelCase : List[str] =BeitImageProcessor(do_resize=__lowercase , size=640 , do_center_crop=__lowercase ) __lowerCamelCase : List[str] =load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __lowerCamelCase : Optional[Any] =Image.open(ds[0]['''file'''] ) __lowerCamelCase : List[Any] =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCamelCase : Tuple =model(**__lowercase ) __lowerCamelCase : str =outputs.logits.detach().cpu() __lowerCamelCase : Union[str, Any] =image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(500, 300)] ) __lowerCamelCase : Union[str, Any] =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __lowercase ) __lowerCamelCase : Optional[Any] =image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __lowerCamelCase : List[str] =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __lowercase )
363
1
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # TODO Update this SCREAMING_SNAKE_CASE_ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : Optional[int] = "esm" def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1026 , snake_case_=0.02 , snake_case_=1e-1_2 , snake_case_="absolute" , snake_case_=True , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=None , snake_case_=None , **snake_case_ , ) -> str: super().__init__(pad_token_id=snake_case_ , mask_token_id=snake_case_ , **snake_case_ ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = emb_layer_norm_before _UpperCAmelCase = token_dropout _UpperCAmelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _UpperCAmelCase = EsmFoldConfig() elif isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = EsmFoldConfig(**snake_case_ ) _UpperCAmelCase = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _UpperCAmelCase = get_default_vocab_list() else: _UpperCAmelCase = vocab_list else: _UpperCAmelCase = None _UpperCAmelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , snake_case_ ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def __A ( self ) -> Union[str, Any]: _UpperCAmelCase = super().to_dict() if isinstance(self.esmfold_config , snake_case_ ): _UpperCAmelCase = self.esmfold_config.to_dict() return output @dataclass class a : """simple docstring""" A__ : str = None A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : float = 0 A__ : bool = True A__ : bool = False A__ : int = 128 A__ : "TrunkConfig" = None def __A ( self ) -> str: if self.trunk is None: _UpperCAmelCase = TrunkConfig() elif isinstance(self.trunk , snake_case_ ): _UpperCAmelCase = TrunkConfig(**self.trunk ) def __A ( self ) -> List[Any]: _UpperCAmelCase = asdict(self ) _UpperCAmelCase = self.trunk.to_dict() return output @dataclass class a : """simple docstring""" A__ : int = 48 A__ : int = 1_024 A__ : int = 128 A__ : int = 32 A__ : int = 32 A__ : int = 32 A__ : float = 0 A__ : float = 0 A__ : bool = False A__ : int = 4 A__ : Optional[int] = 128 A__ : "StructureModuleConfig" = None def __A ( self ) -> Dict: if self.structure_module is None: _UpperCAmelCase = StructureModuleConfig() elif isinstance(self.structure_module , snake_case_ ): _UpperCAmelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _UpperCAmelCase = self.sequence_state_dim // self.sequence_head_width _UpperCAmelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def __A ( self ) -> Dict: _UpperCAmelCase = asdict(self ) _UpperCAmelCase = self.structure_module.to_dict() return output @dataclass class a : """simple docstring""" A__ : int = 384 A__ : int = 128 A__ : int = 16 A__ : int = 128 A__ : int = 12 A__ : int = 4 A__ : int = 8 A__ : float = 0.1 A__ : int = 8 A__ : int = 1 A__ : int = 2 A__ : int = 7 A__ : int = 10 A__ : float = 1e-8 A__ : float = 1e5 def __A ( self ) -> Tuple: return asdict(self ) def A__ ( ) -> str: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
426
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def A__ ( A__ ) -> List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = image.size _UpperCAmelCase , _UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _UpperCAmelCase = np.array(A__ ).astype(np.floataa ) / 255.0 _UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase = torch.from_numpy(A__ ) return 2.0 * image - 1.0 class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , ) -> int: super().__init__() self.register_modules(vqvae=snake_case_ , unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self , snake_case_ = None , snake_case_ = 1 , snake_case_ = 100 , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case_ )}""" ) if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = preprocess(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) _UpperCAmelCase = next(self.unet.parameters() ).dtype _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) _UpperCAmelCase = image.to(device=self.device , dtype=snake_case_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case_ , device=self.device ) _UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for t in self.progress_bar(snake_case_ ): # concat latents and low resolution image in the channel dimension. _UpperCAmelCase = torch.cat([latents, image] , dim=1 ) _UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual _UpperCAmelCase = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # decode the image latents with the VQVAE _UpperCAmelCase = self.vqvae.decode(snake_case_ ).sample _UpperCAmelCase = torch.clamp(snake_case_ , -1.0 , 1.0 ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
426
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _UpperCamelCase ( __A , __A , __A , __A , __A ) -> float: '''simple docstring''' UpperCamelCase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__A )] ) UpperCamelCase__ = np.array(__A ) UpperCamelCase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __A ) ) , x.transpose() ) , __A ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _UpperCamelCase ( __A , __A , __A ) -> float: '''simple docstring''' UpperCamelCase__ = (1, 2, 1) UpperCamelCase__ = (1, 1, 0, 7) UpperCamelCase__ = SARIMAX( __A , exog=__A , order=__A , seasonal_order=__A ) UpperCamelCase__ = model.fit(disp=__A , maxiter=600 , method="nm" ) UpperCamelCase__ = model_fit.predict(1 , len(__A ) , exog=[test_match] ) return result[0] def _UpperCamelCase ( __A , __A , __A ) -> float: '''simple docstring''' UpperCamelCase__ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__A , __A ) UpperCamelCase__ = regressor.predict(__A ) return y_pred[0] def _UpperCamelCase ( __A ) -> float: '''simple docstring''' train_user.sort() UpperCamelCase__ = np.percentile(__A , 25 ) UpperCamelCase__ = np.percentile(__A , 75 ) UpperCamelCase__ = qa - qa UpperCamelCase__ = qa - (iqr * 0.1) return low_lim def _UpperCamelCase ( __A , __A ) -> bool: '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = 0 for i in list_vote: if i > actual_result: UpperCamelCase__ = not_safe + 1 else: if abs(abs(__A ) - abs(__A ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) a__ : Union[str, Any] = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] a__ : Union[str, Any] = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) a__ : int = Normalizer().fit_transform(data_input_df.values) # split data a__ : List[str] = normalize_df[:, 2].tolist() a__ : List[Any] = normalize_df[:, 0].tolist() a__ : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) a__ : str = normalize_df[:, [1, 2]].tolist() a__ : Optional[int] = x[: len(x) - 1] a__ : Optional[int] = x[len(x) - 1 :] # for linear regression & sarimax a__ : Optional[int] = total_date[: len(total_date) - 1] a__ : Optional[int] = total_user[: len(total_user) - 1] a__ : Dict = total_match[: len(total_match) - 1] a__ : str = total_date[len(total_date) - 1 :] a__ : Union[str, Any] = total_user[len(total_user) - 1 :] a__ : Optional[int] = total_match[len(total_match) - 1 :] # voting system with forecasting a__ : Dict = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data a__ : Dict = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
223
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase_ : __UpperCAmelCase = 42 __UpperCAmelCase = None __UpperCAmelCase = None def _UpperCamelCase ( ) -> Node | None: '''simple docstring''' UpperCamelCase__ = Node(1 ) UpperCamelCase__ = Node(2 ) UpperCamelCase__ = Node(3 ) UpperCamelCase__ = Node(4 ) UpperCamelCase__ = Node(5 ) return tree def _UpperCamelCase ( __A ) -> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _UpperCamelCase ( __A ) -> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _UpperCamelCase ( __A ) -> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _UpperCamelCase ( __A ) -> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _UpperCamelCase ( __A ) -> Sequence[Node | None]: '''simple docstring''' UpperCamelCase__ = [] if root is None: return output UpperCamelCase__ = deque([root] ) while process_queue: UpperCamelCase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _UpperCamelCase ( __A , __A ) -> Sequence[Node | None]: '''simple docstring''' UpperCamelCase__ = [] def populate_output(__A , __A ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__A , __A ) return output def _UpperCamelCase ( __A , __A ) -> Sequence[Node | None]: '''simple docstring''' UpperCamelCase__ = [] def populate_output(__A , __A ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__A , __A ) return output def _UpperCamelCase ( __A ) -> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = height(__A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__A , __A ) ) UpperCamelCase__ = 1 else: output.append(get_nodes_from_right_to_left(__A , __A ) ) UpperCamelCase__ = 0 return output def _UpperCamelCase ( ) -> None: # Main function for testing. '''simple docstring''' UpperCamelCase__ = make_tree() print(F'''In-order Traversal: {inorder(__A )}''' ) print(F'''Pre-order Traversal: {preorder(__A )}''' ) print(F'''Post-order Traversal: {postorder(__A )}''' , "\n" ) print(F'''Height of Tree: {height(__A )}''' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(__A ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(__A ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(__A , level=__A ) ) print("\nZigZag order Traversal: " ) print(zigzag(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
223
1
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
453
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class __a ( __magic_name__ ): """simple docstring""" def __init__( self , *snake_case , **snake_case ): """simple docstring""" super().__init__(*snake_case , **snake_case ) self.check_model_type(snake_case ) def SCREAMING_SNAKE_CASE_ ( self , snake_case=None , snake_case=None , snake_case=None , **snake_case ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = {}, {} if padding is not None: lowerCAmelCase__ : Dict = padding if truncation is not None: lowerCAmelCase__ : Tuple = truncation if top_k is not None: lowerCAmelCase__ : str = top_k return preprocess_params, {}, postprocess_params def __call__( self , snake_case , snake_case = None , **snake_case ): """simple docstring""" if isinstance(snake_case , (Image.Image, str) ) and isinstance(snake_case , snake_case ): lowerCAmelCase__ : int = {"image": image, "question": question} else: lowerCAmelCase__ : Optional[int] = image lowerCAmelCase__ : Optional[Any] = super().__call__(snake_case , **snake_case ) return results def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case=False , snake_case=False ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = load_image(inputs["image"] ) lowerCAmelCase__ : str = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=snake_case , truncation=snake_case ) lowerCAmelCase__ : int = self.image_processor(images=snake_case , return_tensors=self.framework ) model_inputs.update(snake_case ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" lowerCAmelCase__ : Optional[int] = self.model(**snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowerCAmelCase__ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase__ : Optional[int] = model_outputs.logits.sigmoid()[0] lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = probs.topk(snake_case ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) lowerCAmelCase__ : int = scores.tolist() lowerCAmelCase__ : str = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(snake_case , snake_case )]
453
1
import math def lowerCamelCase_ ( lowerCAmelCase: int )-> list[int]: _snake_case : str = [] _snake_case : Optional[int] = 2 _snake_case : int = int(math.sqrt(lowerCAmelCase ) ) # Size of every segment _snake_case : List[Any] = [True] * (end + 1) _snake_case : Dict = [] while start <= end: if temp[start] is True: in_prime.append(lowerCAmelCase ) for i in range(start * start , end + 1 , lowerCAmelCase ): _snake_case : int = False start += 1 prime += in_prime _snake_case : Any = end + 1 _snake_case : int = min(2 * end , lowerCAmelCase ) while low <= n: _snake_case : List[str] = [True] * (high - low + 1) for each in in_prime: _snake_case : List[Any] = math.floor(low / each ) * each if t < low: t += each for j in range(lowerCAmelCase , high + 1 , lowerCAmelCase ): _snake_case : Tuple = False for j in range(len(lowerCAmelCase ) ): if temp[j] is True: prime.append(j + low ) _snake_case : List[Any] = high + 1 _snake_case : Tuple = min(high + end , lowerCAmelCase ) return prime print(sieve(10**6))
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
'''simple docstring''' class UpperCAmelCase : def __init__( self : str , __snake_case : list ) -> None: _lowerCAmelCase = set_counts _lowerCAmelCase = max(__snake_case ) _lowerCAmelCase = len(__snake_case ) _lowerCAmelCase = [1] * num_sets _lowerCAmelCase = list(range(__snake_case ) ) def lowercase__ ( self : Dict , __snake_case : int , __snake_case : int ) -> bool: _lowerCAmelCase = self.get_parent(__snake_case ) _lowerCAmelCase = self.get_parent(__snake_case ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] _lowerCAmelCase = 0 _lowerCAmelCase = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 _lowerCAmelCase = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] _lowerCAmelCase = 0 _lowerCAmelCase = src_parent _lowerCAmelCase = self.set_counts[src_parent] _lowerCAmelCase = max(self.max_set , __snake_case ) return True def lowercase__ ( self : int , __snake_case : int ) -> int: if self.parents[disj_set] == disj_set: return disj_set _lowerCAmelCase = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
207
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 _lowerCAmelCase = 1 _lowerCAmelCase = 1 while repunit: _lowerCAmelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCamelCase__ ( lowerCAmelCase = 1_00_00_00 ): """simple docstring""" _lowerCAmelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
207
1
from __future__ import annotations from typing import Any class lowerCamelCase_ : def __init__( self , _SCREAMING_SNAKE_CASE ): a_ = num_of_nodes a_ = [] a_ = {} def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.m_edges.append([u_node, v_node, weight] ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE ): if self.m_component[u_node] != u_node: for k in self.m_component: a_ = self.find_component(UpperCAmelCase_ ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if component_size[u_node] <= component_size[v_node]: a_ = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: a_ = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def __magic_name__ ( self ): a_ = [] a_ = 0 a_ = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) a_ = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a_ , a_ , a_ = edge a_ = self.m_component[u] a_ = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a_ = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a_ , a_ , a_ = edge a_ = self.m_component[u] a_ = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 a_ = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" pass if __name__ == "__main__": import doctest doctest.testmod()
711
def __SCREAMING_SNAKE_CASE ( UpperCamelCase : int = 10**9 ) -> int: """simple docstring""" a_ = 1 a_ = 2 a_ = 0 a_ = 0 a_ = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value a_ = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'{solution() = }')
403
0
import argparse from collections import defaultdict def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Union[str, Any] = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(UpperCamelCase__ , '''r''' ) as f: UpperCamelCase__ : Tuple = f.readlines() UpperCamelCase__ : int = f'''class {class_name}(''' UpperCamelCase__ : str = f'''{4 * " "}def {test_name}(''' UpperCamelCase__ : List[Any] = f'''{8 * " "}{correct_line.split()[0]}''' UpperCamelCase__ : int = f'''{1_6 * " "}{correct_line.split()[0]}''' UpperCamelCase__ : Union[str, Any] = False UpperCamelCase__ : Optional[int] = False UpperCamelCase__ : Union[str, Any] = False UpperCamelCase__ : str = False UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : Tuple = [] for line in lines: if line.startswith(UpperCamelCase__ ): UpperCamelCase__ : Tuple = True elif in_class and line.startswith(UpperCamelCase__ ): UpperCamelCase__ : Dict = True elif in_class and in_func and (line.startswith(UpperCamelCase__ ) or line.startswith(UpperCamelCase__ )): UpperCamelCase__ : List[str] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCamelCase__ : str = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCamelCase__ : str = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) UpperCamelCase__ : Optional[int] = False else: new_lines.append(UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' ) as f: for line in new_lines: f.write(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__=None ): if fail is not None: with open(UpperCamelCase__ , '''r''' ) as f: UpperCamelCase__ : int = {l.strip() for l in f.readlines()} else: UpperCamelCase__ : Tuple = None with open(UpperCamelCase__ , '''r''' ) as f: UpperCamelCase__ : Optional[int] = f.readlines() UpperCamelCase__ : str = defaultdict(UpperCamelCase__ ) for line in correct_lines: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) lowerCamelCase =parser.parse_args() main(args.correct_filename, args.fail_filename)
285
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase =logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] def __init__( self , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 3_2 , __SCREAMING_SNAKE_CASE=PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" UpperCamelCase__ : Dict = do_resize UpperCamelCase__ : Tuple = do_rescale UpperCamelCase__ : Dict = size_divisor UpperCamelCase__ : str = resample super().__init__(**__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = get_image_size(__SCREAMING_SNAKE_CASE ) # Rounds the height and width down to the closest multiple of size_divisor UpperCamelCase__ : List[Any] = height // size_divisor * size_divisor UpperCamelCase__ : Dict = width // size_divisor * size_divisor UpperCamelCase__ : str = resize(__SCREAMING_SNAKE_CASE , (new_h, new_w) , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return image def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" return rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ) -> BatchFeature: """simple docstring""" UpperCamelCase__ : Dict = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : Union[str, Any] = size_divisor if size_divisor is not None else self.size_divisor UpperCamelCase__ : List[str] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) UpperCamelCase__ : List[Any] = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. UpperCamelCase__ : Dict = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for img in images] if do_resize: UpperCamelCase__ : Optional[int] = [self.resize(__SCREAMING_SNAKE_CASE , size_divisor=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase__ : Union[str, Any] = [self.rescale(__SCREAMING_SNAKE_CASE , scale=1 / 2_5_5 ) for image in images] UpperCamelCase__ : List[str] = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
285
1
'''simple docstring''' import os def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[Any] = len(grid[0] ) lowercase_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = 0 lowercase_ : int = 0 lowercase_ : Union[str, Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(n_rows - 3 ): lowercase_ : Dict = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowercase_ : Optional[Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowercase_ : Tuple = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowercase_ : int = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowercase_ : Optional[int] = max( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if max_product > largest: lowercase_ : List[Any] = max_product return largest def _UpperCamelCase ( ): lowercase_ : int = [] with open(os.path.dirname(SCREAMING_SNAKE_CASE_ ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) lowercase_ : Dict = [[int(SCREAMING_SNAKE_CASE_ ) for i in grid[j]] for j in range(len(SCREAMING_SNAKE_CASE_ ) )] return largest_product(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(solution())
438
