code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : Any ="""▁""" __lowercase : str =get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class A ( __lowercase , unittest.TestCase ): _snake_case =BertGenerationTokenizer _snake_case =False _snake_case =True def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' super().setUp() UpperCAmelCase_ =BertGenerationTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ ="<s>" UpperCAmelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(_lowerCAmelCase ) , 1002 ) def lowerCAmelCase__ ( self: Any ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =BertGenerationTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ =tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ =tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ =tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowerCAmelCase__ ( self: str ) -> Optional[Any]: '''simple docstring''' return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ ="Hello World!" UpperCAmelCase_ =[1_8536, 2260, 101] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @slow def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) UpperCAmelCase_ =[ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @require_torch @slow def lowerCAmelCase__ ( self: Tuple ) -> Any: '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence UpperCAmelCase_ =list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ =" ".join(_lowerCAmelCase ) UpperCAmelCase_ =self.big_tokenizer.encode_plus(_lowerCAmelCase , return_tensors="pt" , return_token_type_ids=_lowerCAmelCase ) UpperCAmelCase_ =self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=_lowerCAmelCase ) UpperCAmelCase_ =BertGenerationConfig() UpperCAmelCase_ =BertGenerationEncoder(_lowerCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCAmelCase ) model(**_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: str ) -> Dict: '''simple docstring''' UpperCAmelCase_ ={"input_ids": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
54
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _UpperCAmelCase ( __A : int , __A : Tuple="shi-labs/oneformer_demo" ): with open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) as f: a_ : Optional[Any] = json.load(__A ) a_ : List[Any] = {} a_ : List[Any] = [] a_ : Tuple = [] for key, info in class_info.items(): a_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(__A ) ) a_ : Optional[Any] = thing_ids a_ : str = class_names return metadata class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=7 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=30 , __SCREAMING_SNAKE_CASE : str=400 , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : str=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Optional[int]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Optional[int]=10 , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=255 , __SCREAMING_SNAKE_CASE : List[Any]="shi-labs/oneformer_demo" , __SCREAMING_SNAKE_CASE : List[str]="ade20k_panoptic.json" , __SCREAMING_SNAKE_CASE : List[Any]=10 , ) -> Dict: a_ : int = parent a_ : Optional[Any] = batch_size a_ : str = num_channels a_ : Tuple = min_resolution a_ : List[Any] = max_resolution a_ : List[Any] = do_resize a_ : Union[str, Any] = {'''shortest_edge''': 32, '''longest_edge''': 1333} if size is None else size a_ : Dict = do_normalize a_ : Union[str, Any] = image_mean a_ : Dict = image_std a_ : int = class_info_file a_ : List[Any] = prepare_metadata(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = num_text a_ : Any = repo_path # for the post_process_functions a_ : List[str] = 2 a_ : Tuple = 10 a_ : Union[str, Any] = 10 a_ : Dict = 3 a_ : int = 4 a_ : Optional[Any] = num_labels a_ : Union[str, Any] = do_reduce_labels a_ : Tuple = ignore_index def SCREAMING_SNAKE_CASE ( self : str ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]=False ) -> Optional[Any]: if not batched: a_ : List[Any] = image_inputs[0] if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ): a_ , a_ : List[str] = image.size else: a_ , a_ : Any = image.shape[1], image.shape[2] if w < h: a_ : int = int(self.size['''shortest_edge'''] * h / w ) a_ : Union[str, Any] = self.size['''shortest_edge'''] elif w > h: a_ : Any = self.size['''shortest_edge'''] a_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: a_ : Optional[int] = self.size['''shortest_edge'''] a_ : int = self.size['''shortest_edge'''] else: a_ : int = [] for image in image_inputs: a_ , a_ : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a_ : List[str] = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0] a_ : str = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string snake_case__ = image_processing_class def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Optional[int] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: a_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''ignore_index''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''class_info_file''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''num_text''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''repo_path''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''metadata''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_reduce_labels''' ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: pass def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: # Initialize image_processor a_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : Dict = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a_ , a_ : Optional[int] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ : Union[str, Any] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) a_ : Any = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: # Initialize image_processor a_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input a_ : List[Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a_ , a_ : Union[str, Any] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ : Union[str, Any] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) a_ : Tuple = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: # Initialize image_processor a_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input a_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a_ , a_ : int = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ : Tuple = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) a_ : int = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : str="np" ) -> Any: a_ : Dict = self.image_processing_class(**self.image_processor_dict ) # prepare image and target a_ : Optional[Any] = self.image_processing_tester.num_labels a_ : Union[str, Any] = None a_ : int = None a_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) if with_segmentation_maps: a_ : List[str] = num_labels if is_instance_map: a_ : str = list(range(__SCREAMING_SNAKE_CASE ) ) * 2 a_ : str = dict(enumerate(__SCREAMING_SNAKE_CASE ) ) a_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": a_ : Any = [Image.fromarray(__SCREAMING_SNAKE_CASE ) for annotation in annotations] a_ : Dict = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , instance_id_to_semantic_id=__SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=__SCREAMING_SNAKE_CASE , ) return inputs def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: def common(__SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : List[str]=None ): a_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=__SCREAMING_SNAKE_CASE , is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = inputs['''mask_labels'''] a_ : Any = inputs['''class_labels'''] a_ : Any = inputs['''pixel_values'''] a_ : Optional[Any] = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__SCREAMING_SNAKE_CASE ) common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type='''pil''' ) common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type='''pil''' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: a_ : int = np.zeros((20, 50) ) a_ : Dict = 1 a_ : Optional[Any] = 1 a_ : Dict = 1 a_ : Tuple = binary_mask_to_rle(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: a_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() a_ : str = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) a_ : Dict = [(1, 4) for i in range(self.image_processing_tester.batch_size )] a_ : List[str] = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE , target_sizes=__SCREAMING_SNAKE_CASE ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: a_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a_ : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() a_ : Tuple = image_processor.post_process_instance_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: a_ : List[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a_ : int = self.image_processing_tester.get_fake_oneformer_outputs() a_ : str = image_processor.post_process_panoptic_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
466
0
import numpy as np lowerCAmelCase__ = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class snake_case__: """simple docstring""" def __init__( self : Dict ): lowercase__ : List[str] = np.array(SCREAMING_SNAKE_CASE ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str ): lowercase__ , lowercase__ : str = np.where(letter == self.SQUARE ) lowercase__ : List[str] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def snake_case ( self : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): lowercase__ : List[Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : str ): lowercase__ : int = message.lower() lowercase__ : Any = message.replace(" " , "" ) lowercase__ : Union[str, Any] = message.replace("j" , "i" ) lowercase__ : Optional[Any] = np.empty((2, len(SCREAMING_SNAKE_CASE )) ) for letter_index in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ : Optional[int] = self.letter_to_numbers(message[letter_index] ) lowercase__ : Union[str, Any] = numbers[0] lowercase__ : Dict = numbers[1] lowercase__ : str = first_step.reshape(2 * len(SCREAMING_SNAKE_CASE ) ) lowercase__ : int = "" for numbers_index in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ : int = int(second_step[numbers_index * 2] ) lowercase__ : Optional[Any] = int(second_step[(numbers_index * 2) + 1] ) lowercase__ : List[str] = self.numbers_to_letter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = encoded_message + letter return encoded_message def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : str ): lowercase__ : List[Any] = message.lower() message.replace(" " , "" ) lowercase__ : List[Any] = np.empty(2 * len(SCREAMING_SNAKE_CASE ) ) for letter_index in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ : Tuple = self.letter_to_numbers(message[letter_index] ) lowercase__ : Optional[Any] = numbers[0] lowercase__ : Any = numbers[1] lowercase__ : Any = first_step.reshape((2, len(SCREAMING_SNAKE_CASE )) ) lowercase__ : List[Any] = "" for numbers_index in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ : Union[str, Any] = int(second_step[0, numbers_index] ) lowercase__ : List[Any] = int(second_step[1, numbers_index] ) lowercase__ : List[str] = self.numbers_to_letter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Dict = decoded_message + letter return decoded_message
81
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case__: """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int=13 , SCREAMING_SNAKE_CASE : Union[str, Any]=30 , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : Optional[Any]=3 , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : List[str]=32 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : str=4 , SCREAMING_SNAKE_CASE : List[Any]=37 , SCREAMING_SNAKE_CASE : Tuple="gelu" , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : int=10 , SCREAMING_SNAKE_CASE : List[str]=0.02 , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : str=0.6 , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): lowercase__ : Union[str, Any] = parent lowercase__ : Optional[int] = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Any = num_channels lowercase__ : Optional[int] = is_training lowercase__ : Dict = use_labels lowercase__ : Any = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : List[Any] = type_sequence_label_size lowercase__ : Any = initializer_range lowercase__ : Optional[int] = mask_ratio lowercase__ : Union[str, Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ : List[Any] = (image_size // patch_size) ** 2 lowercase__ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def snake_case ( self : int ): lowercase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : str = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def snake_case ( self : Tuple ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): lowercase__ : Tuple = TFViTMAEModel(config=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): lowercase__ : Union[str, Any] = TFViTMAEForPreTraining(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # expected sequence length = num_patches lowercase__ : List[str] = (self.image_size // self.patch_size) ** 2 lowercase__ : List[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ : Dict = 1 lowercase__ : List[Any] = TFViTMAEForPreTraining(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def snake_case ( self : Optional[int] ): lowercase__ : int = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) : Dict = config_and_inputs lowercase__ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case__(_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowercase_ = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def snake_case ( self : List[str] ): lowercase__ : List[Any] = TFViTMAEModelTester(self ) lowercase__ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def snake_case ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def snake_case ( self : Union[str, Any] ): pass def snake_case ( self : Optional[int] ): lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Layer ) ) def snake_case ( self : Optional[Any] ): lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Union[str, Any] = [*signature.parameters.keys()] lowercase__ : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): # make the mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : int = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) lowercase__ : Any = copy.deepcopy(self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : Tuple = model(**SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = outputs_dict[0].numpy() lowercase__ : Optional[int] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def snake_case ( self : str ): # make the mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : Tuple = {} for k, v in inputs_dict.items(): if tf.is_tensor(SCREAMING_SNAKE_CASE ): lowercase__ : Any = v.numpy() else: lowercase__ : List[Any] = np.array(SCREAMING_SNAKE_CASE ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ : Any = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Any = prepare_numpy_arrays(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = model(**SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) self.assert_outputs_same(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): # make masks reproducible np.random.seed(2 ) lowercase__ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ : Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ : Optional[int] = tf_noise super().check_pt_tf_models(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): # make mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(SCREAMING_SNAKE_CASE ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ),) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(SCREAMING_SNAKE_CASE , "_keras_serializable" , SCREAMING_SNAKE_CASE ) } lowercase__ : List[str] = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ : str = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ : Tuple = main_layer_class(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ : Tuple = tf.keras.Model(SCREAMING_SNAKE_CASE , outputs=main_layer(SCREAMING_SNAKE_CASE ) ) lowercase__ : str = model(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , "keras_model.h5" ) model.save(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = tf.keras.models.load_model( SCREAMING_SNAKE_CASE , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(SCREAMING_SNAKE_CASE , tf.keras.Model ) lowercase__ : Dict = model(SCREAMING_SNAKE_CASE ) self.assert_outputs_same(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : Optional[int] ): # make mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) if model_class.__name__ == "TFViTMAEModel": lowercase__ : str = outputs.last_hidden_state.numpy() lowercase__ : Optional[Any] = 0 else: lowercase__ : Optional[Any] = outputs.logits.numpy() lowercase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE , saved_model=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) if model_class.__name__ == "TFViTMAEModel": lowercase__ : Optional[int] = after_outputs["last_hidden_state"].numpy() lowercase__ : Optional[int] = 0 else: lowercase__ : str = after_outputs["logits"].numpy() lowercase__ : Tuple = 0 lowercase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE , 1E-5 ) def snake_case ( self : List[Any] ): # make mask reproducible np.random.seed(2 ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[str] = int((config.image_size // config.patch_size) ** 2 ) lowercase__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : int = model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) lowercase__ : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(SCREAMING_SNAKE_CASE ) lowercase__ : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ : Any = model_class.from_config(model.config ) lowercase__ : Tuple = new_model(SCREAMING_SNAKE_CASE ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ : Union[str, Any] = new_model(SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) self.assert_outputs_same(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def snake_case ( self : List[Any] ): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def snake_case ( self : str ): pass @slow def snake_case ( self : List[Any] ): lowercase__ : List[Any] = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case__(unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : Any ): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def snake_case ( self : Union[str, Any] ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowercase__ : Optional[Any] = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : Union[str, Any] = prepare_img() lowercase__ : Tuple = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ : Union[str, Any] = ViTMAEConfig() lowercase__ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ : List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ : Optional[Any] = model(**SCREAMING_SNAKE_CASE , noise=SCREAMING_SNAKE_CASE ) # verify the logits lowercase__ : List[str] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
81
1
from torch import nn def lowercase_ (A : Union[str, Any] ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
478
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a_ :List[str] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int, _snake_case : Union[str, Any], _snake_case : List[str]=7, _snake_case : int=3, _snake_case : List[Any]=1_8, _snake_case : List[str]=3_0, _snake_case : str=4_0_0, _snake_case : Optional[Any]=None, _snake_case : Dict=True, _snake_case : str=True, _snake_case : Union[str, Any]=None, ) ->str: snake_case__ : int = size if size is not None else {'height': 2_0, 'width': 2_0} snake_case__ : Optional[Any] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : List[Any] = num_channels snake_case__ : List[str] = image_size snake_case__ : List[str] = min_resolution snake_case__ : int = max_resolution snake_case__ : Union[str, Any] = size snake_case__ : Tuple = do_normalize snake_case__ : List[str] = do_convert_rgb snake_case__ : List[Any] = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] snake_case__ : Tuple = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} def lowercase_ ( self : str ) ->int: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowercase_ ( self : Optional[Any] ) ->str: snake_case__ : List[Any] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' snake_case__ : List[Any] = Image.open(requests.get(_snake_case, stream=_snake_case ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def lowercase_ ( self : str ) ->str: snake_case__ : Optional[int] = PixaStructImageProcessingTester(self ) @property def lowercase_ ( self : Union[str, Any] ) ->Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case, 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case, 'do_convert_rgb' ) ) def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : List[str] = self.image_processor_tester.prepare_dummy_image() snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) snake_case__ : Optional[int] = 2_0_4_8 snake_case__ : Optional[int] = image_processor(_snake_case, return_tensors='pt', max_patches=_snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0_6_0_6 ), atol=1e-3, rtol=1e-3 ) ) def lowercase_ ( self : Tuple ) ->Dict: # Initialize image_processor snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Optional[Any] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Any = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : List[str] ) ->Optional[Any]: # Initialize image_processor snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 snake_case__ : Union[str, Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_snake_case ): snake_case__ : int = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches snake_case__ : Optional[Any] = 'Hello' snake_case__ : Dict = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case, header_text=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : List[Any] = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case, header_text=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : Any ) ->int: # Initialize image_processor snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, np.ndarray ) snake_case__ : Union[str, Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : List[str] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Dict = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : List[Any] ) ->List[Any]: # Initialize image_processor snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, torch.Tensor ) # Test not batched input snake_case__ : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Optional[Any] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : int = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) ->Union[str, Any]: snake_case__ : Union[str, Any] = PixaStructImageProcessingTester(self, num_channels=4 ) snake_case__ : int = 3 @property def lowercase_ ( self : Optional[Any] ) ->List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Optional[int] ) ->Optional[int]: snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case, 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case, 'do_convert_rgb' ) ) def lowercase_ ( self : Optional[int] ) ->str: # Initialize image_processor snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : List[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Any = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Dict = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
478
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case ( __UpperCAmelCase ): def __init__( self :List[Any] , _lowerCamelCase :List[str]=0.0_1 , _lowerCamelCase :Dict=1_0_0_0 ): __SCREAMING_SNAKE_CASE : Dict = p_stop __SCREAMING_SNAKE_CASE : str = max_length def __iter__( self :int ): __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 __SCREAMING_SNAKE_CASE : Any = random.random() < self.p_stop class snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :List[str] , _lowerCamelCase :List[Any] , _lowerCamelCase :str=False , _lowerCamelCase :Optional[int]=True ): __SCREAMING_SNAKE_CASE : Optional[int] = [ BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 ) ] __SCREAMING_SNAKE_CASE : Optional[Any] = [list(_lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_lowerCamelCase ) for shard in batch_sampler_shards] , [len(_lowerCamelCase ) for e in expected] ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): # Check the shards when the dataset is a round multiple of total batch size. __SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __SCREAMING_SNAKE_CASE : Optional[Any] = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __SCREAMING_SNAKE_CASE : str = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) # Check the shards when the dataset is very small. __SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): # Check the shards when the dataset is a round multiple of batch size. __SCREAMING_SNAKE_CASE : List[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. __SCREAMING_SNAKE_CASE : Optional[Any] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __SCREAMING_SNAKE_CASE : List[Any] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. __SCREAMING_SNAKE_CASE : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Any ): # Check the shards when the dataset is a round multiple of total batch size. __SCREAMING_SNAKE_CASE : str = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __SCREAMING_SNAKE_CASE : Dict = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __SCREAMING_SNAKE_CASE : List[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. __SCREAMING_SNAKE_CASE : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , even_batches=_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Any ): # Check the shards when the dataset is a round multiple of batch size. __SCREAMING_SNAKE_CASE : List[str] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. __SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __SCREAMING_SNAKE_CASE : Union[str, Any] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. __SCREAMING_SNAKE_CASE : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = [[], []] self.check_batch_sampler_shards(_lowerCamelCase , _lowerCamelCase , split_batches=_lowerCamelCase , even_batches=_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : Dict = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] __SCREAMING_SNAKE_CASE : List[Any] = [BatchSamplerShard(_lowerCamelCase , 2 , _lowerCamelCase , even_batches=_lowerCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :Any , _lowerCamelCase :Dict , _lowerCamelCase :Dict , _lowerCamelCase :int=False , _lowerCamelCase :List[str]=2 , _lowerCamelCase :Optional[int]=False ): random.seed(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = list(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = [ IterableDatasetShard( _lowerCamelCase , batch_size=_lowerCamelCase , drop_last=_lowerCamelCase , num_processes=_lowerCamelCase , process_index=_lowerCamelCase , split_batches=_lowerCamelCase , ) for i in range(_lowerCamelCase ) ] __SCREAMING_SNAKE_CASE : List[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_lowerCamelCase ) iterable_dataset_lists.append(list(_lowerCamelCase ) ) __SCREAMING_SNAKE_CASE : Optional[int] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __SCREAMING_SNAKE_CASE : Dict = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) self.assertTrue(len(_lowerCamelCase ) % shard_batch_size == 0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for idx in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_lowerCamelCase ) < len(_lowerCamelCase ): reference += reference self.assertListEqual(_lowerCamelCase , reference[: len(_lowerCamelCase )] ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): __SCREAMING_SNAKE_CASE : Optional[Any] = 4_2 __SCREAMING_SNAKE_CASE : str = RandomIterableDataset() self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) # Edge case with a very small dataset __SCREAMING_SNAKE_CASE : Optional[int] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase , _lowerCamelCase , batch_size=4 , drop_last=_lowerCamelCase , split_batches=_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): __SCREAMING_SNAKE_CASE : Dict = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = SkipBatchSampler(_lowerCamelCase , 2 ) self.assertListEqual(list(_lowerCamelCase ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE_ ( self :str ): __SCREAMING_SNAKE_CASE : Union[str, Any] = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): __SCREAMING_SNAKE_CASE : Any = DataLoader(list(range(1_6 ) ) , batch_size=4 ) __SCREAMING_SNAKE_CASE : List[Any] = skip_first_batches(_lowerCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): __SCREAMING_SNAKE_CASE : Optional[int] = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): Accelerator() __SCREAMING_SNAKE_CASE : List[Any] = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
401
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( __lowercase , unittest.TestCase ): A__ : Tuple = DanceDiffusionPipeline A__ : Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS A__ : int = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } A__ : int = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS A__ : Dict = False A__ : Optional[Any] = False def _a ( self ): torch.manual_seed(0 ) lowerCamelCase__ =UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , use_timestep_embedding=SCREAMING_SNAKE_CASE_ , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) lowerCamelCase__ =IPNDMScheduler() lowerCamelCase__ ={ "unet": unet, "scheduler": scheduler, } return components def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ): if str(SCREAMING_SNAKE_CASE_ ).startswith("mps" ): lowerCamelCase__ =torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase__ =torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ ={ "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def _a ( self ): lowerCamelCase__ ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =DanceDiffusionPipeline(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ =pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ =self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ =pipe(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ =output.audios lowerCamelCase__ =audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCamelCase__ =np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _a ( self ): return super().test_save_load_local() @skip_mps def _a ( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _a ( self ): return super().test_save_load_optional_components() @skip_mps def _a ( self ): return super().test_attention_slicing_forward_pass() def _a ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): lowerCamelCase__ =torch_device lowerCamelCase__ =DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) lowerCamelCase__ =pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ =torch.manual_seed(0 ) lowerCamelCase__ =pipe(generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCamelCase__ =output.audios lowerCamelCase__ =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCamelCase__ =np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ): lowerCamelCase__ =torch_device lowerCamelCase__ =DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) lowerCamelCase__ =pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ =torch.manual_seed(0 ) lowerCamelCase__ =pipe(generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCamelCase__ =output.audios lowerCamelCase__ =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCamelCase__ =np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
530
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __lowercase ): UpperCAmelCase__ = (UnCLIPScheduler,) def _lowercase (self , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = { '''num_train_timesteps''': 10_00, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**SCREAMING_SNAKE_CASE_ ) return config def _lowercase (self ): """simple docstring""" for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ , prev_timestep=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_54_96_25 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9_99_49_87 ) ) < 1e-5 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=SCREAMING_SNAKE_CASE_ ) - -10.1_71_27_90 < 1e-5 assert scheduler._get_variance(4_87 , predicted_variance=SCREAMING_SNAKE_CASE_ ) - -5.7_99_80_52 < 1e-5 assert scheduler._get_variance(9_99 , predicted_variance=SCREAMING_SNAKE_CASE_ ) - -0.0_01_00_11 < 1e-5 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = scheduler.timesteps SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample SCREAMING_SNAKE_CASE_ = pred_prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1e-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1e-3 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE_ = scheduler.timesteps SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE_ = None else: SCREAMING_SNAKE_CASE_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ = scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prev_timestep=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample SCREAMING_SNAKE_CASE_ = pred_prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1e-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1e-3 def _lowercase (self ): """simple docstring""" pass def _lowercase (self ): """simple docstring""" pass
626
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase_ ( ): '''simple docstring''' _a : List[str] = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=A , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=A , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=A ) return parser.parse_args() def UpperCAmelCase_ ( ): '''simple docstring''' _a : Dict = parse_args() # Import training_script as a module. _a : Any = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _a : List[str] = script_fpath.stem _a : List[str] = importlib.import_module(A ) # Patch sys.argv _a : List[str] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
424
'''simple docstring''' def UpperCAmelCase_ ( A , A , A ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def UpperCAmelCase_ ( A , A , A ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def UpperCAmelCase_ ( A , A , A ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def UpperCAmelCase_ ( A , A , A ): '''simple docstring''' return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
424
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer _lowerCAmelCase: List[str] = ['bert-base-uncased', 'bert-base-cased'] _lowerCAmelCase: List[str] = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class lowercase_ (tf.keras.Model ): def __init__( self , lowercase_) -> List[str]: super().__init__() a__ =tokenizer a__ =AutoConfig.from_pretrained(lowercase_) a__ =TFAutoModel.from_config(lowercase_) def __UpperCamelCase ( self , lowercase_) -> Optional[int]: a__ =self.tokenizer(lowercase_) a__ =self.bert(**lowercase_) return out["pooler_output"] @require_tf @require_tensorflow_text class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> Dict: super().setUp() a__ =[ BertTokenizer.from_pretrained(lowercase_) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false a__ =[TFBertTokenizer.from_pretrained(lowercase_) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(lowercase_ , use_fast_bert_tokenizer=lowercase_) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers) == len(self.tf_tokenizers) a__ =[ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] a__ =list(zip(self.test_sentences , self.test_sentences[::-1])) def __UpperCamelCase ( self) -> List[str]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): a__ =tokenizer(lowercase_ , return_tensors='tf' , padding='longest') a__ =tf_tokenizer(lowercase_) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key])) @slow def __UpperCamelCase ( self) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: a__ =tf_tokenizer(self.paired_sentences) a__ =tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key])) @slow def __UpperCamelCase ( self) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: a__ =tf.function(lowercase_) for test_inputs in (self.test_sentences, self.paired_sentences): a__ =tf.constant(lowercase_) a__ =compiled_tokenizer(lowercase_) a__ =tf_tokenizer(lowercase_) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def __UpperCamelCase ( self) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: a__ =ModelToSave(tokenizer=lowercase_) a__ =tf.convert_to_tensor(self.test_sentences) a__ =model(lowercase_) # Build model with some sample inputs with TemporaryDirectory() as tempdir: a__ =Path(lowercase_) / 'saved.model' model.save(lowercase_) a__ =tf.keras.models.load_model(lowercase_) a__ =loaded_model(lowercase_) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1e-5)