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__(self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , ) -> int: lowercase_ : List[str] = size if size is not None else {'height': 18, 'width': 18} lowercase_ : Dict = parent lowercase_ : Optional[Any] = batch_size lowercase_ : int = num_channels lowercase_ : List[Any] = image_size lowercase_ : Dict = min_resolution lowercase_ : List[Any] = max_resolution lowercase_ : Optional[Any] = do_resize lowercase_ : int = size lowercase_ : Optional[int] = apply_ocr def _lowerCamelCase (self ) -> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( _snake_case , unittest.TestCase ): """simple docstring""" A : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _lowerCamelCase (self ) -> Optional[int]: lowercase_ : str = LayoutLMvaImageProcessingTester(self ) @property def _lowerCamelCase (self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase (self ) -> int: lowercase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , 'do_resize' ) ) self.assertTrue(hasattr(_a , 'size' ) ) self.assertTrue(hasattr(_a , 'apply_ocr' ) ) def _lowerCamelCase (self ) -> Tuple: lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) lowercase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _lowerCamelCase (self ) -> int: pass def _lowerCamelCase (self ) -> Dict: # Initialize image_processing lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input lowercase_ : Any = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _a ) self.assertIsInstance(encoding.boxes , _a ) # Test batched lowercase_ : Union[str, Any] = image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _lowerCamelCase (self ) -> Tuple: # Initialize image_processing lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input lowercase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase_ : str = image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _lowerCamelCase (self ) -> Union[str, Any]: # Initialize image_processing lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input lowercase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase_ : str = image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _lowerCamelCase (self ) -> str: # with apply_OCR = True lowercase_ : Optional[int] = LayoutLMvaImageProcessor() from datasets import load_dataset lowercase_ : List[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) lowercase_ : Union[str, Any] = Image.open(ds[0]['file'] ).convert('RGB' ) lowercase_ : List[str] = image_processing(_a , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowercase_ : str = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 lowercase_ : Optional[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _a ) self.assertListEqual(encoding.boxes , _a ) # with apply_OCR = False lowercase_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=_a ) lowercase_ : Dict = image_processing(_a , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
438
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
196
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=[8, 16, 32, 64] , SCREAMING_SNAKE_CASE__=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE__=[2, 3, 4] , SCREAMING_SNAKE_CASE__=1 , ): '''simple docstring''' snake_case: Dict = parent snake_case: List[Any] = batch_size snake_case: Any = image_size snake_case: Optional[Any] = num_channels snake_case: List[Any] = embeddings_size snake_case: Tuple = hidden_sizes snake_case: str = depths snake_case: str = is_training snake_case: List[str] = use_labels snake_case: Tuple = hidden_act snake_case: List[str] = num_labels snake_case: Optional[int] = scope snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = out_features snake_case: Optional[Any] = out_indices snake_case: str = num_groups def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case: str = None if self.use_labels: snake_case: Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) snake_case: Tuple = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ): '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: str = BitModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: str = self.num_labels snake_case: int = BitForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: List[Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = BitBackbone(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: int = model(SCREAMING_SNAKE_CASE__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case: str = None snake_case: int = BitBackbone(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: str = model(SCREAMING_SNAKE_CASE__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.prepare_config_and_inputs() snake_case , snake_case , snake_case: str = config_and_inputs snake_case: int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __UpperCamelCase = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = BitModelTester(self ) snake_case: str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='Bit does not output attentions' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case: List[str] = [*signature.parameters.keys()] snake_case: Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case: Optional[int] = model_class(config=SCREAMING_SNAKE_CASE__ ) for name, module in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def _UpperCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): snake_case: Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case: Optional[int] = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case , snake_case: Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case: Optional[int] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case: Tuple = layer_type snake_case: str = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case: Tuple = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case: Union[str, Any] = BitModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.default_image_processor snake_case: List[Any] = prepare_img() snake_case: List[str] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): snake_case: Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits snake_case: List[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (BitBackbone,) if is_torch_available() else () __UpperCamelCase = BitConfig __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = BitModelTester(self )
329
0
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ComputeEnvironment.AMAZON_SAGEMAKER SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : Any = "ml.p3.2xlarge" SCREAMING_SNAKE_CASE_ : int = "accelerate_sagemaker_execution_role" SCREAMING_SNAKE_CASE_ : Any = "hf-sm" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "us-east-1" SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : List[str] = "accelerate-sagemaker-1" SCREAMING_SNAKE_CASE_ : List[str] = "1.6" SCREAMING_SNAKE_CASE_ : int = "4.4" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "train.py" SCREAMING_SNAKE_CASE_ : Optional[Any] = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] SCREAMING_SNAKE_CASE_ : str = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. _lowercase : Optional[Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] ,UpperCAmelCase_ ) assert isinstance(converted_args["""do_train"""] ,UpperCAmelCase_ ) assert isinstance(converted_args["""epochs"""] ,UpperCAmelCase_ ) assert isinstance(converted_args["""learning_rate"""] ,UpperCAmelCase_ ) assert isinstance(converted_args["""max_steps"""] ,UpperCAmelCase_ ) with pytest.raises(UpperCAmelCase_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
704
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=2 ,UpperCAmelCase_=8 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=99 ,UpperCAmelCase_=16 ,UpperCAmelCase_=5 ,UpperCAmelCase_=2 ,UpperCAmelCase_=36 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=3 ,UpperCAmelCase_=4 ,UpperCAmelCase_=None ,): _lowercase : Tuple = parent _lowercase : Dict = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Any = is_training _lowercase : List[str] = use_input_mask _lowercase : Any = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : Tuple = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Tuple = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : List[str] = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : Any = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Union[str, Any] = initializer_range _lowercase : Dict = num_labels _lowercase : int = num_choices _lowercase : int = scope def lowerCamelCase__ ( self ): _lowercase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowercase : List[str] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Dict = None if self.use_token_type_ids: _lowercase : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Optional[int] = None _lowercase : Tuple = None if self.use_labels: _lowercase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowercase : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices ) _lowercase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ): return MraConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=UpperCAmelCase_ ,initializer_range=self.initializer_range ,) def lowerCamelCase__ ( self ): _lowercase : Any = self.get_config() _lowercase : Union[str, Any] = 3_00 return config def lowerCamelCase__ ( self ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[str] = self.prepare_config_and_inputs() _lowercase : int = True _lowercase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = MraModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : str = model(UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ) _lowercase : Union[str, Any] = model(UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ) _lowercase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : Union[str, Any] = True _lowercase : Optional[int] = MraModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : Dict = model( UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ,encoder_hidden_states=UpperCAmelCase_ ,encoder_attention_mask=UpperCAmelCase_ ,) _lowercase : Dict = model( UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ,encoder_hidden_states=UpperCAmelCase_ ,) _lowercase : Dict = model(UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : int = MraForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : Dict = model(UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Dict = MraForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : str = model( UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ,start_positions=UpperCAmelCase_ ,end_positions=UpperCAmelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = self.num_labels _lowercase : Optional[int] = MraForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : Optional[Any] = model(UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : str = self.num_labels _lowercase : List[str] = MraForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : Optional[int] = model(UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.num_choices _lowercase : List[str] = MraForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : str = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowercase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowercase : List[str] = model( UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ ,token_type_ids=UpperCAmelCase_ ,labels=UpperCAmelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self ): _lowercase : str = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Optional[int] = config_and_inputs _lowercase : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = () def lowerCamelCase__ ( self ): _lowercase : int = MraModelTester(self ) _lowercase : List[str] = ConfigTester(self ,config_class=UpperCAmelCase_ ,hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase : List[str] = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowerCamelCase__ ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Any = MraModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip(reason="""MRA does not output attentions""" ) def lowerCamelCase__ ( self ): return @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self ): _lowercase : int = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) _lowercase : List[Any] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): _lowercase : List[Any] = model(UpperCAmelCase_ )[0] _lowercase : List[Any] = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape ,UpperCAmelCase_ ) _lowercase : Optional[int] = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,UpperCAmelCase_ ,atol=1E-4 ) ) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) _lowercase : Optional[int] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): _lowercase : Optional[Any] = model(UpperCAmelCase_ )[0] _lowercase : Tuple = 5_02_65 _lowercase : Tuple = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape ,UpperCAmelCase_ ) _lowercase : Any = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,UpperCAmelCase_ ,atol=1E-4 ) ) @slow def lowerCamelCase__ ( self ): _lowercase : Tuple = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) _lowercase : int = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): _lowercase : Optional[Any] = model(UpperCAmelCase_ )[0] _lowercase : Tuple = 5_02_65 _lowercase : str = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape ,UpperCAmelCase_ ) _lowercase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,UpperCAmelCase_ ,atol=1E-4 ) )
600
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : str , __A : int , __A : Optional[Any] ) -> Tuple: """simple docstring""" lowercase : Tuple =UniSpeechSatForSequenceClassification.from_pretrained(_a , config=_a ) lowercase : Any =downstream_dict["""projector.weight"""] lowercase : Tuple =downstream_dict["""projector.bias"""] lowercase : Any =downstream_dict["""model.post_net.linear.weight"""] lowercase : Union[str, Any] =downstream_dict["""model.post_net.linear.bias"""] return model def lowercase_ ( __A : List[str] , __A : Dict , __A : List[str] ) -> Optional[int]: """simple docstring""" lowercase : str =UniSpeechSatForAudioFrameClassification.from_pretrained(_a , config=_a ) lowercase : Optional[Any] =downstream_dict["""model.linear.weight"""] lowercase : Union[str, Any] =downstream_dict["""model.linear.bias"""] return model def lowercase_ ( __A : Optional[Any] , __A : Optional[Any] , __A : Any ) -> Any: """simple docstring""" lowercase : int =UniSpeechSatForXVector.from_pretrained(_a , config=_a ) lowercase : Optional[int] =downstream_dict["""connector.weight"""] lowercase : str =downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase : Any =downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] lowercase : int =downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] lowercase : List[str] =downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] lowercase : Any =downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] lowercase : int =downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] lowercase : Optional[Any] =downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] lowercase : List[Any] =downstream_dict["""objective.W"""] return model @torch.no_grad() def lowercase_ ( __A : Dict , __A : Tuple , __A : Tuple , __A : Any ) -> Tuple: """simple docstring""" lowercase : List[str] =torch.load(_a , map_location='''cpu''' ) lowercase : Any =checkpoint["""Downstream"""] lowercase : Tuple =UniSpeechSatConfig.from_pretrained(_a ) lowercase : str =WavaVecaFeatureExtractor.from_pretrained( _a , return_attention_mask=_a , do_normalize=_a ) lowercase : Dict =hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): lowercase : Tuple =convert_classification(_a , _a , _a ) elif arch.endswith('''ForAudioFrameClassification''' ): lowercase : Tuple =convert_diarization(_a , _a , _a ) elif arch.endswith('''ForXVector''' ): lowercase : Any =convert_xvector(_a , _a , _a ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: lowercase : Optional[Any] =checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(_a ) hf_model.save_pretrained(_a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
94
from __future__ import annotations import numpy as np def A__ ( _a : np.ndarray ): '''simple docstring''' snake_case__ , snake_case__ : str =np.shape(_a ) if rows != columns: snake_case__ : Any =( """'table' has to be of square shaped array but got a """ f"{rows}x{columns} array:\n{table}" ) raise ValueError(_a ) snake_case__ : Dict =np.zeros((rows, columns) ) snake_case__ : str =np.zeros((rows, columns) ) for i in range(_a ): for j in range(_a ): snake_case__ : Optional[int] =sum(lower[i][k] * upper[k][j] for k in range(_a ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) snake_case__ : List[Any] =(table[i][j] - total) / upper[j][j] snake_case__ : Optional[int] =1 for j in range(_a , _a ): snake_case__ : int =sum(lower[i][k] * upper[k][j] for k in range(_a ) ) snake_case__ : Dict =table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
385
0
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCamelCase__( __A ): def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) requires_backends(self ,'vision' ) self.check_model_type(__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,**__UpperCAmelCase ) -> Optional[Any]: return {}, {}, {} def snake_case__ ( self ,__UpperCAmelCase ) -> Tuple: A__ = load_image(__UpperCAmelCase ) A__ = image.size A__ = self.image_processor(images=__UpperCAmelCase ,return_tensors=self.framework ) return model_inputs def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = self.model(**__UpperCAmelCase ) return model_outputs def snake_case__ ( self ,__UpperCAmelCase ) -> int: A__ = model_outputs.predicted_depth A__ = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='bicubic' ,align_corners=__UpperCAmelCase ) A__ = prediction.squeeze().cpu().numpy() A__ = (output * 2_55 / np.max(__UpperCAmelCase )).astype('uint8' ) A__ = Image.fromarray(__UpperCAmelCase ) A__ = {} A__ = predicted_depth A__ = depth return output_dict
536
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase__( __A ): def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' ,__UpperCAmelCase ,) super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase )
536
1
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _a : Optional[Any] = logging.get_logger(__name__) # General docstring _a : Optional[Any] = "RegNetConfig" # Base docstring _a : int = "facebook/regnet-y-040" _a : Tuple = [1, 1_088, 7, 7] # Image classification docstring _a : List[str] = "facebook/regnet-y-040" _a : Any = "tabby, tabby cat" _a : Tuple = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _lowercase ( nn.Module ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : Optional[str] = "relu" , ) -> List[str]: super().__init__() __snake_case = nn.Convad( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=kernel_size // 2 , groups=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ , ) __snake_case = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) __snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def a ( self : int , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: __snake_case = self.convolution(SCREAMING_SNAKE_CASE_ ) __snake_case = self.normalization(SCREAMING_SNAKE_CASE_ ) __snake_case = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : RegNetConfig ) -> Dict: super().__init__() __snake_case = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __snake_case = config.num_channels def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: __snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __snake_case = self.embedder(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 ) -> List[str]: super().__init__() __snake_case = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , stride=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) __snake_case = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Tensor: __snake_case = self.convolution(SCREAMING_SNAKE_CASE_ ) __snake_case = self.normalization(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: super().__init__() __snake_case = nn.AdaptiveAvgPoolad((1, 1) ) __snake_case = nn.Sequential( nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 ) , nn.Sigmoid() , ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]: # b c h w -> b c 1 1 __snake_case = self.pooler(SCREAMING_SNAKE_CASE_ ) __snake_case = self.attention(SCREAMING_SNAKE_CASE_ ) __snake_case = hidden_state * attention return hidden_state class _lowercase ( nn.Module ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 ) -> Tuple: super().__init__() __snake_case = in_channels != out_channels or stride != 1 __snake_case = max(1 , out_channels // config.groups_width ) __snake_case = ( RegNetShortCut(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) if should_apply_shortcut else nn.Identity() ) __snake_case = nn.Sequential( RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act ) , RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = ACTaFN[config.hidden_act] def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: __snake_case = hidden_state __snake_case = self.layer(SCREAMING_SNAKE_CASE_ ) __snake_case = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual __snake_case = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : Any , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 ) -> Optional[Any]: super().__init__() __snake_case = in_channels != out_channels or stride != 1 __snake_case = max(1 , out_channels // config.groups_width ) __snake_case = ( RegNetShortCut(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) if should_apply_shortcut else nn.Identity() ) __snake_case = nn.Sequential( RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act ) , RegNetSELayer(SCREAMING_SNAKE_CASE_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = ACTaFN[config.hidden_act] def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = hidden_state __snake_case = self.layer(SCREAMING_SNAKE_CASE_ ) __snake_case = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual __snake_case = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , ) -> Any: super().__init__() __snake_case = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , ) , *[layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(depth - 1 )] , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Any: __snake_case = self.layers(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE_ : RegNetConfig ) -> Union[str, Any]: super().__init__() __snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( SCREAMING_SNAKE_CASE_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(SCREAMING_SNAKE_CASE_ , config.depths[1:] ): self.stages.append(RegNetStage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , depth=SCREAMING_SNAKE_CASE_ ) ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = True ) -> BaseModelOutputWithNoAttention: __snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case = hidden_states + (hidden_state,) __snake_case = stage_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: __snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = RegNetConfig _SCREAMING_SNAKE_CASE : Optional[int] = "regnet" _SCREAMING_SNAKE_CASE : int = "pixel_values" _SCREAMING_SNAKE_CASE : Optional[int] = True def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(SCREAMING_SNAKE_CASE_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=False ) -> Tuple: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = value _a : Union[str, Any] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _a : Dict = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , __lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _lowercase ( __lowercase ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config __snake_case = RegNetEmbeddings(SCREAMING_SNAKE_CASE_ ) __snake_case = RegNetEncoder(SCREAMING_SNAKE_CASE_ ) __snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: __snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.embedder(SCREAMING_SNAKE_CASE_ ) __snake_case = self.encoder( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __snake_case = encoder_outputs[0] __snake_case = self.pooler(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _lowercase ( __lowercase ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config.num_labels __snake_case = RegNetModel(SCREAMING_SNAKE_CASE_ ) # classification head __snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.regnet(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __snake_case = outputs.pooler_output if return_dict else outputs[1] __snake_case = self.classifier(SCREAMING_SNAKE_CASE_ ) __snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case = 'single_label_classification' else: __snake_case = 'multi_label_classification' if self.config.problem_type == "regression": __snake_case = MSELoss() if self.num_labels == 1: __snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case = BCEWithLogitsLoss() __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: __snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states )
56
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self : Tuple ): '''simple docstring''' A_ : Any = 1 A_ : int = 3 A_ : List[Any] = (32, 32) A_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(_a ) return image @property def _a ( self : str ): '''simple docstring''' torch.manual_seed(0 ) A_ : int = UNetaDConditionModel( block_out_channels=(32, 32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=7 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,attention_head_dim=8 ,use_linear_projection=_a ,only_cross_attention=(True, True, False) ,num_class_embeds=100 ,) return model @property def _a ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) A_ : str = AutoencoderKL( block_out_channels=[32, 32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _a ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) return CLIPTextModel(_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : List[str] = self.dummy_cond_unet_upscale A_ : int = DDPMScheduler() A_ : Optional[int] = DDIMScheduler(prediction_type="""v_prediction""" ) A_ : List[str] = self.dummy_vae A_ : List[Any] = self.dummy_text_encoder A_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : List[str] = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] A_ : Dict = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A_ : Optional[int] = StableDiffusionUpscalePipeline( unet=_a ,low_res_scheduler=_a ,scheduler=_a ,vae=_a ,text_encoder=_a ,tokenizer=_a ,max_noise_level=350 ,) A_ : Tuple = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) A_ : Tuple = """A painting of a squirrel eating a burger""" A_ : Any = torch.Generator(device=_a ).manual_seed(0 ) A_ : Optional[Any] = sd_pipe( [prompt] ,image=_a ,generator=_a ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) A_ : List[str] = output.images A_ : str = torch.Generator(device=_a ).manual_seed(0 ) A_ : Union[str, Any] = sd_pipe( [prompt] ,image=_a ,generator=_a ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=_a ,)[0] A_ : Union[str, Any] = image[0, -3:, -3:, -1] A_ : Dict = image_from_tuple[0, -3:, -3:, -1] A_ : Union[str, Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) A_ : List[str] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ): '''simple docstring''' A_ : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Optional[Any] = self.dummy_cond_unet_upscale A_ : Tuple = DDPMScheduler() A_ : List[Any] = DDIMScheduler(prediction_type="""v_prediction""" ) A_ : int = self.dummy_vae A_ : str = self.dummy_text_encoder A_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : List[str] = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] A_ : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A_ : List[str] = StableDiffusionUpscalePipeline( unet=_a ,low_res_scheduler=_a ,scheduler=_a ,vae=_a ,text_encoder=_a ,tokenizer=_a ,max_noise_level=350 ,) A_ : Dict = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) A_ : List[Any] = """A painting of a squirrel eating a burger""" A_ : Union[str, Any] = sd_pipe( 2 * [prompt] ,image=2 * [low_res_image] ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) A_ : Tuple = output.images assert image.shape[0] == 2 A_ : Tuple = torch.Generator(device=_a ).manual_seed(0 ) A_ : List[str] = sd_pipe( [prompt] ,image=_a ,generator=_a ,num_images_per_prompt=2 ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) A_ : Any = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Any = self.dummy_cond_unet_upscale A_ : Tuple = DDPMScheduler() A_ : Tuple = DDIMScheduler(prediction_type="""v_prediction""" ) A_ : Optional[Any] = self.dummy_vae A_ : List[str] = self.dummy_text_encoder A_ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : Tuple = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] A_ : Tuple = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 A_ : Optional[Any] = unet.half() A_ : Tuple = text_encoder.half() # make sure here that pndm scheduler skips prk A_ : List[Any] = StableDiffusionUpscalePipeline( unet=_a ,low_res_scheduler=_a ,scheduler=_a ,vae=_a ,text_encoder=_a ,tokenizer=_a ,max_noise_level=350 ,) A_ : str = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) A_ : Optional[int] = """A painting of a squirrel eating a burger""" A_ : List[Any] = torch.manual_seed(0 ) A_ : str = sd_pipe( [prompt] ,image=_a ,generator=_a ,num_inference_steps=2 ,output_type="""np""" ,).images A_ : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Dict ): '''simple docstring''' A_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) A_ : List[str] = """stabilityai/stable-diffusion-x4-upscaler""" A_ : List[str] = StableDiffusionUpscalePipeline.from_pretrained(_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() A_ : Tuple = """a cat sitting on a park bench""" A_ : int = torch.manual_seed(0 ) A_ : int = pipe( prompt=_a ,image=_a ,generator=_a ,output_type="""np""" ,) A_ : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _a ( self : Optional[int] ): '''simple docstring''' A_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) A_ : Tuple = """stabilityai/stable-diffusion-x4-upscaler""" A_ : int = StableDiffusionUpscalePipeline.from_pretrained( _a ,torch_dtype=torch.floataa ,) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() A_ : Any = """a cat sitting on a park bench""" A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : List[str] = pipe( prompt=_a ,image=_a ,generator=_a ,output_type="""np""" ,) A_ : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _a ( self : Optional[Any] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A_ : Any = """stabilityai/stable-diffusion-x4-upscaler""" A_ : Tuple = StableDiffusionUpscalePipeline.from_pretrained( _a ,torch_dtype=torch.floataa ,) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A_ : Tuple = """a cat sitting on a park bench""" A_ : Any = torch.manual_seed(0 ) A_ : Optional[Any] = pipe( prompt=_a ,image=_a ,generator=_a ,num_inference_steps=5 ,output_type="""np""" ,) A_ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
27
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __magic_name__ = trt.Logger(trt.Logger.WARNING) __magic_name__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __magic_name__ = logging.getLogger(__name__) __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __magic_name__ = parser.parse_args() if args.tokenizer_name: __magic_name__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __magic_name__ = args.per_device_eval_batch_size __magic_name__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __magic_name__ = True __magic_name__ = 'temp_engine/bert-fp32.engine' if args.fpaa: __magic_name__ = 'temp_engine/bert-fp16.engine' if args.inta: __magic_name__ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __magic_name__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __magic_name__ = [network.get_input(i) for i in range(network.num_inputs)] __magic_name__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __magic_name__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __magic_name__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __magic_name__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str]): A_ : str = np.asarray(inputs["""input_ids"""] , dtype=np.intaa) A_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa) A_ : Optional[int] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase) # start time A_ : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCamelCase) for d_inp in d_inputs] + [int(lowerCamelCase), int(lowerCamelCase)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) # Synchronize the stream and take time stream.synchronize() # end time A_ : str = time.time() A_ : Tuple = end_time - start_time A_ : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __magic_name__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __magic_name__ = raw_datasets['validation'].column_names __magic_name__ = 'question' if 'question' in column_names else column_names[0] __magic_name__ = 'context' if 'context' in column_names else column_names[1] __magic_name__ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __magic_name__ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __magic_name__ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase ( lowerCamelCase : Dict): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A_ : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A_ : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase , return_offsets_mapping=lowerCamelCase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A_ : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A_ : Union[str, Any] = [] for i in range(len(tokenized_examples["""input_ids"""])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A_ : Any = tokenized_examples.sequence_ids(lowerCamelCase) A_ : Tuple = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A_ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A_ : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i]) ] return tokenized_examples __magic_name__ = raw_datasets['validation'] # Validation Feature Creation __magic_name__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __magic_name__ = default_data_collator __magic_name__ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __magic_name__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. A_ : Tuple = postprocess_qa_predictions( examples=lowerCamelCase , features=lowerCamelCase , predictions=lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A_ : Dict = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: A_ : Union[str, Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] A_ : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCamelCase , label_ids=lowerCamelCase) __magic_name__ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return trt.volume(engine.get_binding_shape(lowerCamelCase)) * engine.get_binding_dtype(lowerCamelCase).itemsize # Allocate device memory for inputs and outputs. __magic_name__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __magic_name__ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __magic_name__ = 0.0 __magic_name__ = 0 __magic_name__ = timeit.default_timer() __magic_name__ = None for step, batch in enumerate(eval_dataloader): __magic_name__ , __magic_name__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __magic_name__ , __magic_name__ = outputs __magic_name__ = torch.tensor(start_logits) __magic_name__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __magic_name__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __magic_name__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __magic_name__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __magic_name__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __magic_name__ = nested_truncate(all_preds, len(eval_dataset)) __magic_name__ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __magic_name__ = post_processing_function(eval_examples, eval_dataset, all_preds) __magic_name__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
27
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Union[str, Any] = "speech_to_text" _UpperCamelCase : Optional[int] = ["past_key_values"] _UpperCamelCase : List[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _lowerCAmelCase=1_0_0_0_0 , _lowerCAmelCase=1_2 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=4 , _lowerCAmelCase=6 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=4 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=6_0_0_0 , _lowerCAmelCase=1_0_2_4 , _lowerCAmelCase=2 , _lowerCAmelCase=(5, 5) , _lowerCAmelCase=1_0_2_4 , _lowerCAmelCase=8_0 , _lowerCAmelCase=1 , **_lowerCAmelCase , ): _lowercase : Tuple = vocab_size _lowercase : int = d_model _lowercase : Tuple = encoder_ffn_dim _lowercase : Union[str, Any] = encoder_layers _lowercase : Dict = encoder_attention_heads _lowercase : int = decoder_ffn_dim _lowercase : Any = decoder_layers _lowercase : Optional[int] = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : Optional[int] = attention_dropout _lowercase : str = activation_dropout _lowercase : int = activation_function _lowercase : Dict = init_std _lowercase : Any = encoder_layerdrop _lowercase : Optional[int] = decoder_layerdrop _lowercase : Tuple = use_cache _lowercase : int = encoder_layers _lowercase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _lowercase : Any = max_source_positions _lowercase : Any = max_target_positions _lowercase : Any = num_conv_layers _lowercase : Union[str, Any] = list(_lowerCAmelCase ) _lowercase : List[Any] = conv_channels _lowercase : int = input_feat_per_channel _lowercase : Union[str, Any] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
66
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = DistilBertTokenizer _SCREAMING_SNAKE_CASE = DistilBertTokenizerFast _SCREAMING_SNAKE_CASE = True @slow def lowerCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" snake_case_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) snake_case_ = tokenizer.encode("sequence builders" , add_special_tokens=_lowerCAmelCase ) snake_case_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_lowerCAmelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) snake_case_ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
283
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowercase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowercase = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase__ ( a , a ): return np.sqrt(np.sum((np.asarray(a ) - np.asarray(a )) ** 2 ) ) def lowerCamelCase__ ( a , a ): return sum((va - va) ** 2 for va, va in zip(a , a ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase__ ( ): from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
427
0
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: _lowercase : Dict = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowercase : List[str] = dict(scheduler.config ) _lowercase : Any = 1 _lowercase : List[Any] = FrozenDict(_lowerCAmelCase ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: _lowercase : Any = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowercase : str = dict(scheduler.config ) _lowercase : int = True _lowercase : Union[str, Any] = FrozenDict(_lowerCAmelCase ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=_lowerCAmelCase , segmentation_processor=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , ) def __a ( self , _lowerCAmelCase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowercase : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def __a ( self ): self.enable_attention_slicing(_lowerCAmelCase ) def __a ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _lowercase : Tuple = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __a ( self ): if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 5_0 , _lowerCAmelCase = 7.5 , _lowerCAmelCase = None , _lowerCAmelCase = 1 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = 1 , **_lowerCAmelCase , ): _lowercase : str = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) _lowercase : Any = self.segmentation_model(**_lowerCAmelCase ) _lowercase : str = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _lowercase : Optional[int] = self.numpy_to_pil(_lowerCAmelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _lowercase : str = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , height=_lowerCAmelCase , width=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , negative_prompt=_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase , eta=_lowerCAmelCase , generator=_lowerCAmelCase , latents=_lowerCAmelCase , output_type=_lowerCAmelCase , return_dict=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=_lowerCAmelCase , )
66
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __UpperCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Any ,*lowercase_ : Dict ,**lowercase_ : List[str] ): warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' ,lowercase_ ,) super().__init__(*lowercase_ ,**lowercase_ )
450
0
from __future__ import annotations from collections import namedtuple def lowerCAmelCase( a__ : str , a__ : List[str] , a__ : str ): '''simple docstring''' lowerCamelCase__ = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' lowerCAmelCase_ = "Alexander Joslin" import operator as op from .stack import Stack def lowerCAmelCase( a__ : str ): '''simple docstring''' lowerCamelCase__ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} lowerCamelCase__ = Stack() lowerCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(a__ ) ) elif i in operators: # RULE 2 operator_stack.push(a__ ) elif i == ")": # RULE 4 lowerCamelCase__ = operator_stack.peek() operator_stack.pop() lowerCamelCase__ = operand_stack.peek() operand_stack.pop() lowerCamelCase__ = operand_stack.peek() operand_stack.pop() lowerCamelCase__ = operators[opr](a__ , a__ ) operand_stack.push(a__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCAmelCase_ = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f'{equation} = {dijkstras_two_stack_algorithm(equation)}')
426
0
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Any = ProphetNetTokenizer A__ : Optional[int] = False def _a ( self : List[Any] ): """simple docstring""" super().setUp() A__ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _a ( self : Union[str, Any] , _snake_case : str ): """simple docstring""" A__ = 'UNwant\u00E9d,running' A__ = 'unwanted, running' return input_text, output_text def _a ( self : Optional[int] ): """simple docstring""" A__ = self.tokenizer_class(self.vocab_file ) A__ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [9, 6, 7, 12, 10, 11] ) def _a ( self : List[str] ): """simple docstring""" A__ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self : List[Any] ): """simple docstring""" A__ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self : Optional[Any] ): """simple docstring""" A__ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self : List[str] ): """simple docstring""" A__ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self : Union[str, Any] ): """simple docstring""" A__ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self : Tuple ): """simple docstring""" A__ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self : Union[str, Any] ): """simple docstring""" A__ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self : Union[str, Any] ): """simple docstring""" A__ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self : Union[str, Any] ): """simple docstring""" A__ = BasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self : List[str] ): """simple docstring""" A__ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] A__ = {} for i, token in enumerate(A_ ): A__ = i A__ = WordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) A__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] A__ = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] A__ = tokenizer(A_ , padding=A_ , return_tensors='pt' ) self.assertIsInstance(A_ , A_ ) A__ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(A_ , A_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def _a ( self : int ): """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self : List[str] ): """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self : int ): """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def _a ( self : int ): """simple docstring""" A__ = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) A__ = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) A__ = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) A__ = tokenizer.build_inputs_with_special_tokens(A_ ) A__ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
9