20
'''simple docstring''' def lowerCamelCase ( _snake_case : int = 50_000_000 ): '''simple docstring''' lowercase__ = set() lowercase__ = int((limit - 24) ** (1 / 2) ) lowercase__ = set(range(3 ,prime_square_limit + 1 ,2 ) ) primes.add(2 ) for p in range(3 ,prime_square_limit + 1 ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,prime_square_limit + 1 ,_snake_case ) ) ) for primea in primes: lowercase__ = primea * primea for primea in primes: lowercase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowercase__ = primea * primea * primea * primea lowercase__ = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f'''{solution() = }''')
267
0
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=1 , __lowercase=False , **__lowercase ): super().__init__(**__lowercase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = d_embed UpperCAmelCase__ = d_proj UpperCAmelCase__ = cutoffs + [vocab_size] UpperCAmelCase__ = [0] + self.cutoffs UpperCAmelCase__ = div_val UpperCAmelCase__ = self.cutoffs[0] UpperCAmelCase__ = len(self.cutoffs ) - 1 UpperCAmelCase__ = self.shortlist_size + self.n_clusters UpperCAmelCase__ = keep_order UpperCAmelCase__ = [] UpperCAmelCase__ = [] def A__ ( self , __lowercase ): if self.n_clusters > 0: UpperCAmelCase__ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=__lowercase , name="""cluster_weight""" ) UpperCAmelCase__ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=__lowercase , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCAmelCase__ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=__lowercase , name=F'''out_projs_._{i}''' , ) self.out_projs.append(__lowercase ) else: self.out_projs.append(__lowercase ) UpperCAmelCase__ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=__lowercase , name=F'''out_layers_._{i}_._weight''' , ) UpperCAmelCase__ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=__lowercase , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ = self.d_embed // (self.div_val**i) UpperCAmelCase__ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=__lowercase , name=F'''out_projs_._{i}''' ) self.out_projs.append(__lowercase ) UpperCAmelCase__ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=__lowercase , name=F'''out_layers_._{i}_._weight''' , ) UpperCAmelCase__ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=__lowercase , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(__lowercase ) @staticmethod def A__ ( __lowercase , __lowercase , __lowercase , __lowercase=None ): UpperCAmelCase__ = x if proj is not None: UpperCAmelCase__ = tf.einsum("""ibd,ed->ibe""" , __lowercase , __lowercase ) return tf.einsum("""ibd,nd->ibn""" , __lowercase , __lowercase ) + b @staticmethod def A__ ( __lowercase , __lowercase ): UpperCAmelCase__ = shape_list(__lowercase ) UpperCAmelCase__ = tf.range(lp_size[0] , dtype=target.dtype ) UpperCAmelCase__ = tf.stack([r, target] , 1 ) return tf.gather_nd(__lowercase , __lowercase ) def A__ ( self , __lowercase , __lowercase , __lowercase=True , __lowercase=False ): UpperCAmelCase__ = 0 if self.n_clusters == 0: UpperCAmelCase__ = self._logit(__lowercase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCAmelCase__ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__lowercase , logits=__lowercase ) UpperCAmelCase__ = tf.nn.log_softmax(__lowercase , axis=-1 ) else: UpperCAmelCase__ = shape_list(__lowercase ) UpperCAmelCase__ = [] UpperCAmelCase__ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCAmelCase__ = (target >= l_idx) & (target < r_idx) UpperCAmelCase__ = tf.where(__lowercase ) UpperCAmelCase__ = tf.boolean_mask(__lowercase , __lowercase ) - l_idx if self.div_val == 1: UpperCAmelCase__ = self.out_layers[0][0][l_idx:r_idx] UpperCAmelCase__ = self.out_layers[0][1][l_idx:r_idx] else: UpperCAmelCase__ = self.out_layers[i][0] UpperCAmelCase__ = self.out_layers[i][1] if i == 0: UpperCAmelCase__ = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCAmelCase__ = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCAmelCase__ = self._logit(__lowercase , __lowercase , __lowercase , self.out_projs[0] ) UpperCAmelCase__ = tf.nn.log_softmax(__lowercase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCAmelCase__ = tf.boolean_mask(__lowercase , __lowercase ) UpperCAmelCase__ = self._gather_logprob(__lowercase , __lowercase ) else: UpperCAmelCase__ = self._logit(__lowercase , __lowercase , __lowercase , self.out_projs[i] ) UpperCAmelCase__ = tf.nn.log_softmax(__lowercase ) UpperCAmelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCAmelCase__ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__lowercase ) if target is not None: UpperCAmelCase__ = tf.boolean_mask(__lowercase , __lowercase ) UpperCAmelCase__ = tf.boolean_mask(__lowercase , __lowercase ) UpperCAmelCase__ = self._gather_logprob(__lowercase , __lowercase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__lowercase , -cur_logprob , shape_list(__lowercase ) ) UpperCAmelCase__ = tf.concat(__lowercase , axis=-1 ) if target is not None: if return_mean: UpperCAmelCase__ = tf.reduce_mean(__lowercase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__lowercase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__lowercase , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
713
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a : str = logging.get_logger(__name__) # pylint: disable=invalid-name a : Any = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=8 ) ->str: UpperCAmelCase__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , ): super().__init__() self.register_modules( unet=__lowercase , scheduler=__lowercase , movq=__lowercase , ) UpperCAmelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if latents is None: UpperCAmelCase__ = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCAmelCase__ = latents.to(__lowercase ) UpperCAmelCase__ = latents * scheduler.init_noise_sigma return latents def A__ ( self , __lowercase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase__ = torch.device(F'''cuda:{gpu_id}''' ) UpperCAmelCase__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowercase , __lowercase ) def A__ ( self , __lowercase=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase__ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase__ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase__ , UpperCAmelCase__ = cpu_offload_with_hook(__lowercase , __lowercase , prev_module_hook=__lowercase ) # We'll offload the last model manually. UpperCAmelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A__ ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowercase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowercase ) def __call__( self , __lowercase , __lowercase , __lowercase , __lowercase = 512 , __lowercase = 512 , __lowercase = 100 , __lowercase = 4.0 , __lowercase = 1 , __lowercase = None , __lowercase = None , __lowercase = "pil" , __lowercase = True , ): UpperCAmelCase__ = self._execution_device UpperCAmelCase__ = guidance_scale > 1.0 if isinstance(__lowercase , __lowercase ): UpperCAmelCase__ = torch.cat(__lowercase , dim=0 ) if isinstance(__lowercase , __lowercase ): UpperCAmelCase__ = torch.cat(__lowercase , dim=0 ) if isinstance(__lowercase , __lowercase ): UpperCAmelCase__ = torch.cat(__lowercase , dim=0 ) UpperCAmelCase__ = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCAmelCase__ = image_embeds.repeat_interleave(__lowercase , dim=0 ) UpperCAmelCase__ = negative_image_embeds.repeat_interleave(__lowercase , dim=0 ) UpperCAmelCase__ = hint.repeat_interleave(__lowercase , dim=0 ) UpperCAmelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowercase ) UpperCAmelCase__ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__lowercase ) self.scheduler.set_timesteps(__lowercase , device=__lowercase ) UpperCAmelCase__ = self.scheduler.timesteps UpperCAmelCase__ = self.movq.config.latent_channels UpperCAmelCase__ , UpperCAmelCase__ = downscale_height_and_width(__lowercase , __lowercase , self.movq_scale_factor ) # create initial latent UpperCAmelCase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __lowercase , __lowercase , __lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__lowercase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ = {"""image_embeds""": image_embeds, """hint""": hint} UpperCAmelCase__ = self.unet( sample=__lowercase , timestep=__lowercase , encoder_hidden_states=__lowercase , added_cond_kwargs=__lowercase , return_dict=__lowercase , )[0] if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.chunk(2 ) UpperCAmelCase__ , UpperCAmelCase__ = variance_pred.chunk(2 ) UpperCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step( __lowercase , __lowercase , __lowercase , generator=__lowercase , )[0] # post-processing UpperCAmelCase__ = self.movq.decode(__lowercase , force_not_quantize=__lowercase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: UpperCAmelCase__ = image * 0.5 + 0.5 UpperCAmelCase__ = image.clamp(0 , 1 ) UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(__lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowercase )
422
0
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def __A ( lowerCAmelCase_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCAmelCase : int = k.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if k.startswith("""encoder""" ): _UpperCAmelCase : int = k.replace(""".attn""" , """.self_attn""" ) _UpperCAmelCase : Optional[int] = k.replace("""norm1""" , """self_attn_layer_norm""" ) _UpperCAmelCase : str = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): _UpperCAmelCase : str = k.replace("""norm1""" , """self_attn_layer_norm""" ) _UpperCAmelCase : List[Any] = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) _UpperCAmelCase : Any = k.replace("""norm3""" , """final_layer_norm""" ) return k def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: _UpperCAmelCase : Union[str, Any] = sd.pop(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd _UpperCAmelCase : str = v lowerCAmelCase_ : Any = ['''START'''] @torch.no_grad() def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = torch.load(lowerCAmelCase_ , map_location="""cpu""" ) _UpperCAmelCase : str = model["""model"""] _UpperCAmelCase : int = BlenderbotConfig.from_json_file(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = BlenderbotForConditionalGeneration(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = m.model.state_dict().keys() _UpperCAmelCase : int = [] _UpperCAmelCase : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCAmelCase : Optional[int] = rename_state_dict_key(lowerCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCAmelCase : Tuple = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowerCAmelCase_ ) m.model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) m.half() m.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowerCAmelCase_ : List[str] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
414
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __lowerCAmelCase ( __a ): snake_case : Union[List[PIL.Image.Image], np.ndarray] snake_case : Optional[List[bool]] snake_case : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
414
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = emb.weight.shape __SCREAMING_SNAKE_CASE = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_="facebook/mbart-large-en-ro" , lowerCAmelCase_=False , lowerCAmelCase_=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.load(lowerCAmelCase_ , map_location="cpu" )["model"] remove_ignore_keys_(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = state_dict["encoder.embed_tokens.weight"].shape[0] __SCREAMING_SNAKE_CASE = MBartConfig.from_pretrained(lowerCAmelCase_ , vocab_size=lowerCAmelCase_ ) if mbart_aa and finetuned: __SCREAMING_SNAKE_CASE = "relu" __SCREAMING_SNAKE_CASE = state_dict["decoder.embed_tokens.weight"] __SCREAMING_SNAKE_CASE = MBartForConditionalGeneration(lowerCAmelCase_ ) model.model.load_state_dict(lowerCAmelCase_ ) if finetuned: __SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') a__ : Optional[Any] = parser.parse_args() a__ : Optional[int] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
706
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return EnvironmentCommand() class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @staticmethod def UpperCAmelCase_ ( UpperCAmelCase__ : ArgumentParser ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = parser.add_parser("env" ) download_parser.set_defaults(func=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = huggingface_hub.__version__ __SCREAMING_SNAKE_CASE = "not installed" __SCREAMING_SNAKE_CASE = "NA" if is_torch_available(): import torch __SCREAMING_SNAKE_CASE = torch.__version__ __SCREAMING_SNAKE_CASE = torch.cuda.is_available() __SCREAMING_SNAKE_CASE = "not installed" if is_transformers_available(): import transformers __SCREAMING_SNAKE_CASE = transformers.__version__ __SCREAMING_SNAKE_CASE = "not installed" if is_accelerate_available(): import accelerate __SCREAMING_SNAKE_CASE = accelerate.__version__ __SCREAMING_SNAKE_CASE = "not installed" if is_xformers_available(): import xformers __SCREAMING_SNAKE_CASE = xformers.__version__ __SCREAMING_SNAKE_CASE = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": F"""{pt_version} ({pt_cuda_available})""", "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(UpperCAmelCase__ ) ) return info @staticmethod def UpperCAmelCase_ ( UpperCAmelCase__ : Optional[Any] ) -> str: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
553
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __snake_case : def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=True ,a_=True ,a_=True ,a_=99 ,a_=32 ,a_=2 ,a_=4 ,a_=37 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=16 ,a_=2 ,a_=0.02 ,a_=3 ,a_=4 ,a_=None ,a_=1000 ,): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = range_bbox def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase__ = bbox[i, j, 3] lowerCAmelCase__ = bbox[i, j, 1] lowerCAmelCase__ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase__ = bbox[i, j, 2] lowerCAmelCase__ = bbox[i, j, 0] lowerCAmelCase__ = t lowerCAmelCase__ = tf.convert_to_tensor(a_ ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] ,self.num_choices ) lowerCAmelCase__ = LayoutLMConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = TFLayoutLMModel(config=a_ ) lowerCAmelCase__ = model(a_ ,a_ ,attention_mask=a_ ,token_type_ids=a_ ) lowerCAmelCase__ = model(a_ ,a_ ,token_type_ids=a_ ) lowerCAmelCase__ = model(a_ ,a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = TFLayoutLMForMaskedLM(config=a_ ) lowerCAmelCase__ = model(a_ ,a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFLayoutLMForSequenceClassification(config=a_ ) lowerCAmelCase__ = model(a_ ,a_ ,attention_mask=a_ ,token_type_ids=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFLayoutLMForTokenClassification(config=a_ ) lowerCAmelCase__ = model(a_ ,a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = TFLayoutLMForQuestionAnswering(config=a_ ) lowerCAmelCase__ = model(a_ ,a_ ,attention_mask=a_ ,token_type_ids=a_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class __snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 10 def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = TFLayoutLMModelTester(self ) lowerCAmelCase__ = ConfigTester(self ,config_class=a_ ,hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFLayoutLMModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" lowerCAmelCase__ = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase__ = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase__ = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase__ = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase__ = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase__ = model(input_ids=a_ ,bbox=a_ ,attention_mask=a_ ,token_type_ids=a_ ) # test the sequence output on [0, :3, :3] lowerCAmelCase__ = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] ,) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,a_ ,atol=1e-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase__ = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] ,a_ ,atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # initialize model with randomly initialized sequence classification head lowerCAmelCase__ = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' ,num_labels=2 ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase__ = model( input_ids=a_ ,bbox=a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=tf.convert_to_tensor([1, 1] ) ,) # test whether we get a loss as a scalar lowerCAmelCase__ = outputs.loss lowerCAmelCase__ = (2,) self.assertEqual(loss.shape ,a_ ) # test the shape of the logits lowerCAmelCase__ = outputs.logits lowerCAmelCase__ = (2, 2) self.assertEqual(logits.shape ,a_ ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # initialize model with randomly initialized token classification head lowerCAmelCase__ = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' ,num_labels=13 ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase__ = model( input_ids=a_ ,bbox=a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=a_ ) # test the shape of the logits lowerCAmelCase__ = outputs.logits lowerCAmelCase__ = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape ,a_ ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # initialize model with randomly initialized token classification head lowerCAmelCase__ = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase__ = model(input_ids=a_ ,bbox=a_ ,attention_mask=a_ ,token_type_ids=a_ ) # test the shape of the logits lowerCAmelCase__ = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape ,a_ ) self.assertEqual(outputs.end_logits.shape ,a_ )
193
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _lowerCAmelCase : Any = datasets.utils.logging.get_logger(__name__) _lowerCAmelCase : Any = ["names", "prefix"] _lowerCAmelCase : str = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] _lowerCAmelCase : List[str] = ["encoding_errors", "on_bad_lines"] _lowerCAmelCase : int = ["date_format"] @dataclass class __snake_case ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE__ = "," SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = "infer" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = "." SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = '"' SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 10000 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = "strict" SCREAMING_SNAKE_CASE__ = "error" SCREAMING_SNAKE_CASE__ = None def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" if self.delimiter is not None: lowerCAmelCase__ = self.delimiter if self.column_names is not None: lowerCAmelCase__ = self.column_names @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,a_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __snake_case ( datasets.ArrowBasedBuilder ): SCREAMING_SNAKE_CASE__ = CsvConfig def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowerCAmelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ ,(str, list, tuple) ): lowerCAmelCase__ = data_files if isinstance(a_ ,a_ ): lowerCAmelCase__ = [files] lowerCAmelCase__ = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'files': files} )] lowerCAmelCase__ = [] for split_name, files in data_files.items(): if isinstance(a_ ,a_ ): lowerCAmelCase__ = [files] lowerCAmelCase__ = [dl_manager.iter_files(a_ ) for file in files] splits.append(datasets.SplitGenerator(name=a_ ,gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" if self.config.features is not None: lowerCAmelCase__ = self.config.features.arrow_schema if all(not require_storage_cast(a_ ) for feature in self.config.features.values() ): # cheaper cast lowerCAmelCase__ = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=a_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowerCAmelCase__ = table_cast(a_ ,a_ ) return pa_table def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowerCAmelCase__ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(a_ ) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): lowerCAmelCase__ = pd.read_csv(a_ ,iterator=a_ ,dtype=a_ ,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(a_ ): lowerCAmelCase__ = pa.Table.from_pandas(a_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(a_ ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(a_ )}: {e}' ) raise
193
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): """simple docstring""" A_ = TextToVideoSDPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. A_ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def __A ( self: Optional[Any] ) -> List[Any]: torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) _A = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) _A = CLIPTextModel(__A ) _A = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _A = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def __A ( self: Union[str, Any] , __A: List[Any] , __A: Tuple=0 ) -> int: if str(__A ).startswith('''mps''' ): _A = torch.manual_seed(__A ) else: _A = torch.Generator(device=__A ).manual_seed(__A ) _A = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def __A ( self: List[Any] ) -> Dict: _A = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = TextToVideoSDPipeline(**__A ) _A = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) _A = self.get_dummy_inputs(__A ) _A = '''np''' _A = sd_pipe(**__A ).frames _A = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _A = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self: Dict ) -> str: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__A , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __A ( self: Union[str, Any] ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__A , expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def __A ( self: Any ) -> Optional[Any]: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def __A ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def __A ( self: Optional[int] ) -> List[str]: pass def __A ( self: List[Any] ) -> Dict: return super().test_progress_bar() @slow @skip_mps class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: List[Any] ) -> str: _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) _A = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) _A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _A = pipe.to('''cuda''' ) _A = '''Spiderman is surfing''' _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipe(__A , generator=__A , num_inference_steps=25 , output_type='''pt''' ).frames _A = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def __A ( self: List[Any] ) -> Union[str, Any]: _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) _A = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) _A = pipe.to('''cuda''' ) _A = '''Spiderman is surfing''' _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipe(__A , generator=__A , num_inference_steps=2 , output_type='''pt''' ).frames _A = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
720
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __A = NewType('DataClass', Any) __A = NewType('DataClassType', Any) def __A ( _lowercase ): '''simple docstring''' if isinstance(_lowercase , _lowercase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __A ( _lowercase ): '''simple docstring''' _A = {str(_lowercase ): choice for choice in choices} return lambda _lowercase : str_to_choice.get(_lowercase , _lowercase ) def __A ( *, _lowercase = None , _lowercase = None , _lowercase = dataclasses.MISSING , _lowercase = dataclasses.MISSING , _lowercase = None , **_lowercase , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _A = {} if aliases is not None: _A = aliases if help is not None: _A = help return dataclasses.field(metadata=_lowercase , default=_lowercase , default_factory=_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = 42 def __init__( self: Optional[Any] , __A: Union[DataClassType, Iterable[DataClassType]] , **__A: List[Any] ) -> str: # To make the default appear when using --help if "formatter_class" not in kwargs: _A = ArgumentDefaultsHelpFormatter super().__init__(**__A ) if dataclasses.is_dataclass(__A ): _A = [dataclass_types] _A = list(__A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__A ) @staticmethod def __A ( __A: ArgumentParser , __A: dataclasses.Field ) -> str: _A = f"""--{field.name}""" _A = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __A ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) _A = kwargs.pop('''aliases''' , [] ) if isinstance(__A , __A ): _A = [aliases] _A = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(__A , '''UnionType''' ) and isinstance(__A , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__A ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(__A ) not in field.type.__args__: # filter `str` in Union _A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _A = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _A = ( field.type.__args__[0] if isinstance(__A , field.type.__args__[1] ) else field.type.__args__[1] ) _A = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _A = {} if origin_type is Literal or (isinstance(field.type , __A ) and issubclass(field.type , __A )): if origin_type is Literal: _A = field.type.__args__ else: _A = [x.value for x in field.type] _A = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: _A = field.default else: _A = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _A = copy(__A ) # Hack because type=bool in argparse does not behave as we want. _A = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _A = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _A = default # This tells argparse we accept 0 or 1 value after --field_name _A = '''?''' # This is the value that will get picked if we do --field_name (without value) _A = True elif isclass(__A ) and issubclass(__A , __A ): _A = field.type.__args__[0] _A = '''+''' if field.default_factory is not dataclasses.MISSING: _A = field.default_factory() elif field.default is dataclasses.MISSING: _A = True else: _A = field.type if field.default is not dataclasses.MISSING: _A = field.default elif field.default_factory is not dataclasses.MISSING: _A = field.default_factory() else: _A = True parser.add_argument(__A , *__A , **__A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _A = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__A ) def __A ( self: Dict , __A: DataClassType ) -> List[Any]: if hasattr(__A , '''_argument_group_name''' ): _A = self.add_argument_group(dtype._argument_group_name ) else: _A = self try: _A = get_type_hints(__A ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__A ): _A = '''.'''.join(map(__A , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(__A ): if not field.init: continue _A = type_hints[field.name] self._parse_dataclass_field(__A , __A ) def __A ( self: int , __A: Any=None , __A: int=False , __A: Any=True , __A: Optional[Any]=None , __A: Any=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _A = [] if args_filename: args_files.append(Path(__A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _A = ArgumentParser() args_file_parser.add_argument(__A , type=__A , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) _A ,_A = args_file_parser.parse_known_args(args=__A ) _A = vars(__A ).get(args_file_flag.lstrip('''-''' ) , __A ) if cmd_args_file_paths: args_files.extend([Path(__A ) for p in cmd_args_file_paths] ) _A = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _A = file_args + args if args is not None else file_args + sys.argv[1:] _A ,_A = self.parse_known_args(args=__A ) _A = [] for dtype in self.dataclass_types: _A = {f.name for f in dataclasses.fields(__A ) if f.init} _A = {k: v for k, v in vars(__A ).items() if k in keys} for k in keys: delattr(__A , __A ) _A = dtype(**__A ) outputs.append(__A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def __A ( self: Tuple , __A: Dict[str, Any] , __A: bool = False ) -> Tuple[DataClass, ...]: _A = set(args.keys() ) _A = [] for dtype in self.dataclass_types: _A = {f.name for f in dataclasses.fields(__A ) if f.init} _A = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _A = dtype(**__A ) outputs.append(__A ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(__A )}""" ) return tuple(__A ) def __A ( self: Tuple , __A: str , __A: bool = False ) -> Tuple[DataClass, ...]: with open(Path(__A ) , encoding='''utf-8''' ) as open_json_file: _A = json.loads(open_json_file.read() ) _A = self.parse_dict(__A , allow_extra_keys=__A ) return tuple(__A ) def __A ( self: List[Any] , __A: str , __A: bool = False ) -> Tuple[DataClass, ...]: _A = self.parse_dict(yaml.safe_load(Path(__A ).read_text() ) , allow_extra_keys=__A ) return tuple(__A )
62
0
"""simple docstring""" from __future__ import annotations from random import choice def __snake_case ( SCREAMING_SNAKE_CASE: Dict ): """simple docstring""" return choice(SCREAMING_SNAKE_CASE ) def __snake_case ( SCREAMING_SNAKE_CASE: list[int] , SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = random_pivot(SCREAMING_SNAKE_CASE ) # partition based on pivot # linear time _lowerCAmelCase = [e for e in lst if e < pivot] _lowerCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(SCREAMING_SNAKE_CASE ) == k - 1: return pivot # pivot is in elements bigger than k elif len(SCREAMING_SNAKE_CASE ) < k - 1: return kth_number(SCREAMING_SNAKE_CASE , k - len(SCREAMING_SNAKE_CASE ) - 1 ) # pivot is in elements smaller than k else: return kth_number(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
580
"""simple docstring""" import sys _snake_case = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __snake_case ( SCREAMING_SNAKE_CASE: str = N ): """simple docstring""" _lowerCAmelCase = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE ) - 12 ): _lowerCAmelCase = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _lowerCAmelCase = product return largest_product if __name__ == "__main__": print(f'{solution() = }')
580
1
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase: def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any]=1_3 , SCREAMING_SNAKE_CASE : Optional[Any]=6_4 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Union[str, Any]=3 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Any=3_2 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : List[Any]=4 , SCREAMING_SNAKE_CASE : Optional[int]=3_7 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=1_0 , SCREAMING_SNAKE_CASE : int=0.02 , SCREAMING_SNAKE_CASE : Dict=[1, 1_6, 4, 4] , SCREAMING_SNAKE_CASE : List[str]=None , ) -> int: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = scope __snake_case = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __snake_case = (self.image_size // 3_2) ** 2 __snake_case = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 1_6, 3_2], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> int: '''simple docstring''' __snake_case = ViTHybridModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: '''simple docstring''' __snake_case = self.type_sequence_label_size __snake_case = ViTHybridForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase( _a , _a , unittest.TestCase ): snake_case_ : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () snake_case_ : str = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) snake_case_ : Tuple = False snake_case_ : Optional[Any] = False snake_case_ : Dict = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int: '''simple docstring''' __snake_case = ViTHybridModelTester(self ) __snake_case = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __snake_case = model_class(config=SCREAMING_SNAKE_CASE ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ViTHybridModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( ) -> List[str]: '''simple docstring''' __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> str: '''simple docstring''' __snake_case = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( SCREAMING_SNAKE_CASE ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE ) # verify the logits __snake_case = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) __snake_case = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow @require_accelerate def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' __snake_case = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) __snake_case = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ) __snake_case = model(**SCREAMING_SNAKE_CASE ) __snake_case = outputs.logits # model predicts one of the 1000 ImageNet classes __snake_case = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
473
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 10**-10 ) -> float: '''simple docstring''' __snake_case = a while True: __snake_case = Decimal(_lowerCAmelCase ) - ( Decimal(eval(_lowerCAmelCase ) ) / Decimal(eval(str(diff(_lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCAmelCase ) ) < precision: # noqa: S307 return float(_lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
473
1
from __future__ import annotations from dataclasses import dataclass @dataclass class _lowerCamelCase : """simple docstring""" snake_case = 42 snake_case = None snake_case = None def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): # Validation def is_valid_tree(SCREAMING_SNAKE_CASE ) -> bool: if node is None: return True if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(SCREAMING_SNAKE_CASE ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , SCREAMING_SNAKE_CASE , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , SCREAMING_SNAKE_CASE ) ) return is_binary_search_tree_recursive_check(SCREAMING_SNAKE_CASE , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
590