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase : List[str] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : str , lowercase : Any=8 ): '''simple docstring''' lowerCamelCase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A( UpperCamelCase ): '''simple docstring''' def __init__( self : str , A_ : UNetaDConditionModel , A_ : DDPMScheduler , A_ : VQModel , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( unet=A_ , scheduler=A_ , movq=A_ , ) lowerCamelCase_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a__ ( self : List[Any] , A_ : Tuple , A_ : Dict , A_ : List[Any] , A_ : int , A_ : Any , A_ : Tuple ) -> Any: """simple docstring""" if latents is None: lowerCamelCase_ = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCamelCase_ = latents.to(A_ ) lowerCamelCase_ = latents * scheduler.init_noise_sigma return latents def a__ ( self : int , A_ : str=0 ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase_ = torch.device(f"""cuda:{gpu_id}""" ) lowerCamelCase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def a__ ( self : Tuple , A_ : Union[str, Any]=0 ) -> Dict: """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowerCamelCase_ = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase_ = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase_ , lowerCamelCase_ = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. lowerCamelCase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self : List[Any] , A_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A_ : int = 512 , A_ : int = 512 , A_ : int = 100 , A_ : float = 4.0 , A_ : int = 1 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : Optional[torch.FloatTensor] = None , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self._execution_device lowerCamelCase_ = guidance_scale > 1.0 if isinstance(A_ , A_ ): lowerCamelCase_ = torch.cat(A_ , dim=0 ) lowerCamelCase_ = image_embeds.shape[0] * num_images_per_prompt if isinstance(A_ , A_ ): lowerCamelCase_ = torch.cat(A_ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ = image_embeds.repeat_interleave(A_ , dim=0 ) lowerCamelCase_ = negative_image_embeds.repeat_interleave(A_ , dim=0 ) lowerCamelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) lowerCamelCase_ = self.scheduler.timesteps lowerCamelCase_ = self.unet.config.in_channels lowerCamelCase_ , lowerCamelCase_ = downscale_height_and_width(A_ , A_ , self.movq_scale_factor ) # create initial latent lowerCamelCase_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = {'image_embeds': image_embeds} lowerCamelCase_ = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: lowerCamelCase_ , lowerCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ , lowerCamelCase_ = variance_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase_ , lowerCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step( A_ , A_ , A_ , generator=A_ , )[0] # post-processing lowerCamelCase_ = self.movq.decode(A_ , force_not_quantize=A_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowerCamelCase_ = image * 0.5 + 0.5 lowerCamelCase_ = image.clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
70
0
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a_ ( __A , __A ): """simple docstring""" @register_to_config def __init__( self , *, _lowerCamelCase = 4 , _lowerCamelCase = 768 , _lowerCamelCase , _lowerCamelCase , ) ->Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.zeros(UpperCamelCase__ ) ) # parameters for additional clip time embeddings SCREAMING_SNAKE_CASE : Any = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) # parameters for encoder hidden states SCREAMING_SNAKE_CASE : str = clip_extra_context_tokens SCREAMING_SNAKE_CASE : str = nn.Linear( UpperCamelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) SCREAMING_SNAKE_CASE : Tuple = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.LayerNorm(UpperCamelCase__ ) def __lowerCAmelCase ( self , *, _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = image_embeddings.shape[0] SCREAMING_SNAKE_CASE : List[str] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_free_guidance_embeddings.expand( UpperCamelCase__ , -1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] SCREAMING_SNAKE_CASE : Union[str, Any] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... SCREAMING_SNAKE_CASE : List[Any] = self.embedding_proj(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.clip_image_embeddings_project_to_time_embeddings(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" SCREAMING_SNAKE_CASE : Optional[Any] = self.clip_extra_context_tokens_proj(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = clip_extra_context_tokens.reshape(UpperCamelCase__ , -1 , self.clip_extra_context_tokens ) SCREAMING_SNAKE_CASE : Any = clip_extra_context_tokens.permute(0 , 2 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.encoder_hidden_states_proj(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.text_encoder_hidden_states_norm(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
709
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_stages SCREAMING_SNAKE_CASE : str = hidden_sizes SCREAMING_SNAKE_CASE : List[str] = depths SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = out_features SCREAMING_SNAKE_CASE : List[Any] = num_labels SCREAMING_SNAKE_CASE : str = scope SCREAMING_SNAKE_CASE : str = num_stages def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->Dict: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->List[Any]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Union[str, Any] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : int = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->Optional[int]: return def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->Optional[int]: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->Dict: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->List[str]: pass def __lowerCAmelCase ( self ) ->Union[str, Any]: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Any = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->Dict: pass @slow def __lowerCAmelCase ( self ) ->Union[str, Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : int = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : int = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = prepare_img() SCREAMING_SNAKE_CASE : Any = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
333
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''', _a, ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : List[Any] = RobertaConfig lowerCamelCase_ : Union[str, Any] = '''roberta''' def __init__(self , __magic_name__ ) -> List[str]: '''simple docstring''' super().__init__(__magic_name__ ) snake_case_ : Optional[Any] = RobertaEmbeddings(__magic_name__ ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''', _a, ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[Any] = RobertaConfig lowerCamelCase_ : Optional[Any] = '''roberta''' def __init__(self , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(__magic_name__ ) snake_case_ : Any = config.num_labels snake_case_ : int = config.num_hidden_layers snake_case_ : List[Any] = DeeRobertaModel(__magic_name__ ) snake_case_ : Optional[int] = nn.Dropout(config.hidden_dropout_prob ) snake_case_ : Union[str, Any] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__magic_name__ ) def lowerCamelCase (self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=-1 , __magic_name__=False , ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = self.num_layers try: snake_case_ : Any = self.roberta( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , position_ids=__magic_name__ , head_mask=__magic_name__ , inputs_embeds=__magic_name__ , ) snake_case_ : Optional[int] = outputs[1] snake_case_ : Any = self.dropout(__magic_name__ ) snake_case_ : Any = self.classifier(__magic_name__ ) snake_case_ : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ : Tuple = e.message snake_case_ : int = e.exit_layer snake_case_ : List[Any] = outputs[0] if not self.training: snake_case_ : int = entropy(__magic_name__ ) snake_case_ : Dict = [] snake_case_ : List[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ : Union[str, Any] = MSELoss() snake_case_ : List[Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : int = CrossEntropyLoss() snake_case_ : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ : Dict = [] for highway_exit in outputs[-1]: snake_case_ : int = highway_exit[0] if not self.training: highway_logits_all.append(__magic_name__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ : Dict = MSELoss() snake_case_ : Optional[Any] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : Optional[Any] = CrossEntropyLoss() snake_case_ : Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__magic_name__ ) if train_highway: snake_case_ : Any = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ : int = (loss,) + outputs if not self.training: snake_case_ : Tuple = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ : List[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
60
'''simple docstring''' from __future__ import annotations def __A ( a_ : float ,a_ : float ,a_ : float ,): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
525
0
def _a ( lowerCamelCase__ = 1_00 ) -> int: lowerCamelCase_ : List[str] = set() lowerCamelCase_ : Tuple = 0 lowerCamelCase_ : Any = n + 1 # maximum limit for a in range(2 , __UpperCamelCase ): for b in range(2 , __UpperCamelCase ): lowerCamelCase_ : List[str] = a**b # calculates the current power collect_powers.add(__UpperCamelCase ) # adds the result to the set return len(__UpperCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
713
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class lowerCamelCase__ ( UpperCAmelCase ): def __init__(self : List[Any] , **_snake_case : int ) -> Dict: """simple docstring""" super().__init__(**_snake_case ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , 'vision' ) self.check_model_type(_snake_case ) def __call__(self : int , _snake_case : Union[str, "Image.Image", List[Dict[str, Any]]] , _snake_case : Union[str, List[str]] = None , **_snake_case : Optional[int] , ) -> Dict: """simple docstring""" if "text_queries" in kwargs: lowerCamelCase_ : Tuple = kwargs.pop('text_queries' ) if isinstance(_snake_case , (str, Image.Image) ): lowerCamelCase_ : Union[str, Any] = {'image': image, 'candidate_labels': candidate_labels} else: lowerCamelCase_ : List[str] = image lowerCamelCase_ : List[Any] = super().__call__(_snake_case , **_snake_case ) return results def UpperCAmelCase_ (self : Union[str, Any] , **_snake_case : Any ) -> Dict: """simple docstring""" lowerCamelCase_ : Dict = {} if "threshold" in kwargs: lowerCamelCase_ : int = kwargs['threshold'] if "top_k" in kwargs: lowerCamelCase_ : Any = kwargs['top_k'] return {}, {}, postprocess_params def UpperCAmelCase_ (self : Tuple , _snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ : List[str] = load_image(inputs['image'] ) lowerCamelCase_ : Any = inputs['candidate_labels'] if isinstance(_snake_case , _snake_case ): lowerCamelCase_ : Any = candidate_labels.split(',' ) lowerCamelCase_ : List[Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_snake_case ): lowerCamelCase_ : str = self.tokenizer(_snake_case , return_tensors=self.framework ) lowerCamelCase_ : Union[str, Any] = self.image_processor(_snake_case , return_tensors=self.framework ) yield { "is_last": i == len(_snake_case ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCAmelCase_ (self : List[Any] , _snake_case : int ) -> Tuple: """simple docstring""" lowerCamelCase_ : List[Any] = model_inputs.pop('target_size' ) lowerCamelCase_ : int = model_inputs.pop('candidate_label' ) lowerCamelCase_ : Tuple = model_inputs.pop('is_last' ) lowerCamelCase_ : Optional[Any] = self.model(**_snake_case ) lowerCamelCase_ : Optional[Any] = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCAmelCase_ (self : Optional[int] , _snake_case : Optional[Any] , _snake_case : Any=0.1 , _snake_case : Union[str, Any]=None ) -> Any: """simple docstring""" lowerCamelCase_ : Dict = [] for model_output in model_outputs: lowerCamelCase_ : str = model_output['candidate_label'] lowerCamelCase_ : Optional[int] = BaseModelOutput(_snake_case ) lowerCamelCase_ : List[str] = self.image_processor.post_process_object_detection( outputs=_snake_case , threshold=_snake_case , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): lowerCamelCase_ : Tuple = outputs['scores'][index].item() lowerCamelCase_ : List[Any] = self._get_bounding_box(outputs['boxes'][index][0] ) lowerCamelCase_ : Dict = {'score': score, 'label': label, 'box': box} results.append(_snake_case ) lowerCamelCase_ : int = sorted(_snake_case , key=lambda _snake_case : x["score"] , reverse=_snake_case ) if top_k: lowerCamelCase_ : List[Any] = results[:top_k] return results def UpperCAmelCase_ (self : List[Any] , _snake_case : "torch.Tensor" ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] = box.int().tolist() lowerCamelCase_ : Tuple = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
144
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class __magic_name__ ( snake_case_ ): """simple docstring""" def __init__( self ): '''simple docstring''' self.test() def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Tuple = 0 __A : Tuple = False while not completed: if counter == 1: self.reset() __A : Any = self.advance() if not self.does_advance(lowerCamelCase ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) __A : int = self.update(lowerCamelCase ) counter += 1 if counter > 1_0000: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def lowerCAmelCase__ ( self ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowerCAmelCase__ ( self ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowerCAmelCase__ ( self ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowerCAmelCase__ ( self , lowerCamelCase=False ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class __magic_name__ ( snake_case_ ): """simple docstring""" def __init__( self , lowerCamelCase ): '''simple docstring''' super(lowerCamelCase , self ).__init__() if not isinstance(lowerCamelCase , lowerCamelCase ) or len(lowerCamelCase ) == 0: raise ValueError(f"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(lowerCamelCase , lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) __A : List[Any] = token_ids __A : Any = len(self.token_ids ) __A : Any = -1 # the index of the currently fulfilled step __A : Optional[int] = False def lowerCAmelCase__ ( self ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(lowerCamelCase )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(lowerCamelCase )}" ) __A : int = False __A : Any = False __A : List[Any] = False if self.does_advance(lowerCamelCase ): self.fulfilled_idx += 1 __A : Dict = True if self.fulfilled_idx == (self.seqlen - 1): __A : Optional[int] = True __A : Optional[Any] = completed else: # failed to make progress. __A : int = True self.reset() return stepped, completed, reset def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Tuple = False __A : str = 0 def lowerCAmelCase__ ( self ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def lowerCAmelCase__ ( self , lowerCamelCase=False ): '''simple docstring''' __A : Any = PhrasalConstraint(self.token_ids ) if stateful: __A : Dict = self.seqlen __A : List[str] = self.fulfilled_idx __A : Union[str, Any] = self.completed return new_constraint class __magic_name__ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=True ): '''simple docstring''' __A : List[str] = max([len(lowerCamelCase ) for one in nested_token_ids] ) __A : Optional[int] = {} for token_ids in nested_token_ids: __A : Tuple = root for tidx, token_id in enumerate(lowerCamelCase ): if token_id not in level: __A : Union[str, Any] = {} __A : Union[str, Any] = level[token_id] if no_subsets and self.has_subsets(lowerCamelCase , lowerCamelCase ): raise ValueError( "Each list in `nested_token_ids` can\'t be a complete subset of another list, but is" f" {nested_token_ids}." ) __A : Optional[int] = root def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = self.trie for current_token in current_seq: __A : str = start[current_token] __A : List[Any] = list(start.keys() ) return next_tokens def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : Dict = self.next_tokens(lowerCamelCase ) return len(lowerCamelCase ) == 0 def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : int = list(root.values() ) if len(lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(lowerCamelCase ) for nn in next_nodes] ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __A : str = self.count_leaves(lowerCamelCase ) return len(lowerCamelCase ) != leaf_count class __magic_name__ ( snake_case_ ): """simple docstring""" def __init__( self , lowerCamelCase ): '''simple docstring''' super(lowerCamelCase , self ).__init__() if not isinstance(lowerCamelCase , lowerCamelCase ) or len(lowerCamelCase ) == 0: raise ValueError(f"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(lowerCamelCase , lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(f"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(lowerCamelCase , lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) __A : str = DisjunctiveTrie(lowerCamelCase ) __A : Tuple = nested_token_ids __A : Dict = self.trie.max_height __A : List[Any] = [] __A : List[Any] = False def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Any = self.trie.next_tokens(self.current_seq ) if len(lowerCamelCase ) == 0: return None else: return token_list def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCamelCase )}" ) __A : Union[str, Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCamelCase )}" ) __A : str = False __A : int = False __A : Tuple = False if self.does_advance(lowerCamelCase ): self.current_seq.append(lowerCamelCase ) __A : Tuple = True else: __A : List[str] = True self.reset() __A : Dict = self.trie.reached_leaf(self.current_seq ) __A : Union[str, Any] = completed return stepped, completed, reset def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Any = False __A : List[str] = [] def lowerCAmelCase__ ( self ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCAmelCase__ ( self , lowerCamelCase=False ): '''simple docstring''' __A : Optional[int] = DisjunctiveConstraint(self.token_ids ) if stateful: __A : Any = self.seqlen __A : Tuple = self.current_seq __A : Optional[int] = self.completed return new_constraint class __magic_name__ : """simple docstring""" def __init__( self , lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = constraints # max # of steps required to fulfill a given constraint __A : str = max([c.seqlen for c in constraints] ) __A : str = len(lowerCamelCase ) __A : Optional[Any] = False self.init_state() def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[str] = [] __A : str = None __A : int = [constraint.copy(stateful=lowerCamelCase ) for constraint in self.constraints] def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[int] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[str] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __A : int = constraint.advance() if isinstance(lowerCamelCase , lowerCamelCase ): token_list.append(lowerCamelCase ) elif isinstance(lowerCamelCase , lowerCamelCase ): token_list.extend(lowerCamelCase ) else: __A : List[Any] = self.inprogress_constraint.advance() if isinstance(lowerCamelCase , lowerCamelCase ): token_list.append(lowerCamelCase ) elif isinstance(lowerCamelCase , lowerCamelCase ): token_list.extend(lowerCamelCase ) if len(lowerCamelCase ) == 0: return None else: return token_list def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __A : Tuple = self.add(lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`." ) __A : Optional[int] = False, False if self.completed: __A : str = True __A : int = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __A : Any = self.inprogress_constraint.update(lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowerCamelCase ) ) __A : List[Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __A : str = None if len(self.pending_constraints ) == 0: # we're done! __A : Any = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(lowerCamelCase ): __A : Tuple = pending_constraint.update(lowerCamelCase ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(lowerCamelCase ) __A : Tuple = None if not complete and stepped: __A : List[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __A : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __A : Dict = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCAmelCase__ ( self , lowerCamelCase=True ): '''simple docstring''' __A : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __A : Dict = [ constraint.copy(stateful=lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __A : List[str] = self.inprogress_constraint.copy(stateful=lowerCamelCase ) __A : List[str] = [constraint.copy() for constraint in self.pending_constraints] return new_state
111
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowercase ( lowerCamelCase : Optional[Any] ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Optional[int] , snake_case : nn.Module , snake_case : int ) -> Union[str, Any]: """simple docstring""" super().__init__() UpperCamelCase_ : str = module UpperCamelCase_ : Optional[int] = nn.Sequential( nn.Linear(module.in_features , snake_case , bias=snake_case ) , nn.Linear(snake_case , module.out_features , bias=snake_case ) , ) UpperCamelCase_ : Optional[int] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=snake_case ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : Dict , *snake_case : Any , **snake_case : Optional[Any] ) -> List[Any]: """simple docstring""" return self.module(snake_case , *snake_case , **snake_case ) + self.adapter(snake_case ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowercase = 'bigscience/bloom-1b7' # Constant values lowercase = 2.109_6595_5269_2574 lowercase = 'Hello my name is' lowercase = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) lowercase = 1_0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ : List[Any] = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: """simple docstring""" super().setUp() # Models and tokenizer UpperCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) UpperCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case , device_map='auto' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.model_abit.config self.assertTrue(hasattr(snake_case , 'quantization_config' ) ) UpperCamelCase_ : str = config.to_dict() UpperCamelCase_ : List[Any] = config.to_diff_dict() UpperCamelCase_ : Any = config.to_json_string() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: """simple docstring""" from bitsandbytes.nn import Paramsabit UpperCamelCase_ : Union[str, Any] = self.model_fpaa.get_memory_footprint() UpperCamelCase_ : Optional[Any] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) UpperCamelCase_ : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[Any]: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(snake_case , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' ) UpperCamelCase_ : Tuple = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> str: """simple docstring""" UpperCamelCase_ : Union[str, Any] = BitsAndBytesConfig() UpperCamelCase_ : List[Any] = True UpperCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case , device_map='auto' ) UpperCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='pt' ) UpperCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" with self.assertRaises(snake_case ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = BitsAndBytesConfig() with self.assertRaises(snake_case ): UpperCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case , load_in_abit=snake_case , device_map='auto' , bnb_abit_quant_type='nf4' , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: """simple docstring""" with self.assertRaises(snake_case ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(snake_case ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(snake_case ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(snake_case ): # Tries with a `device` self.model_abit.float() with self.assertRaises(snake_case ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything UpperCamelCase_ : Optional[int] = self.tokenizer(self.input_text , return_tensors='pt' ) UpperCamelCase_ : Dict = self.model_fpaa.to(torch.floataa ) UpperCamelCase_ : Optional[int] = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error UpperCamelCase_ : Union[str, Any] = self.model_fpaa.to('cpu' ) # Check this does not throw an error UpperCamelCase_ : str = self.model_fpaa.half() # Check this does not throw an error UpperCamelCase_ : Optional[int] = self.model_fpaa.float() def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=snake_case , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] ) -> str: """simple docstring""" UpperCamelCase_ : str = 't5-small' UpperCamelCase_ : Tuple = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense UpperCamelCase_ : Tuple = AutoTokenizer.from_pretrained(cls.model_name ) UpperCamelCase_ : Tuple = 'Translate in German: Hello, my dog is cute' def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: """simple docstring""" gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" from transformers import TaForConditionalGeneration UpperCamelCase_ : List[str] = TaForConditionalGeneration._keep_in_fpaa_modules UpperCamelCase_ : Optional[Any] = None # test with `t5-small` UpperCamelCase_ : Optional[int] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case , device_map='auto' ) UpperCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) UpperCamelCase_ : str = model.generate(**snake_case ) # test with `flan-t5-small` UpperCamelCase_ : Any = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case , device_map='auto' ) UpperCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) UpperCamelCase_ : Dict = model.generate(**snake_case ) UpperCamelCase_ : int = modules def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` UpperCamelCase_ : Optional[int] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) UpperCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) UpperCamelCase_ : Any = model.generate(**snake_case ) # test with `flan-t5-small` UpperCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case , device_map='auto' ) UpperCamelCase_ : Optional[int] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) UpperCamelCase_ : Optional[Any] = model.generate(**snake_case ) class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: """simple docstring""" super().setUp() # model_name UpperCamelCase_ : Union[str, Any] = 'bigscience/bloom-560m' UpperCamelCase_ : List[Any] = 't5-small' # Different types of model UpperCamelCase_ : Any = AutoModel.from_pretrained(self.model_name , load_in_abit=snake_case , device_map='auto' ) # Sequence classification model UpperCamelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=snake_case , device_map='auto' ) # CausalLM model UpperCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case , device_map='auto' ) # Seq2seq model UpperCamelCase_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=snake_case , device_map='auto' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" super().setUp() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[Any] = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass UpperCamelCase_ : Dict = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: """simple docstring""" super().setUp() def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Tuple: """simple docstring""" UpperCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=snake_case , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model UpperCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch UpperCamelCase_ : List[str] = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=snake_case ) , self.EXPECTED_OUTPUTS ) class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[str] = 'facebook/opt-350m' super().setUp() def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters UpperCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): UpperCamelCase_ : str = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability UpperCamelCase_ : Dict = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(snake_case ) ): UpperCamelCase_ : Any = LoRALayer(module.q_proj , rank=1_6 ) UpperCamelCase_ : Union[str, Any] = LoRALayer(module.k_proj , rank=1_6 ) UpperCamelCase_ : Optional[int] = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch UpperCamelCase_ : Tuple = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): UpperCamelCase_ : Optional[Any] = model.forward(**snake_case ) out.logits.norm().backward() for module in model.modules(): if isinstance(snake_case , snake_case ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(snake_case , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( snake_case_ ): lowercase = 'gpt2-xl' lowercase = 3.3191_8548_5415_2187
417
0
"""simple docstring""" from functools import lru_cache @lru_cache def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> int: if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule SCREAMING_SNAKE_CASE_ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
0
"""simple docstring""" from __future__ import annotations from typing import Any class a : def __init__( self , UpperCamelCase_ = 6 ): UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None self.create_linked_list(UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = Node() UpperCAmelCase__ : Union[str, Any] = current_node UpperCAmelCase__ : Any = current_node UpperCAmelCase__ : Dict = current_node for _ in range(1 , UpperCamelCase_ ): UpperCAmelCase__ : Any = Node() UpperCAmelCase__ : List[Any] = current_node UpperCAmelCase__ : List[str] = previous_node UpperCAmelCase__ : Any = current_node UpperCAmelCase__ : Optional[int] = self.front UpperCAmelCase__ : List[str] = previous_node def __snake_case ( self ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __snake_case ( self ): self.check_can_perform_operation() return self.front.data if self.front else None def __snake_case ( self , UpperCamelCase_ ): if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCAmelCase__ : List[Any] = self.rear.next if self.rear: UpperCAmelCase__ : int = data def __snake_case ( self ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCAmelCase__ : Tuple = self.front.data UpperCAmelCase__ : Optional[int] = None return data UpperCAmelCase__ : Optional[int] = self.front UpperCAmelCase__ : Optional[int] = old_front.next UpperCAmelCase__ : List[str] = old_front.data UpperCAmelCase__ : str = None return data def __snake_case ( self ): if self.is_empty(): raise Exception('Empty Queue' ) def __snake_case ( self ): if self.rear and self.rear.next == self.front: raise Exception('Full Queue' ) class a : def __init__( self ): UpperCAmelCase__ : Any | None = None UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
110
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
1
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = '▁' snake_case__ = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} snake_case__ = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } snake_case__ = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } snake_case__ = { 'ernie-m-base': 514, 'ernie-m-large': 514, } snake_case__ = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ["input_ids"] A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_INIT_CONFIGURATION A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = RESOURCE_FILES_NAMES def __init__( self , A_ , A_=None , A_=False , A_="utf8" , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_ = None , **A_ , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , vocab_file=A_ , encoding=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) _lowerCamelCase = do_lower_case _lowerCamelCase = sentencepiece_model_ckpt _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: _lowerCamelCase = self.load_vocab(filepath=A_ ) else: _lowerCamelCase = {self.sp_model.id_to_piece(A_ ): id for id in range(self.sp_model.get_piece_size() )} _lowerCamelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase_ ( self , A_ ) -> str: """simple docstring""" if text is None: return None _lowerCamelCase = self.tokenize(A_ ) _lowerCamelCase , _lowerCamelCase = '''''', [] for i, ch in enumerate(A_ ): if ch in self.SP_CHAR_MAPPING: _lowerCamelCase = self.SP_CHAR_MAPPING.get(A_ ) else: _lowerCamelCase = unicodedata.normalize('''NFKC''' , A_ ) if self.is_whitespace(A_ ): continue normalized_text += ch char_mapping.extend([i] * len(A_ ) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = normalized_text, [], 0 if self.do_lower_case: _lowerCamelCase = text.lower() for token in split_tokens: if token[:1] == "▁": _lowerCamelCase = token[1:] _lowerCamelCase = text[offset:].index(A_ ) + offset _lowerCamelCase = start + len(A_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) _lowerCamelCase = end return token_mapping @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return len(self.vocab ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = None return state def __setstate__( self , A_ ) -> str: """simple docstring""" _lowerCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase = {} _lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(A_ , A_ ) for c in text) ) def UpperCamelCase_ ( self , A_ , A_=False , A_=64 , A_=0.1 ) -> List[str]: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: _lowerCamelCase = True if self.sp_model_kwargs.get('''alpha''' ) is not None: _lowerCamelCase = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: _lowerCamelCase = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: _lowerCamelCase = self.sp_model.EncodeAsPieces(A_ ) else: _lowerCamelCase = self.sp_model.SampleEncodeAsPieces(A_ , A_ , A_ ) _lowerCamelCase = [] for pi, piece in enumerate(A_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(A_ ) and pi != 0: new_pieces.append(A_ ) continue else: continue _lowerCamelCase = 0 for i, chunk in enumerate(A_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(A_ ) or self.is_punct(A_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(A_ ) _lowerCamelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _lowerCamelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _lowerCamelCase = i if len(A_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" _lowerCamelCase = ''''''.join(A_ ).replace(A_ , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = self.convert_ids_to_tokens(A_ ) _lowerCamelCase = ''''''.join(A_ ).replace(A_ , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self , A_ ) -> List[str]: """simple docstring""" return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" return self.reverse_vocab.get(A_ , self.unk_token ) def UpperCamelCase_ ( self , A_ , A_=None ) -> List[str]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase_ ( self , A_ , A_=None ) -> List[Any]: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase_ ( self , A_ , A_=None , A_=False ) -> List[str]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] def UpperCamelCase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(A_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(A_ ) + 1) + [1] * (len(A_ ) + 3) def UpperCamelCase_ ( self , A_ ) -> Dict: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase_ ( self , A_ ) -> int: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(A_ ) == 1: _lowerCamelCase = unicodedata.category(A_ ) if cat == "Zs": return True return False def UpperCamelCase_ ( self , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = {} with io.open(A_ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(A_ ): _lowerCamelCase = line.rstrip('''\n''' ) _lowerCamelCase = int(A_ ) return token_to_idx def UpperCamelCase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowerCamelCase = 0 if os.path.isdir(A_ ): _lowerCamelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: _lowerCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(A_ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) _lowerCamelCase = token_index writer.write(token + '''\n''' ) index += 1 _lowerCamelCase = os.path.join(A_ , '''sentencepiece.bpe.model''' ) with open(A_ , '''wb''' ) as fi: _lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (vocab_file,)
638
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 class UpperCamelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , A_ = 6_55_36 , A_ = None , A_ = 2 , A_ = 2 , A_ = 0 , A_ = "fourier" , A_ = True , A_ = False , A_ = 0.0 , A_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ = "UNetMidBlock1D" , A_ = None , A_ = (32, 32, 64) , A_ = None , A_ = 8 , A_ = 1 , A_ = False , ) -> Dict: """simple docstring""" super().__init__() _lowerCamelCase = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A_ , log=A_ , flip_sin_to_cos=A_ ) _lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=A_ , downscale_freq_shift=A_ ) _lowerCamelCase = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase = block_out_channels[0] * 4 _lowerCamelCase = TimestepEmbedding( in_channels=A_ , time_embed_dim=A_ , act_fn=A_ , out_dim=block_out_channels[0] , ) _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None _lowerCamelCase = nn.ModuleList([] ) _lowerCamelCase = None # down _lowerCamelCase = in_channels for i, down_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_down_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A_ ) # mid _lowerCamelCase = get_mid_block( A_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A_ , add_downsample=A_ , ) # up _lowerCamelCase = list(reversed(A_ ) ) _lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase = out_channels else: _lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(A_ ): _lowerCamelCase = output_channel _lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(A_ ) - 1 else final_upsample_channels ) _lowerCamelCase = i == len(A_ ) - 1 _lowerCamelCase = get_up_block( A_ , num_layers=A_ , in_channels=A_ , out_channels=A_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A_ ) _lowerCamelCase = output_channel # out _lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCamelCase = get_out_block( out_block_type=A_ , num_groups_out=A_ , embed_dim=block_out_channels[0] , out_channels=A_ , act_fn=A_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase_ ( self , A_ , A_ , A_ = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" _lowerCamelCase = timestep if not torch.is_tensor(A_ ): _lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: _lowerCamelCase = timesteps[None].to(sample.device ) _lowerCamelCase = self.time_proj(A_ ) if self.config.use_timestep_embedding: _lowerCamelCase = self.time_mlp(A_ ) else: _lowerCamelCase = timestep_embed[..., None] _lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase = () for downsample_block in self.down_blocks: _lowerCamelCase , _lowerCamelCase = downsample_block(hidden_states=A_ , temb=A_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase = self.mid_block(A_ , A_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase = down_block_res_samples[-1:] _lowerCamelCase = down_block_res_samples[:-1] _lowerCamelCase = upsample_block(A_ , res_hidden_states_tuple=A_ , temb=A_ ) # 5. post-process if self.out_block: _lowerCamelCase = self.out_block(A_ , A_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=A_ )
638
1
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class __SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = False ) ->Optional[Any]: '''simple docstring''' __a = scheduler __a = optimizers if isinstance(lowerCamelCase , (list, tuple) ) else [optimizers] __a = split_batches __a = step_with_optimizer __a = GradientState() def __UpperCamelCase ( self , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __a = AcceleratorState().num_processes for _ in range(lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) else: self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) def __UpperCamelCase ( self ) ->int: '''simple docstring''' return self.scheduler.get_last_lr() def __UpperCamelCase ( self ) ->Any: '''simple docstring''' return self.scheduler.state_dict() def __UpperCamelCase ( self , lowerCamelCase ) ->int: '''simple docstring''' self.scheduler.load_state_dict(lowerCamelCase ) def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' return self.scheduler.get_lr() def __UpperCamelCase ( self , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' return self.scheduler.print_lr(*lowerCamelCase , **lowerCamelCase )
448
import os import re import shutil import sys import tempfile import unittest import black lowercase : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowercase : List[str] = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir ,"""schedulers/""" ) ) lowercase : Any = self.diffusers_dir shutil.copy( os.path.join(snake_case ,"""src/diffusers/schedulers/scheduling_ddpm.py""" ) ,os.path.join(self.diffusers_dir ,"""schedulers/scheduling_ddpm.py""" ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Optional[int] = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowercase : Optional[Any] = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result lowercase : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) lowercase : int = black.format_str(snake_case ,mode=snake_case ) lowercase : int = os.path.join(self.diffusers_dir ,"""new_code.py""" ) with open(snake_case ,"""w""" ,newline="""\n""" ) as f: f.write(snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=snake_case ) with open(snake_case ,"""r""" ) as f: self.assertTrue(f.read() ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,REFERENCE_CODE + """\n""" ,) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,snake_case ,) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,re.sub("""DDPM""" ,"""Test""" ,snake_case ) ,) # Copy consistency with a really long name lowercase : Dict = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" ,f"{long_class_name}SchedulerOutput" ,re.sub("""Bert""" ,snake_case ,snake_case ) ,) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,snake_case ,overwrite_result=re.sub("""DDPM""" ,"""Test""" ,snake_case ) ,)
336
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def snake_case (UpperCamelCase : Dict[str, torch.Tensor] ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for rt in rc.restypes: lowerCamelCase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowerCamelCase__ = {name: i for i, name in enumerate(UpperCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowerCamelCase__ = torch.tensor( UpperCamelCase , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowerCamelCase__ = torch.tensor( UpperCamelCase , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowerCamelCase__ = torch.tensor( UpperCamelCase , dtype=torch.floataa , device=protein["""aatype"""].device , ) lowerCamelCase__ = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowerCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] lowerCamelCase__ = restype_atomaa_mask[protein_aatype] lowerCamelCase__ = residx_atomaa_mask lowerCamelCase__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowerCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] lowerCamelCase__ = residx_atomaa_to_atomaa.long() # create the corresponding mask lowerCamelCase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): lowerCamelCase__ = rc.restype_atoa[restype_letter] lowerCamelCase__ = rc.residue_atoms[restype_name] for atom_name in atom_names: lowerCamelCase__ = rc.atom_order[atom_name] lowerCamelCase__ = 1 lowerCamelCase__ = restype_atomaa_mask[protein_aatype] lowerCamelCase__ = residx_atomaa_mask return protein def snake_case (UpperCamelCase : Dict[str, torch.Tensor] ): '''simple docstring''' lowerCamelCase__ = tree_map(lambda UpperCamelCase : torch.tensor(UpperCamelCase , device=batch["""aatype"""].device ) , UpperCamelCase , np.ndarray ) lowerCamelCase__ = tensor_tree_map(lambda UpperCamelCase : np.array(UpperCamelCase ) , make_atomaa_masks(UpperCamelCase ) ) return out
235
def snake_case (UpperCamelCase : int ): '''simple docstring''' return str(UpperCamelCase ) == str(UpperCamelCase )[::-1] def snake_case (UpperCamelCase : int ): '''simple docstring''' return int(UpperCamelCase ) + int(str(UpperCamelCase )[::-1] ) def snake_case (UpperCamelCase : int = 10000 ): '''simple docstring''' lowerCamelCase__ = [] for num in range(1 , UpperCamelCase ): lowerCamelCase__ = 0 lowerCamelCase__ = num while iterations < 50: lowerCamelCase__ = sum_reverse(UpperCamelCase ) iterations += 1 if is_palindrome(UpperCamelCase ): break else: lychrel_nums.append(UpperCamelCase ) return len(UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
235
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ : List[Any] = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[Any] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
435