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 class _lowerCamelCase ( nn.Module ): """simple docstring""" snake_case = 42 snake_case = (16, 32, 96, 256) snake_case = jnp.floataa def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Optional[int] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) A_ : List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): A_ : Dict = self.block_out_channels[i] A_ : Union[str, Any] = self.block_out_channels[i + 1] A_ : Dict = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_SCREAMING_SNAKE_CASE ) A_ : str = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_SCREAMING_SNAKE_CASE ) A_ : str = blocks A_ : List[str] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ : Optional[int] = self.conv_in(_SCREAMING_SNAKE_CASE ) A_ : str = nn.silu(_SCREAMING_SNAKE_CASE ) for block in self.blocks: A_ : Union[str, Any] = block(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = nn.silu(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.conv_out(_SCREAMING_SNAKE_CASE ) return embedding @flax_register_to_config class _lowerCamelCase ( nn.Module , UpperCamelCase , UpperCamelCase ): """simple docstring""" snake_case = 32 snake_case = 4 snake_case = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case = False snake_case = (320, 640, 1_280, 1_280) snake_case = 2 snake_case = 8 snake_case = None snake_case = 1_280 snake_case = 0.0 snake_case = False snake_case = jnp.floataa snake_case = True snake_case = 0 snake_case = "rgb" snake_case = (16, 32, 96, 256) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->FrozenDict: '''simple docstring''' A_ : Dict = (1, self.in_channels, self.sample_size, self.sample_size) A_ : Any = jnp.zeros(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) A_ : str = jnp.ones((1,) , dtype=jnp.intaa ) A_ : Optional[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A_ : Dict = (1, 3, self.sample_size * 8, self.sample_size * 8) A_ : int = jnp.zeros(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) A_ , A_ : Any = jax.random.split(_SCREAMING_SNAKE_CASE ) A_ : Dict = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["params"] def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Union[str, Any] = self.block_out_channels A_ : Any = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A_ : Dict = self.num_attention_heads or self.attention_head_dim # input A_ : Dict = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A_ : Optional[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A_ : int = FlaxTimestepEmbedding(_SCREAMING_SNAKE_CASE , dtype=self.dtype ) A_ : int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) A_ : str = self.only_cross_attention if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[str] = (num_attention_heads,) * len(self.down_block_types ) # down A_ : List[str] = [] A_ : Optional[int] = [] A_ : Optional[int] = block_out_channels[0] A_ : Tuple = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_SCREAMING_SNAKE_CASE ) for i, down_block_type in enumerate(self.down_block_types ): A_ : Optional[int] = output_channel A_ : int = block_out_channels[i] A_ : Union[str, Any] = i == len(_SCREAMING_SNAKE_CASE ) - 1 if down_block_type == "CrossAttnDownBlock2D": A_ : str = FlaxCrossAttnDownBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: A_ : Dict = FlaxDownBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_SCREAMING_SNAKE_CASE ) for _ in range(self.layers_per_block ): A_ : List[str] = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_SCREAMING_SNAKE_CASE ) if not is_final_block: A_ : List[Any] = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_SCREAMING_SNAKE_CASE ) A_ : List[str] = down_blocks A_ : Tuple = controlnet_down_blocks # mid A_ : Dict = block_out_channels[-1] A_ : str = FlaxUNetMidBlockaDCrossAttn( in_channels=_SCREAMING_SNAKE_CASE , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) A_ : str = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , )->Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' A_ : Optional[int] = self.controlnet_conditioning_channel_order if channel_order == "bgr": A_ : int = jnp.flip(_SCREAMING_SNAKE_CASE , axis=1 ) # 1. time if not isinstance(_SCREAMING_SNAKE_CASE , jnp.ndarray ): A_ : Tuple = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_SCREAMING_SNAKE_CASE , jnp.ndarray ) and len(timesteps.shape ) == 0: A_ : Union[str, Any] = timesteps.astype(dtype=jnp.floataa ) A_ : Optional[Any] = jnp.expand_dims(_SCREAMING_SNAKE_CASE , 0 ) A_ : Optional[Any] = self.time_proj(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.time_embedding(_SCREAMING_SNAKE_CASE ) # 2. pre-process A_ : str = jnp.transpose(_SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) A_ : Optional[Any] = self.conv_in(_SCREAMING_SNAKE_CASE ) A_ : List[str] = jnp.transpose(_SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) A_ : List[Any] = self.controlnet_cond_embedding(_SCREAMING_SNAKE_CASE ) sample += controlnet_cond # 3. down A_ : List[str] = (sample,) for down_block in self.down_blocks: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ , A_ : Tuple = down_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=not train ) else: A_ , A_ : Union[str, Any] = down_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=not train ) down_block_res_samples += res_samples # 4. mid A_ : Optional[int] = self.mid_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=not train ) # 5. contronet blocks A_ : str = () for down_block_res_sample, controlnet_block in zip(_SCREAMING_SNAKE_CASE , self.controlnet_down_blocks ): A_ : List[Any] = controlnet_block(_SCREAMING_SNAKE_CASE ) controlnet_down_block_res_samples += (down_block_res_sample,) A_ : Dict = controlnet_down_block_res_samples A_ : Tuple = self.controlnet_mid_block(_SCREAMING_SNAKE_CASE ) # 6. scaling A_ : Dict = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_SCREAMING_SNAKE_CASE , mid_block_res_sample=_SCREAMING_SNAKE_CASE )
590
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): _SCREAMING_SNAKE_CASE : Tuple = True from torch.cuda.amp import autocast _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) def UpperCAmelCase_ ( _A=None , _A=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_A ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a = field( default=A__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a = field( default=A__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) a = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) a = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) a = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) a = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) a = field( default=0.0_5 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) a = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default=A__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) a = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) a = field( default=A__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) a = field( default=A__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) a = field( default=A__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a = field( default=A__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) a = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = 42 a = True a = None a = None a = None a = None def __call__( self : Optional[Any] , __lowerCamelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods SCREAMING_SNAKE_CASE__ = [{'''input_values''': feature['''input_values''']} for feature in features] SCREAMING_SNAKE_CASE__ = [{'''input_ids''': feature['''labels''']} for feature in features] SCREAMING_SNAKE_CASE__ = self.processor.pad( __lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ = self.processor.pad( labels=__lowerCamelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly SCREAMING_SNAKE_CASE__ = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) SCREAMING_SNAKE_CASE__ = labels return batch class UpperCAmelCase__ ( A__ ): """simple docstring""" def lowercase_ ( self : str , __lowerCamelCase : nn.Module , __lowerCamelCase : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() SCREAMING_SNAKE_CASE__ = self._prepare_inputs(__lowerCamelCase ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE__ = self.compute_loss(__lowerCamelCase , __lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = self.compute_loss(__lowerCamelCase , __lowerCamelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE__ = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(__lowerCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__lowerCamelCase ) else: loss.backward() return loss.detach() def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. SCREAMING_SNAKE_CASE__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _A ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: SCREAMING_SNAKE_CASE__ = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) SCREAMING_SNAKE_CASE__ = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer SCREAMING_SNAKE_CASE__ = F'''[{"".join(data_args.chars_to_ignore )}]''' def remove_special_characters(_A ): SCREAMING_SNAKE_CASE__ = re.sub(_A , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch SCREAMING_SNAKE_CASE__ = train_dataset.map(_A , remove_columns=['''sentence'''] ) SCREAMING_SNAKE_CASE__ = eval_dataset.map(_A , remove_columns=['''sentence'''] ) def extract_all_chars(_A ): SCREAMING_SNAKE_CASE__ = ''' '''.join(batch['''text'''] ) SCREAMING_SNAKE_CASE__ = list(set(_A ) ) return {"vocab": [vocab], "all_text": [all_text]} SCREAMING_SNAKE_CASE__ = train_dataset.map( _A , batched=_A , batch_size=-1 , keep_in_memory=_A , remove_columns=train_dataset.column_names , ) SCREAMING_SNAKE_CASE__ = train_dataset.map( _A , batched=_A , batch_size=-1 , keep_in_memory=_A , remove_columns=eval_dataset.column_names , ) SCREAMING_SNAKE_CASE__ = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in enumerate(_A )} SCREAMING_SNAKE_CASE__ = vocab_dict[''' '''] del vocab_dict[" "] SCREAMING_SNAKE_CASE__ = len(_A ) SCREAMING_SNAKE_CASE__ = len(_A ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(_A , _A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=_A , return_attention_mask=_A ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) SCREAMING_SNAKE_CASE__ = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE__ = min(len(_A ) , data_args.max_train_samples ) SCREAMING_SNAKE_CASE__ = train_dataset.select(range(_A ) ) if data_args.max_val_samples is not None: SCREAMING_SNAKE_CASE__ = eval_dataset.select(range(data_args.max_val_samples ) ) SCREAMING_SNAKE_CASE__ = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_A ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = torchaudio.load(batch['''path'''] ) SCREAMING_SNAKE_CASE__ = resampler(_A ).squeeze().numpy() SCREAMING_SNAKE_CASE__ = 1_60_00 SCREAMING_SNAKE_CASE__ = batch['''text'''] return batch SCREAMING_SNAKE_CASE__ = train_dataset.map( _A , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) SCREAMING_SNAKE_CASE__ = eval_dataset.map( _A , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_A ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' SCREAMING_SNAKE_CASE__ = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(_A ) return batch SCREAMING_SNAKE_CASE__ = train_dataset.map( _A , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_A , num_proc=data_args.preprocessing_num_workers , ) SCREAMING_SNAKE_CASE__ = eval_dataset.map( _A , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_A , num_proc=data_args.preprocessing_num_workers , ) # Metric SCREAMING_SNAKE_CASE__ = datasets.load_metric('''wer''' ) def compute_metrics(_A ): SCREAMING_SNAKE_CASE__ = pred.predictions SCREAMING_SNAKE_CASE__ = np.argmax(_A , axis=-1 ) SCREAMING_SNAKE_CASE__ = processor.tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ = processor.batch_decode(_A ) # we do not want to group tokens when computing the metrics SCREAMING_SNAKE_CASE__ = processor.batch_decode(pred.label_ids , group_tokens=_A ) SCREAMING_SNAKE_CASE__ = wer_metric.compute(predictions=_A , references=_A ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator SCREAMING_SNAKE_CASE__ = DataCollatorCTCWithPadding(processor=_A , padding=_A ) # Initialize our Trainer SCREAMING_SNAKE_CASE__ = CTCTrainer( model=_A , data_collator=_A , args=_A , compute_metrics=_A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: SCREAMING_SNAKE_CASE__ = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): SCREAMING_SNAKE_CASE__ = model_args.model_name_or_path else: SCREAMING_SNAKE_CASE__ = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) SCREAMING_SNAKE_CASE__ = trainer.train(resume_from_checkpoint=_A ) trainer.save_model() SCREAMING_SNAKE_CASE__ = train_result.metrics SCREAMING_SNAKE_CASE__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_A ) ) SCREAMING_SNAKE_CASE__ = min(_A , len(_A ) ) trainer.log_metrics('''train''' , _A ) trainer.save_metrics('''train''' , _A ) trainer.save_state() # Evaluation SCREAMING_SNAKE_CASE__ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE__ = trainer.evaluate() SCREAMING_SNAKE_CASE__ = data_args.max_val_samples if data_args.max_val_samples is not None else len(_A ) SCREAMING_SNAKE_CASE__ = min(_A , len(_A ) ) trainer.log_metrics('''eval''' , _A ) trainer.save_metrics('''eval''' , _A ) return results if __name__ == "__main__": main()
710
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def UpperCAmelCase_ ( _A , _A , _A=[] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = size[0] - overlap_pixels * 2 SCREAMING_SNAKE_CASE__ = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels SCREAMING_SNAKE_CASE__ = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 SCREAMING_SNAKE_CASE__ = np.pad(_A , mode='''linear_ramp''' , pad_width=_A , end_values=0 ) if "l" in remove_borders: SCREAMING_SNAKE_CASE__ = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: SCREAMING_SNAKE_CASE__ = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: SCREAMING_SNAKE_CASE__ = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: SCREAMING_SNAKE_CASE__ = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return max(_A , min(_A , _A ) ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = list(_A ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap SCREAMING_SNAKE_CASE__ = clamp_rect(_A , [0, 0] , [image_size[0], image_size[1]] ) return rect def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(_A , (original_slice, 0) ) return result def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) SCREAMING_SNAKE_CASE__ = tile.crop(_A ) return tile def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = n % d return n - divisor class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : int , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : CLIPTextModel , __lowerCamelCase : CLIPTokenizer , __lowerCamelCase : UNetaDConditionModel , __lowerCamelCase : DDPMScheduler , __lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __lowerCamelCase : int = 350 , ) -> int: super().__init__( vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , max_noise_level=__lowerCamelCase , ) def lowercase_ ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : str , **__lowerCamelCase : Tuple ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) SCREAMING_SNAKE_CASE__ = add_overlap_rect(__lowerCamelCase , __lowerCamelCase , image.size ) SCREAMING_SNAKE_CASE__ = image.crop(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] SCREAMING_SNAKE_CASE__ = translated_slice_x - (original_image_slice / 2) SCREAMING_SNAKE_CASE__ = max(0 , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = squeeze_tile(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = to_input.size SCREAMING_SNAKE_CASE__ = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) SCREAMING_SNAKE_CASE__ = super(__lowerCamelCase , self ).__call__(image=__lowerCamelCase , **__lowerCamelCase ).images[0] SCREAMING_SNAKE_CASE__ = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) SCREAMING_SNAKE_CASE__ = unsqueeze_tile(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) SCREAMING_SNAKE_CASE__ = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) SCREAMING_SNAKE_CASE__ = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__lowerCamelCase ) , mode='''L''' , ) final_image.paste( __lowerCamelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __lowerCamelCase ) @torch.no_grad() def __call__( self : List[str] , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , __lowerCamelCase : int = 75 , __lowerCamelCase : float = 9.0 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 128 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ) -> List[Any]: SCREAMING_SNAKE_CASE__ = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) SCREAMING_SNAKE_CASE__ = math.ceil(image.size[0] / tile_size ) SCREAMING_SNAKE_CASE__ = math.ceil(image.size[1] / tile_size ) SCREAMING_SNAKE_CASE__ = tcx * tcy SCREAMING_SNAKE_CASE__ = 0 for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): self._process_tile( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prompt=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , noise_level=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''stabilityai/stable-diffusion-x4-upscaler''' SCREAMING_SNAKE_CASE__ = StableDiffusionTiledUpscalePipeline.from_pretrained(_A , revision='''fp16''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipe.to('''cuda''' ) SCREAMING_SNAKE_CASE__ = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(_A ): print(F'''progress: {obj["progress"]:.4f}''' ) obj["image"].save('''diffusers_library_progress.jpg''' ) SCREAMING_SNAKE_CASE__ = pipe(image=_A , prompt='''Black font, white background, vector''' , noise_level=40 , callback=_A ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
472
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : str = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = val def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Optional[int] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ : List[Any] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) snake_case_ : Optional[Any] = value else: snake_case_ : Optional[int] = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Any = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : str = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) snake_case_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Any = in_proj_weight[:2_5_6, :] snake_case_ : str = in_proj_bias[:2_5_6] snake_case_ : List[str] = in_proj_weight[2_5_6:5_1_2, :] snake_case_ : Union[str, Any] = in_proj_bias[2_5_6:5_1_2] snake_case_ : Optional[int] = in_proj_weight[-2_5_6:, :] snake_case_ : Dict = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention snake_case_ : List[str] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) snake_case_ : Any = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Optional[int] = in_proj_weight[:2_5_6, :] snake_case_ : Dict = in_proj_bias[:2_5_6] snake_case_ : Any = in_proj_weight[2_5_6:5_1_2, :] snake_case_ : Union[str, Any] = in_proj_bias[2_5_6:5_1_2] snake_case_ : Tuple = in_proj_weight[-2_5_6:, :] snake_case_ : Union[str, Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention snake_case_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) snake_case_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict snake_case_ : Tuple = in_proj_weight_cross_attn[:2_5_6, :] snake_case_ : List[Any] = in_proj_bias_cross_attn[:2_5_6] snake_case_ : List[str] = in_proj_weight_cross_attn[2_5_6:5_1_2, :] snake_case_ : str = in_proj_bias_cross_attn[2_5_6:5_1_2] snake_case_ : List[Any] = in_proj_weight_cross_attn[-2_5_6:, :] snake_case_ : List[str] = in_proj_bias_cross_attn[-2_5_6:] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ , snake_case_ : Any = image.size snake_case_ : Tuple = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = 8_0_0 if """detection""" in checkpoint_url else 1_0_0_0 snake_case_ : str = target_max_size / current_max_size snake_case_ : List[str] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = F.to_tensor(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = F.normalize(SCREAMING_SNAKE_CASE__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" logger.info("""Converting model...""" ) # load original state dict snake_case_ : str = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = rename_backbone_keys(SCREAMING_SNAKE_CASE__ ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : Any = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): snake_case_ : List[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = val # create HuggingFace model and load state dict snake_case_ : str = TableTransformerConfig( backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: snake_case_ : Any = 1_5 snake_case_ : Optional[Any] = 2 snake_case_ : Dict = {0: """table""", 1: """table rotated"""} snake_case_ : Union[str, Any] = idalabel snake_case_ : str = {v: k for k, v in idalabel.items()} else: snake_case_ : Union[str, Any] = 1_2_5 snake_case_ : List[Any] = 6 snake_case_ : List[Any] = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } snake_case_ : Tuple = idalabel snake_case_ : int = {v: k for k, v in idalabel.items()} snake_case_ : Any = DetrImageProcessor( format="""coco_detection""" , max_size=8_0_0 if """detection""" in checkpoint_url else 1_0_0_0 ) snake_case_ : Tuple = TableTransformerForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # verify our conversion snake_case_ : Tuple = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" snake_case_ : Optional[Any] = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=SCREAMING_SNAKE_CASE__ ) snake_case_ : int = Image.open(SCREAMING_SNAKE_CASE__ ).convert("""RGB""" ) snake_case_ : Optional[Any] = normalize(resize(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ).unsqueeze(0 ) snake_case_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ ) if "detection" in checkpoint_url: snake_case_ : int = (1, 1_5, 3) snake_case_ : Tuple = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) snake_case_ : Any = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: snake_case_ : int = (1, 1_2_5, 7) snake_case_ : int = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) snake_case_ : int = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) snake_case_ : Optional[Any] = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ) image_processor.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a_ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
480
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class __lowercase : """simple docstring""" _A : float _A : TreeNode | None = None _A : TreeNode | None = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode | None ): """simple docstring""" def is_valid_tree(SCREAMING_SNAKE_CASE__ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(SCREAMING_SNAKE_CASE__ ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( SCREAMING_SNAKE_CASE__ : TreeNode | None , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , SCREAMING_SNAKE_CASE__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , SCREAMING_SNAKE_CASE__ ) ) return is_binary_search_tree_recursive_check(SCREAMING_SNAKE_CASE__ , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
480
1
def _snake_case ( __snake_case , __snake_case , __snake_case ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__snake_case , n - 1 , __snake_case ) * a) % mod else: _UpperCamelCase = binary_exponentiation(__snake_case , n / 2 , __snake_case ) return (b * b) % mod # a prime number _lowerCAmelCase = 701 _lowerCAmelCase = 1_000_000_000 _lowerCAmelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
706
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : Any ): _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_A ).to(_A ) _UpperCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _UpperCamelCase = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids _UpperCamelCase = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids _UpperCamelCase = model(input_ids.to(_A ) , labels=labels.to(_A ) ).loss _UpperCamelCase = -(labels.shape[-1] * loss.item()) _UpperCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
71
0
'''simple docstring''' from __future__ import annotations import time UpperCamelCase__ = list[tuple[int, int]] UpperCamelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int , _A : int , _A : int , _A : int , _A : Node | None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = pos_x UpperCAmelCase__ : Optional[int] = pos_y UpperCAmelCase__ : Optional[int] = (pos_y, pos_x) UpperCAmelCase__ : Optional[Any] = goal_x UpperCAmelCase__ : Tuple = goal_y UpperCAmelCase__ : Union[str, Any] = parent class lowerCamelCase_ : def __init__( self : int , _A : tuple[int, int] , _A : tuple[int, int] ): '''simple docstring''' UpperCAmelCase__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , _A ) UpperCAmelCase__ : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , _A ) UpperCAmelCase__ : int = [self.start] UpperCAmelCase__ : List[str] = False def lowercase_ ( self : Optional[Any] ): '''simple docstring''' while self.node_queue: UpperCAmelCase__ : Dict = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase__ : Tuple = True return self.retrace_path(_A ) UpperCAmelCase__ : Dict = self.get_successors(_A ) for node in successors: self.node_queue.append(_A ) if not self.reached: return [self.start.pos] return None def lowercase_ ( self : Optional[int] , _A : Node ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [] for action in delta: UpperCAmelCase__ : int = parent.pos_x + action[1] UpperCAmelCase__ : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_A , _A , self.target.pos_y , self.target.pos_x , _A ) ) return successors def lowercase_ ( self : Any , _A : Node | None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = node UpperCAmelCase__ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase__ : Dict = current_node.parent path.reverse() return path class lowerCamelCase_ : def __init__( self : int , _A : Optional[Any] , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = BreadthFirstSearch(_A , _A ) UpperCAmelCase__ : Dict = BreadthFirstSearch(_A , _A ) UpperCAmelCase__ : Union[str, Any] = False def lowercase_ ( self : List[str] ): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCAmelCase__ : Tuple = self.fwd_bfs.node_queue.pop(0 ) UpperCAmelCase__ : Optional[Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCAmelCase__ : Optional[Any] = True return self.retrace_bidirectional_path( _A , _A ) UpperCAmelCase__ : List[str] = current_bwd_node UpperCAmelCase__ : Dict = current_fwd_node UpperCAmelCase__ : str = { self.fwd_bfs: self.fwd_bfs.get_successors(_A ), self.bwd_bfs: self.bwd_bfs.get_successors(_A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowercase_ ( self : Dict , _A : Node , _A : Node ): '''simple docstring''' UpperCAmelCase__ : int = self.fwd_bfs.retrace_path(_A ) UpperCAmelCase__ : str = self.bwd_bfs.retrace_path(_A ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase__ : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCamelCase__ = (0, 0) UpperCamelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase__ = time.time() UpperCamelCase__ = BreadthFirstSearch(init, goal) UpperCamelCase__ = bfs.search() UpperCamelCase__ = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) UpperCamelCase__ = time.time() UpperCamelCase__ = BidirectionalBreadthFirstSearch(init, goal) UpperCamelCase__ = bd_bfs.search() UpperCamelCase__ = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
75
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=13 , UpperCamelCase_: List[Any]=64 , UpperCamelCase_: List[Any]=2 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Tuple=True , UpperCamelCase_: int=True , UpperCamelCase_: List[str]=32 , UpperCamelCase_: Dict=5 , UpperCamelCase_: List[Any]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: str="gelu" , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Tuple=10 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: List[str]=[1, 16, 4, 4] , UpperCamelCase_: Optional[int]=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __lowerCamelCase = (self.image_size // 32) ** 2 __lowerCamelCase = num_patches + 1 def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: str ): __lowerCamelCase = ViTHybridModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Tuple ): __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = ViTHybridForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : List[str] = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Tuple = False def lowerCAmelCase__ ( self: str ): __lowerCamelCase = ViTHybridModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCAmelCase__ ( self: List[str] ): pass def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(UpperCamelCase_ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=UpperCamelCase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __lowerCamelCase = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def lowerCAmelCase__ ( self: Tuple ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = ViTHybridModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__( unittest.TestCase): @cached_property def lowerCAmelCase__ ( self: str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCamelCase_ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**UpperCamelCase_ ) # verify the logits __lowerCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __lowerCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow @require_accelerate def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) __lowerCamelCase = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ) __lowerCamelCase = model(**UpperCamelCase_ ) __lowerCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes __lowerCamelCase = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
711
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = 'bert' def __init__( self: List[str] , UpperCamelCase_: str=3_05_22 , UpperCamelCase_: Optional[int]=7_68 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Optional[int]=5_12 , UpperCamelCase_: List[Any]=2 , UpperCamelCase_: int=0.02 , UpperCamelCase_: List[str]=1E-12 , UpperCamelCase_: Dict=0 , UpperCamelCase_: List[Any]="absolute" , UpperCamelCase_: Tuple=True , UpperCamelCase_: Tuple=None , **UpperCamelCase_: Optional[Any] , ): super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout class lowerCamelCase__( __lowerCamelCase): @property def lowerCAmelCase__ ( self: Any ): if self.task == "multiple-choice": __lowerCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
80
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _a ( lowercase__ : Dict ): '''simple docstring''' if isinstance(lowercase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class snake_case : def __lowercase( self : Dict , a_ : List[Any] , a_ : List[Any] )-> int: """simple docstring""" pass def __lowercase( self : Union[str, Any] )-> str: """simple docstring""" pass def __lowercase( self : Union[str, Any] )-> List[Any]: """simple docstring""" pass def __lowercase( self : Any , a_ : np.ndarray , a_ : np.ndarray , a_ : float )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = np.abs((a - b) ).max() self.assertLessEqual(a_ , a_ , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def __lowercase( self : Optional[Any] , a_ : Optional[int] , a_ : Any , a_ : Optional[Any] , a_ : Dict , a_ : List[Any]=None , **a_ : Optional[int] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Dict = FlaxVisionTextDualEncoderModel(a_ ) SCREAMING_SNAKE_CASE__ : Dict = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __lowercase( self : str , a_ : List[Any] , a_ : Dict , a_ : str , a_ : Optional[Any] , a_ : Optional[int]=None , **a_ : List[Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_vision_text_model(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Tuple = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE__ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**a_ ) SCREAMING_SNAKE_CASE__ : Dict = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowercase( self : Dict , a_ : Any , a_ : Any , a_ : List[str] , a_ : str , a_ : int=None , **a_ : Any )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.get_vision_text_model(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ ) SCREAMING_SNAKE_CASE__ : List[str] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = after_output[0] SCREAMING_SNAKE_CASE__ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a_ , 1e-3 ) def __lowercase( self : Optional[int] , a_ : List[Any] , a_ : Optional[int] , a_ : List[str] , a_ : int , a_ : int=None , **a_ : Union[str, Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.get_vision_text_model(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE__ : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**a_ ) SCREAMING_SNAKE_CASE__ : List[str] = model( input_ids=a_ , pixel_values=a_ , attention_mask=a_ , output_attentions=a_ ) SCREAMING_SNAKE_CASE__ : int = output.vision_model_output.attentions self.assertEqual(len(a_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : Any = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE__ : Dict = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE__ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE__ : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE__ : int = output.text_model_output.attentions self.assertEqual(len(a_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowercase( self : str , a_ : Optional[Any] , a_ : Optional[int] , a_ : List[str] )-> Optional[int]: """simple docstring""" pt_model.to(a_ ) pt_model.eval() # prepare inputs SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs_dict SCREAMING_SNAKE_CASE__ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = pt_model(**a_ ).to_tuple() SCREAMING_SNAKE_CASE__ : Union[str, Any] = fx_model(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(a_ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : str = FlaxVisionTextDualEncoderModel.from_pretrained(a_ , from_pt=a_ ) SCREAMING_SNAKE_CASE__ : int = fx_model_loaded(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(a_ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = VisionTextDualEncoderModel.from_pretrained(a_ , from_flax=a_ ) pt_model_loaded.to(a_ ) pt_model_loaded.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = pt_model_loaded(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(a_ , pt_output_loaded.numpy() , 4e-2 ) def __lowercase( self : int , a_ : List[str] , a_ : str , a_ : Tuple )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = VisionTextDualEncoderModel(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaxVisionTextDualEncoderModel(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , a_ ) SCREAMING_SNAKE_CASE__ : str = fx_state self.check_pt_flax_equivalence(a_ , a_ , a_ ) def __lowercase( self : int , a_ : List[Any] , a_ : int , a_ : List[Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(a_ , a_ ) SCREAMING_SNAKE_CASE__ : List[str] = VisionTextDualEncoderModel(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaxVisionTextDualEncoderModel(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = load_flax_weights_in_pytorch_model(a_ , fx_model.params ) self.check_pt_flax_equivalence(a_ , a_ , a_ ) def __lowercase( self : Union[str, Any] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a_ ) def __lowercase( self : Any )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a_ ) def __lowercase( self : str )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() self.check_save_load(**a_ ) def __lowercase( self : int )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a_ ) @is_pt_flax_cross_test def __lowercase( self : int )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Optional[int] = config_inputs_dict.pop('vision_config' ) SCREAMING_SNAKE_CASE__ : List[Any] = config_inputs_dict.pop('text_config' ) SCREAMING_SNAKE_CASE__ : Tuple = config_inputs_dict self.check_equivalence_pt_to_flax(a_ , a_ , a_ ) self.check_equivalence_flax_to_pt(a_ , a_ , a_ ) @slow def __lowercase( self : str )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.get_pretrained_model_and_inputs() SCREAMING_SNAKE_CASE__ : Any = model_a(**a_ ) SCREAMING_SNAKE_CASE__ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Any = FlaxVisionTextDualEncoderModel.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_a(**a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = after_outputs[0] SCREAMING_SNAKE_CASE__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a_ , 1e-5 ) @require_flax class snake_case ( UpperCamelCase_ , unittest.TestCase ): def __lowercase( self : Union[str, Any] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=a_ , text_from_pt=a_ , ) SCREAMING_SNAKE_CASE__ : Tuple = 13 SCREAMING_SNAKE_CASE__ : Dict = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase( self : List[str] , a_ : Any , a_ : Tuple )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = FlaxViTModel(a_ ) SCREAMING_SNAKE_CASE__ : int = FlaxBertModel(a_ ) return vision_model, text_model def __lowercase( self : Union[str, Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE__ : Dict = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Dict = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = vision_config_and_inputs SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class snake_case ( UpperCamelCase_ , unittest.TestCase ): def __lowercase( self : List[Any] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=a_ , text_from_pt=a_ , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 13 SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE__ : List[str] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase( self : str , a_ : Optional[int] , a_ : str )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = FlaxCLIPVisionModel(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = FlaxBertModel(a_ ) return vision_model, text_model def __lowercase( self : str )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE__ : Any = clip_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : int = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = vision_config_and_inputs SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class snake_case ( unittest.TestCase ): @slow def __lowercase( self : Optional[int] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) SCREAMING_SNAKE_CASE__ : Tuple = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ : Optional[int] = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a_ , padding=a_ , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : Tuple = model(**a_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) SCREAMING_SNAKE_CASE__ : Any = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , a_ , atol=1e-3 ) )
85
from __future__ import annotations import requests UpperCamelCase_ = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def _UpperCAmelCase ( A , A = 1 , A = "new" , A = None ): '''simple docstring''' UpperCAmelCase__ =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(A ) - valid_terms ) ): UpperCAmelCase__ =F"""Invalid search term: {invalid_search_terms}""" raise ValueError(A ) UpperCAmelCase__ =requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError UpperCAmelCase__ =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(A )} UpperCAmelCase__ ={} for id_ in range(A ): UpperCAmelCase__ ={ item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
625
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : Union[str, Any] = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ : List[str] = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = ['MaskFormerFeatureExtractor'] lowercase_ : Dict = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : str = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] lowercase_ : Optional[Any] = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowercase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
107
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def snake_case (__lowercase ) -> Union[str, Any]: '''simple docstring''' _snake_case : int = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F"""{test_file} instead.""" ) _snake_case : Any = components[-1] if not test_fn.endswith("py" ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) _snake_case : str = components[:-1] + [test_fn.replace(".py" , "" )] _snake_case : List[Any] = ".".join(UpperCamelCase__ ) return test_module_path def snake_case (__lowercase ) -> Dict: '''simple docstring''' _snake_case : List[Any] = get_module_path(UpperCamelCase__ ) _snake_case : Optional[Any] = importlib.import_module(UpperCamelCase__ ) return test_module def snake_case (__lowercase ) -> Union[str, Any]: '''simple docstring''' _snake_case : Optional[int] = [] _snake_case : Optional[int] = get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(UpperCamelCase__ , UpperCamelCase__ ) ) # sort with class names return sorted(UpperCamelCase__ , key=lambda __lowercase : x.__name__ ) def snake_case (__lowercase ) -> List[str]: '''simple docstring''' _snake_case : List[Any] = [] _snake_case : Optional[int] = get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): _snake_case : Any = getattr(UpperCamelCase__ , UpperCamelCase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _snake_case : Tuple = getattr(UpperCamelCase__ , "all_model_classes" , [] ) if len(UpperCamelCase__ ) > 0: test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__ , key=lambda __lowercase : x.__name__ ) def snake_case (__lowercase ) -> List[Any]: '''simple docstring''' _snake_case : Optional[Any] = get_test_classes(UpperCamelCase__ ) _snake_case : Tuple = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(UpperCamelCase__ , key=lambda __lowercase : x.__name__ ) def snake_case (__lowercase ) -> Any: '''simple docstring''' _snake_case : List[Any] = test_class() if hasattr(UpperCamelCase__ , "setUp" ): test.setUp() _snake_case : int = None if hasattr(UpperCamelCase__ , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _snake_case : Union[str, Any] = test.model_tester.__class__ return model_tester def snake_case (__lowercase , __lowercase ) -> Tuple: '''simple docstring''' _snake_case : Tuple = get_test_classes(UpperCamelCase__ ) _snake_case : Union[str, Any] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__ , key=lambda __lowercase : x.__name__ ) def snake_case (__lowercase , __lowercase ) -> List[str]: '''simple docstring''' _snake_case : Tuple = get_test_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) _snake_case : Union[str, Any] = [] for test_class in test_classes: _snake_case : Any = get_model_tester_from_test_class(UpperCamelCase__ ) if tester_class is not None: tester_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__ , key=lambda __lowercase : x.__name__ ) def snake_case (__lowercase ) -> int: '''simple docstring''' _snake_case : Optional[Any] = get_test_classes(UpperCamelCase__ ) _snake_case : Optional[int] = {test_class: get_model_tester_from_test_class(UpperCamelCase__ ) for test_class in test_classes} return test_tester_mapping def snake_case (__lowercase ) -> str: '''simple docstring''' _snake_case : Any = get_model_classes(UpperCamelCase__ ) _snake_case : List[Any] = { model_class: get_test_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) for model_class in model_classes } return model_test_mapping def snake_case (__lowercase ) -> Optional[Any]: '''simple docstring''' _snake_case : int = get_model_classes(UpperCamelCase__ ) _snake_case : int = { model_class: get_tester_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) for model_class in model_classes } return model_to_tester_mapping def snake_case (__lowercase ) -> int: '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return o elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): return o.__name__ elif isinstance(UpperCamelCase__ , (list, tuple) ): return [to_json(UpperCamelCase__ ) for x in o] elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): return {to_json(UpperCamelCase__ ): to_json(UpperCamelCase__ ) for k, v in o.items()} else: return o
670
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ = 16 UpperCAmelCase__ = 32 def _A( UpperCamelCase__ : Accelerator , UpperCamelCase__ : int = 16 ) -> int: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowercase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCamelCase__ : Tuple ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase = 16 elif accelerator.mixed_precision != "no": __lowercase = 8 else: __lowercase = None return tokenizer.pad( UpperCamelCase__ , padding='''longest''' , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) __lowercase = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ = mocked_dataloaders # noqa: F811 def _A( UpperCamelCase__ : str , UpperCamelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , UpperCamelCase__ ) == "1": __lowercase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __lowercase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config['''lr'''] __lowercase = int(config['''num_epochs'''] ) __lowercase = int(config['''seed'''] ) __lowercase = int(config['''batch_size'''] ) set_seed(UpperCamelCase__ ) __lowercase , __lowercase = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __lowercase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowercase = batch_size // MAX_GPU_BATCH_SIZE __lowercase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase = model.to(accelerator.device ) # Instantiate optimizer __lowercase = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler __lowercase = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __lowercase = os.path.split(UpperCamelCase__ )[-1].split('''.''' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __lowercase = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase = model(**UpperCamelCase__ ) __lowercase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __lowercase = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __lowercase = model(**UpperCamelCase__ ) __lowercase = outputs.logits.argmax(dim=-1 ) __lowercase , __lowercase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) __lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , UpperCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(UpperCamelCase__ ), '''epoch''': epoch, } , step=UpperCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _A( ) -> str: '''simple docstring''' __lowercase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=UpperCamelCase__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __lowercase = parser.parse_args() __lowercase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
332
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : Optional[int] = '''▁''' a : Dict = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } a : Tuple = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } a : Dict = { '''facebook/s2t-small-librispeech-asr''': 1_0_2_4, } a : Optional[int] = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] a : List[Any] = {'''mustc''': MUSTC_LANGS} class a_ ( _UpperCAmelCase ): a : Optional[int] = VOCAB_FILES_NAMES a : Tuple = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = MAX_MODEL_INPUT_SIZES a : Tuple = ['input_ids', 'attention_mask'] a : List[int] = [] def __init__( self : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str]="<s>" , __UpperCamelCase : Tuple="</s>" , __UpperCamelCase : Any="<pad>" , __UpperCamelCase : Optional[int]="<unk>" , __UpperCamelCase : Any=False , __UpperCamelCase : Dict=False , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : List[str] , ) ->None: '''simple docstring''' _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , do_upper_case=__UpperCamelCase , do_lower_case=__UpperCamelCase , tgt_lang=__UpperCamelCase , lang_codes=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = do_upper_case _UpperCAmelCase = do_lower_case _UpperCAmelCase = load_json(__UpperCamelCase ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = spm_file _UpperCAmelCase = load_spm(__UpperCamelCase , self.sp_model_kwargs ) if lang_codes is not None: _UpperCAmelCase = lang_codes _UpperCAmelCase = LANGUAGES[lang_codes] _UpperCAmelCase = [f"""<lang:{lang}>""" for lang in self.langs] _UpperCAmelCase = {lang: self.sp_model.PieceToId(f"""<lang:{lang}>""" ) for lang in self.langs} _UpperCAmelCase = self.lang_tokens _UpperCAmelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _UpperCAmelCase = {} @property def _snake_case ( self : int ) ->int: '''simple docstring''' return len(self.encoder ) @property def _snake_case ( self : List[str] ) ->str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def _snake_case ( self : int , __UpperCamelCase : Any ) ->None: '''simple docstring''' _UpperCAmelCase = new_tgt_lang self.set_tgt_lang_special_tokens(__UpperCamelCase ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : str ) ->None: '''simple docstring''' _UpperCAmelCase = self.lang_code_to_id[tgt_lang] _UpperCAmelCase = [lang_code_id] def _snake_case ( self : List[Any] , __UpperCamelCase : str ) ->List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def _snake_case ( self : str , __UpperCamelCase : List[str] ) ->Optional[int]: '''simple docstring''' return self.encoder.get(__UpperCamelCase , self.encoder[self.unk_token] ) def _snake_case ( self : Optional[int] , __UpperCamelCase : int ) ->str: '''simple docstring''' return self.decoder.get(__UpperCamelCase , self.unk_token ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _UpperCAmelCase = self.sp_model.decode(__UpperCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _UpperCAmelCase = [] else: current_sub_tokens.append(__UpperCamelCase ) _UpperCAmelCase = self.sp_model.decode(__UpperCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _snake_case ( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any]=None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) _UpperCAmelCase = [1] * len(self.prefix_tokens ) _UpperCAmelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones def _snake_case ( self : int ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Union[str, Any] , __UpperCamelCase : Dict ) ->None: '''simple docstring''' _UpperCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _UpperCAmelCase = {} _UpperCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def _snake_case ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase = Path(__UpperCamelCase ) assert save_dir.is_dir(), f"""{save_directory} should be a directory""" _UpperCAmelCase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _UpperCAmelCase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __UpperCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __UpperCamelCase ) elif not os.path.isfile(self.spm_file ): with open(__UpperCamelCase , """wb""" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (str(__UpperCamelCase ), str(__UpperCamelCase )) def _UpperCamelCase ( _A , _A ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" _UpperCAmelCase = sentencepiece.SentencePieceProcessor(**_A ) spm.Load(str(_A ) ) return spm def _UpperCamelCase ( _A ) -> Union[Dict, List]: """simple docstring""" with open(_A , """r""" ) as f: return json.load(_A ) def _UpperCamelCase ( _A , _A ) -> None: """simple docstring""" with open(_A , """w""" ) as f: json.dump(_A , _A , indent=2 )
19
"""simple docstring""" from collections.abc import Callable import numpy as np def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> np.array: """simple docstring""" _UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCAmelCase = np.zeros((n + 1,) ) _UpperCAmelCase = ya _UpperCAmelCase = xa for k in range(_A ): _UpperCAmelCase = y[k] + step_size * ode_func(_A , y[k] ) _UpperCAmelCase = y[k] + ( (step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class _snake_case ( __UpperCAmelCase): UpperCamelCase__ : List[Any] ="""distilbert""" UpperCamelCase__ : List[str] ={ """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self : List[str], __lowercase : Any=3_0522, __lowercase : Optional[int]=512, __lowercase : int=False, __lowercase : Optional[Any]=6, __lowercase : List[Any]=12, __lowercase : Dict=768, __lowercase : str=4 * 768, __lowercase : Union[str, Any]=0.1, __lowercase : List[str]=0.1, __lowercase : Optional[int]="gelu", __lowercase : List[Any]=0.02, __lowercase : Optional[Any]=0.1, __lowercase : Any=0.2, __lowercase : List[Any]=0, **__lowercase : Any, ): lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = sinusoidal_pos_embds lowercase__ = n_layers lowercase__ = n_heads lowercase__ = dim lowercase__ = hidden_dim lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation lowercase__ = initializer_range lowercase__ = qa_dropout lowercase__ = seq_classif_dropout super().__init__(**UpperCamelCase_, pad_token_id=UpperCamelCase_ ) class _snake_case ( __UpperCAmelCase): @property def A__ ( self : Any ): if self.task == "multiple-choice": lowercase__ = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
413
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva __lowerCamelCase = "" __lowerCamelCase = "" __lowerCamelCase = "" __lowerCamelCase = 1 # (0 is vertical, 1 is horizontal) def lowercase ( ) -> None: __magic_name__ , __magic_name__ = get_dataset(__UpperCamelCase , __UpperCamelCase ) print('''Processing...''' ) __magic_name__ , __magic_name__ , __magic_name__ = update_image_and_anno(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for index, image in enumerate(__UpperCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __magic_name__ = random_chars(32 ) __magic_name__ = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __magic_name__ = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __UpperCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__UpperCamelCase )} with {file_name}''' ) __magic_name__ = [] for anno in new_annos[index]: __magic_name__ = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__UpperCamelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> tuple[list, list]: __magic_name__ = [] __magic_name__ = [] for label_file in glob.glob(os.path.join(__UpperCamelCase , '''*.txt''' ) ): __magic_name__ = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__UpperCamelCase ) as in_file: __magic_name__ = in_file.readlines() __magic_name__ = os.path.join(__UpperCamelCase , f'''{label_name}.jpg''' ) __magic_name__ = [] for obj_list in obj_lists: __magic_name__ = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__UpperCamelCase ) labels.append(__UpperCamelCase ) return img_paths, labels def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 ) -> tuple[list, list, list]: __magic_name__ = [] __magic_name__ = [] __magic_name__ = [] for idx in range(len(__UpperCamelCase ) ): __magic_name__ = [] __magic_name__ = img_list[idx] path_list.append(__UpperCamelCase ) __magic_name__ = anno_list[idx] __magic_name__ = cva.imread(__UpperCamelCase ) if flip_type == 1: __magic_name__ = cva.flip(__UpperCamelCase , __UpperCamelCase ) for bbox in img_annos: __magic_name__ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __magic_name__ = cva.flip(__UpperCamelCase , __UpperCamelCase ) for bbox in img_annos: __magic_name__ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__UpperCamelCase ) new_imgs_list.append(__UpperCamelCase ) return new_imgs_list, new_annos_lists, path_list def lowercase ( __UpperCamelCase = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __magic_name__ = ascii_lowercase + digits return "".join(random.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
490
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): _SCREAMING_SNAKE_CASE = 0 @slow def lowercase ( self ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCAmelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCAmelCase_ ) , 0 ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) # Check that tokenizer_type ≠ model_type _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(UpperCAmelCase_ , "vocab.txt" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="bert" , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(UpperCAmelCase_ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(UpperCAmelCase_ , "merges.txt" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="gpt2" , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @require_tokenizers def lowercase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(UpperCAmelCase_ , "vocab.txt" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="bert" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(UpperCAmelCase_ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(UpperCAmelCase_ , "merges.txt" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="gpt2" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase ( self ): with pytest.raises(UpperCAmelCase_ ): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" ) @require_tokenizers def lowercase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCAmelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCAmelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCAmelCase_ , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def lowercase ( self ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai _SCREAMING_SNAKE_CASE = TOKENIZER_MAPPING.values() _SCREAMING_SNAKE_CASE = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCAmelCase_ ) @require_tokenizers def lowercase ( self ): self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , UpperCAmelCase_ ) @require_tokenizers def lowercase ( self ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = "Hello, world. How are you?" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertEqual("[UNK]" , tokens[0] ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertEqual("[UNK]" , tokens[0] ) @require_tokenizers def lowercase ( self ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , "[UNK]" ) self.assertEqual(tokenizer.padding_side , "right" ) self.assertEqual(tokenizer.truncation_side , "right" ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase ( self ): # Check we can load the tokenizer config of an online model. _SCREAMING_SNAKE_CASE = get_tokenizer_config("bert-base-cased" ) _SCREAMING_SNAKE_CASE = config.pop("_commit_hash" , UpperCAmelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCAmelCase_ , {"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. _SCREAMING_SNAKE_CASE = get_tokenizer_config(UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = get_tokenizer_config(UpperCAmelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer" ) def lowercase ( self ): try: AutoConfig.register("custom" , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CustomTokenizer.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase ( self ): try: AutoConfig.register("custom" , UpperCAmelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained(UpperCAmelCase_ ) bert_tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CustomTokenizerFast.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) @require_tokenizers def lowercase ( self ): class lowerCAmelCase ( __UpperCAmelCase ): a : Any = False class lowerCAmelCase ( __UpperCAmelCase ): a : List[str] = NewTokenizer a : List[Any] = False try: AutoConfig.register("custom" , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) # If remote code is not set, the default is to use local _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase ( self ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def lowercase ( self ): with self.assertRaisesRegex( UpperCAmelCase_ , "bert-base is not a local folder and is not a valid model identifier" ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("bert-base" ) def lowercase ( self ): with self.assertRaisesRegex( UpperCAmelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , revision="aaaaaa" ) def lowercase ( self ): # Make sure we have cached the tokenizer. _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
711
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): a : Optional[int] = KandinskyImgaImgPipeline a : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] a : Union[str, Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] a : int = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Tuple = False @property def lowercase ( self ): return 32 @property def lowercase ( self ): return 32 @property def lowercase ( self ): return self.time_input_dim @property def lowercase ( self ): return self.time_input_dim * 4 @property def lowercase ( self ): return 100 @property def lowercase ( self ): _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) _SCREAMING_SNAKE_CASE = MultilingualCLIP(UpperCamelCase ) _SCREAMING_SNAKE_CASE = text_encoder.eval() return text_encoder @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCamelCase ) return model @property def lowercase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = self.dummy_tokenizer _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _SCREAMING_SNAKE_CASE = DDIMScheduler(**UpperCamelCase ) _SCREAMING_SNAKE_CASE = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase ( self , UpperCamelCase , UpperCamelCase=0 ): _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("RGB" ).resize((256, 256) ) if str(UpperCamelCase ).startswith("mps" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCamelCase ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _SCREAMING_SNAKE_CASE = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowercase ( self ): _SCREAMING_SNAKE_CASE = "cpu" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): _SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) _SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _SCREAMING_SNAKE_CASE = "A red cartoon frog, 4k" _SCREAMING_SNAKE_CASE = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = torch.Generator(device="cpu" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( UpperCamelCase , image=UpperCamelCase , image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
493
0
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=100 , UpperCAmelCase=13 , UpperCAmelCase=30 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : int = vocab_size __snake_case : Union[str, Any] = batch_size __snake_case : str = image_size __snake_case : str = patch_size __snake_case : Optional[Any] = num_channels __snake_case : int = is_training __snake_case : List[str] = use_labels __snake_case : Any = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : str = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : List[str] = attention_probs_dropout_prob __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case : List[str] = (image_size // patch_size) ** 2 __snake_case : List[str] = num_patches + 1 def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = FlaxBeitModel(config=lowerCAmelCase__ ) __snake_case : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = FlaxBeitForMaskedImageModeling(config=lowerCAmelCase__ ) __snake_case : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: '''simple docstring''' __snake_case : str = self.type_sequence_label_size __snake_case : List[str] = FlaxBeitForImageClassification(config=lowerCAmelCase__ ) __snake_case : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : List[str] = 1 __snake_case : Dict = FlaxBeitForImageClassification(lowerCAmelCase__ ) __snake_case : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Union[str, Any] = model(lowerCAmelCase__ ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Optional[int] = config_and_inputs __snake_case : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[int] =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def UpperCAmelCase ( self ) -> None: '''simple docstring''' __snake_case : Tuple = FlaxBeitModelTester(self ) __snake_case : int = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(lowerCAmelCase__ ) __snake_case : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Optional[Any] = [*signature.parameters.keys()] __snake_case : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Union[str, Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __snake_case : Optional[Any] = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase , **UpperCAmelCase ): return model(pixel_values=lowerCAmelCase__ , **lowerCAmelCase__ ) with self.subTest("JIT Enabled" ): __snake_case : List[str] = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : str = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def UpperCAmelCase ( self ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : List[str] = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __snake_case : List[Any] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCAmelCase__ ) def lowerCAmelCase__( ) -> Optional[Any]: __snake_case : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : List[Any] = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __snake_case : Any = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : str = image_processor(images=lowerCAmelCase__ , return_tensors="np" ).pixel_values # prepare bool_masked_pos __snake_case : int = np.ones((1, 196) , dtype=lowerCAmelCase__ ) # forward pass __snake_case : Any = model(pixel_values=lowerCAmelCase__ , bool_masked_pos=lowerCAmelCase__ ) __snake_case : Tuple = outputs.logits # verify the logits __snake_case : int = (1, 196, 8192) self.assertEqual(logits.shape , lowerCAmelCase__ ) __snake_case : List[Any] = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase__ , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : int = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __snake_case : Optional[Any] = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : int = image_processor(images=lowerCAmelCase__ , return_tensors="np" ) # forward pass __snake_case : Optional[int] = model(**lowerCAmelCase__ ) __snake_case : List[str] = outputs.logits # verify the logits __snake_case : List[Any] = (1, 1000) self.assertEqual(logits.shape , lowerCAmelCase__ ) __snake_case : Optional[int] = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) __snake_case : str = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ ) @slow def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : str = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __snake_case : Optional[Any] = self.default_image_processor __snake_case : Dict = prepare_img() __snake_case : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="np" ) # forward pass __snake_case : int = model(**lowerCAmelCase__ ) __snake_case : List[str] = outputs.logits # verify the logits __snake_case : Dict = (1, 21841) self.assertEqual(logits.shape , lowerCAmelCase__ ) __snake_case : Optional[int] = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) __snake_case : Union[str, Any] = 2396 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ )
243
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowercase__ : str = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' lowercase__ : str = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' lowercase__ : Dict = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ) -> List[str]: '''simple docstring''' _UpperCamelCase = 0.0 for i, j in zip(lowerCAmelCase__ , lowerCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase__ , lowerCAmelCase__ ) else 0.0 _UpperCamelCase = n_correct / len(lowerCAmelCase__ ) return { "accuracy": accuracy, }
98
0
"""simple docstring""" def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->int: """simple docstring""" while a != 0: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = b % a, a return b def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->int: """simple docstring""" if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: __UpperCAmelCase : int = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(UpperCAmelCase_ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = 1, 0, a __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = 0, 1, m while va != 0: __UpperCAmelCase : Optional[Any] = ua // va __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
374
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowercase__ :int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
374
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
414
'''simple docstring''' from __future__ import annotations def __A ( lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = len(lowerCAmelCase_ ) # We need to create solution object to save path. _UpperCAmelCase : Optional[int] = [[0 for _ in range(lowerCAmelCase_ )] for _ in range(lowerCAmelCase_ )] _UpperCAmelCase : Tuple = run_maze(lowerCAmelCase_ , 0 , 0 , lowerCAmelCase_ ) if solved: print("""\n""".join(str(lowerCAmelCase_ ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : int = len(lowerCAmelCase_ ) # Final check point. if i == j == (size - 1): _UpperCAmelCase : Any = 1 return True _UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds _UpperCAmelCase : Union[str, Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _UpperCAmelCase : Any = 1 # check for directions if ( run_maze(lowerCAmelCase_ , i + 1 , lowerCAmelCase_ , lowerCAmelCase_ ) or run_maze(lowerCAmelCase_ , lowerCAmelCase_ , j + 1 , lowerCAmelCase_ ) or run_maze(lowerCAmelCase_ , i - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) or run_maze(lowerCAmelCase_ , lowerCAmelCase_ , j - 1 , lowerCAmelCase_ ) ): return True _UpperCAmelCase : int = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
414
1
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __lowercase = '''scheduler_config.json''' class _lowercase ( __UpperCAmelCase ): """simple docstring""" lowercase__ = 1 lowercase__ = 2 lowercase__ = 3 lowercase__ = 4 lowercase__ = 5 @dataclass class _lowercase ( __UpperCAmelCase ): """simple docstring""" lowercase__ = 42 class _lowercase : """simple docstring""" lowercase__ = SCHEDULER_CONFIG_NAME lowercase__ = ["dtype"] lowercase__ = [] lowercase__ = True @classmethod def UpperCAmelCase_ ( cls : Any , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : List[str]=False , **UpperCamelCase__ : int , ) -> Tuple: '''simple docstring''' __UpperCamelCase , __UpperCamelCase =cls.load_config( pretrained_model_name_or_path=_lowerCamelCase , subfolder=_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , **_lowerCamelCase , ) __UpperCamelCase , __UpperCamelCase =cls.from_config(_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , **_lowerCamelCase ) if hasattr(_lowerCamelCase , '''create_state''' ) and getattr(_lowerCamelCase , '''has_state''' , _lowerCamelCase ): __UpperCamelCase =scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Union[str, os.PathLike] , UpperCamelCase__ : bool = False , **UpperCamelCase__ : int ) -> List[Any]: '''simple docstring''' self.save_config(save_directory=_lowerCamelCase , push_to_hub=_lowerCamelCase , **_lowerCamelCase ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' return self._get_compatibles() @classmethod def UpperCAmelCase_ ( cls : Optional[Any] ) -> Tuple: '''simple docstring''' __UpperCamelCase =list(set([cls.__name__] + cls._compatibles ) ) __UpperCamelCase =importlib.import_module(__name__.split('''.''' )[0] ) __UpperCamelCase =[ getattr(_lowerCamelCase , _lowerCamelCase ) for c in compatible_classes_str if hasattr(_lowerCamelCase , _lowerCamelCase ) ] return compatible_classes def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Union[str, Any] ): """simple docstring""" assert len(_lowerCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_lowerCAmelCase ) - x.ndim) ) , _lowerCAmelCase ) def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any]=0.9_9_9 , __UpperCamelCase : Union[str, Any]=jnp.floataa ): """simple docstring""" def alpha_bar(__UpperCamelCase : Optional[int] ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __UpperCamelCase =[] for i in range(_lowerCAmelCase ): __UpperCamelCase =i / num_diffusion_timesteps __UpperCamelCase =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_lowerCAmelCase ) / alpha_bar(_lowerCAmelCase ) , _lowerCAmelCase ) ) return jnp.array(_lowerCAmelCase , dtype=_lowerCAmelCase ) @flax.struct.dataclass class _lowercase : """simple docstring""" lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 @classmethod def UpperCAmelCase_ ( cls : str , UpperCamelCase__ : int ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =scheduler.config if config.trained_betas is not None: __UpperCamelCase =jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __UpperCamelCase =jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCamelCase =( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCamelCase =betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) __UpperCamelCase =1.0 - betas __UpperCamelCase =jnp.cumprod(_lowerCamelCase , axis=0 ) return cls( alphas=_lowerCamelCase , betas=_lowerCamelCase , alphas_cumprod=_lowerCamelCase , ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ): """simple docstring""" __UpperCamelCase =state.alphas_cumprod __UpperCamelCase =alphas_cumprod[timesteps] ** 0.5 __UpperCamelCase =sqrt_alpha_prod.flatten() __UpperCamelCase =broadcast_to_shape_from_left(_lowerCAmelCase , original_samples.shape ) __UpperCamelCase =(1 - alphas_cumprod[timesteps]) ** 0.5 __UpperCamelCase =sqrt_one_minus_alpha_prod.flatten() __UpperCamelCase =broadcast_to_shape_from_left(_lowerCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ): """simple docstring""" __UpperCamelCase , __UpperCamelCase =get_sqrt_alpha_prod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): """simple docstring""" __UpperCamelCase , __UpperCamelCase =get_sqrt_alpha_prod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase =sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
701
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowercase = 299_792_458 # Symbols __lowercase , __lowercase , __lowercase , __lowercase = symbols('''ct x y z''') def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" return 1 / sqrt(1 - beta(__UpperCamelCase ) ** 2 ) def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" return np.array( [ [gamma(__UpperCamelCase ), -gamma(__UpperCamelCase ) * beta(__UpperCamelCase ), 0, 0], [-gamma(__UpperCamelCase ) * beta(__UpperCamelCase ), gamma(__UpperCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase (__UpperCamelCase : float , __UpperCamelCase : np.ndarray | None = None ): """simple docstring""" if event is None: __UpperCamelCase =np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__UpperCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowercase = transform(29_979_245) print('''Example of four vector: ''') print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __lowercase = {ct: c, x: 1, y: 1, z: 1} __lowercase = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
296