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = CodeGenTokenizer UpperCAmelCase__ = CodeGenTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = {'''add_prefix_space''': True} UpperCAmelCase__ = False def snake_case__ ( self : str ) ->str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _UpperCamelCase : Optional[int] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) _UpperCamelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCamelCase : Union[str, Any] = {"unk_token": "<unk>"} _UpperCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase__ ) ) def snake_case__ ( self : Union[str, Any] , **lowercase__ : int ) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def snake_case__ ( self : int , **lowercase__ : List[Any] ) ->Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def snake_case__ ( self : str , lowercase__ : Dict ) ->List[str]: '''simple docstring''' _UpperCamelCase : int = "lower newer" _UpperCamelCase : int = "lower newer" return input_text, output_text def snake_case__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Optional[int] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase : Dict = "lower newer" _UpperCamelCase : Any = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _UpperCamelCase : str = tokenizer.tokenize(lowercase__ , add_prefix_space=lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) _UpperCamelCase : str = tokens + [tokenizer.unk_token] _UpperCamelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def snake_case__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase : Union[str, Any] = self.get_tokenizer() _UpperCamelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=lowercase__ ) _UpperCamelCase : Any = "lower newer" # Testing tokenization _UpperCamelCase : Optional[int] = tokenizer.tokenize(lowercase__ , add_prefix_space=lowercase__ ) _UpperCamelCase : Optional[Any] = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Testing conversion to ids without special tokens _UpperCamelCase : List[str] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) _UpperCamelCase : Dict = rust_tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Testing conversion to ids with special tokens _UpperCamelCase : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=lowercase__ ) _UpperCamelCase : str = tokenizer.encode(lowercase__ , add_prefix_space=lowercase__ ) _UpperCamelCase : Optional[int] = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Testing the unknown token _UpperCamelCase : Optional[Any] = tokens + [rust_tokenizer.unk_token] _UpperCamelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def snake_case__ ( self : Any , *lowercase__ : Union[str, Any] , **lowercase__ : Union[str, Any] ) ->List[Any]: '''simple docstring''' pass def snake_case__ ( self : List[Any] , lowercase__ : str=15 ) ->Any: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : Any = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) # Simple input _UpperCamelCase : str = "This is a simple input" _UpperCamelCase : List[str] = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Tuple = ("This is a simple input", "This is a pair") _UpperCamelCase : List[str] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding="max_length" ) # Simple input self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding="max_length" ) # Simple input self.assertRaises( lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding="max_length" , ) # Pair input self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding="max_length" ) # Pair input self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding="max_length" ) # Pair input self.assertRaises( lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding="max_length" , ) def snake_case__ ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCamelCase : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _UpperCamelCase : Dict = "This is a simple input" _UpperCamelCase : Any = ["This is a simple input looooooooong", "This is a simple input"] _UpperCamelCase : Union[str, Any] = ("This is a simple input", "This is a pair") _UpperCamelCase : Union[str, Any] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _UpperCamelCase : Tuple = tokenizer.pad_token_id _UpperCamelCase : List[Any] = tokenizer(lowercase__ , padding="max_length" , max_length=30 , return_tensors="np" ) _UpperCamelCase : Optional[Any] = tokenizer(lowercase__ , padding=lowercase__ , truncate=lowercase__ , return_tensors="np" ) _UpperCamelCase : Union[str, Any] = tokenizer(*lowercase__ , padding="max_length" , max_length=60 , return_tensors="np" ) _UpperCamelCase : List[Any] = tokenizer(lowercase__ , padding=lowercase__ , truncate=lowercase__ , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def snake_case__ ( self : Tuple ) ->int: '''simple docstring''' _UpperCamelCase : Union[str, Any] = "$$$" _UpperCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=lowercase__ , add_bos_token=lowercase__ ) _UpperCamelCase : List[Any] = "This is a simple input" _UpperCamelCase : Optional[int] = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Optional[Any] = tokenizer.bos_token_id _UpperCamelCase : str = tokenizer(lowercase__ ) _UpperCamelCase : Any = tokenizer(lowercase__ ) self.assertEqual(out_s.input_ids[0] , lowercase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCamelCase : int = tokenizer.decode(out_s.input_ids ) _UpperCamelCase : List[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowercase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def snake_case__ ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _UpperCamelCase : Any = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _UpperCamelCase : Optional[int] = "\nif len_a > len_b: result = a\nelse: result = b" _UpperCamelCase : str = tokenizer.encode(lowercase__ ) _UpperCamelCase : List[Any] = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _UpperCamelCase : Optional[int] = tokenizer.decode(lowercase__ , truncate_before_pattern=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def snake_case__ ( self : int ) ->str: '''simple docstring''' pass
435
1
import re from filelock import FileLock try: import nltk lowerCAmelCase__ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __lowercase ( _UpperCAmelCase ) -> str: '''simple docstring''' re.sub("<n>" , "" , _UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_UpperCAmelCase ) )
576
from functools import reduce lowerCAmelCase__ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __lowercase ( _UpperCAmelCase = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
576
1
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __A = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :str __magic_name__ :Optional[str] = None __magic_name__ :Optional[Union[str, int]] = None __magic_name__ :Optional[Union[str, int]] = None __magic_name__ :Optional[Union[str, int]] = None def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Tuple = _str_to_version_tuple(self.version_str ) def __repr__( self ): '''simple docstring''' return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def snake_case ( self ): '''simple docstring''' return self.major, self.minor, self.patch def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return Version(__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): return other raise TypeError(F"{other} (type {type(__UpperCAmelCase )}) cannot be compared to version." ) def __eq__( self , __UpperCAmelCase ): '''simple docstring''' try: lowerCAmelCase__ :Optional[int] = self._validate_operand(__UpperCAmelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self._validate_operand(__UpperCAmelCase ) return self.tuple < other.tuple def __hash__( self ): '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def snake_case ( cls , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def snake_case ( self ): '''simple docstring''' return self.version_str def __A (_SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" lowerCAmelCase__ :Any = _VERSION_REG.match(_SCREAMING_SNAKE_CASE ) if not res: raise ValueError(F"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(_SCREAMING_SNAKE_CASE ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return ".".join(str(_SCREAMING_SNAKE_CASE ) for v in version_tuple )
93
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:List[Any] = 'gptsan-japanese' SCREAMING_SNAKE_CASE:str = [ 'past_key_values', ] SCREAMING_SNAKE_CASE:int = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _a=3_6000 , _a=1280 , _a=1024 , _a=8192 , _a=4096 , _a=128 , _a=10 , _a=0 , _a=16 , _a=16 , _a=128 , _a=0.0 , _a=1e-5 , _a=False , _a=0.0 , _a="float32" , _a=False , _a=False , _a=False , _a=0.002 , _a=False , _a=True , _a=3_5998 , _a=3_5995 , _a=3_5999 , **_a , ): """simple docstring""" a__ = vocab_size a__ = max_position_embeddings a__ = d_model a__ = d_ff a__ = d_ext a__ = d_spout a__ = num_switch_layers a__ = num_ext_layers a__ = num_switch_layers + num_ext_layers a__ = num_heads a__ = num_experts a__ = expert_capacity a__ = dropout_rate a__ = layer_norm_epsilon a__ = router_bias a__ = router_jitter_noise a__ = router_dtype a__ = router_ignore_padding_tokens a__ = output_hidden_states a__ = output_attentions a__ = initializer_factor a__ = output_router_logits a__ = use_cache super().__init__( separator_token_id=_a , pad_token_id=_a , eos_token_id=_a , **_a , )
394
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _lowerCamelCase (unittest.TestCase ): lowercase__ = MODEL_FOR_CAUSAL_LM_MAPPING lowercase__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __lowerCamelCase ( self ): __snake_case = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output __snake_case = text_generator('This is a test' , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) __snake_case = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) __snake_case = text_generator('This is a test' , do_sample=SCREAMING_SNAKE_CASE_ , num_return_sequences=2 , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'generated_token_ids': ANY(SCREAMING_SNAKE_CASE_ )}, {'generated_token_ids': ANY(SCREAMING_SNAKE_CASE_ )}, ] , ) __snake_case = text_generator.model.config.eos_token_id __snake_case = '<pad>' __snake_case = text_generator( ['This is a test', 'This is a second test'] , do_sample=SCREAMING_SNAKE_CASE_ , num_return_sequences=2 , batch_size=2 , return_tensors=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ {'generated_token_ids': ANY(SCREAMING_SNAKE_CASE_ )}, {'generated_token_ids': ANY(SCREAMING_SNAKE_CASE_ )}, ], [ {'generated_token_ids': ANY(SCREAMING_SNAKE_CASE_ )}, {'generated_token_ids': ANY(SCREAMING_SNAKE_CASE_ )}, ], ] , ) @require_tf def __lowerCamelCase ( self ): __snake_case = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output __snake_case = text_generator('This is a test' , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) __snake_case = text_generator(['This is a test', 'This is a second test'] , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = TextGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) return text_generator, ["This is a test", "Another test"] def __lowerCamelCase ( self ): __snake_case = 'Hello I believe in' __snake_case = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) __snake_case = text_generator(SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) __snake_case = text_generator(SCREAMING_SNAKE_CASE_ , stop_sequence=' fe' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'generated_text': 'Hello I believe in fe'}] ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = text_generator.model __snake_case = text_generator.tokenizer __snake_case = text_generator('This is a test' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) __snake_case = text_generator('This is a test' , return_full_text=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) __snake_case = pipeline(task='text-generation' , model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , return_full_text=SCREAMING_SNAKE_CASE_ ) __snake_case = text_generator('This is a test' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) __snake_case = text_generator('This is a test' , return_full_text=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) __snake_case = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}, {'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}], [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}, {'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: __snake_case = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}, {'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}], [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}, {'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = text_generator('test' , return_full_text=SCREAMING_SNAKE_CASE_ , return_text=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = text_generator('test' , return_full_text=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = text_generator('test' , return_text=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __snake_case = text_generator('' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __snake_case = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __snake_case = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10_000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) __snake_case = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(SCREAMING_SNAKE_CASE_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __lowerCamelCase ( self ): import torch # Classic `model_kwargs` __snake_case = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __snake_case = pipe('This is a test' ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __snake_case = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __snake_case = pipe('This is a test' ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __snake_case = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __snake_case = pipe('This is a test' ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def __lowerCamelCase ( self ): import torch __snake_case = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def __lowerCamelCase ( self ): import torch __snake_case = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=SCREAMING_SNAKE_CASE_ , top_p=0.5 ) def __lowerCamelCase ( self ): __snake_case = 'Hello world' __snake_case = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": __snake_case = logging.get_logger('transformers.generation.tf_utils' ) else: __snake_case = logging.get_logger('transformers.generation.utils' ) __snake_case = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: __snake_case = text_generator(SCREAMING_SNAKE_CASE_ , max_length=10 , max_new_tokens=1 ) self.assertIn(SCREAMING_SNAKE_CASE_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: __snake_case = text_generator(SCREAMING_SNAKE_CASE_ , max_new_tokens=1 ) self.assertNotIn(SCREAMING_SNAKE_CASE_ , cl.out ) with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: __snake_case = text_generator(SCREAMING_SNAKE_CASE_ , max_length=10 ) self.assertNotIn(SCREAMING_SNAKE_CASE_ , cl.out )
721
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCamelCase (unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=18 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , ): __snake_case = size if size is not None else {'height': 18, 'width': 18} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = apply_ocr def __lowerCamelCase ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCamelCase (lowerCamelCase , unittest.TestCase ): lowercase__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __lowerCamelCase ( self ): __snake_case = LayoutLMvaImageProcessingTester(self ) @property def __lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'apply_ocr' ) ) def __lowerCamelCase ( self ): __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): # Initialize image_processing __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(encoding.boxes , SCREAMING_SNAKE_CASE_ ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __lowerCamelCase ( self ): # Initialize image_processing __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __lowerCamelCase ( self ): # Initialize image_processing __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __lowerCamelCase ( self ): # with apply_OCR = True __snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset __snake_case = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __snake_case = Image.open(ds[0]['file'] ).convert('RGB' ) __snake_case = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __snake_case = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __snake_case = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(encoding.boxes , SCREAMING_SNAKE_CASE_ ) # with apply_OCR = False __snake_case = LayoutLMvaImageProcessor(apply_ocr=SCREAMING_SNAKE_CASE_ ) __snake_case = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
345
0
'''simple docstring''' import math class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=0 ) -> str: # a graph with Node 0,1,...,N-1 _lowerCAmelCase = n _lowerCAmelCase = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # adjacency matrix for weight _lowerCAmelCase = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = w def _snake_case ( self ) -> Optional[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _lowerCAmelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Any: return self.dp[u][v] if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
18
class snake_case__ : def __init__( self , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: """simple docstring""" a_ : Optional[Any] = name a_ : Union[str, Any] = val def __str__( self ) -> Tuple: """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , UpperCamelCase_ ) -> Union[str, Any]: """simple docstring""" return self.val < other.val class snake_case__ : def __init__( self , UpperCamelCase_ ) -> int: """simple docstring""" a_ : Tuple = {} a_ : Optional[int] = {} a_ : Tuple = self.build_heap(UpperCamelCase_ ) def __getitem__( self , UpperCamelCase_ ) -> Any: """simple docstring""" return self.get_value(UpperCamelCase_ ) def A ( self , UpperCamelCase_ ) -> List[Any]: """simple docstring""" return (idx - 1) // 2 def A ( self , UpperCamelCase_ ) -> Optional[Any]: """simple docstring""" return idx * 2 + 1 def A ( self , UpperCamelCase_ ) -> Optional[Any]: """simple docstring""" return idx * 2 + 2 def A ( self , UpperCamelCase_ ) -> List[Any]: """simple docstring""" return self.heap_dict[key] def A ( self , UpperCamelCase_ ) -> Optional[int]: """simple docstring""" a_ : Tuple = len(UpperCamelCase_ ) - 1 a_ : Union[str, Any] = self.get_parent_idx(UpperCamelCase_ ) for idx, i in enumerate(UpperCamelCase_ ): a_ : Tuple = idx a_ : Optional[int] = i.val for i in range(UpperCamelCase_ , -1 , -1 ): self.sift_down(UpperCamelCase_ , UpperCamelCase_ ) return array def A ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: """simple docstring""" while True: a_ : Tuple = self.get_left_child_idx(UpperCamelCase_ ) # noqa: E741 a_ : Optional[Any] = self.get_right_child_idx(UpperCamelCase_ ) a_ : Union[str, Any] = idx if l < len(UpperCamelCase_ ) and array[l] < array[idx]: a_ : int = l if r < len(UpperCamelCase_ ) and array[r] < array[smallest]: a_ : Optional[int] = r if smallest != idx: a_ , a_ : Optional[int] = array[smallest], array[idx] ( ( a_ ) , ( a_ ) , ) : Tuple = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) a_ : List[str] = smallest else: break def A ( self , UpperCamelCase_ ) -> Any: """simple docstring""" a_ : Union[str, Any] = self.get_parent_idx(UpperCamelCase_ ) while p >= 0 and self.heap[p] > self.heap[idx]: a_ , a_ : Tuple = self.heap[idx], self.heap[p] a_ , a_ : Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) a_ : Dict = p a_ : Tuple = self.get_parent_idx(UpperCamelCase_ ) def A ( self ) -> Any: """simple docstring""" return self.heap[0] def A ( self ) -> str: """simple docstring""" a_ , a_ : Any = self.heap[-1], self.heap[0] a_ , a_ : List[Any] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) a_ : Any = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def A ( self , UpperCamelCase_ ) -> int: """simple docstring""" self.heap.append(UpperCamelCase_ ) a_ : List[Any] = len(self.heap ) - 1 a_ : Optional[int] = node.val self.sift_up(len(self.heap ) - 1 ) def A ( self ) -> Any: """simple docstring""" return len(self.heap ) == 0 def A ( self , UpperCamelCase_ , UpperCamelCase_ ) -> int: """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" a_ : str = new_value a_ : Optional[Any] = new_value self.sift_up(self.idx_of_element[node] ) SCREAMING_SNAKE_CASE : int = Node("R", -1) SCREAMING_SNAKE_CASE : List[str] = Node("B", 6) SCREAMING_SNAKE_CASE : Optional[int] = Node("A", 3) SCREAMING_SNAKE_CASE : Union[str, Any] = Node("X", 1) SCREAMING_SNAKE_CASE : Dict = Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array SCREAMING_SNAKE_CASE : Optional[int] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
419
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def snake_case ( lowerCAmelCase_ = 8 ) -> str: _snake_case = ascii_letters + digits + punctuation return "".join(secrets.choice(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ) ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(lowerCAmelCase_ ) _snake_case = i // 3 _snake_case = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _snake_case = ( chars_incl + random(lowerCAmelCase_ , quotient + remainder ) + random(lowerCAmelCase_ , lowerCAmelCase_ ) + random(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = list(lowerCAmelCase_ ) shuffle(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) # random is a generalised function for letters, characters and numbers def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: return "".join(secrets.choice(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ) ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: pass # Put your code here... def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: pass # Put your code here... def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: pass # Put your code here... def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ = 8 ) -> bool: if len(lowerCAmelCase_ ) < min_length: # Your Password must be at least 8 characters long return False _snake_case = any(char in ascii_uppercase for char in password ) _snake_case = any(char in ascii_lowercase for char in password ) _snake_case = any(char in digits for char in password ) _snake_case = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def snake_case ( ) -> Tuple: _snake_case = int(input('''Please indicate the max length of your password: ''' ).strip() ) _snake_case = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(lowerCAmelCase_ ) ) print( '''Alternative Password generated:''' , alternative_password_generator(lowerCAmelCase_ , lowerCAmelCase_ ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