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=SCREAMING_SNAKE_CASE__ ): snake_case__ :int = ['onnx'] def __init__( self : Dict , *__magic_name__ : Optional[Any] , **__magic_name__ : Optional[Any] ): """simple docstring""" requires_backends(self , ["onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *__magic_name__ : str , **__magic_name__ : List[str] ): """simple docstring""" requires_backends(cls , ["onnx"] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] , *__magic_name__ : Any , **__magic_name__ : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["onnx"] )
48
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
1
from __future__ import annotations import typing from collections import Counter def __lowercase ( _UpperCAmelCase ) -> typing.Counter[int]: '''simple docstring''' __lowercase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_UpperCAmelCase , max_perimeter + 1 ): __lowercase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_UpperCAmelCase ): __lowercase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowercase ( _UpperCAmelCase = 1_000 ) -> int: '''simple docstring''' __lowercase = pythagorean_triple(_UpperCAmelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
711
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None class snake_case ( __snake_case ): """simple docstring""" def __init__( self , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_=512 , lowerCAmelCase_="cls" , lowerCAmelCase_=False , lowerCAmelCase_=True , **lowerCAmelCase_ , ): super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __lowercase = project_dim __lowercase = pooler_fn __lowercase = learn_encoder __lowercase = use_attention_mask class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = [r"""pooler""", r"""logit_scale"""] __lowerCAmelCase = [r"""position_ids""", r"""predictions.decoder.bias"""] __lowerCAmelCase = """roberta""" __lowerCAmelCase = RobertaSeriesConfig def __init__( self , lowerCAmelCase_ ): super().__init__(lowerCAmelCase_ ) __lowercase = XLMRobertaModel(lowerCAmelCase_ ) __lowercase = nn.Linear(config.hidden_size , config.project_dim ) __lowercase = getattr(lowerCAmelCase_ , "has_pre_transformation" , lowerCAmelCase_ ) if self.has_pre_transformation: __lowercase = nn.Linear(config.hidden_size , config.project_dim ) __lowercase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def snake_case__ ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ): __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.base_model( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCAmelCase_ , ) if self.has_pre_transformation: __lowercase = outputs["hidden_states"][-2] __lowercase = self.pre_LN(lowerCAmelCase_ ) __lowercase = self.transformation_pre(lowerCAmelCase_ ) return TransformationModelOutput( projection_state=lowerCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __lowercase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
576
0
class UpperCAmelCase : def __init__( self : List[Any] , lowerCAmelCase : list[int] ): lowercase : Union[str, Any] = len(lowerCAmelCase ) lowercase : int = [0] * len_array if len_array > 0: lowercase : Optional[Any] = array[0] for i in range(1 , lowerCAmelCase ): lowercase : Dict = self.prefix_sum[i - 1] + array[i] def _lowerCAmelCase ( self : int , lowerCAmelCase : int , lowerCAmelCase : int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase : int ): lowercase : Tuple = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCAmelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
583
from math import factorial, pi def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 30 ): if not isinstance(UpperCAmelCase_ , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) lowercase : Tuple = float(UpperCAmelCase_ ) lowercase : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(UpperCAmelCase_ ) ) def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 30 ): if not isinstance(UpperCAmelCase_ , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) lowercase : Optional[Any] = float(UpperCAmelCase_ ) lowercase : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(UpperCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
583
1
import os from math import logaa def _lowerCAmelCase ( __magic_name__ :str = "base_exp.txt" ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) ): UpperCAmelCase_, UpperCAmelCase_ = list(map(__magic_name__ , line.split(''',''' ) ) ) if x * logaa(__magic_name__ ) > largest: UpperCAmelCase_ = x * logaa(__magic_name__ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
407
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : Dict = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } _lowerCamelCase : Union[str, Any] = { 'gpt2': 1024, 'gpt2-medium': 1024, 'gpt2-large': 1024, 'gpt2-xl': 1024, 'distilgpt2': 1024, } class snake_case__ ( __snake_case ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] __A = GPTaTokenizer def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict="<|endoftext|>" , lowerCAmelCase_ : List[str]="<|endoftext|>" , lowerCAmelCase_ : str="<|endoftext|>" , lowerCAmelCase_ : List[str]=False , **lowerCAmelCase_ : str , ) -> int: super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) UpperCAmelCase_ = kwargs.pop('''add_bos_token''' , lowerCAmelCase_ ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase_ ) != add_prefix_space: UpperCAmelCase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop('''type''' ) ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**lowerCAmelCase_ ) UpperCAmelCase_ = add_prefix_space def UpperCamelCase ( self : Tuple , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Tuple ) -> BatchEncoding: UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , lowerCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCamelCase ( self : Dict , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Optional[Any] ) -> BatchEncoding: UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , lowerCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCamelCase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def UpperCamelCase ( self : Optional[Any] , lowerCAmelCase_ : "Conversation" ) -> List[int]: UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [self.eos_token_id] ) if len(lowerCAmelCase_ ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids
407
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowercase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=sys.maxsize ) -> Any: A : List[Any] = '''bilinear''' A : List[str] = max_size A : str = short_edge_length def __call__( self , __UpperCAmelCase ) -> str: A : Tuple = [] for img in imgs: A , A : str = img.shape[:2] # later: provide list and randomly choose index for resize A : Optional[int] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img A : Union[str, Any] = size * 1.0 / min(__UpperCAmelCase , __UpperCAmelCase ) if h < w: A , A : Union[str, Any] = size, scale * w else: A , A : List[Any] = scale * h, size if max(__UpperCAmelCase , __UpperCAmelCase ) > self.max_size: A : Optional[Any] = self.max_size * 1.0 / max(__UpperCAmelCase , __UpperCAmelCase ) A : Optional[Any] = newh * scale A : Optional[int] = neww * scale A : List[Any] = int(neww + 0.5 ) A : Tuple = int(newh + 0.5 ) if img.dtype == np.uinta: A : List[Any] = Image.fromarray(__UpperCAmelCase ) A : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) A : Union[str, Any] = np.asarray(__UpperCAmelCase ) else: A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw A : Dict = nn.functional.interpolate( __UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=__UpperCAmelCase ).squeeze(0 ) img_augs.append(__UpperCAmelCase ) return img_augs class __lowercase : """simple docstring""" def __init__( self , __UpperCAmelCase ) -> List[str]: A : Tuple = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) A : Optional[int] = cfg.INPUT.FORMAT A : Union[str, Any] = cfg.SIZE_DIVISIBILITY A : List[Any] = cfg.PAD_VALUE A : str = cfg.INPUT.MAX_SIZE_TEST A : Optional[int] = cfg.MODEL.DEVICE A : List[Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : Optional[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : Tuple = lambda __UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def snake_case ( self , __UpperCAmelCase ) -> Optional[int]: A : Optional[int] = tuple(max(__UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) ) A : Optional[Any] = [im.shape[-2:] for im in images] A : Optional[Any] = [ nn.functional.pad( __UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__UpperCAmelCase , __UpperCAmelCase ) ] return torch.stack(__UpperCAmelCase ), torch.tensor(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> Tuple: with torch.no_grad(): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): A : List[str] = [images] if single_image: assert len(__UpperCAmelCase ) == 1 for i in range(len(__UpperCAmelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__UpperCAmelCase , images.pop(__UpperCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(__UpperCAmelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge A : Any = torch.tensor([im.shape[:2] for im in images] ) A : Tuple = self.aug(__UpperCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic A : Optional[int] = [self.normalizer(__UpperCAmelCase ) for x in images] # now pad them to do the following operations A , A : List[str] = self.pad(__UpperCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad A : Optional[Any] = torch.true_divide(__UpperCAmelCase , __UpperCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): assert torch.isfinite(lowerCamelCase_ ).all(), "Box tensor contains infinite or NaN!" A , A : List[Any] = box_size tensor[:, 0].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 1].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 2].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 3].clamp_(min=0 , max=lowerCamelCase_ )
542
def snake_case__ ( lowerCamelCase_ = 1000 ): return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
542
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = '''marian''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self :int , _lowerCamelCase :List[Any]=5_8_1_0_1 , _lowerCamelCase :Union[str, Any]=None , _lowerCamelCase :Tuple=1_0_2_4 , _lowerCamelCase :Optional[int]=1_2 , _lowerCamelCase :str=4_0_9_6 , _lowerCamelCase :Optional[Any]=1_6 , _lowerCamelCase :int=1_2 , _lowerCamelCase :List[str]=4_0_9_6 , _lowerCamelCase :int=1_6 , _lowerCamelCase :List[str]=0.0 , _lowerCamelCase :int=0.0 , _lowerCamelCase :Optional[int]=True , _lowerCamelCase :str=True , _lowerCamelCase :int="gelu" , _lowerCamelCase :Optional[int]=1_0_2_4 , _lowerCamelCase :Optional[Any]=0.1 , _lowerCamelCase :List[str]=0.0 , _lowerCamelCase :Optional[int]=0.0 , _lowerCamelCase :List[Any]=0.0_2 , _lowerCamelCase :Tuple=5_8_1_0_0 , _lowerCamelCase :Any=False , _lowerCamelCase :Any=5_8_1_0_0 , _lowerCamelCase :Optional[Any]=0 , _lowerCamelCase :Any=0 , _lowerCamelCase :Any=True , **_lowerCamelCase :List[str] , ): __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : int = decoder_vocab_size or vocab_size __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = d_model __SCREAMING_SNAKE_CASE : Optional[Any] = encoder_ffn_dim __SCREAMING_SNAKE_CASE : Any = encoder_layers __SCREAMING_SNAKE_CASE : Optional[int] = encoder_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_ffn_dim __SCREAMING_SNAKE_CASE : Dict = decoder_layers __SCREAMING_SNAKE_CASE : Tuple = decoder_attention_heads __SCREAMING_SNAKE_CASE : List[str] = dropout __SCREAMING_SNAKE_CASE : Any = attention_dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout __SCREAMING_SNAKE_CASE : Any = activation_function __SCREAMING_SNAKE_CASE : int = init_std __SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop __SCREAMING_SNAKE_CASE : str = decoder_layerdrop __SCREAMING_SNAKE_CASE : Optional[Any] = use_cache __SCREAMING_SNAKE_CASE : List[str] = encoder_layers __SCREAMING_SNAKE_CASE : Any = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE : Union[str, Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) class snake_case ( __UpperCAmelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : List[str] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch'''} __SCREAMING_SNAKE_CASE : Any = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __SCREAMING_SNAKE_CASE : Any = {0: '''batch''', 1: '''decoder_sequence'''} __SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = self.num_layers for i in range(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} __SCREAMING_SNAKE_CASE : int = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : List[str] = super().outputs else: __SCREAMING_SNAKE_CASE : int = super(_lowerCamelCase , self ).outputs if self.use_past: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = self.num_layers for i in range(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} __SCREAMING_SNAKE_CASE : Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE_ ( self :Dict , _lowerCamelCase :PreTrainedTokenizer , _lowerCamelCase :int = -1 , _lowerCamelCase :int = -1 , _lowerCamelCase :bool = False , _lowerCamelCase :Optional[TensorType] = None , ): __SCREAMING_SNAKE_CASE : str = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs __SCREAMING_SNAKE_CASE : Tuple = seq_length if not self.use_past else 1 __SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __SCREAMING_SNAKE_CASE : Union[str, Any] = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = common_inputs['''input_ids'''].shape __SCREAMING_SNAKE_CASE : Tuple = common_inputs['''decoder_input_ids'''].shape[1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self.num_attention_heads __SCREAMING_SNAKE_CASE : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE : Tuple = decoder_seq_length + 3 __SCREAMING_SNAKE_CASE : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __SCREAMING_SNAKE_CASE : List[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) __SCREAMING_SNAKE_CASE : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = self.num_layers __SCREAMING_SNAKE_CASE : int = min(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers __SCREAMING_SNAKE_CASE : Any = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. __SCREAMING_SNAKE_CASE : Tuple = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self :str , _lowerCamelCase :PreTrainedTokenizer , _lowerCamelCase :int = -1 , _lowerCamelCase :int = -1 , _lowerCamelCase :bool = False , _lowerCamelCase :Optional[TensorType] = None , ): __SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE : str = seqlen + 2 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = self.num_attention_heads __SCREAMING_SNAKE_CASE : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE : Tuple = common_inputs['''attention_mask'''].dtype __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) __SCREAMING_SNAKE_CASE : Tuple = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def SCREAMING_SNAKE_CASE_ ( self :int , _lowerCamelCase :PreTrainedTokenizer , _lowerCamelCase :int = -1 , _lowerCamelCase :int = -1 , _lowerCamelCase :bool = False , _lowerCamelCase :Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE : Optional[int] = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE : Tuple = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence __SCREAMING_SNAKE_CASE : List[str] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __SCREAMING_SNAKE_CASE : Any = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self :List[str] , _lowerCamelCase :PreTrainedTokenizer , _lowerCamelCase :int = -1 , _lowerCamelCase :int = -1 , _lowerCamelCase :bool = False , _lowerCamelCase :Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self :Any , _lowerCamelCase :Dict , _lowerCamelCase :List[str] , _lowerCamelCase :Dict , _lowerCamelCase :Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE : List[str] = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @property def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): return 1e-4
401
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class snake_case ( __UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase__ = '''nat''' lowerCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Any , _lowerCamelCase :int=4 , _lowerCamelCase :List[str]=3 , _lowerCamelCase :Optional[int]=6_4 , _lowerCamelCase :Optional[Any]=[3, 4, 6, 5] , _lowerCamelCase :Optional[int]=[2, 4, 8, 1_6] , _lowerCamelCase :str=7 , _lowerCamelCase :int=3.0 , _lowerCamelCase :Optional[Any]=True , _lowerCamelCase :List[str]=0.0 , _lowerCamelCase :str=0.0 , _lowerCamelCase :int=0.1 , _lowerCamelCase :int="gelu" , _lowerCamelCase :Dict=0.0_2 , _lowerCamelCase :str=1e-5 , _lowerCamelCase :List[Any]=0.0 , _lowerCamelCase :Optional[Any]=None , _lowerCamelCase :Dict=None , **_lowerCamelCase :Union[str, Any] , ): super().__init__(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size __SCREAMING_SNAKE_CASE : int = num_channels __SCREAMING_SNAKE_CASE : List[str] = embed_dim __SCREAMING_SNAKE_CASE : List[str] = depths __SCREAMING_SNAKE_CASE : Union[str, Any] = len(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = num_heads __SCREAMING_SNAKE_CASE : Any = kernel_size __SCREAMING_SNAKE_CASE : Tuple = mlp_ratio __SCREAMING_SNAKE_CASE : Union[str, Any] = qkv_bias __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = drop_path_rate __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE : List[Any] = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) __SCREAMING_SNAKE_CASE : Any = layer_scale_init_value __SCREAMING_SNAKE_CASE : Tuple = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
401
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Optional[Any] = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ["""ConvNextFeatureExtractor"""] __UpperCamelCase : List[str] = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
80
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __UpperCamelCase : Union[str, Any] = False class __UpperCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Any ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe.dual_guided( prompt="""first prompt""" , image=_lowerCAmelCase , text_to_image_strength=0.75 , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = VersatileDiffusionPipeline.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = generator.manual_seed(0 ) __lowercase = pipe.dual_guided( prompt="""first prompt""" , image=_lowerCAmelCase , text_to_image_strength=0.75 , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _a ( self : Any ) -> Dict: """simple docstring""" __lowercase = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """cyberpunk 2077""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe.dual_guided( prompt=_lowerCAmelCase , image=_lowerCAmelCase , text_to_image_strength=0.75 , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images __lowercase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __lowercase = """A painting of a squirrel eating a burger """ __lowercase = torch.manual_seed(0 ) __lowercase = pipe.text_to_image( prompt=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images __lowercase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __lowercase = pipe.image_variation(_lowerCAmelCase , generator=_lowerCAmelCase , output_type="""numpy""" ).images __lowercase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
80
1
from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : str , __UpperCamelCase : int ): _UpperCAmelCase = order # a_{0} ... a_{k} _UpperCAmelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} _UpperCAmelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _UpperCAmelCase = [0.0] * self.order # y[n-1] ... y[n-k] _UpperCAmelCase = [0.0] * self.order def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : list[float] , __UpperCamelCase : list[float] ): if len(__UpperCamelCase ) < self.order: _UpperCAmelCase = [1.0, *a_coeffs] if len(__UpperCamelCase ) != self.order + 1: _UpperCAmelCase = ( F'''Expected a_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != self.order + 1: _UpperCAmelCase = ( F'''Expected b_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) _UpperCAmelCase = a_coeffs _UpperCAmelCase = b_coeffs def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : float ): _UpperCAmelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _UpperCAmelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _UpperCAmelCase = self.input_history[:-1] _UpperCAmelCase = self.output_history[:-1] _UpperCAmelCase = sample _UpperCAmelCase = result return result
719
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __lowerCAmelCase = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __lowerCAmelCase = "UperNetConfig" class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Union[int, Tuple[int, int]] , __UpperCamelCase : Union[int, Tuple[int, int], str] = 0 , __UpperCamelCase : bool = False , __UpperCamelCase : Union[int, Tuple[int, int]] = 1 , ): super().__init__() _UpperCAmelCase = nn.Convad( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , bias=__UpperCamelCase , dilation=__UpperCamelCase , ) _UpperCAmelCase = nn.BatchNormad(__UpperCamelCase ) _UpperCAmelCase = nn.ReLU() def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : torch.Tensor ): _UpperCAmelCase = self.conv(__UpperCamelCase ) _UpperCAmelCase = self.batch_norm(__UpperCamelCase ) _UpperCAmelCase = self.activation(__UpperCamelCase ) return output class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : str , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): super().__init__() _UpperCAmelCase = [ nn.AdaptiveAvgPoolad(__UpperCamelCase ), UperNetConvModule(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__UpperCamelCase ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : torch.Tensor ): _UpperCAmelCase = input for layer in self.layers: _UpperCAmelCase = layer(__UpperCamelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : Dict , __UpperCamelCase : Tuple[int, ...] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : bool ): super().__init__() _UpperCAmelCase = pool_scales _UpperCAmelCase = align_corners _UpperCAmelCase = in_channels _UpperCAmelCase = channels _UpperCAmelCase = [] for i, pool_scale in enumerate(__UpperCamelCase ): _UpperCAmelCase = UperNetPyramidPoolingBlock(pool_scale=__UpperCamelCase , in_channels=__UpperCamelCase , channels=__UpperCamelCase ) self.blocks.append(__UpperCamelCase ) self.add_module(str(__UpperCamelCase ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : torch.Tensor ): _UpperCAmelCase = [] for ppm in self.blocks: _UpperCAmelCase = ppm(__UpperCamelCase ) _UpperCAmelCase = nn.functional.interpolate( __UpperCamelCase , size=x.size()[2:] , mode="bilinear" , align_corners=self.align_corners ) ppm_outs.append(__UpperCamelCase ) return ppm_outs class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple ): super().__init__() _UpperCAmelCase = config _UpperCAmelCase = config.pool_scales # e.g. (1, 2, 3, 6) _UpperCAmelCase = in_channels _UpperCAmelCase = config.hidden_size _UpperCAmelCase = False _UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module _UpperCAmelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) _UpperCAmelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module _UpperCAmelCase = nn.ModuleList() _UpperCAmelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _UpperCAmelCase = UperNetConvModule(__UpperCamelCase , self.channels , kernel_size=1 ) _UpperCAmelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__UpperCamelCase ) self.fpn_convs.append(__UpperCamelCase ) _UpperCAmelCase = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCAmelCase__ ( self : str ): self.apply(self._init_weights ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : str ): if isinstance(__UpperCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = inputs[-1] _UpperCAmelCase = [x] psp_outs.extend(self.psp_modules(__UpperCamelCase ) ) _UpperCAmelCase = torch.cat(__UpperCamelCase , dim=1 ) _UpperCAmelCase = self.bottleneck(__UpperCamelCase ) return output def UpperCAmelCase__ ( self : Any , __UpperCamelCase : torch.Tensor ): # build laterals _UpperCAmelCase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__UpperCamelCase ) ) # build top-down path _UpperCAmelCase = len(__UpperCamelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _UpperCAmelCase = laterals[i - 1].shape[2:] _UpperCAmelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__UpperCamelCase , mode="bilinear" , align_corners=self.align_corners ) # build outputs _UpperCAmelCase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _UpperCAmelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="bilinear" , align_corners=self.align_corners ) _UpperCAmelCase = torch.cat(__UpperCamelCase , dim=1 ) _UpperCAmelCase = self.fpn_bottleneck(__UpperCamelCase ) _UpperCAmelCase = self.classifier(__UpperCamelCase ) return output class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : Dict , __UpperCamelCase : str , __UpperCamelCase : int = 2 , __UpperCamelCase : int = 3 , __UpperCamelCase : Union[int, Tuple[int, int]] = 1 ): super().__init__() _UpperCAmelCase = config _UpperCAmelCase = config.auxiliary_in_channels _UpperCAmelCase = config.auxiliary_channels _UpperCAmelCase = config.auxiliary_num_convs _UpperCAmelCase = config.auxiliary_concat_input _UpperCAmelCase = in_index _UpperCAmelCase = (kernel_size // 2) * dilation _UpperCAmelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , dilation=__UpperCamelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , dilation=__UpperCamelCase ) ) if self.num_convs == 0: _UpperCAmelCase = nn.Identity() else: _UpperCAmelCase = nn.Sequential(*__UpperCamelCase ) if self.concat_input: _UpperCAmelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__UpperCamelCase , padding=kernel_size // 2 ) _UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def UpperCAmelCase__ ( self : List[Any] ): self.apply(self._init_weights ) def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] ): if isinstance(__UpperCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : torch.Tensor ): # just take the relevant feature maps _UpperCAmelCase = encoder_hidden_states[self.in_index] _UpperCAmelCase = self.convs(__UpperCamelCase ) if self.concat_input: _UpperCAmelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) _UpperCAmelCase = self.classifier(__UpperCamelCase ) return output class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Dict = UperNetConfig __SCREAMING_SNAKE_CASE : str = """pixel_values""" __SCREAMING_SNAKE_CASE : str = True def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : int ): if isinstance(__UpperCamelCase , __UpperCamelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase__ ( self : Union[str, Any] ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple=False ): if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = value __lowerCAmelCase = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __lowerCAmelCase = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , lowercase , ) class __SCREAMING_SNAKE_CASE ( lowercase): def __init__( self : Optional[int] , __UpperCamelCase : str ): super().__init__(__UpperCamelCase ) _UpperCAmelCase = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) _UpperCAmelCase = UperNetHead(__UpperCamelCase , in_channels=self.backbone.channels ) _UpperCAmelCase = UperNetFCNHead(__UpperCamelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length" ) ) @replace_return_docstrings(output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Optional[torch.Tensor] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[torch.Tensor] = None , __UpperCamelCase : Optional[bool] = None , ): _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions _UpperCAmelCase = self.backbone.forward_with_filtered_kwargs( __UpperCamelCase , output_hidden_states=__UpperCamelCase , output_attentions=__UpperCamelCase ) _UpperCAmelCase = outputs.feature_maps _UpperCAmelCase = self.decode_head(__UpperCamelCase ) _UpperCAmelCase = nn.functional.interpolate(__UpperCamelCase , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=__UpperCamelCase ) _UpperCAmelCase = None if self.auxiliary_head is not None: _UpperCAmelCase = self.auxiliary_head(__UpperCamelCase ) _UpperCAmelCase = nn.functional.interpolate( __UpperCamelCase , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=__UpperCamelCase ) _UpperCAmelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one" ) else: # compute weighted loss _UpperCAmelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) _UpperCAmelCase = loss_fct(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = loss_fct(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _UpperCAmelCase = (logits,) + outputs[1:] else: _UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__UpperCamelCase , logits=__UpperCamelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
129
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) UpperCAmelCase = None def lowercase ( ) -> List[Any]: _UpperCamelCase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=a__ , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=a__ , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowercase ( a__ : int ) -> List[Any]: _UpperCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCamelCase = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def lowercase ( a__ : Dict ) -> Optional[int]: def remove_articles(a__ : Dict ): return ARTICLES_REGEX.sub(''' ''' , a__ ) def white_space_fix(a__ : Tuple ): return " ".join(text.split() ) def remove_punc(a__ : Optional[Any] ): _UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a__ : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a__ ) ) ) ) def lowercase ( a__ : List[str] ) -> List[str]: if not s: return [] return normalize_answer(a__ ).split() def lowercase ( a__ : str , a__ : int ) -> str: return int(normalize_answer(a__ ) == normalize_answer(a__ ) ) def lowercase ( a__ : List[str] , a__ : Optional[Any] ) -> int: _UpperCamelCase = get_tokens(a__ ) _UpperCamelCase = get_tokens(a__ ) _UpperCamelCase = collections.Counter(a__ ) & collections.Counter(a__ ) _UpperCamelCase = sum(common.values() ) if len(a__ ) == 0 or len(a__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _UpperCamelCase = 1.0 * num_same / len(a__ ) _UpperCamelCase = 1.0 * num_same / len(a__ ) _UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def lowercase ( a__ : Optional[int] , a__ : Dict ) -> Tuple: _UpperCamelCase = {} _UpperCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCamelCase = qa['''id'''] _UpperCamelCase = [t for t in qa['''answers''']['''text'''] if normalize_answer(a__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _UpperCamelCase = [''''''] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue _UpperCamelCase = preds[qid] # Take max over all gold answers _UpperCamelCase = max(compute_exact(a__ , a__ ) for a in gold_answers ) _UpperCamelCase = max(compute_fa(a__ , a__ ) for a in gold_answers ) return exact_scores, fa_scores def lowercase ( a__ : Tuple , a__ : List[str] , a__ : Tuple , a__ : Union[str, Any] ) -> List[str]: _UpperCamelCase = {} for qid, s in scores.items(): _UpperCamelCase = na_probs[qid] > na_prob_thresh if pred_na: _UpperCamelCase = float(not qid_to_has_ans[qid] ) else: _UpperCamelCase = s return new_scores def lowercase ( a__ : Optional[Any] , a__ : List[Any] , a__ : List[str]=None ) -> int: if not qid_list: _UpperCamelCase = len(a__ ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: _UpperCamelCase = len(a__ ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def lowercase ( a__ : Optional[Any] , a__ : Any , a__ : Tuple ) -> str: for k in new_eval: _UpperCamelCase = new_eval[k] def lowercase ( a__ : Optional[Any] , a__ : int , a__ : Optional[Any] , a__ : List[Any] ) -> Any: plt.step(a__ , a__ , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(a__ , a__ , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(a__ ) plt.savefig(a__ ) plt.clf() def lowercase ( a__ : Tuple , a__ : Dict , a__ : Dict , a__ : List[str] , a__ : Optional[int]=None , a__ : Any=None ) -> List[str]: _UpperCamelCase = sorted(a__ , key=lambda a__ : na_probs[k] ) _UpperCamelCase = 0.0 _UpperCamelCase = 1.0 _UpperCamelCase = 0.0 _UpperCamelCase = [1.0] _UpperCamelCase = [0.0] _UpperCamelCase = 0.0 for i, qid in enumerate(a__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] _UpperCamelCase = true_pos / float(i + 1 ) _UpperCamelCase = true_pos / float(a__ ) if i == len(a__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(a__ ) recalls.append(a__ ) if out_image: plot_pr_curve(a__ , a__ , a__ , a__ ) return {"ap": 100.0 * avg_prec} def lowercase ( a__ : Any , a__ : Optional[Any] , a__ : Optional[int] , a__ : Union[str, Any] , a__ : Optional[int] , a__ : List[Any] ) -> Union[str, Any]: if out_image_dir and not os.path.exists(a__ ): os.makedirs(a__ ) _UpperCamelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _UpperCamelCase = make_precision_recall_eval( a__ , a__ , a__ , a__ , out_image=os.path.join(a__ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) _UpperCamelCase = make_precision_recall_eval( a__ , a__ , a__ , a__ , out_image=os.path.join(a__ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) _UpperCamelCase = {k: float(a__ ) for k, v in qid_to_has_ans.items()} _UpperCamelCase = make_precision_recall_eval( a__ , a__ , a__ , a__ , out_image=os.path.join(a__ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(a__ , a__ , '''pr_exact''' ) merge_eval(a__ , a__ , '''pr_f1''' ) merge_eval(a__ , a__ , '''pr_oracle''' ) def lowercase ( a__ : str , a__ : Optional[Any] , a__ : int , a__ : Optional[Any] ) -> int: if not qid_list: return _UpperCamelCase = [na_probs[k] for k in qid_list] _UpperCamelCase = np.ones_like(a__ ) / float(len(a__ ) ) plt.hist(a__ , weights=a__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(a__ , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def lowercase ( a__ : Optional[int] , a__ : str , a__ : Optional[int] , a__ : List[Any] ) -> List[Any]: _UpperCamelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _UpperCamelCase = num_no_ans _UpperCamelCase = cur_score _UpperCamelCase = 0.0 _UpperCamelCase = sorted(a__ , key=lambda a__ : na_probs[k] ) for i, qid in enumerate(a__ ): if qid not in scores: continue if qid_to_has_ans[qid]: _UpperCamelCase = scores[qid] else: if preds[qid]: _UpperCamelCase = -1 else: _UpperCamelCase = 0 cur_score += diff if cur_score > best_score: _UpperCamelCase = cur_score _UpperCamelCase = na_probs[qid] return 100.0 * best_score / len(a__ ), best_thresh def lowercase ( a__ : List[Any] , a__ : Any , a__ : Dict , a__ : List[Any] , a__ : Optional[Any] , a__ : Optional[int] ) -> Union[str, Any]: _UpperCamelCase , _UpperCamelCase = find_best_thresh(a__ , a__ , a__ , a__ ) _UpperCamelCase , _UpperCamelCase = find_best_thresh(a__ , a__ , a__ , a__ ) _UpperCamelCase = best_exact _UpperCamelCase = exact_thresh _UpperCamelCase = best_fa _UpperCamelCase = fa_thresh def lowercase ( ) -> Optional[int]: with open(OPTS.data_file ) as f: _UpperCamelCase = json.load(a__ ) _UpperCamelCase = dataset_json['''data'''] with open(OPTS.pred_file ) as f: _UpperCamelCase = json.load(a__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _UpperCamelCase = json.load(a__ ) else: _UpperCamelCase = {k: 0.0 for k in preds} _UpperCamelCase = make_qid_to_has_ans(a__ ) # maps qid to True/False _UpperCamelCase = [k for k, v in qid_to_has_ans.items() if v] _UpperCamelCase = [k for k, v in qid_to_has_ans.items() if not v] _UpperCamelCase , _UpperCamelCase = get_raw_scores(a__ , a__ ) _UpperCamelCase = apply_no_ans_threshold(a__ , a__ , a__ , OPTS.na_prob_thresh ) _UpperCamelCase = apply_no_ans_threshold(a__ , a__ , a__ , OPTS.na_prob_thresh ) _UpperCamelCase = make_eval_dict(a__ , a__ ) if has_ans_qids: _UpperCamelCase = make_eval_dict(a__ , a__ , qid_list=a__ ) merge_eval(a__ , a__ , '''HasAns''' ) if no_ans_qids: _UpperCamelCase = make_eval_dict(a__ , a__ , qid_list=a__ ) merge_eval(a__ , a__ , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(a__ , a__ , a__ , a__ , a__ , a__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(a__ , a__ , a__ , a__ , a__ , OPTS.out_image_dir ) histogram_na_prob(a__ , a__ , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(a__ , a__ , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(a__ , a__ ) else: print(json.dumps(a__ , indent=2 ) ) if __name__ == "__main__": UpperCAmelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
420
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan UpperCAmelCase = 6_37_81_37.0 UpperCAmelCase = 6_35_67_52.31_42_45 UpperCAmelCase = 6_378_137 def lowercase ( a__ : float , a__ : float , a__ : float , a__ : float ) -> float: _UpperCamelCase = (AXIS_A - AXIS_B) / AXIS_A _UpperCamelCase = atan((1 - flattening) * tan(radians(a__ ) ) ) _UpperCamelCase = atan((1 - flattening) * tan(radians(a__ ) ) ) _UpperCamelCase = radians(a__ ) _UpperCamelCase = radians(a__ ) # Equation _UpperCamelCase = sin((phi_a - phi_a) / 2 ) _UpperCamelCase = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _UpperCamelCase = sqrt(sin_sq_phi + (cos(a__ ) * cos(a__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(a__ ) if __name__ == "__main__": import doctest doctest.testmod()
420
1
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if not (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )): raise ValueError('longest_common_substring() takes two strings for inputs' ) lowercase = len(_UpperCAmelCase ) lowercase = len(_UpperCAmelCase ) lowercase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] lowercase = 0 lowercase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: lowercase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: lowercase = i lowercase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
314
import re def __snake_case ( _UpperCAmelCase ): """simple docstring""" if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
314
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ ( __a ): def __init__( self : List[str] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = data def __iter__( self : List[Any] ): '''simple docstring''' for element in self.data: yield element def a__ ( lowerCAmelCase__=True ) -> str: UpperCAmelCase__ : Optional[int] = Accelerator(even_batches=lowerCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Optional[int]: if iterable: UpperCAmelCase__ : int = DummyIterableDataset(torch.as_tensor(range(lowerCAmelCase__ ) ) ) else: UpperCAmelCase__ : str = TensorDataset(torch.as_tensor(range(lowerCAmelCase__ ) ) ) UpperCAmelCase__ : int = DataLoader(lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) return dl def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Union[str, Any]: UpperCAmelCase__ : List[str] = create_dataloader(accelerator=lowerCAmelCase__ , dataset_size=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : str = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def a__ ( ) -> Tuple: UpperCAmelCase__ : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def a__ ( ) -> List[Any]: UpperCAmelCase__ : Any = create_accelerator(even_batches=lowerCAmelCase__ ) verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def a__ ( ) -> Optional[Any]: UpperCAmelCase__ : List[str] = create_accelerator(even_batches=lowerCAmelCase__ ) UpperCAmelCase__ : str = torch.nn.Linear(1 , 1 ) UpperCAmelCase__ : Union[str, Any] = accelerator.prepare(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) UpperCAmelCase__ : Optional[int] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ : Any = ddp_model(batch[0].float() ) UpperCAmelCase__ : Dict = output.sum() loss.backward() batch_idxs.append(lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def a__ ( lowerCAmelCase__ ) -> Tuple: with warnings.catch_warnings(record=lowerCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , lowerCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def a__ ( ) -> Optional[int]: UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : int = False UpperCAmelCase__ : Tuple = create_accelerator(even_batches=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = torch.nn.Linear(1 , 1 ) UpperCAmelCase__ : List[Any] = accelerator.prepare(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) UpperCAmelCase__ : Optional[int] = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = train_dl.batch_sampler.even_batches UpperCAmelCase__ : Optional[Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def a__ ( ) -> str: UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = create_accelerator(even_batches=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = torch.nn.Linear(1 , 1 ) UpperCAmelCase__ : str = accelerator.prepare(lowerCAmelCase__ ) create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): UpperCAmelCase__ : Union[str, Any] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def a__ ( ) -> int: UpperCAmelCase__ : Union[str, Any] = create_accelerator() UpperCAmelCase__ : List[str] = torch.nn.Linear(1 , 1 ) UpperCAmelCase__ : int = accelerator.prepare(lowerCAmelCase__ ) create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=lowerCAmelCase__ ) with warnings.catch_warnings(record=lowerCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): pass assert issubclass(w[-1].category , lowerCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def a__ ( ) -> Optional[Any]: UpperCAmelCase__ : Union[str, Any] = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) UpperCAmelCase__ : Tuple = accelerator.state.distributed_type UpperCAmelCase__ : Dict = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(lowerCAmelCase__ ) UpperCAmelCase__ : int = original_state if __name__ == "__main__": main()
75
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __snake_case : List[Any] =get_tests_dir('fixtures/test_sentencepiece_bpe.model') class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =BartphoTokenizer snake_case_ =False snake_case_ =True def lowerCAmelCase__ (self ) -> int: """simple docstring""" super().setUp() lowerCAmelCase__ : Optional[int] = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] lowerCAmelCase__ : int = dict(zip(__lowerCamelCase ,range(len(__lowerCamelCase ) ) ) ) lowerCAmelCase__ : Union[str, Any] = {'''unk_token''': '''<unk>'''} lowerCAmelCase__ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) lowerCAmelCase__ : Tuple = BartphoTokenizer(__lowerCamelCase ,self.monolingual_vocab_file ,**self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : int = '''This is a là test''' lowerCAmelCase__ : Optional[Any] = '''This is a<unk><unk> test''' return input_text, output_text def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : str = BartphoTokenizer(__lowerCamelCase ,self.monolingual_vocab_file ,**self.special_tokens_map ) lowerCAmelCase__ : int = '''This is a là test''' lowerCAmelCase__ : Optional[Any] = '''▁This ▁is ▁a ▁l à ▁t est'''.split() lowerCAmelCase__ : List[str] = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Any = tokens + [tokenizer.unk_token] lowerCAmelCase__ : int = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,__lowerCamelCase )
647
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = torch.device('cpu') def __a ( ) ->Tuple: a__: Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' a__: Optional[int] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def __a ( _SCREAMING_SNAKE_CASE ) ->Any: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: a__: Optional[int] = dct.pop(_SCREAMING_SNAKE_CASE ) a__: Optional[Any] = val def __a ( _SCREAMING_SNAKE_CASE ) ->List[str]: a__: Tuple = [] for k in state_dict.keys(): a__: Dict = k if ".pwconv" in k: a__: List[Any] = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__: Tuple = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__: Tuple = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__: str = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__: int = k_new.split('.' ) if ls[2].isdigit(): a__: str = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__: Union[str, Any] = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: a__: Optional[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__: int = 1000 a__: Any = 'huggingface/label-files' a__: Any = 'imagenet-1k-id2label.json' a__: Any = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) a__: Optional[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} a__: str = idalabel a__: Any = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__: Dict = [3, 3, 6, 4] a__: List[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__: int = [3, 3, 9, 6] a__: Tuple = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__: Tuple = [4, 3, 10, 5] a__: List[str] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__: List[str] = [4, 4, 12, 6] a__: Any = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__: int = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='cpu' , check_hash=_SCREAMING_SNAKE_CASE ) else: a__: List[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) a__: Optional[Any] = checkpoint a__: int = create_rename_keys(_SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model a__: Union[str, Any] = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) # prepare test inputs a__: Dict = prepare_img() a__: Optional[int] = ViTImageProcessor.from_pretrained('preprocessor_config' ) a__: List[str] = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # compare outputs from both models a__: Optional[Any] = get_expected_output(_SCREAMING_SNAKE_CASE ) a__: Any = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') lowercase__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
701
"""simple docstring""" from string import ascii_uppercase lowercase__ = {str(ord(c) - 55): c for c in ascii_uppercase} def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) a__: Any = '' a__: Union[str, Any] = 0 a__: Dict = 0 while div != 1: a__ , a__: List[str] = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: a__: Optional[Any] = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: a__: Union[str, Any] = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value a__: Optional[int] = num // base a__: List[Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
217
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _snake_case : """simple docstring""" _UpperCamelCase = LEDConfig _UpperCamelCase = {} _UpperCamelCase = "gelu" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=13 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=False , UpperCAmelCase__=99 , UpperCAmelCase__=32 , UpperCAmelCase__=2 , UpperCAmelCase__=4 , UpperCAmelCase__=37 , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=20 , UpperCAmelCase__=2 , UpperCAmelCase__=1 , UpperCAmelCase__=0 , UpperCAmelCase__=4 , ) -> Union[str, Any]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = eos_token_id a_ = pad_token_id a_ = bos_token_id a_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after a_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests a_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a_ = tf.concat([input_ids, eos_tensor] , axis=1 ) a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) a_ = prepare_led_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) a_ = tf.concat( [tf.zeros_like(UpperCAmelCase__ )[:, :-1], tf.ones_like(UpperCAmelCase__ )[:, -1:]] , axis=-1 , ) a_ = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: a_ = TFLEDModel(config=UpperCAmelCase__ ).get_decoder() a_ = inputs_dict['input_ids'] a_ = input_ids[:1, :] a_ = inputs_dict['attention_mask'][:1, :] a_ = 1 # first forward pass a_ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) a_ , a_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) a_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a_ = tf.concat([input_ids, next_tokens] , axis=-1 ) a_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a_ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] a_ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a_ = output_from_no_past[:, -3:, random_slice_idx] a_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1e-3 ) def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: a_ = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _snake_case ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCamelCase = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = TFLEDModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = tf.zeros_like(inputs_dict['attention_mask'] ) a_ = 2 a_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) a_ = True a_ = self.model_tester.seq_length a_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(UpperCAmelCase__ ): a_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(UpperCAmelCase__ ): a_ = [t.numpy() for t in outputs.encoder_attentions] a_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: a_ = True a_ = False a_ = False a_ = model_class(UpperCAmelCase__ ) a_ = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) a_ = len(UpperCAmelCase__ ) self.assertEqual(config.output_hidden_states , UpperCAmelCase__ ) check_encoder_attentions_output(UpperCAmelCase__ ) if self.is_encoder_decoder: a_ = model_class(UpperCAmelCase__ ) a_ = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase__ ) check_decoder_attentions_output(UpperCAmelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a_ = True a_ = model_class(UpperCAmelCase__ ) a_ = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase__ ) check_encoder_attentions_output(UpperCAmelCase__ ) # Check attention is always last and order is fine a_ = True a_ = True a_ = model_class(UpperCAmelCase__ ) a_ = model(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase__ ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase__ ) check_encoder_attentions_output(UpperCAmelCase__ ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: pass def a ( _UpperCAmelCase ) -> str: """simple docstring""" return tf.constant(__lowerCamelCase , dtype=tf.intaa ) __lowerCAmelCase =1e-4 @slow @require_tf class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: a_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here a_ = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a_ = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a_ = prepare_led_inputs_dict(model.config , UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ )[0] a_ = (1, 1024, 768) self.assertEqual(output.shape , UpperCAmelCase__ ) # change to expected output here a_ = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here a_ = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a_ = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a_ = prepare_led_inputs_dict(model.config , UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ )[0] a_ = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , UpperCAmelCase__ ) # change to expected output here a_ = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-3 , rtol=1e-3 )
697
def __A ( ) -> list[list[int]]: return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] __UpperCamelCase : str = generate_large_matrix() __UpperCamelCase : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __A ( __lowerCamelCase ) -> None: assert all(row == sorted(__lowerCamelCase , reverse=__lowerCamelCase ) for row in grid ) assert all(list(__lowerCamelCase ) == sorted(__lowerCamelCase , reverse=__lowerCamelCase ) for col in zip(*__lowerCamelCase ) ) def __A ( __lowerCamelCase ) -> int: a = 0 a = len(__lowerCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: a = (left + right) // 2 a = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: a = mid + 1 else: a = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCamelCase ) def __A ( __lowerCamelCase ) -> int: a = 0 a = len(grid[0] ) for i in range(len(__lowerCamelCase ) ): a = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCamelCase ) * len(grid[0] )) - total def __A ( __lowerCamelCase ) -> int: return len([number for row in grid for number in row if number < 0] ) def __A ( __lowerCamelCase ) -> int: a = 0 for row in grid: for i, number in enumerate(__lowerCamelCase ): if number < 0: total += len(__lowerCamelCase ) - i break return total def __A ( ) -> None: from timeit import timeit print("""Running benchmarks""" ) a = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): a = timeit(f'{func}(grid=grid)' , setup=__lowerCamelCase , number=500 ) print(f'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
468
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase ( __a ): _lowerCAmelCase : "DiagonalGaussianDistribution" class lowerCamelCase ( __a , __a ): _lowerCAmelCase : Tuple = True @register_to_config def __init__( self , lowercase__ = 3 , lowercase__ = 3 , lowercase__ = ("DownEncoderBlock2D",) , lowercase__ = ("UpDecoderBlock2D",) , lowercase__ = (6_4,) , lowercase__ = 1 , lowercase__ = "silu" , lowercase__ = 4 , lowercase__ = 3_2 , lowercase__ = 3_2 , lowercase__ = 0.1_8_2_1_5 , ): super().__init__() # pass init params to Encoder __UpperCAmelCase : Optional[int] = Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) # pass init params to Decoder __UpperCAmelCase : str = Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , norm_num_groups=snake_case__ , act_fn=snake_case__ , ) __UpperCAmelCase : Tuple = nn.Convad(2 * latent_channels , 2 * latent_channels , 1) __UpperCAmelCase : List[str] = nn.Convad(snake_case__ , snake_case__ , 1) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Union[str, Any] = False # only relevant if vae tiling is enabled __UpperCAmelCase : Optional[Any] = self.config.sample_size __UpperCAmelCase : Optional[Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple)) else self.config.sample_size ) __UpperCAmelCase : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) __UpperCAmelCase : Union[str, Any] = 0.2_5 def A( self , lowercase__ , lowercase__=False): if isinstance(snake_case__ , (Encoder, Decoder)): __UpperCAmelCase : Tuple = value def A( self , lowercase__ = True): __UpperCAmelCase : Tuple = use_tiling def A( self): self.enable_tiling(snake_case__) def A( self): __UpperCAmelCase : Any = True def A( self): __UpperCAmelCase : List[str] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A( self): __UpperCAmelCase : Dict = {} def fn_recursive_add_processors(lowercase__ , lowercase__ , lowercase__): if hasattr(snake_case__ , '''set_processor'''): __UpperCAmelCase : List[str] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , snake_case__ , snake_case__) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__) return processors def A( self , lowercase__): __UpperCAmelCase : Optional[Any] = len(self.attn_processors.keys()) if isinstance(snake_case__ , snake_case__) and len(snake_case__) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(snake_case__)} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes.") def fn_recursive_attn_processor(lowercase__ , lowercase__ , lowercase__): if hasattr(snake_case__ , '''set_processor'''): if not isinstance(snake_case__ , snake_case__): module.set_processor(snake_case__) else: module.set_processor(processor.pop(F"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , snake_case__ , snake_case__) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__) def A( self): self.set_attn_processor(AttnProcessor()) @apply_forward_hook def A( self , lowercase__ , lowercase__ = True): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(snake_case__ , return_dict=snake_case__) if self.use_slicing and x.shape[0] > 1: __UpperCAmelCase : Union[str, Any] = [self.encoder(snake_case__) for x_slice in x.split(1)] __UpperCAmelCase : List[str] = torch.cat(snake_case__) else: __UpperCAmelCase : Dict = self.encoder(snake_case__) __UpperCAmelCase : Dict = self.quant_conv(snake_case__) __UpperCAmelCase : int = DiagonalGaussianDistribution(snake_case__) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case__) def A( self , lowercase__ , lowercase__ = True): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(snake_case__ , return_dict=snake_case__) __UpperCAmelCase : Any = self.post_quant_conv(snake_case__) __UpperCAmelCase : Any = self.decoder(snake_case__) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__) @apply_forward_hook def A( self , lowercase__ , lowercase__ = True): if self.use_slicing and z.shape[0] > 1: __UpperCAmelCase : Dict = [self._decode(snake_case__).sample for z_slice in z.split(1)] __UpperCAmelCase : str = torch.cat(snake_case__) else: __UpperCAmelCase : Dict = self._decode(snake_case__).sample if not return_dict: return (decoded,) return DecoderOutput(sample=snake_case__) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = min(a.shape[2] , b.shape[2] , snake_case__) for y in range(snake_case__): __UpperCAmelCase : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = min(a.shape[3] , b.shape[3] , snake_case__) for x in range(snake_case__): __UpperCAmelCase : List[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def A( self , lowercase__ , lowercase__ = True): __UpperCAmelCase : Optional[Any] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) __UpperCAmelCase : Union[str, Any] = int(self.tile_latent_min_size * self.tile_overlap_factor) __UpperCAmelCase : List[str] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __UpperCAmelCase : Dict = [] for i in range(0 , x.shape[2] , snake_case__): __UpperCAmelCase : Union[str, Any] = [] for j in range(0 , x.shape[3] , snake_case__): __UpperCAmelCase : List[str] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __UpperCAmelCase : Dict = self.encoder(snake_case__) __UpperCAmelCase : Union[str, Any] = self.quant_conv(snake_case__) row.append(snake_case__) rows.append(snake_case__) __UpperCAmelCase : Any = [] for i, row in enumerate(snake_case__): __UpperCAmelCase : Optional[Any] = [] for j, tile in enumerate(snake_case__): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __UpperCAmelCase : int = self.blend_v(rows[i - 1][j] , snake_case__ , snake_case__) if j > 0: __UpperCAmelCase : Any = self.blend_h(row[j - 1] , snake_case__ , snake_case__) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(snake_case__ , dim=3)) __UpperCAmelCase : Any = torch.cat(snake_case__ , dim=2) __UpperCAmelCase : int = DiagonalGaussianDistribution(snake_case__) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case__) def A( self , lowercase__ , lowercase__ = True): __UpperCAmelCase : Any = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) __UpperCAmelCase : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor) __UpperCAmelCase : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __UpperCAmelCase : int = [] for i in range(0 , z.shape[2] , snake_case__): __UpperCAmelCase : Optional[Any] = [] for j in range(0 , z.shape[3] , snake_case__): __UpperCAmelCase : Dict = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __UpperCAmelCase : List[Any] = self.post_quant_conv(snake_case__) __UpperCAmelCase : Union[str, Any] = self.decoder(snake_case__) row.append(snake_case__) rows.append(snake_case__) __UpperCAmelCase : int = [] for i, row in enumerate(snake_case__): __UpperCAmelCase : Dict = [] for j, tile in enumerate(snake_case__): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __UpperCAmelCase : Union[str, Any] = self.blend_v(rows[i - 1][j] , snake_case__ , snake_case__) if j > 0: __UpperCAmelCase : Tuple = self.blend_h(row[j - 1] , snake_case__ , snake_case__) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(snake_case__ , dim=3)) __UpperCAmelCase : List[str] = torch.cat(snake_case__ , dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__) def A( self , lowercase__ , lowercase__ = False , lowercase__ = True , lowercase__ = None , ): __UpperCAmelCase : List[Any] = sample __UpperCAmelCase : str = self.encode(snake_case__).latent_dist if sample_posterior: __UpperCAmelCase : Optional[int] = posterior.sample(generator=snake_case__) else: __UpperCAmelCase : Optional[int] = posterior.mode() __UpperCAmelCase : Any = self.decode(snake_case__).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__)
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( _A ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =PegasusTokenizer __UpperCAmelCase : Any =PegasusTokenizerFast __UpperCAmelCase : Optional[int] =True __UpperCAmelCase : str =True def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = PegasusTokenizer(__a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case ( self ): return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def snake_case ( self , **__a ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self , __a ): return ("This is a test", "This is a test") def snake_case ( self ): __lowerCAmelCase = "</s>" __lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def snake_case ( self ): __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(__a ) , 11_03 ) def snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def snake_case ( self ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) __lowerCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0] __lowerCAmelCase = py_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0] self.assertListEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __lowerCAmelCase = "<mask_1> To ensure a <mask_2> flow of bank resolutions." __lowerCAmelCase = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __lowerCAmelCase = tokenizer([raw_input_str] , return_tensors=__a ).input_ids[0] self.assertListEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 __lowerCAmelCase = "To ensure a smooth flow of bank resolutions." __lowerCAmelCase = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __lowerCAmelCase = tokenizer([raw_input_str] , return_tensors=__a ).input_ids[0] self.assertListEqual(__a , __a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def snake_case ( self ): __lowerCAmelCase = ["This is going to be way too long." * 1_50, "short example"] __lowerCAmelCase = ["not super long but more than 5 tokens", "tiny"] __lowerCAmelCase = self._large_tokenizer(__a , padding=__a , truncation=__a , return_tensors="pt" ) __lowerCAmelCase = self._large_tokenizer( text_target=__a , max_length=5 , padding=__a , truncation=__a , return_tensors="pt" ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(__a ) == 2 # input_ids, attention_mask. @slow def snake_case ( self ): # fmt: off __lowerCAmelCase = {"input_ids": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class _UpperCamelCase ( _A ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =PegasusTokenizer __UpperCAmelCase : List[str] =PegasusTokenizerFast __UpperCAmelCase : List[str] =True __UpperCAmelCase : str =True def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = PegasusTokenizer(__a , offset=0 , mask_token_sent=__a , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case ( self ): return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def snake_case ( self , **__a ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self , __a ): return ("This is a test", "This is a test") def snake_case ( self ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) __lowerCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0] __lowerCAmelCase = py_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0] self.assertListEqual(__a , __a ) @require_torch def snake_case ( self ): __lowerCAmelCase = ["This is going to be way too long." * 10_00, "short example"] __lowerCAmelCase = ["not super long but more than 5 tokens", "tiny"] __lowerCAmelCase = self._large_tokenizer(__a , padding=__a , truncation=__a , return_tensors="pt" ) __lowerCAmelCase = self._large_tokenizer( text_target=__a , max_length=5 , padding=__a , truncation=__a , return_tensors="pt" ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(__a ) == 2 # input_ids, attention_mask. def snake_case ( self ): __lowerCAmelCase = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) __lowerCAmelCase = self._large_tokenizer(__a ).input_ids self.assertListEqual( __a , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
636
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __UpperCAmelCase : Any = get_tests_dir("fixtures") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :str = mock.Mock() snake_case__ :Optional[int] = 500 snake_case__ :List[str] = {} snake_case__ :str = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Tuple = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Optional[int] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> Any: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Tuple = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class _snake_case ( unittest.TestCase ): @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: snake_case__ :Optional[int] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Dict: try: delete_repo(token=cls._token ,repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase ) feature_extractor.push_to_hub("test-feature-extractor" ,use_auth_token=self._token ) snake_case__ :Tuple = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase ,getattr(UpperCamelCase ,UpperCamelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase ,repo_id="test-feature-extractor" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase ,getattr(UpperCamelCase ,UpperCamelCase ) ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :str = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" ,use_auth_token=self._token ) snake_case__ :int = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase ,getattr(UpperCamelCase ,UpperCamelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-feature-extractor-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Optional[Any] = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase ,getattr(UpperCamelCase ,UpperCamelCase ) ) def lowerCAmelCase_ ( self ) -> Optional[int]: CustomFeatureExtractor.register_for_auto_class() snake_case__ :Tuple = CustomFeatureExtractor.from_pretrained(UpperCamelCase ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map ,{"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} ,) snake_case__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ ,"CustomFeatureExtractor" )
241
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( UpperCAmelCase__ ): def _A ( self: Optional[Any] ): _a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , '''width_multiplier''' ) ) class UpperCAmelCase : def __init__( self: Optional[Any] , __UpperCamelCase: Dict , __UpperCamelCase: Any=13 , __UpperCamelCase: int=64 , __UpperCamelCase: Any=2 , __UpperCamelCase: List[Any]=3 , __UpperCamelCase: Optional[Any]="swish" , __UpperCamelCase: Union[str, Any]=3 , __UpperCamelCase: Any=32 , __UpperCamelCase: Tuple=0.1 , __UpperCamelCase: Union[str, Any]=0.0_2 , __UpperCamelCase: Union[str, Any]=True , __UpperCamelCase: Optional[Any]=True , __UpperCamelCase: List[Any]=10 , __UpperCamelCase: Dict=None , __UpperCamelCase: Dict=0.2_5 , __UpperCamelCase: Union[str, Any]=0.0 , __UpperCamelCase: int=0.0 , ): _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = make_divisible(512 * width_multiplier , divisor=8 ) _a = hidden_act _a = conv_kernel_size _a = output_stride _a = classifier_dropout_prob _a = use_labels _a = is_training _a = num_labels _a = initializer_range _a = scope _a = width_multiplier _a = ffn_dropout _a = attn_dropout def _A ( self: List[str] ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels, pixel_labels def _A ( self: Union[str, Any] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _A ( self: int , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Dict , __UpperCamelCase: List[Any] , __UpperCamelCase: Union[str, Any] ): _a = MobileViTVaModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _a = model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _A ( self: Union[str, Any] , __UpperCamelCase: Any , __UpperCamelCase: Optional[int] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: str ): _a = self.num_labels _a = MobileViTVaForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _a = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self: List[Any] , __UpperCamelCase: Tuple , __UpperCamelCase: List[Any] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: int ): _a = self.num_labels _a = MobileViTVaForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _a = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _a = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _A ( self: Union[str, Any] ): _a = self.prepare_config_and_inputs() _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): a: Dict = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) a: Optional[Any] = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) a: Optional[int] = False a: Optional[Any] = False a: Dict = False a: str = False def _A ( self: Optional[Any] ): _a = MobileViTVaModelTester(self ) _a = MobileViTVaConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def _A ( self: List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def _A ( self: int ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def _A ( self: Tuple ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def _A ( self: Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def _A ( self: int ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _A ( self: Optional[int] ): pass def _A ( self: Tuple ): _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCamelCase__ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _A ( self: Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _A ( self: Union[str, Any] ): def check_hidden_states_output(__UpperCamelCase: Union[str, Any] , __UpperCamelCase: Dict , __UpperCamelCase: int ): _a = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _a = outputs.hidden_states _a = 5 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _a = 2 for i in range(len(lowerCamelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def _A ( self: str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def _A ( self: str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) @slow def _A ( self: Optional[int] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = MobileViTVaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __snake_case ( ) -> Optional[Any]: _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def _A ( self: str ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def _A ( self: List[Any] ): _a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( lowerCamelCase__ ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _a = model(**lowerCamelCase__ ) # verify the logits _a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _A ( self: Any ): _a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a = model.to(lowerCamelCase__ ) _a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a = prepare_img() _a = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _a = model(**lowerCamelCase__ ) _a = outputs.logits # verify the logits _a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase__ ) _a = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _A ( self: Any ): _a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a = model.to(lowerCamelCase__ ) _a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a = prepare_img() _a = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _a = model(**lowerCamelCase__ ) _a = outputs.logits.detach().cpu() _a = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(50, 60)] ) _a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) _a = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) _a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
718