404
"""simple docstring""" from math import isqrt def snake_case ( lowerCAmelCase_ ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(lowerCAmelCase_ ) + 1 ) ) def snake_case ( lowerCAmelCase_ = 10**6 ) -> int: _snake_case = 0 _snake_case = 1 _snake_case = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase_ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"{solution() = }")
404
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _lowerCAmelCase = """true""" def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=8_2 ,_lowerCAmelCase=1_6 ): '''simple docstring''' set_seed(4_2 ) A_ : List[Any] = RegressionModel() A_ : int = deepcopy(_lowerCAmelCase ) A_ : Union[str, Any] = RegressionDataset(length=_lowerCAmelCase ) A_ : Union[str, Any] = DataLoader(_lowerCAmelCase ,batch_size=_lowerCAmelCase ) model.to(accelerator.device ) A_ , A_ : int = accelerator.prepare(_lowerCAmelCase ,_lowerCAmelCase ) return model, ddp_model, dataloader def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=False ): '''simple docstring''' A_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) A_ : Tuple = load_dataset("""glue""" ,"""mrpc""" ,split="""validation""" ) def tokenize_function(_lowerCAmelCase ): A_ : Tuple = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=_lowerCAmelCase ,max_length=_lowerCAmelCase ) return outputs with accelerator.main_process_first(): A_ : List[Any] = dataset.map( _lowerCAmelCase ,batched=_lowerCAmelCase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) A_ : Union[str, Any] = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(_lowerCAmelCase ): if use_longest: return tokenizer.pad(_lowerCAmelCase ,padding="""longest""" ,return_tensors="""pt""" ) return tokenizer.pad(_lowerCAmelCase ,padding="""max_length""" ,max_length=1_2_8 ,return_tensors="""pt""" ) return DataLoader(_lowerCAmelCase ,shuffle=_lowerCAmelCase ,collate_fn=_lowerCAmelCase ,batch_size=1_6 ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : int = Accelerator(dispatch_batches=_lowerCAmelCase ,split_batches=_lowerCAmelCase ) A_ : List[Any] = get_dataloader(_lowerCAmelCase ,not dispatch_batches ) A_ : Any = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" ,return_dict=_lowerCAmelCase ) A_ , A_ : int = accelerator.prepare(_lowerCAmelCase ,_lowerCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Optional[Any] = [] for batch in dataloader: A_ , A_ : List[str] = batch.values() with torch.no_grad(): A_ : Tuple = model(_lowerCAmelCase ) A_ , A_ : List[str] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) A_ , A_ : int = [], [] for logit, targ in logits_and_targets: logits.append(_lowerCAmelCase ) targs.append(_lowerCAmelCase ) A_ , A_ : Optional[int] = torch.cat(_lowerCAmelCase ), torch.cat(_lowerCAmelCase ) return logits, targs def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=8_2 ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=1_6 ): '''simple docstring''' A_ , A_ , A_ : Union[str, Any] = get_basic_setup(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) A_ , A_ : Union[str, Any] = generate_predictions(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) assert ( len(_lowerCAmelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCAmelCase )}""" def _lowerCAmelCase ( _lowerCAmelCase = False ,_lowerCAmelCase = False ): '''simple docstring''' A_ : Any = evaluate.load("""glue""" ,"""mrpc""" ) A_ , A_ : Optional[Any] = get_mrpc_setup(_lowerCAmelCase ,_lowerCAmelCase ) # First do baseline A_ , A_ , A_ : Any = setup["""no"""] model.to(_lowerCAmelCase ) model.eval() for batch in dataloader: batch.to(_lowerCAmelCase ) with torch.inference_mode(): A_ : List[str] = model(**_lowerCAmelCase ) A_ : int = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_lowerCAmelCase ,references=batch["""labels"""] ) A_ : List[str] = metric.compute() # Then do distributed A_ , A_ , A_ : int = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): A_ : Optional[Any] = model(**_lowerCAmelCase ) A_ : Any = outputs.logits.argmax(dim=-1 ) A_ : int = batch["""labels"""] A_ , A_ : Optional[Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_lowerCAmelCase ,references=_lowerCAmelCase ) A_ : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def _lowerCAmelCase ( ): '''simple docstring''' A_ : str = Accelerator(split_batches=_lowerCAmelCase ,dispatch_batches=_lowerCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(_lowerCAmelCase ,_lowerCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: A_ : Optional[int] = Accelerator(split_batches=_lowerCAmelCase ,dispatch_batches=_lowerCAmelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(_lowerCAmelCase ,9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) A_ : Union[str, Any] = Accelerator() test_torch_metrics(_lowerCAmelCase ,5_1_2 ) accelerator.state._reset_state() def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
569
def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) A_ : int = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_lowerCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
569
1
import warnings from .generation import TFGenerationMixin class lowerCamelCase__ ( __lowerCAmelCase ): warnings.warn( 'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ' 'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.', __lowerCAmelCase, )
715
from __future__ import annotations def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: lowerCamelCase_ : List[Any] = 0 lowerCamelCase_ : Union[str, Any] = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCamelCase_ : List[Any] = i + 1 else: lowerCamelCase_ : Any = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
144
0
from __future__ import annotations def A_ ( A__ , A__ , A__ , A__ ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): a__ , a__ : Any = array[indexa], array[indexa] def A_ ( A__ , A__ , A__ , A__ ) -> None: if length > 1: a__ : int = int(length / 2 ) for i in range(A__ , low + middle ): comp_and_swap(A__ , A__ , i + middle , A__ ) bitonic_merge(A__ , A__ , A__ , A__ ) bitonic_merge(A__ , low + middle , A__ , A__ ) def A_ ( A__ , A__ , A__ , A__ ) -> None: if length > 1: a__ : Optional[int] = int(length / 2 ) bitonic_sort(A__ , A__ , A__ , 1 ) bitonic_sort(A__ , low + middle , A__ , 0 ) bitonic_merge(A__ , A__ , A__ , A__ ) if __name__ == "__main__": lowercase : int = input("""Enter numbers separated by a comma:\n""").strip() lowercase : Optional[int] = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
302
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase : Any = logging.get_logger(__name__) class A__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , *lowercase , **lowercase) -> None: '''simple docstring''' warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase)
302
1
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 100 ): _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : str = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
705
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCamelCase__ = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } lowerCamelCase__ = { '169M': 768, '430M': 1_024, '1B5': 2_048, '3B': 2_560, '7B': 4_096, '14B': 5_120, } def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[str] = list(state_dict.keys() ) for name in state_dict_keys: _UpperCAmelCase : Optional[int] = state_dict.pop(__lowerCAmelCase ) # emb -> embedding if name.startswith("emb." ): _UpperCAmelCase : Tuple = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): _UpperCAmelCase : Optional[int] = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention _UpperCAmelCase : Union[str, Any] = re.sub(R"blocks\.(\d+)\.att" , R"blocks.\1.attention" , __lowerCAmelCase ) # ffn -> feed_forward _UpperCAmelCase : Dict = re.sub(R"blocks\.(\d+)\.ffn" , R"blocks.\1.feed_forward" , __lowerCAmelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): _UpperCAmelCase : int = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): _UpperCAmelCase : Union[str, Any] = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): _UpperCAmelCase : int = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": _UpperCAmelCase : List[str] = "rwkv." + name _UpperCAmelCase : Optional[Any] = weight return state_dict def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) _UpperCAmelCase : str = 50_277 _UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: _UpperCAmelCase : Tuple = PreTrainedTokenizerFast(tokenizer_file=__lowerCAmelCase ) _UpperCAmelCase : List[Any] = len(__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) # 2. Build the config _UpperCAmelCase : Optional[int] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _UpperCAmelCase : Optional[Any] = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) _UpperCAmelCase : Any = RwkvConfig( vocab_size=__lowerCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__lowerCAmelCase ) # 3. Download model file then convert state_dict _UpperCAmelCase : str = hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Optional[int] = torch.load(__lowerCAmelCase , map_location="cpu" ) _UpperCAmelCase : Any = convert_state_dict(__lowerCAmelCase ) # 4. Split in shards and save _UpperCAmelCase , _UpperCAmelCase : List[str] = shard_checkpoint(__lowerCAmelCase ) for shard_file, shard in shards.items(): torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if index is not None: _UpperCAmelCase : int = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) # Save the index as well with open(__lowerCAmelCase , "w" , encoding="utf-8" ) as f: _UpperCAmelCase : int = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + "\n" f.write(__lowerCAmelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) _UpperCAmelCase : Union[str, Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _UpperCAmelCase : Union[str, Any] = torch.load(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) _UpperCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained(__lowerCAmelCase ) model.push_to_hub(__lowerCAmelCase , max_shard_size="2GB" ) tokenizer.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) lowerCamelCase__ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
40
0
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # load base model _lowerCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _lowerCamelCase : List[str] = load_file(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Union[str, Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _lowerCamelCase : List[Any] = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) _lowerCamelCase : Union[str, Any] = pipeline.text_encoder else: _lowerCamelCase : Union[str, Any] = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) _lowerCamelCase : Union[str, Any] = pipeline.unet # find the target layer _lowerCamelCase : List[Any] = layer_infos.pop(0 ) while len(SCREAMING_SNAKE_CASE_ ) > -1: try: _lowerCamelCase : Optional[int] = curr_layer.__getattr__(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: _lowerCamelCase : Optional[Any] = layer_infos.pop(0 ) elif len(SCREAMING_SNAKE_CASE_ ) == 0: break except Exception: if len(SCREAMING_SNAKE_CASE_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _lowerCamelCase : Tuple = layer_infos.pop(0 ) _lowerCamelCase : Dict = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(SCREAMING_SNAKE_CASE_ ) else: pair_keys.append(SCREAMING_SNAKE_CASE_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _lowerCamelCase : Any = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _lowerCamelCase : Dict = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).unsqueeze(2 ).unsqueeze(3 ) else: _lowerCamelCase : Optional[Any] = state_dict[pair_keys[0]].to(torch.floataa ) _lowerCamelCase : Union[str, Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # update visited list for item in pair_keys: visited.append(SCREAMING_SNAKE_CASE_ ) return pipeline if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowercase__ = parser.parse_args() lowercase__ = args.base_model_path lowercase__ = args.checkpoint_path lowercase__ = args.dump_path lowercase__ = args.lora_prefix_unet lowercase__ = args.lora_prefix_text_encoder lowercase__ = args.alpha lowercase__ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowercase__ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
630
from __future__ import annotations def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
287
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _lowercase ( _lowerCamelCase ): _UpperCamelCase = """unispeech-sat""" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1_500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ): super().__init__(**A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ ) A : List[str] = hidden_size A : List[str] = feat_extract_norm A : Optional[int] = feat_extract_activation A : Any = list(A__ ) A : Optional[int] = list(A__ ) A : Union[str, Any] = list(A__ ) A : str = conv_bias A : Optional[int] = num_conv_pos_embeddings A : List[Any] = num_conv_pos_embedding_groups A : Union[str, Any] = len(self.conv_dim ) A : Dict = num_hidden_layers A : Tuple = intermediate_size A : int = hidden_act A : Optional[Any] = num_attention_heads A : List[str] = hidden_dropout A : str = attention_dropout A : str = activation_dropout A : Optional[Any] = feat_proj_dropout A : Tuple = final_dropout A : str = layerdrop A : Dict = layer_norm_eps A : Optional[Any] = initializer_range A : Dict = vocab_size A : int = num_clusters A : Dict = do_stable_layer_norm A : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A : str = apply_spec_augment A : str = mask_time_prob A : Union[str, Any] = mask_time_length A : Optional[int] = mask_time_min_masks A : List[Any] = mask_feature_prob A : Union[str, Any] = mask_feature_length A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A : Optional[int] = num_codevectors_per_group A : Any = num_codevector_groups A : List[str] = contrastive_logits_temperature A : Union[str, Any] = feat_quantizer_dropout A : List[Any] = num_negatives A : List[Any] = codevector_dim A : List[str] = proj_codevector_dim A : Tuple = diversity_loss_weight # ctc loss A : Optional[Any] = ctc_loss_reduction A : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. A : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A : List[str] = list(A__ ) A : str = list(A__ ) A : Union[str, Any] = list(A__ ) A : Dict = xvector_output_dim @property def snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
700
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCamelCase( UpperCamelCase__ : Dict ) -> Union[str, Any]: A : Optional[Any] = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , UpperCamelCase__ ).groups()[0] class _lowercase ( a ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): A : str = file_names A : Optional[int] = image_transform A : str = label_to_id def __len__( self ): return len(self.file_names ) def __getitem__( self , _UpperCAmelCase ): A : int = self.file_names[idx] A : int = PIL.Image.open(_UpperCAmelCase ) A : str = raw_image.convert('''RGB''' ) if self.image_transform is not None: A : Dict = self.image_transform(_UpperCAmelCase ) A : Tuple = extract_label(_UpperCAmelCase ) if self.label_to_id is not None: A : Optional[Any] = self.label_to_id[label] return {"image": image, "label": label} def _lowerCamelCase( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ) -> Any: # Initialize accelerator if args.with_tracking: A : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: A : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : List[str] = config['''lr'''] A : int = int(config['''num_epochs'''] ) A : List[str] = int(config['''seed'''] ) A : Any = int(config['''batch_size'''] ) A : List[str] = config['''image_size'''] if not isinstance(UpperCamelCase__ , (list, tuple) ): A : List[str] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": A : List[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): A : Optional[Any] = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: A : Optional[Any] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: A : Any = os.path.split(UpperCamelCase__ )[-1].split('''.''' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Grab all the image filenames A : int = [os.path.join(args.data_dir , UpperCamelCase__ ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences A : int = [extract_label(UpperCamelCase__ ) for fname in file_names] A : str = list(set(UpperCamelCase__ ) ) id_to_label.sort() A : Dict = {lbl: i for i, lbl in enumerate(UpperCamelCase__ )} # Set the seed before splitting the data. np.random.seed(UpperCamelCase__ ) torch.manual_seed(UpperCamelCase__ ) torch.cuda.manual_seed_all(UpperCamelCase__ ) # Split our filenames between train and validation A : Dict = np.random.permutation(len(UpperCamelCase__ ) ) A : str = int(0.8 * len(UpperCamelCase__ ) ) A : Tuple = random_perm[:cut] A : List[Any] = random_perm[cut:] # For training we use a simple RandomResizedCrop A : Any = Compose([RandomResizedCrop(UpperCamelCase__ , scale=(0.5, 1.0) ), ToTensor()] ) A : List[Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # For evaluation, we use a deterministic Resize A : Optional[Any] = Compose([Resize(UpperCamelCase__ ), ToTensor()] ) A : List[Any] = PetsDataset([file_names[i] for i in eval_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # Instantiate dataloaders. A : List[str] = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) A : Tuple = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : Union[str, Any] = create_model('''resnet50d''' , pretrained=UpperCamelCase__ , num_classes=len(UpperCamelCase__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A : Optional[int] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): A : Union[str, Any] = False for param in model.get_classifier().parameters(): A : Any = True # We normalize the batches of images to be a bit faster. A : Dict = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) A : str = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer A : List[Any] = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler A : int = OneCycleLR(optimizer=UpperCamelCase__ , max_lr=UpperCamelCase__ , epochs=UpperCamelCase__ , steps_per_epoch=len(UpperCamelCase__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A, A, A, A, A : Optional[int] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over A : Dict = 0 # We also need to keep track of the starting epoch so files are named properly A : str = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) A : Optional[int] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint A : Dict = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) A : Optional[int] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` A : Optional[int] = os.path.splitext(UpperCamelCase__ )[0] if "epoch" in training_difference: A : Tuple = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 A : Union[str, Any] = None else: A : int = int(training_difference.replace('''step_''' , '''''' ) ) A : str = resume_step // len(UpperCamelCase__ ) resume_step -= starting_epoch * len(UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ , UpperCamelCase__ ): model.train() if args.with_tracking: A : int = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step A : str = accelerator.skip_first_batches(UpperCamelCase__ , UpperCamelCase__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader A : int = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. A : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} A : Optional[int] = (batch['''image'''] - mean) / std A : int = model(UpperCamelCase__ ) A : List[Any] = torch.nn.functional.cross_entropy(UpperCamelCase__ , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A : List[Any] = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: A : Dict = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) model.eval() A : Optional[int] = 0 A : int = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. A : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} A : Any = (batch['''image'''] - mean) / std with torch.no_grad(): A : Union[str, Any] = model(UpperCamelCase__ ) A : Tuple = outputs.argmax(dim=-1 ) A, A : List[Any] = accelerator.gather_for_metrics((predictions, batch['''label''']) ) A : Any = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() A : str = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { '''accuracy''': 100 * eval_metric, '''train_loss''': total_loss.item() / len(UpperCamelCase__ ), '''epoch''': epoch, } , step=UpperCamelCase__ , ) if checkpointing_steps == "epoch": A : Dict = F'''epoch_{epoch}''' if args.output_dir is not None: A : Dict = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) if args.with_tracking: accelerator.end_training() def _lowerCamelCase( ) -> int: A : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=UpperCamelCase__ , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=UpperCamelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=UpperCamelCase__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) A : Tuple = parser.parse_args() A : List[str] = {'''lr''': 3e-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 224} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
537
0