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase : @staticmethod def _A ( *__UpperCamelCase: Optional[int] , **__UpperCamelCase: str ): pass def __snake_case ( _UpperCamelCase ) -> Dict: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCamelCase :List[str] = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): a: List[str] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _A ( self: Dict , __UpperCamelCase: Optional[int] , __UpperCamelCase: Tuple , __UpperCamelCase: Dict ): _a = pipeline( '''document-question-answering''' , model=__UpperCamelCase , tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) _a = INVOICE_URL _a = list(zip(*apply_tesseract(load_image(__UpperCamelCase ) , __UpperCamelCase , '''''' ) ) ) _a = '''What is the placebo?''' _a = [ { '''image''': load_image(__UpperCamelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def _A ( self: Tuple , __UpperCamelCase: Dict , __UpperCamelCase: List[str] ): _a = dqa_pipeline(__UpperCamelCase , top_k=2 ) self.assertEqual( __UpperCamelCase , [ [ {'''score''': ANY(__UpperCamelCase ), '''answer''': ANY(__UpperCamelCase ), '''start''': ANY(__UpperCamelCase ), '''end''': ANY(__UpperCamelCase )}, {'''score''': ANY(__UpperCamelCase ), '''answer''': ANY(__UpperCamelCase ), '''start''': ANY(__UpperCamelCase ), '''end''': ANY(__UpperCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _A ( self: List[str] ): _a = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) _a = INVOICE_URL _a = '''How many cats are there?''' _a = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCamelCase , decimals=4 ) , __UpperCamelCase ) _a = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(__UpperCamelCase , decimals=4 ) , __UpperCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _a = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual(__UpperCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes _a = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _a = [] _a = [] _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , words=__UpperCamelCase , boxes=__UpperCamelCase , top_k=2 ) self.assertEqual(__UpperCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _A ( self: Tuple ): _a = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) _a = INVOICE_URL _a = '''What is the invoice number?''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _a = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _a = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _A ( self: Dict ): _a = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) _a = INVOICE_URL _a = '''What is the invoice number?''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _a = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _a = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _A ( self: Union[str, Any] ): _a = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__UpperCamelCase ) _a = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__UpperCamelCase , revision='''3dc6de3''' , ) _a = INVOICE_URL _a = '''What is the invoice number?''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) _a = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) _a = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) _a = list(zip(*apply_tesseract(load_image(__UpperCamelCase ) , __UpperCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None _a = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _A ( self: List[Any] ): _a = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__UpperCamelCase ) _a = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__UpperCamelCase , revision='''3dc6de3''' , max_seq_len=50 , ) _a = INVOICE_URL _a = '''What is the invoice number?''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _a = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) _a = list(zip(*apply_tesseract(load_image(__UpperCamelCase ) , __UpperCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None _a = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def _A ( self: Optional[Any] ): _a = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) _a = INVOICE_URL _a = '''What is the invoice number?''' _a = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCamelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def _A ( self: str ): pass
346
0
'''simple docstring''' import sys from collections import defaultdict class a__: '''simple docstring''' def __init__( self): """simple docstring""" lowerCAmelCase = [] def a_ ( self , __lowerCAmelCase): """simple docstring""" return self.node_position[vertex] def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = pos def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase = 2 * start + 1 else: lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase , lowerCAmelCase = heap[smallest_child], positions[smallest_child] lowerCAmelCase , lowerCAmelCase = ( heap[start], positions[start], ) lowerCAmelCase , lowerCAmelCase = temp, tempa lowerCAmelCase = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child] , self.get_position(positions[start])) self.set_position(positions[start] , __lowerCAmelCase) self.top_to_bottom(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = position[index] while index != 0: lowerCAmelCase = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: lowerCAmelCase = heap[parent] lowerCAmelCase = position[parent] self.set_position(position[parent] , __lowerCAmelCase) else: lowerCAmelCase = val lowerCAmelCase = temp self.set_position(__lowerCAmelCase , __lowerCAmelCase) break lowerCAmelCase = parent else: lowerCAmelCase = val lowerCAmelCase = temp self.set_position(__lowerCAmelCase , 0) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = len(__lowerCAmelCase) // 2 - 1 for i in range(__lowerCAmelCase , -1 , -1): self.top_to_bottom(__lowerCAmelCase , __lowerCAmelCase , len(__lowerCAmelCase) , __lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = positions[0] lowerCAmelCase = sys.maxsize self.top_to_bottom(__lowerCAmelCase , 0 , len(__lowerCAmelCase) , __lowerCAmelCase) return temp def snake_case__ ( _A: List[str] ) -> Dict: '''simple docstring''' lowerCAmelCase = Heap() lowerCAmelCase = [0] * len(_A ) lowerCAmelCase = [-1] * len(_A ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase = [] for vertex in range(len(_A ) ): distance_tv.append(sys.maxsize ) positions.append(_A ) heap.node_position.append(_A ) lowerCAmelCase = [] lowerCAmelCase = 1 lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase = 0 lowerCAmelCase = distance heap.heapify(_A , _A ) for _ in range(1 , len(_A ) ): lowerCAmelCase = heap.delete_minimum(_A , _A ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_A )] ): lowerCAmelCase = distance heap.bottom_to_top( _A , heap.get_position(_A ) , _A , _A ) lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __lowercase = int(input('''Enter number of edges: ''').strip()) __lowercase = defaultdict(list) for _ in range(edges_number): __lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
370
'''simple docstring''' from __future__ import annotations import math def snake_case__ ( _A: int ) -> list[int]: '''simple docstring''' if num <= 0: lowerCAmelCase = f"{num}: Invalid input, please enter a positive integer." raise ValueError(_A ) lowerCAmelCase = [True] * (num + 1) lowerCAmelCase = [] lowerCAmelCase = 2 lowerCAmelCase = int(math.sqrt(_A ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_A ) # Set multiples of start be False for i in range(start * start , num + 1 , _A ): if sieve[i] is True: lowerCAmelCase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_A ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
370
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase : Any =logging.getLogger(__name__) lowerCAmelCase : str =list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase : Optional[int] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(snake_case_ )} , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class _a : _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "The input training data file (a text file)."} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) _UpperCamelCase: bool = field(default=snake_case_ , metadata={"help": "Whether ot not to use whole word mask."} ) _UpperCamelCase: float = field( default=0.1_5 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) _UpperCamelCase: float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) _UpperCamelCase: int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) _UpperCamelCase: int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,): '''simple docstring''' def _dataset(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size ,ref_path=SCREAMING_SNAKE_CASE__ ,) return LineByLineTextDataset(tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size ) else: return TextDataset( tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size ,overwrite_cache=args.overwrite_cache ,cache_dir=SCREAMING_SNAKE_CASE__ ,) if evaluate: return _dataset(args.eval_data_file ,args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(SCREAMING_SNAKE_CASE__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file ,args.train_ref_file ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" ,SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name ,cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase : Tuple = AutoConfig.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir ) else: lowerCAmelCase : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name ,cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: lowerCAmelCase : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,) else: logger.info("""Training new model from scratch""" ) lowerCAmelCase : Any = AutoModelWithLMHead.from_config(SCREAMING_SNAKE_CASE__ ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: lowerCAmelCase : Union[str, Any] = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCAmelCase : str = min(data_args.block_size ,tokenizer.max_len ) # Get datasets lowerCAmelCase : List[str] = ( get_dataset(SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCAmelCase : Dict = ( get_dataset(SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,evaluate=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCAmelCase : Any = DataCollatorForPermutationLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE__ ,plm_probability=data_args.plm_probability ,max_span_length=data_args.max_span_length ,) else: if data_args.mlm and data_args.whole_word_mask: lowerCAmelCase : Tuple = DataCollatorForWholeWordMask( tokenizer=SCREAMING_SNAKE_CASE__ ,mlm_probability=data_args.mlm_probability ) else: lowerCAmelCase : Tuple = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE__ ,mlm=data_args.mlm ,mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase : Any = Trainer( model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,data_collator=SCREAMING_SNAKE_CASE__ ,train_dataset=SCREAMING_SNAKE_CASE__ ,eval_dataset=SCREAMING_SNAKE_CASE__ ,prediction_loss_only=SCREAMING_SNAKE_CASE__ ,) # Training if training_args.do_train: lowerCAmelCase : List[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=SCREAMING_SNAKE_CASE__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : int = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase : str = trainer.evaluate() lowerCAmelCase : str = math.exp(eval_output["""eval_loss"""] ) lowerCAmelCase : List[str] = {"""perplexity""": perplexity} lowerCAmelCase : List[str] = os.path.join(training_args.output_dir ,"""eval_results_lm.txt""" ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE__ ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" ,SCREAMING_SNAKE_CASE__ ,str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(SCREAMING_SNAKE_CASE__ ) return results def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' main() if __name__ == "__main__": main()
715
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class A ( SCREAMING_SNAKE_CASE__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization snake_case__ :str = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) snake_case__ :ClassVar[Features] = Features({'text': Value('string' )} ) snake_case__ :ClassVar[Features] = Features({'summary': Value('string' )} ) snake_case__ :str = "text" snake_case__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
48
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger() @dataclass class a_ : '''simple docstring''' __a: nn.Module __a: List[nn.Module] = field(default_factory=a_ ) __a: list = field(default_factory=a_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = len(list(m.modules() ) ) == 1 or isinstance(lowercase_ , nn.Convad ) or isinstance(lowercase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowercase_ ) def __call__( self , lowercase_ ) -> List[str]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowercase_ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self ) -> str: '''simple docstring''' return list(filter(lambda lowercase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a_ : '''simple docstring''' __a: nn.Module __a: nn.Module __a: int = 0 __a: List = field(default_factory=a_ ) __a: List = field(default_factory=a_ ) def __call__( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = Tracker(self.dest )(lowercase_ ).parametrized lowerCAmelCase_ = Tracker(self.src )(lowercase_ ).parametrized lowerCAmelCase_ = list(filter(lambda lowercase_ : type(lowercase_ ) not in self.src_skip , lowercase_ ) ) lowerCAmelCase_ = list(filter(lambda lowercase_ : type(lowercase_ ) not in self.dest_skip , lowercase_ ) ) if len(lowercase_ ) != len(lowercase_ ): raise Exception( f'''Numbers of operations are different. Source module has {len(lowercase_ )} operations while''' f''' destination module has {len(lowercase_ )}.''' ) for dest_m, src_m in zip(lowercase_ , lowercase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def lowerCamelCase ( a_ , a_ , a_ , a_ = True ) -> Optional[Any]: print(F'''Converting {name}...''' ) with torch.no_grad(): lowerCAmelCase_ = timm.create_model(a_ , pretrained=a_ ).eval() lowerCAmelCase_ = ResNetForImageClassification(a_ ).eval() lowerCAmelCase_ = ModuleTransfer(src=a_ , dest=a_ ) lowerCAmelCase_ = torch.randn((1, 3, 224, 224) ) module_transfer(a_ ) assert torch.allclose(from_model(a_ ) , our_model(a_ ).logits ), "The model logits don't match the original one." lowerCAmelCase_ = F'''resnet{"-".join(name.split("resnet" ) )}''' print(a_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=a_ , ) # we can use the convnext one lowerCAmelCase_ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=a_ , ) print(F'''Pushed {checkpoint_name}''' ) def lowerCamelCase ( a_ , a_ = None , a_ = True ) -> str: lowerCAmelCase_ = 'imagenet-1k-id2label.json' lowerCAmelCase_ = 1_000 lowerCAmelCase_ = (1, num_labels) lowerCAmelCase_ = 'huggingface/label-files' lowerCAmelCase_ = num_labels lowerCAmelCase_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase_ = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = partial(a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ ) lowerCAmelCase_ = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(a_ , names_to_config[model_name] , a_ , a_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a_ , a_ , a_ , a_ ) return config, expected_shape if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
318
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : List[str] = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys UpperCAmelCase__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
446
def __lowercase ( _A ) -> list[int]: SCREAMING_SNAKE_CASE : int = [0 for i in range(len(_A ) )] # initialize interval's left pointer and right pointer SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = 0, 0 for i in range(1 , len(_A ) ): # case when current index is inside the interval if i <= right_pointer: SCREAMING_SNAKE_CASE : Any = min(right_pointer - i + 1 , z_result[i - left_pointer] ) SCREAMING_SNAKE_CASE : Optional[Any] = min_edge while go_next(_A , _A , _A ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = i, i + z_result[i] - 1 return z_result def __lowercase ( _A , _A , _A ) -> bool: return i + z_result[i] < len(_A ) and s[z_result[i]] == s[i + z_result[i]] def __lowercase ( _A , _A ) -> int: SCREAMING_SNAKE_CASE : Any = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string SCREAMING_SNAKE_CASE : List[Any] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_A ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
446
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = [0 for i in range(len(snake_case ) )] # initialize interval's left pointer and right pointer __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = 0, 0 for i in range(1 , len(snake_case ) ): # case when current index is inside the interval if i <= right_pointer: __SCREAMING_SNAKE_CASE : List[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) __SCREAMING_SNAKE_CASE : Dict = min_edge while go_next(snake_case , snake_case , snake_case ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = i, i + z_result[i] - 1 return z_result def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" return i + z_result[i] < len(snake_case ) and s[z_result[i]] == s[i + z_result[i]] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string __SCREAMING_SNAKE_CASE : str = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(snake_case ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
74
0
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
705
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _A : str = """sshleifer/mar_enro_6_3_student""" class a__ ( a_ ): def __magic_name__ ( self ): super().setUp() lowercase : int = cached_path( "https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz" , extract_compressed_file=_a , ) lowercase : Any = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def __magic_name__ ( self ): MarianMTModel.from_pretrained(_a ) @slow @require_torch_gpu def __magic_name__ ( self ): lowercase : Tuple = { "$MAX_LEN": 64, "$BS": 64, "$GAS": 1, "$ENRO_DIR": self.data_dir, "facebook/mbart-large-cc25": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", "--learning_rate=3e-5": "--learning_rate 3e-4", "--num_train_epochs 6": "--num_train_epochs 1", } # Clean up bash script lowercase : Tuple = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py" )[1].strip() lowercase : Union[str, Any] = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) for k, v in env_vars_to_replace.items(): lowercase : Optional[Any] = bash_script.replace(_a , str(_a ) ) lowercase : Any = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowercase : List[Any] = f""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowercase : Union[str, Any] = ["finetune.py"] + bash_script.split() + args with patch.object(_a , "argv" , _a ): lowercase : Dict = argparse.ArgumentParser() lowercase : Optional[Any] = pl.Trainer.add_argparse_args(_a ) lowercase : List[str] = SummarizationModule.add_model_specific_args(_a , os.getcwd() ) lowercase : Tuple = parser.parse_args() lowercase : Optional[Any] = main(_a ) # Check metrics lowercase : int = load_json(model.metrics_save_path ) lowercase : Union[str, Any] = metrics["val"][0] lowercase : Tuple = metrics["val"][-1] self.assertEqual(len(metrics["val"] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , _a ) self.assertGreater(last_step_stats["val_avg_gen_time"] , 0.0_1 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["val_avg_gen_time"] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["val_avg_bleu"] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase : List[str] = os.listdir(_a ) lowercase : Optional[Any] = [x for x in contents if x.endswith(".ckpt" )][0] lowercase : str = os.path.join(args.output_dir , _a ) lowercase : int = torch.load(_a , map_location="cpu" ) lowercase : int = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase : str = {os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1 class a__ ( a_ ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __magic_name__ ( self ): lowercase : List[Any] = f"""{self.test_file_dir_str}/test_data/wmt_en_ro""" lowercase : Union[str, Any] = { "--fp16_opt_level=O1": "", "$MAX_LEN": 128, "$BS": 16, "$GAS": 1, "$ENRO_DIR": data_dir, "$m": "sshleifer/student_marian_en_ro_6_1", "val_check_interval=0.25": "val_check_interval=1.0", } # Clean up bash script lowercase : Optional[int] = ( (self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py" )[1].strip() ) lowercase : Tuple = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) lowercase : Optional[int] = bash_script.replace("--fp16 " , " " ) for k, v in env_vars_to_replace.items(): lowercase : Union[str, Any] = bash_script.replace(_a , str(_a ) ) lowercase : Any = self.get_auto_remove_tmp_dir() lowercase : str = bash_script.replace("--fp16" , "" ) lowercase : Any = 6 lowercase : Optional[int] = ( ["distillation.py"] + bash_script.split() + [ f"""--output_dir={output_dir}""", "--gpus=1", "--learning_rate=1e-3", f"""--num_train_epochs={epochs}""", "--warmup_steps=10", "--val_check_interval=1.0", "--do_predict", ] ) with patch.object(_a , "argv" , _a ): lowercase : Optional[int] = argparse.ArgumentParser() lowercase : List[str] = pl.Trainer.add_argparse_args(_a ) lowercase : Any = SummarizationDistiller.add_model_specific_args(_a , os.getcwd() ) lowercase : str = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowercase : Dict = distill_main(_a ) # Check metrics lowercase : Tuple = load_json(model.metrics_save_path ) lowercase : int = metrics["val"][0] lowercase : Tuple = metrics["val"][-1] assert len(metrics["val"] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , _a ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase : int = os.listdir(_a ) lowercase : Dict = [x for x in contents if x.endswith(".ckpt" )][0] lowercase : List[str] = os.path.join(args.output_dir , _a ) lowercase : Any = torch.load(_a , map_location="cpu" ) lowercase : int = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase : str = {os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1
518
0
def a__ ( A__ ): if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1, len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] SCREAMING_SNAKE_CASE_ : List[Any] = grid[0] for row_n in range(1, len(SCREAMING_SNAKE_CASE_ ) ): SCREAMING_SNAKE_CASE_ : int = grid[row_n] SCREAMING_SNAKE_CASE_ : int = fill_row(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Any = grid[row_n] return grid[-1][-1] def a__ ( A__, A__ ): current_row[0] += row_above[0] for cell_n in range(1, len(SCREAMING_SNAKE_CASE_ ) ): current_row[cell_n] += min(current_row[cell_n - 1], row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig: """simple docstring""" UpperCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 UpperCAmelCase = [800, 1_333] UpperCAmelCase = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase = 330 UpperCAmelCase = 14 UpperCAmelCase = 6 UpperCAmelCase = 1_320 elif "yolos_s" in yolos_name: UpperCAmelCase = 384 UpperCAmelCase = 1_536 UpperCAmelCase = 12 UpperCAmelCase = 6 elif "yolos_b" in yolos_name: UpperCAmelCase = [800, 1_344] UpperCAmelCase = 91 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[ dim : dim * 2, : ] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def __snake_case ( ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512 UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes UpperCAmelCase, UpperCAmelCase = None, None if yolos_name == "yolos_ti": UpperCAmelCase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: UpperCAmelCase = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__ : Optional[Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
51
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowercase__: def __init__( self :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :int=13 , lowerCamelCase_ :int=32 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :str=3 , lowerCamelCase_ :Any=16 , lowerCamelCase_ :Tuple=[1, 2, 1] , lowerCamelCase_ :Dict=[2, 2, 4] , lowerCamelCase_ :Dict=2 , lowerCamelCase_ :List[str]=2.0 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :Dict=0.0 , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :Optional[Any]="gelu" , lowerCamelCase_ :List[Any]=False , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Union[str, Any]=0.0_2 , lowerCamelCase_ :List[str]=1E-5 , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :int=True , lowerCamelCase_ :Dict=10 , lowerCamelCase_ :List[Any]=8 , lowerCamelCase_ :Any=["stage1", "stage2", "stage3"] , lowerCamelCase_ :str=[1, 2, 3] , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : Optional[int] = patch_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : Dict = embed_dim SCREAMING_SNAKE_CASE : Any = depths SCREAMING_SNAKE_CASE : Union[str, Any] = num_heads SCREAMING_SNAKE_CASE : Tuple = window_size SCREAMING_SNAKE_CASE : Optional[int] = mlp_ratio SCREAMING_SNAKE_CASE : Tuple = qkv_bias SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = drop_path_rate SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Tuple = use_absolute_embeddings SCREAMING_SNAKE_CASE : Any = patch_norm SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : List[str] = scope SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = encoder_stride SCREAMING_SNAKE_CASE : Any = out_features SCREAMING_SNAKE_CASE : Optional[int] = out_indices def __lowerCAmelCase ( self :Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MaskFormerSwinModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerSwinBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Tuple = ['''stem'''] SCREAMING_SNAKE_CASE : Dict = MaskFormerSwinBackbone(config=_lowerCamelCase ) def __lowerCAmelCase ( self :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): UpperCamelCase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def __lowerCAmelCase ( self :Tuple ) -> Tuple: '''simple docstring''' pass def __lowerCAmelCase ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' return def __lowerCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self :Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def __lowerCAmelCase ( self :List[Any] ) -> Tuple: '''simple docstring''' pass @unittest.skip('''Swin does not support feedforward chunking''' ) def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' pass def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # Swin has a different seq_length SCREAMING_SNAKE_CASE : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self :Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = 3 SCREAMING_SNAKE_CASE : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE : List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def __lowerCAmelCase ( self :Tuple ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' pass def __lowerCAmelCase ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCamelCase_ :Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = 0 return t def check_equivalence(lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCamelCase ) , set_nan_tensor_to_zero(_lowerCamelCase ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}. Dict has" f" `nan`: {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}." ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) @require_torch class lowercase__( unittest.TestCase , __UpperCAmelCase ): UpperCamelCase = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase = MaskFormerSwinConfig def __lowerCAmelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MaskFormerSwinModelTester(self ) def __lowerCAmelCase ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Any = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = backbone_class(_lowerCamelCase ) backbone.to(_lowerCamelCase ) backbone.eval() SCREAMING_SNAKE_CASE : Optional[int] = backbone(**_lowerCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE : str = backbone(**_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE : int = backbone(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertIsNotNone(outputs.attentions )
700
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ : Optional[Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __A ( a_ : str , a_ : str )-> tuple[str, float]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = len([g for position, g in enumerate(a_ ) if g == main_target[position]] ) return (item, float(a_ )) def __A ( a_ : str , a_ : str )-> tuple[str, str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = random.randint(0 , len(a_ ) - 1 ) SCREAMING_SNAKE_CASE : str = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __A ( a_ : str , a_ : list[str] )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = list(a_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE : Any = random.choice(a_ ) return "".join(a_ ) def __A ( a_ : tuple[str, float] , a_ : list[tuple[str, float]] , a_ : list[str] , )-> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE : List[str] = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 if child_n >= 10 else child_n for _ in range(a_ ): SCREAMING_SNAKE_CASE : List[str] = population_score[random.randint(0 , a_ )][0] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = crossover(parent_a[0] , a_ ) # Append new string to the population list. pop.append(mutate(a_ , a_ ) ) pop.append(mutate(a_ , a_ ) ) return pop def __A ( a_ : str , a_ : list[str] , a_ : bool = True )-> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE : List[Any] = F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(a_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE : List[str] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE : str = F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(a_ ) # Generate random starting population. SCREAMING_SNAKE_CASE : Tuple = [] for _ in range(a_ ): population.append(''''''.join([random.choice(a_ ) for i in range(len(a_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(a_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE : int = [evaluate(a_ , a_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE : List[Any] = sorted(a_ , key=lambda a_ : x[1] , reverse=a_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE : Optional[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(a_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE : Optional[int] = [ (item, score / len(a_ )) for item, score in population_score ] # This is selection for i in range(a_ ): population.extend(select(population_score[int(a_ )] , a_ , a_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(a_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ : Dict = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ : int = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
18
0
from __future__ import annotations import math def A ( _lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = str(_lowerCamelCase ) _lowerCAmelCase : Any = [n] for i in range(1 , len(_lowerCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def A ( _lowerCamelCase ): '''simple docstring''' if len(str(_lowerCamelCase ) ) > 3: if not is_prime(int(str(_lowerCamelCase )[-3:] ) ) or not is_prime(int(str(_lowerCamelCase )[:3] ) ): return False return True def A ( _lowerCamelCase = 11 ): '''simple docstring''' _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 13 while len(_lowerCamelCase ) != count: if validate(_lowerCamelCase ): _lowerCAmelCase : List[str] = list_truncated_nums(_lowerCamelCase ) if all(is_prime(_lowerCamelCase ) for i in list_nums ): list_truncated_primes.append(_lowerCamelCase ) num += 2 return list_truncated_primes def A ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(11)) = }''')
500
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def A ( _lowerCamelCase , _lowerCamelCase = 16 ): '''simple docstring''' _lowerCAmelCase : int = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCAmelCase : List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : List[str] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase : List[str] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase : Optional[int] = 16 elif accelerator.mixed_precision != "no": _lowerCAmelCase : str = 8 else: _lowerCAmelCase : int = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. _lowerCAmelCase : Optional[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCAmelCase : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1": _lowerCAmelCase : str = 2 # New Code # _lowerCAmelCase : Optional[Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCAmelCase : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Union[str, Any] = config["lr"] _lowerCAmelCase : List[Any] = int(config["num_epochs"] ) _lowerCAmelCase : str = int(config["seed"] ) _lowerCAmelCase : str = int(config["batch_size"] ) _lowerCAmelCase : int = evaluate.load("glue" , "mrpc" ) set_seed(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : Dict = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler _lowerCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = model(**_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = output.loss accelerator.backward(_lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : str = model(**_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase : str = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) _lowerCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=_lowerCamelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _lowerCAmelCase : str = parser.parse_args() _lowerCAmelCase : List[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
500
1
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" if not is_accelerate_available(): return method snake_case_ : Tuple = version.parse(accelerate.__version__ ).base_version if version.parse(_lowerCAmelCase ) < version.parse("0.17.0" ): return method def wrapper(self ,*__magic_name__ ,**__magic_name__ ): if hasattr(self ,"_hf_hook" ) and hasattr(self._hf_hook ,"pre_forward" ): self._hf_hook.pre_forward(self ) return method(self ,*_lowerCAmelCase ,**_lowerCAmelCase ) return wrapper
701
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Dict ) -> List[str]: '''simple docstring''' snake_case_ : int = {} def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ : Optional[int] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): snake_case_ : Dict = [] def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str: '''simple docstring''' if s == d: return [] snake_case_ : str = [] snake_case_ : Optional[int] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int: '''simple docstring''' if c == -1: snake_case_ : Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : Tuple = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = [] if s == -2: snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = -2 snake_case_ : Any = [] snake_case_ : List[Any] = s snake_case_ : int = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[str] = s snake_case_ : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : str = -2 snake_case_ : List[str] = [] snake_case_ : List[Any] = s snake_case_ : List[str] = False snake_case_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Tuple = True if len(lowerCAmelCase__ ) != 0: snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str: '''simple docstring''' snake_case_ : Optional[int] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = time() return end - begin def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Any = time() return end - begin class A_ : """simple docstring""" def __init__( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {} def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ : str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ : List[str] = [[w, u]] def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int: '''simple docstring''' if s == d: return [] snake_case_ : Any = [] snake_case_ : Dict = [] if s == -2: snake_case_ : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]: '''simple docstring''' if c == -1: snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : Optional[int] = [] snake_case_ : Tuple = s snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[int] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[Any] = s snake_case_ : Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : int = [] snake_case_ : int = s snake_case_ : Optional[Any] = False snake_case_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = s snake_case_ : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Any ) -> Tuple: '''simple docstring''' return list(self.graph ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str: '''simple docstring''' snake_case_ : List[str] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = time() return end - begin def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int: '''simple docstring''' snake_case_ : List[str] = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Tuple = time() return end - begin
656
0
A_ : List[str] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: # Return True if there is node that has not iterated. UpperCamelCase_: List[str] = [False] * len(UpperCAmelCase__ ) UpperCamelCase_: Dict = [s] UpperCamelCase_: List[str] = True while queue: UpperCamelCase_: Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCAmelCase__ ) UpperCamelCase_: Tuple = True UpperCamelCase_: str = u return visited[t] def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: int = [-1] * (len(UpperCAmelCase__ )) UpperCamelCase_: List[str] = 0 UpperCamelCase_: Any = [] UpperCamelCase_: Union[str, Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Tuple = float('Inf' ) UpperCamelCase_: Optional[int] = sink while s != source: # Find the minimum value in select path UpperCamelCase_: int = min(UpperCAmelCase__ , graph[parent[s]][s] ) UpperCamelCase_: Tuple = parent[s] max_flow += path_flow UpperCamelCase_: Dict = sink while v != source: UpperCamelCase_: Any = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase_: Optional[int] = parent[v] for i in range(len(UpperCAmelCase__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