import argparse from collections import defaultdict def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[int] = f'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(__UpperCamelCase , 'r' ) as f: __lowerCamelCase : List[str] = f.readlines() __lowerCamelCase : Any = f'class {class_name}(' __lowerCamelCase : Optional[int] = f'{4 * " "}def {test_name}(' __lowerCamelCase : Optional[Any] = f'{8 * " "}{correct_line.split()[0]}' __lowerCamelCase : Tuple = f'{16 * " "}{correct_line.split()[0]}' __lowerCamelCase : Any = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : int = False __lowerCamelCase : Tuple = 0 __lowerCamelCase : List[str] = 0 __lowerCamelCase : str = [] for line in lines: if line.startswith(__UpperCamelCase ): __lowerCamelCase : str = True elif in_class and line.startswith(__UpperCamelCase ): __lowerCamelCase : Optional[int] = True elif in_class and in_func and (line.startswith(__UpperCamelCase ) or line.startswith(__UpperCamelCase )): __lowerCamelCase : Optional[Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowerCamelCase : Union[str, Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowerCamelCase : List[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(f'{spaces * " "}{correct_line}' ) __lowerCamelCase : List[str] = False else: new_lines.append(__UpperCamelCase ) with open(__UpperCamelCase , 'w' ) as f: for line in new_lines: f.write(__UpperCamelCase ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): if fail is not None: with open(__UpperCamelCase , 'r' ) as f: __lowerCamelCase : List[str] = {l.strip() for l in f.readlines()} else: __lowerCamelCase : Optional[int] = None with open(__UpperCamelCase , 'r' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Dict = defaultdict(__UpperCamelCase ) for line in correct_lines: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) lowercase_ = parser.parse_args() main(args.correct_filename, args.fail_filename)
669
lowercase__ : Optional[int] = 9.8_0665 def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = g) -> float: if fluid_density <= 0: raise ValueError("Impossible fluid density") if volume < 0: raise ValueError("Impossible Object volume") if gravity <= 0: raise ValueError("Impossible Gravity") return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
515
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase__ = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['MobileViTFeatureExtractor'] UpperCamelCase__ = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCamelCase__ = logging.get_logger(__name__) @dataclass class a ( lowercase ): UpperCamelCase : Dict = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **UpperCamelCase_ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase__ : int = deprecated_arg[3:] UpperCAmelCase__ : Tuple = not kwargs.pop(UpperCamelCase_ ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase__ : Dict = kwargs.pop('tpu_name' , self.tpu_name ) UpperCAmelCase__ : Tuple = kwargs.pop('device_idx' , self.device_idx ) UpperCAmelCase__ : List[str] = kwargs.pop('eager_mode' , self.eager_mode ) UpperCAmelCase__ : Any = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**UpperCamelCase_ ) UpperCamelCase : str = field( default=lowercase , metadata={"""help""": """Name of TPU"""} , ) UpperCamelCase : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) UpperCamelCase : bool = field(default=lowercase , metadata={"""help""": """Benchmark models in eager model."""} ) UpperCamelCase : bool = field( default=lowercase , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def __snake_case ( self ): requires_backends(self , ['tf'] ) UpperCAmelCase__ : Optional[Any] = None if self.tpu: try: if self.tpu_name: UpperCAmelCase__ : str = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase__ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase__ : Tuple = None return tpu @cached_property def __snake_case ( self ): requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase__ : Union[str, Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) UpperCAmelCase__ : Any = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU UpperCAmelCase__ : Any = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def __snake_case ( self ): requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def __snake_case ( self ): requires_backends(self , ['tf'] ) return self._setup_strategy @property def __snake_case ( self ): requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def __snake_case ( self ): requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __snake_case ( self ): return self.n_gpu > 0
254
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCAmelCase_ : str = logging.getLogger(__name__) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return (preds == labels).mean() @dataclass class __A : UpperCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __A : UpperCamelCase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) UpperCamelCase = field(metadata={"""help""": """Should contain the data files for the task."""} ) UpperCamelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __magic_name__ : Union[str, Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __magic_name__ , __magic_name__ , __magic_name__ : Any =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) try: __magic_name__ : List[str] =processors[data_args.task_name]() __magic_name__ : str =processor.get_labels() __magic_name__ : Tuple =len(lowerCamelCase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ : Optional[int] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __magic_name__ : Dict =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __magic_name__ : str =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets __magic_name__ : Optional[Any] =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __magic_name__ : Optional[int] =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCamelCase ) -> Dict: __magic_name__ : List[str] =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCamelCase , p.label_ids )} # Data collator __magic_name__ : Union[str, Any] =DataCollatorWithPadding(lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __magic_name__ : List[str] =Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , compute_metrics=lowerCamelCase , data_collator=lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __magic_name__ : Tuple ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __magic_name__ : List[Any] =trainer.evaluate() __magic_name__ : Optional[Any] =os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowerCamelCase , lowerCamelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowerCamelCase ) return results def lowerCAmelCase_ ( lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
21
def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> bool: __lowercase = len(snake_case ) + 1 __lowercase = len(snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __lowercase = [[0 for i in range(snake_case )] for j in range(snake_case )] # since string of zero length match pattern of zero length __lowercase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , snake_case ): __lowercase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , snake_case ): __lowercase = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , snake_case ): for j in range(1 , snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __lowercase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __lowercase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __lowercase = dp[i - 1][j] else: __lowercase = 0 else: __lowercase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") SCREAMING_SNAKE_CASE_ : Any = '''aab''' SCREAMING_SNAKE_CASE_ : str = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
375
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """dandelin/vilt-b32-finetuned-vqa""" UpperCamelCase__ = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) UpperCamelCase__ = """image_qa""" UpperCamelCase__ = AutoProcessor UpperCamelCase__ = AutoModelForVisualQuestionAnswering UpperCamelCase__ = ["""image""", """text"""] UpperCamelCase__ = ["""text"""] def __init__( self: int , *__lowerCamelCase: int , **__lowerCamelCase: Tuple ): '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: "Image" , __lowerCamelCase: str ): '''simple docstring''' return self.pre_processor(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) def UpperCAmelCase_ ( self: int , __lowerCamelCase: Tuple ): '''simple docstring''' with torch.no_grad(): return self.model(**__lowerCamelCase ).logits def UpperCAmelCase_ ( self: str , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: List[str] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
221
from __future__ import annotations def lowerCAmelCase_ ( A_ ,A_ ,A_): if (voltage, current, resistance).count(0) != 1: raise ValueError("One and only one argument must be 0") if resistance < 0: raise ValueError("Resistance cannot be negative") if voltage == 0: return {"voltage": float(current * resistance)} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0") if __name__ == "__main__": import doctest doctest.testmod()
221
1
import math import sys def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 A_ = [-1] * (number + 1) A_ = 0 for i in range(1 , number + 1 ): A_ = sys.maxsize A_ = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): A_ = 1 + answers[i - (j**2)] A_ = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
203
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowercase = """pt""" elif is_tf_available(): __lowercase = """tf""" else: __lowercase = """jax""" class _lowercase ( __lowerCamelCase,unittest.TestCase ): _lowercase : Dict = PerceiverTokenizer _lowercase : Dict = False def UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" super().setUp() A_ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def UpperCamelCase ( self : List[str] , **lowerCamelCase__ : str ) -> PerceiverTokenizer: """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCamelCase ( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : List[str]=2_0 , lowerCamelCase__ : Union[str, Any]=5 ) -> Tuple[str, list]: """simple docstring""" A_ = [] for i in range(len(lowerCamelCase__ ) ): try: A_ = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) A_ = list(filter(lambda lowerCamelCase__ : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowerCamelCase__ ) ) A_ = list(filter(lambda lowerCamelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCamelCase__ ) , lowerCamelCase__ ) ) if max_length is not None and len(lowerCamelCase__ ) > max_length: A_ = toks[:max_length] if min_length is not None and len(lowerCamelCase__ ) < min_length and len(lowerCamelCase__ ) > 0: while len(lowerCamelCase__ ) < min_length: A_ = toks + toks # toks_str = [t[1] for t in toks] A_ = [t[0] for t in toks] # Ensure consistency A_ = tokenizer.decode(lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) if " " not in output_txt and len(lowerCamelCase__ ) > 1: A_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase__ ) ) if with_prefix_space: A_ = ''' ''' + output_txt A_ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) return output_txt, output_ids def UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" A_ = self.perceiver_tokenizer A_ = '''Unicode €.''' A_ = tokenizer(lowerCamelCase__ ) A_ = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , lowerCamelCase__ ) # decoding A_ = tokenizer.decode(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , '''[CLS]Unicode €.[SEP]''' ) A_ = tokenizer('''e è é ê ë''' ) A_ = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , lowerCamelCase__ ) # decoding A_ = tokenizer.decode(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A_ = self.perceiver_tokenizer A_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off A_ = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on A_ = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) if FRAMEWORK != "jax": A_ = list(batch.input_ids.numpy()[0] ) else: A_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" A_ = self.perceiver_tokenizer A_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] A_ = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCamelCase__ ) self.assertIn('''attention_mask''' , lowerCamelCase__ ) self.assertNotIn('''decoder_input_ids''' , lowerCamelCase__ ) self.assertNotIn('''decoder_attention_mask''' , lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" A_ = self.perceiver_tokenizer A_ = [ '''Summary of the text.''', '''Another summary.''', ] A_ = tokenizer( text_target=lowerCamelCase__ , max_length=3_2 , padding='''max_length''' , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" A_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test A_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc A_ = tempfile.mkdtemp() A_ = ''' He is very happy, UNwant\u00E9d,running''' A_ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) A_ = tokenizer.__class__.from_pretrained(lowerCamelCase__ ) A_ = after_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) shutil.rmtree(lowerCamelCase__ ) A_ = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc A_ = tempfile.mkdtemp() A_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) A_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) A_ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) A_ = tokenizer.__class__.from_pretrained(lowerCamelCase__ ) A_ = after_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) A_ = tokenizer.__class__.from_pretrained(lowerCamelCase__ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" A_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: A_ = json.load(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: A_ = json.load(lowerCamelCase__ ) A_ = [F"<extra_id_{i}>" for i in range(1_2_5 )] A_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] A_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCamelCase__ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase__ , lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase__ , lowerCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A_ = tokenizer_class.from_pretrained( lowerCamelCase__ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCamelCase__ )] A_ = tokenizer_class.from_pretrained( lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" A_ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def UpperCamelCase ( self : int ) -> Any: """simple docstring""" pass def UpperCamelCase ( self : int ) -> int: """simple docstring""" pass def UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" pass def UpperCamelCase ( self : int ) -> Any: """simple docstring""" pass def UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" A_ = self.get_tokenizers(fast=lowerCamelCase__ , do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): A_ = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] A_ = tokenizer.convert_tokens_to_string(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
203
1
def _A ( __snake_case :int , __snake_case :int ) -> int: """simple docstring""" while second != 0: __SCREAMING_SNAKE_CASE = first & second first ^= second __SCREAMING_SNAKE_CASE = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() _snake_case : Any = int(input('Enter the first number: ').strip()) _snake_case : str = int(input('Enter the second number: ').strip()) print(F"""{add(first, second) = }""")
214
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ ="""facebook/bart-large-mnli""" SCREAMING_SNAKE_CASE__ =( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) SCREAMING_SNAKE_CASE__ ="""text_classifier""" SCREAMING_SNAKE_CASE__ =AutoTokenizer SCREAMING_SNAKE_CASE__ =AutoModelForSequenceClassification SCREAMING_SNAKE_CASE__ =["""text""", ["""text"""]] SCREAMING_SNAKE_CASE__ =["""text"""] def __lowerCAmelCase ( self ) -> Dict: super().setup() __SCREAMING_SNAKE_CASE = self.model.config __SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): __SCREAMING_SNAKE_CASE = int(_a ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def __lowerCAmelCase ( self, _a, _a ) -> List[str]: __SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(_a ), [f'''This example is {label}''' for label in labels], return_tensors="pt", padding="max_length", ) def __lowerCAmelCase ( self, _a ) -> Tuple: __SCREAMING_SNAKE_CASE = outputs.logits __SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
214
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase ( _snake_case : Tuple ,_snake_case : Optional[Any]=1_000 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowercase__ = n - 1 lowercase__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowercase__ = 0 while count < prec: lowercase__ = random.randint(2 ,n - 1 ) lowercase__ = bin_exp_mod(_snake_case ,_snake_case ,_snake_case ) if b != 1: lowercase__ = True for _ in range(_snake_case ): if b == n - 1: lowercase__ = False break lowercase__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
267
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case (UpperCamelCase , UpperCamelCase ): @register_to_config def __init__( self ,UpperCAmelCase_ = 768 ,) -> List[Any]: super().__init__() lowercase__ = nn.Parameter(torch.zeros(1 ,UpperCAmelCase_ ) ) lowercase__ = nn.Parameter(torch.ones(1 ,UpperCAmelCase_ ) ) def _a ( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,) -> Any: lowercase__ = nn.Parameter(self.mean.to(UpperCAmelCase_ ).to(UpperCAmelCase_ ) ) lowercase__ = nn.Parameter(self.std.to(UpperCAmelCase_ ).to(UpperCAmelCase_ ) ) return self def _a ( self ,UpperCAmelCase_ ) -> Tuple: lowercase__ = (embeds - self.mean) * 1.0 / self.std return embeds def _a ( self ,UpperCAmelCase_ ) -> List[str]: lowercase__ = (embeds * self.std) + self.mean return embeds
267
1
'''simple docstring''' from statistics import mean import numpy as np def A ( A_ : Tuple , A_ : List[Any] , A_ : str , A_ : Any ): snake_case : List[Any] = 0 # Number of processes finished snake_case : List[str] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case : Dict = [0] * no_of_process # List to include calculation results snake_case : Dict = [0] * no_of_process # Sort by arrival time. snake_case : Tuple = [burst_time[i] for i in np.argsort(_SCREAMING_SNAKE_CASE )] snake_case : Tuple = [process_name[i] for i in np.argsort(_SCREAMING_SNAKE_CASE )] arrival_time.sort() while no_of_process > finished_process_count: snake_case : List[Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case : Tuple = arrival_time[i] snake_case : Any = 0 # Index showing the location of the process being performed snake_case : Union[str, Any] = 0 # Saves the current response ratio. snake_case : Dict = 0 for i in range(0 , _SCREAMING_SNAKE_CASE ): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case : Optional[Any] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case : Optional[Any] = temp snake_case : Optional[int] = i # Calculate the turn around time snake_case : Dict = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case : Union[str, Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def A ( A_ : Any , A_ : int , A_ : int , A_ : List[str] ): snake_case : Tuple = [0] * no_of_process for i in range(0 , _SCREAMING_SNAKE_CASE ): snake_case : Tuple = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": UpperCAmelCase = 5 UpperCAmelCase = ["A", "B", "C", "D", "E"] UpperCAmelCase = [1, 2, 3, 4, 5] UpperCAmelCase = [1, 2, 3, 4, 5] UpperCAmelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) UpperCAmelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
701
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } UpperCAmelCase = { "Salesforce/codegen-350M-mono": 2_048, } class a ( __magic_name__ ): _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] _snake_case = CodeGenTokenizer def __init__( self : Any, SCREAMING_SNAKE_CASE_ : Dict=None, SCREAMING_SNAKE_CASE_ : Optional[Any]=None, SCREAMING_SNAKE_CASE_ : Optional[Any]=None, SCREAMING_SNAKE_CASE_ : Optional[int]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : List[Any]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : List[str]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : int=False, **SCREAMING_SNAKE_CASE_ : Optional[int], ): super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) if kwargs.pop('''add_bos_token''', SCREAMING_SNAKE_CASE_ ): snake_case : Dict = kwargs.pop('''name_or_path''', '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) snake_case : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: snake_case : Optional[Any] = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('''type''' ) ) snake_case : Union[str, Any] = add_prefix_space snake_case : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) snake_case : int = add_prefix_space def __snake_case ( self : List[Any], *SCREAMING_SNAKE_CASE_ : Tuple, **SCREAMING_SNAKE_CASE_ : int ): snake_case : Dict = kwargs.get('''is_split_into_words''', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str], *SCREAMING_SNAKE_CASE_ : str, **SCREAMING_SNAKE_CASE_ : Optional[int] ): snake_case : Dict = kwargs.get('''is_split_into_words''', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Tuple, SCREAMING_SNAKE_CASE_ : str, SCREAMING_SNAKE_CASE_ : Optional[str] = None ): snake_case : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Dict, SCREAMING_SNAKE_CASE_ : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], SCREAMING_SNAKE_CASE_ : bool = False, SCREAMING_SNAKE_CASE_ : bool = None, SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None, **SCREAMING_SNAKE_CASE_ : Union[str, Any], ): snake_case : Dict = super().decode( token_ids=SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) if truncate_before_pattern is not None and len(SCREAMING_SNAKE_CASE_ ) > 0: snake_case : Optional[int] = self.truncate(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return decoded_text def __snake_case ( self : int, SCREAMING_SNAKE_CASE_ : Optional[Any], SCREAMING_SNAKE_CASE_ : Tuple ): def find_re(SCREAMING_SNAKE_CASE_ : Optional[int], SCREAMING_SNAKE_CASE_ : Dict, SCREAMING_SNAKE_CASE_ : Optional[Any] ): snake_case : Optional[Any] = pattern.search(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return m.start() if m else -1 snake_case : Union[str, Any] = [re.compile(SCREAMING_SNAKE_CASE_, re.MULTILINE ) for pattern in truncate_before_pattern] snake_case : Union[str, Any] = list(re.finditer('''^print''', SCREAMING_SNAKE_CASE_, re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE_ ) > 1: snake_case : Tuple = completion[: prints[1].start()] snake_case : List[str] = list(re.finditer('''^def''', SCREAMING_SNAKE_CASE_, re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE_ ) > 1: snake_case : Optional[Any] = completion[: defs[1].start()] snake_case : Tuple = 0 snake_case : List[Any] = [ pos for pos in [find_re(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for terminal in terminals] if pos != -1 ] if len(SCREAMING_SNAKE_CASE_ ) > 0: return completion[: min(SCREAMING_SNAKE_CASE_ )] else: return completion
555
0