57
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowerCAmelCase ( enum.Enum ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 2 @add_end_docstrings(lowercase_ ) class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self :Any , *_lowercase :Optional[Any] , **_lowercase :Union[str, Any] ): '''simple docstring''' super().__init__(*_lowercase , **_lowercase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowercase__ = None if self.model.config.prefix is not None: lowercase__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowercase__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowercase__ , lowercase__ , lowercase__ = self._sanitize_parameters(prefix=_lowercase , **self._forward_params ) lowercase__ = {**self._preprocess_params, **preprocess_params} lowercase__ = {**self._forward_params, **forward_params} def UpperCAmelCase ( self :Tuple , _lowercase :Optional[Any]=None , _lowercase :List[Any]=None , _lowercase :List[str]=None , _lowercase :Optional[Any]=None , _lowercase :Optional[int]=None , _lowercase :Any=None , _lowercase :Any=None , _lowercase :Dict=None , **_lowercase :Union[str, Any] , ): '''simple docstring''' lowercase__ = {} if prefix is not None: lowercase__ = prefix if prefix: lowercase__ = self.tokenizer( _lowercase , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) lowercase__ = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, 'hole']" ) lowercase__ = handle_long_generation preprocess_params.update(_lowercase ) lowercase__ = generate_kwargs lowercase__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) lowercase__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) lowercase__ = ReturnType.TENSORS if return_type is not None: lowercase__ = return_type if clean_up_tokenization_spaces is not None: lowercase__ = clean_up_tokenization_spaces if stop_sequence is not None: lowercase__ = self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) if len(_lowercase ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) lowercase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self :int , *_lowercase :Optional[int] , **_lowercase :List[str] ): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*_lowercase , **_lowercase ) def __call__( self :Union[str, Any] , _lowercase :Dict , **_lowercase :Tuple ): '''simple docstring''' return super().__call__(_lowercase , **_lowercase ) def UpperCAmelCase ( self :Optional[int] , _lowercase :Tuple , _lowercase :Optional[int]="" , _lowercase :Tuple=None , **_lowercase :List[str] ): '''simple docstring''' lowercase__ = self.tokenizer( prefix + prompt_text , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) lowercase__ = prompt_text if handle_long_generation == "hole": lowercase__ = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: lowercase__ = generate_kwargs["max_new_tokens"] else: lowercase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) lowercase__ = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: lowercase__ = inputs["attention_mask"][:, -keep_length:] return inputs def UpperCAmelCase ( self :str , _lowercase :int , **_lowercase :str ): '''simple docstring''' lowercase__ = model_inputs["input_ids"] lowercase__ = model_inputs.get("attention_mask" , _lowercase ) # Allow empty prompts if input_ids.shape[1] == 0: lowercase__ = None lowercase__ = None lowercase__ = 1 else: lowercase__ = input_ids.shape[0] lowercase__ = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowercase__ = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: lowercase__ = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: lowercase__ = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowercase__ = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowercase__ = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase , **_lowercase ) lowercase__ = generated_sequence.shape[0] if self.framework == "pt": lowercase__ = generated_sequence.reshape(_lowercase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowercase__ = tf.reshape(_lowercase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCAmelCase ( self :Any , _lowercase :Tuple , _lowercase :str=ReturnType.FULL_TEXT , _lowercase :Dict=True ): '''simple docstring''' lowercase__ = model_outputs["generated_sequence"][0] lowercase__ = model_outputs["input_ids"] lowercase__ = model_outputs["prompt_text"] lowercase__ = generated_sequence.numpy().tolist() lowercase__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowercase__ = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowercase__ = self.tokenizer.decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowercase__ = 0 else: lowercase__ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) ) if return_type == ReturnType.FULL_TEXT: lowercase__ = prompt_text + text[prompt_length:] else: lowercase__ = text[prompt_length:] lowercase__ = {"generated_text": all_text} records.append(_lowercase ) return records
655
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : List[str] ="perceiver" def __init__( self : Union[str, Any] , lowerCAmelCase : List[str]=2_56 , lowerCAmelCase : str=12_80 , lowerCAmelCase : Union[str, Any]=7_68 , lowerCAmelCase : int=1 , lowerCAmelCase : Optional[int]=26 , lowerCAmelCase : Optional[int]=8 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : str=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Union[str, Any]="kv" , lowerCAmelCase : int=1 , lowerCAmelCase : str=1 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : str=0.02 , lowerCAmelCase : List[Any]=1e-12 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[int]=2_62 , lowerCAmelCase : Optional[int]=20_48 , lowerCAmelCase : Tuple=56 , lowerCAmelCase : Any=[3_68, 4_96] , lowerCAmelCase : Any=16 , lowerCAmelCase : Any=19_20 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Any=[1, 16, 2_24, 2_24] , **lowerCAmelCase : Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase ) __lowerCAmelCase : Any = num_latents __lowerCAmelCase : Tuple = d_latents __lowerCAmelCase : Optional[Any] = d_model __lowerCAmelCase : int = num_blocks __lowerCAmelCase : Optional[int] = num_self_attends_per_block __lowerCAmelCase : Dict = num_self_attention_heads __lowerCAmelCase : Optional[Any] = num_cross_attention_heads __lowerCAmelCase : Tuple = qk_channels __lowerCAmelCase : List[str] = v_channels __lowerCAmelCase : int = cross_attention_shape_for_attention __lowerCAmelCase : Tuple = self_attention_widening_factor __lowerCAmelCase : List[Any] = cross_attention_widening_factor __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : Optional[int] = attention_probs_dropout_prob __lowerCAmelCase : Optional[int] = initializer_range __lowerCAmelCase : Dict = layer_norm_eps __lowerCAmelCase : List[str] = use_query_residual # masked language modeling attributes __lowerCAmelCase : int = vocab_size __lowerCAmelCase : Optional[Any] = max_position_embeddings # image classification attributes __lowerCAmelCase : Any = image_size # flow attributes __lowerCAmelCase : List[Any] = train_size # multimodal autoencoding attributes __lowerCAmelCase : Optional[int] = num_frames __lowerCAmelCase : int = audio_samples_per_frame __lowerCAmelCase : List[Any] = samples_per_patch __lowerCAmelCase : Tuple = output_shape class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowerCAmelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCAmelCase : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> float: """simple docstring""" return 1e-4 def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 40 , lowerCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCAmelCase : Dict = compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCAmelCase : Any = preprocessor.num_special_tokens_to_add(lowerCAmelCase ) __lowerCAmelCase : str = compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowerCAmelCase : str = [""" """.join(["""a"""] ) * seq_length] * batch_size __lowerCAmelCase : List[str] = dict(preprocessor(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) __lowerCAmelCase : List[str] = inputs.pop("""input_ids""" ) return inputs elif isinstance(lowerCAmelCase , lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCAmelCase : Union[str, Any] = compute_effective_axis_dimension(lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) __lowerCAmelCase : Any = self._generate_dummy_images(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[str] = dict(preprocessor(images=lowerCAmelCase , return_tensors=lowerCAmelCase ) ) __lowerCAmelCase : Any = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
218
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : str =field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase : ClassVar[Features] =Features({"audio": Audio()} ) lowerCamelCase : ClassVar[Features] =Features({"labels": ClassLabel} ) lowerCamelCase : str ="audio" lowerCamelCase : str ="labels" def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __lowerCAmelCase : Optional[int] = copy.deepcopy(self ) __lowerCAmelCase : Tuple = self.label_schema.copy() __lowerCAmelCase : Optional[int] = features[self.label_column] __lowerCAmelCase : int = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : str ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
218
1
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase__ : Optional[Any] = pytest.mark.integration UpperCAmelCase__ : str = {"comet"} UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None UpperCAmelCase__ : Optional[int] = {"code_eval"} UpperCAmelCase__ : List[Any] = os.name == "nt" UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"} UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : int ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : Any ) -> int: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @local class A ( parameterized.TestCase ): snake_case__ :Union[str, Any] = {} snake_case__ :Optional[Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ ) # check parameters lowerCAmelCase__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ): yield else: yield @contextmanager def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ): return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ ) with patch("datasets.load_metric" ) as mock_load_metric: lowerCAmelCase__ = load_local_metric yield @classmethod def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ): """simple docstring""" def wrapper(__magic_name__ : Dict ): lowerCAmelCase__ = contextmanager(__magic_name__ ) lowerCAmelCase__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def A ( UpperCamelCase_ : str ) -> Any: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class A ( SCREAMING_SNAKE_CASE__ ): def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ): """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: lowerCAmelCase__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' import torch def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: lowerCAmelCase__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def A ( UpperCamelCase_ : Optional[int] ) -> Any: '''simple docstring''' def load_from_checkpoint(UpperCamelCase_ : Tuple ): class A : def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ): """simple docstring""" assert len(__magic_name__ ) == 2 lowerCAmelCase__ = [0.19, 0.92] return scores, sum(__magic_name__ ) / len(__magic_name__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: lowerCAmelCase__ = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: lowerCAmelCase__ = load_from_checkpoint yield def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) ) lowerCAmelCase__ = "ERROR" lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
48
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def _a ( lowercase__ : np.ndarray ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = np.nan for i in range(lowercase__ ): SCREAMING_SNAKE_CASE__ : int = features[:, labels == i] SCREAMING_SNAKE_CASE__ : int = data.mean(1 ) # Centralize the data of class i SCREAMING_SNAKE_CASE__ : Optional[Any] = data - column_reshape(lowercase__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowercase__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) SCREAMING_SNAKE_CASE__ : Any = np.dot(lowercase__ , centered_data.T ) return covariance_sum / features.shape[1] def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = features.mean(1 ) SCREAMING_SNAKE_CASE__ : List[str] = np.nan for i in range(lowercase__ ): SCREAMING_SNAKE_CASE__ : Tuple = features[:, labels == i] SCREAMING_SNAKE_CASE__ : int = data.shape[1] SCREAMING_SNAKE_CASE__ : List[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowercase__ ) - column_reshape(lowercase__ ) , (column_reshape(lowercase__ ) - column_reshape(lowercase__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) SCREAMING_SNAKE_CASE__ : str = device_data * np.dot( column_reshape(lowercase__ ) - column_reshape(lowercase__ ) , (column_reshape(lowercase__ ) - column_reshape(lowercase__ )).T , ) return covariance_sum / features.shape[1] def _a ( lowercase__ : np.ndarray , lowercase__ : int ): '''simple docstring''' if features.any(): SCREAMING_SNAKE_CASE__ : Any = features.mean(1 ) # Center the dataset SCREAMING_SNAKE_CASE__ : Optional[Any] = features - np.reshape(lowercase__ , (data_mean.size, 1) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(lowercase__ , centered_data.T ) / features.shape[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = np.linalg.eigh(lowercase__ ) # Take all the columns in the reverse order (-1), and then takes only the first SCREAMING_SNAKE_CASE__ : List[Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.dot(filtered_eigenvectors.T , lowercase__ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowercase__ ) logging.error('Dataset empty' ) raise AssertionError def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : int , lowercase__ : int ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = eigh( covariance_between_classes(lowercase__ , lowercase__ , lowercase__ ) , covariance_within_classes(lowercase__ , lowercase__ , lowercase__ ) , ) SCREAMING_SNAKE_CASE__ : Tuple = eigenvectors[:, ::-1][:, :dimensions] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = np.linalg.svd(lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = svd_matrix[:, 0:dimensions] SCREAMING_SNAKE_CASE__ : int = np.dot(filtered_svd_matrix.T , lowercase__ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowercase__ ) logging.error('Dataset empty' ) raise AssertionError def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) SCREAMING_SNAKE_CASE__ : Tuple = np.array([0, 0, 0, 1, 1] ) SCREAMING_SNAKE_CASE__ : str = 2 SCREAMING_SNAKE_CASE__ : Dict = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowercase__ ) as error_info: SCREAMING_SNAKE_CASE__ : Optional[int] = linear_discriminant_analysis( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if isinstance(lowercase__ , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) SCREAMING_SNAKE_CASE__ : List[str] = 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowercase__ ) as error_info: SCREAMING_SNAKE_CASE__ : int = principal_component_analysis(lowercase__ , lowercase__ ) if not np.allclose(lowercase__ , lowercase__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
85
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" @staticmethod @abstractmethod def snake_case ( __A : Any ): """simple docstring""" raise NotImplementedError() @abstractmethod def snake_case ( self : Any ): """simple docstring""" raise NotImplementedError()
700
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : Any = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[int] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __magic_name__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
602
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowerCamelCase__ = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def A(__a: Optional[Any] , __a: int , __a: Any , __a: Dict , __a: Optional[int]=False , __a: List[str]=True ): if model_type not in MODEL_CLASSES: raise ValueError(F"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}." ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowerCAmelCase_ = cached_file(__a , __a , force_download=not use_cached_models ) lowerCAmelCase_ = config_class.from_json_file(__a ) lowerCAmelCase_ = True lowerCAmelCase_ = True print(F"Building TensorFlow model from configuration: {config}" ) lowerCAmelCase_ = model_class(__a ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowerCAmelCase_ = cached_file( __a , __a , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowerCAmelCase_ = load_pytorch_checkpoint_in_tfa_model(__a , __a ) if compare_with_pt_model: lowerCAmelCase_ = tf_model(tf_model.dummy_inputs , training=__a ) # build the network lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = pt_model_class.from_pretrained( pretrained_model_name_or_path=__a , config=__a , state_dict=__a ) with torch.no_grad(): lowerCAmelCase_ = pt_model(**pt_model.dummy_inputs ) lowerCAmelCase_ = pto[0].numpy() lowerCAmelCase_ = tfo[0].numpy() lowerCAmelCase_ = np.amax(np.abs(np_pt - np_tf ) ) print(F"Max absolute difference between models outputs {diff}" ) assert diff <= 2E-2, F"Error, model absolute difference is >2e-2: {diff}" # Save pytorch-model print(F"Save TensorFlow model to {tf_dump_path}" ) tf_model.save_weights(__a , save_format="h5" ) def A(__a: Optional[int] , __a: Tuple , __a: int=None , __a: List[Any]=None , __a: str=False , __a: Any=False , __a: Tuple=False , __a: Optional[int]=False , ): if args_model_type is None: lowerCAmelCase_ = list(MODEL_CLASSES.keys() ) else: lowerCAmelCase_ = [args_model_type] for j, model_type in enumerate(__a , start=1 ): print("=" * 100 ) print(F" Converting model type {j}/{len(__a )}: {model_type}" ) print("=" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}." ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowerCAmelCase_ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowerCAmelCase_ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__a , __a ) , start=1 ): print("-" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F" Skipping finetuned checkpoint {model_shortcut_name}" ) continue lowerCAmelCase_ = model_shortcut_name elif only_convert_finetuned_models: print(F" Skipping not finetuned checkpoint {model_shortcut_name}" ) continue print( F" Converting checkpoint {i}/{len(__a )}: {model_shortcut_name} - model_type {model_type}" ) print("-" * 100 ) if config_shortcut_name in aws_config_map: lowerCAmelCase_ = cached_file(__a , __a , force_download=not use_cached_models ) else: lowerCAmelCase_ = config_shortcut_name if model_shortcut_name in aws_model_maps: lowerCAmelCase_ = cached_file(__a , __a , force_download=not use_cached_models ) else: lowerCAmelCase_ = model_shortcut_name if os.path.isfile(__a ): lowerCAmelCase_ = "converted_model" convert_pt_checkpoint_to_tf( model_type=__a , pytorch_checkpoint_path=__a , config_file=__a , tf_dump_path=os.path.join(__a , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=__a , ) if remove_cached_files: os.remove(__a ) os.remove(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') lowerCamelCase__ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
122
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __magic_name__ (unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , _a=False , ) -> Any: lowerCAmelCase_ = size if size is not None else {"height": 20, "width": 20} lowerCAmelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_center_crop lowerCAmelCase_ = crop_size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_reduce_labels def __a ( self ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def A(): lowerCAmelCase_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) lowerCAmelCase_ = Image.open(dataset[0]["file"] ) lowerCAmelCase_ = Image.open(dataset[1]["file"] ) return image, map def A(): lowerCAmelCase_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) lowerCAmelCase_ = Image.open(ds[0]["file"] ) lowerCAmelCase_ = Image.open(ds[1]["file"] ) lowerCAmelCase_ = Image.open(ds[2]["file"] ) lowerCAmelCase_ = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = BeitImageProcessor if is_vision_available() else None def __a ( self ) -> int: lowerCAmelCase_ = BeitImageProcessingTester(self ) @property def __a ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , "do_resize" ) ) self.assertTrue(hasattr(_a , "size" ) ) self.assertTrue(hasattr(_a , "do_center_crop" ) ) self.assertTrue(hasattr(_a , "center_crop" ) ) self.assertTrue(hasattr(_a , "do_normalize" ) ) self.assertTrue(hasattr(_a , "image_mean" ) ) self.assertTrue(hasattr(_a , "image_std" ) ) def __a ( self ) -> Dict: lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels , _a ) lowerCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_a ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels , _a ) def __a ( self ) -> str: pass def __a ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ = image_processing(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __a ( self ) -> Dict: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ = image_processing(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __a ( self ) -> Tuple: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ = image_processing(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __a ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) lowerCAmelCase_ = [] for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched lowerCAmelCase_ = image_processing(_a , _a , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test not batched input (PIL images) lowerCAmelCase_ , lowerCAmelCase_ = prepare_semantic_single_inputs() lowerCAmelCase_ = image_processing(_a , _a , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched input (PIL images) lowerCAmelCase_ , lowerCAmelCase_ = prepare_semantic_batch_inputs() lowerCAmelCase_ = image_processing(_a , _a , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) def __a ( self ) -> Any: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 lowerCAmelCase_ , lowerCAmelCase_ = prepare_semantic_single_inputs() lowerCAmelCase_ = image_processing(_a , _a , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 150 ) lowerCAmelCase_ = True lowerCAmelCase_ = image_processing(_a , _a , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 )
122
1
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return EnvironmentCommand() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : ArgumentParser): """simple docstring""" lowercase_ = parser.add_parser("""env""") download_parser.set_defaults(func=lowerCAmelCase_) download_parser.add_argument( """--accelerate-config_file""" , default=lowerCAmelCase_ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=lowerCAmelCase_) def __init__( self : Any , lowerCAmelCase_ : Optional[Any] , *lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = accelerate_config_file def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = """not installed""" if is_safetensors_available(): import safetensors lowercase_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""") is not None: import safetensors lowercase_ = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' lowercase_ = """not installed""" lowercase_ = lowercase_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowercase_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCAmelCase_): lowercase_ = load_config_from_file(self._accelerate_config_file).to_dict() lowercase_ = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()]) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else F'''\t{accelerate_config}''' ) lowercase_ = """not installed""" lowercase_ = """NA""" if is_torch_available(): import torch lowercase_ = torch.__version__ lowercase_ = torch.cuda.is_available() lowercase_ = """not installed""" lowercase_ = """NA""" if is_tf_available(): import tensorflow as tf lowercase_ = tf.__version__ try: # deprecated in v2.1 lowercase_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowercase_ = bool(tf.config.list_physical_devices("""GPU""")) lowercase_ = """not installed""" lowercase_ = """not installed""" lowercase_ = """not installed""" lowercase_ = """NA""" if is_flax_available(): import flax import jax import jaxlib lowercase_ = flax.__version__ lowercase_ = jax.__version__ lowercase_ = jaxlib.__version__ lowercase_ = jax.lib.xla_bridge.get_backend().platform lowercase_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F'''{safetensors_version}''', """Accelerate version""": F'''{accelerate_version}''', """Accelerate config""": F'''{accelerate_config_str}''', """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": F'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": F'''{flax_version} ({jax_backend})''', """Jax version""": F'''{jax_version}''', """JaxLib version""": F'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""") print(self.format_dict(lowerCAmelCase_)) return info @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Union[str, Any]): """simple docstring""" return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()]) + "\n"
100
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase : List[Any] = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
100
1
import os import numpy import onnx def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = a.name snake_case = b.name snake_case = '''''' snake_case = '''''' snake_case = a == b snake_case = name_a snake_case = name_b return res def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCamelCase_ ,UpperCamelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g ,UpperCamelCase_ ,UpperCamelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g ,UpperCamelCase_ ,UpperCamelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g ,UpperCamelCase_ ,UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = list(model.graph.initializer ) snake_case = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case = inits[i].name snake_case = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph ,UpperCamelCase_ ,UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = os.path.dirname(UpperCamelCase_ ) snake_case = os.path.basename(UpperCamelCase_ ) snake_case = onnx.load(os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) ) snake_case = list(model.graph.initializer ) snake_case = set() snake_case = {} snake_case = [] snake_case = 0 for i in range(len(UpperCamelCase_ ) ): if i in dup_set: continue for j in range(i + 1 ,len(UpperCamelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] ,inits[j] ): dup_set.add(UpperCamelCase_ ) dup_set.add(UpperCamelCase_ ) snake_case = inits[j].data_type snake_case = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' ,UpperCamelCase_ ) total_reduced_size += mem_size snake_case = inits[i].name snake_case = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCamelCase_ ) else: snake_case = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' ,total_reduced_size / 10_24 / 10_24 / 10_24 ,'''GB''' ) snake_case = sorted(UpperCamelCase_ ) _remove_dup_initializers_from_model(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) snake_case = '''optimized_''' + model_file_name snake_case = os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) onnx.save(UpperCamelCase_ ,UpperCamelCase_ ) return new_model
550
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , __snake_case , __snake_case=7 , __snake_case=3 , __snake_case=3_0 , __snake_case=4_0_0 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=1 / 2_5_5 , __snake_case=True , __snake_case=[0.5, 0.5, 0.5] , __snake_case=[0.5, 0.5, 0.5] , __snake_case=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = do_rescale snake_case = rescale_factor snake_case = do_normalize snake_case = image_mean snake_case = image_std snake_case = do_pad def a_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a_ ( self , __snake_case , __snake_case=False ): if not batched: snake_case = image_inputs[0] if isinstance(__snake_case , Image.Image ): snake_case , snake_case = image.size else: snake_case , snake_case = image.shape[1], image.shape[2] if w < h: snake_case = int(self.size['''shortest_edge'''] * h / w ) snake_case = self.size['''shortest_edge'''] elif w > h: snake_case = self.size['''shortest_edge'''] snake_case = int(self.size['''shortest_edge'''] * w / h ) else: snake_case = self.size['''shortest_edge'''] snake_case = self.size['''shortest_edge'''] else: snake_case = [] for image in image_inputs: snake_case , snake_case = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case = max(__snake_case , key=lambda __snake_case : item[0] )[0] snake_case = max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = DetrImageProcessor if is_vision_available() else None def a_ ( self ): snake_case = DetrImageProcessingTester(self ) @property def a_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self ): snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_rescale''' ) ) self.assertTrue(hasattr(__snake_case , '''rescale_factor''' ) ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''do_pad''' ) ) def a_ ( self ): snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __snake_case ) snake_case = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__snake_case ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , __snake_case ) def a_ ( self ): pass def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a_ ( self ): # prepare image and target snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: snake_case = json.loads(f.read() ) snake_case = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them snake_case = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) snake_case = image_processing(images=__snake_case , annotations=__snake_case , return_tensors='''pt''' ) # verify pixel values snake_case = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area snake_case = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id snake_case = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels snake_case = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify orig_size snake_case = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size snake_case = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) ) @slow def a_ ( self ): # prepare image, target and masks_path snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: snake_case = json.loads(f.read() ) snake_case = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} snake_case = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them snake_case = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) snake_case = image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors='''pt''' ) # verify pixel values snake_case = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area snake_case = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id snake_case = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels snake_case = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify masks snake_case = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __snake_case ) # verify orig_size snake_case = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size snake_case = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) )
550
1
'''simple docstring''' from PIL import Image def _snake_case ( lowercase , lowercase ) -> Image: __a : List[Any] = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(lowercase ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(lowercase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 __SCREAMING_SNAKE_CASE : Dict = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
697
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __SCREAMING_SNAKE_CASE : Optional[int] = trt.Logger(trt.Logger.WARNING) __SCREAMING_SNAKE_CASE : Tuple = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if args.tokenizer_name: __SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __SCREAMING_SNAKE_CASE : List[Any] = args.per_device_eval_batch_size __SCREAMING_SNAKE_CASE : int = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-fp32.engine' if args.fpaa: __SCREAMING_SNAKE_CASE : Dict = 'temp_engine/bert-fp16.engine' if args.inta: __SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __SCREAMING_SNAKE_CASE : Optional[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __SCREAMING_SNAKE_CASE : List[Any] = [network.get_input(i) for i in range(network.num_inputs)] __SCREAMING_SNAKE_CASE : List[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __SCREAMING_SNAKE_CASE : Tuple = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __SCREAMING_SNAKE_CASE : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __SCREAMING_SNAKE_CASE : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: __a : Dict = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __a : List[Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __a : str = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase ) # start time __a : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowercase ) for d_inp in d_inputs] + [int(lowercase ), int(lowercase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase ) cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase ) # Synchronize the stream and take time stream.synchronize() # end time __a : str = time.time() __a : Any = end_time - start_time __a : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __SCREAMING_SNAKE_CASE : Optional[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE : List[str] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __SCREAMING_SNAKE_CASE : int = raw_datasets['validation'].column_names __SCREAMING_SNAKE_CASE : Tuple = 'question' if 'question' in column_names else column_names[0] __SCREAMING_SNAKE_CASE : List[Any] = 'context' if 'context' in column_names else column_names[1] __SCREAMING_SNAKE_CASE : Tuple = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __SCREAMING_SNAKE_CASE : Tuple = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __SCREAMING_SNAKE_CASE : Dict = min(args.max_seq_length, tokenizer.model_max_length) def _snake_case ( lowercase ) -> Tuple: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __a : Optional[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __a : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowercase , stride=args.doc_stride , return_overflowing_tokens=lowercase , return_offsets_mapping=lowercase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __a : Optional[Any] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __a : Optional[Any] = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __a : Dict = tokenized_examples.sequence_ids(lowercase ) __a : Optional[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __a : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __a : int = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples __SCREAMING_SNAKE_CASE : int = raw_datasets['validation'] # Validation Feature Creation __SCREAMING_SNAKE_CASE : Union[str, Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __SCREAMING_SNAKE_CASE : List[Any] = default_data_collator __SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __SCREAMING_SNAKE_CASE : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _snake_case ( lowercase , lowercase , lowercase , lowercase="eval" ) -> Any: # Post-processing: we match the start logits and end logits to answers in the original context. __a : List[str] = postprocess_qa_predictions( examples=lowercase , features=lowercase , predictions=lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __a : List[str] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __a : List[str] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __a : Optional[Any] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowercase , label_ids=lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _snake_case ( lowercase ) -> Optional[int]: return trt.volume(engine.get_binding_shape(lowercase ) ) * engine.get_binding_dtype(lowercase ).itemsize # Allocate device memory for inputs and outputs. __SCREAMING_SNAKE_CASE : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __SCREAMING_SNAKE_CASE : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __SCREAMING_SNAKE_CASE : Union[str, Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __SCREAMING_SNAKE_CASE : str = cuda.mem_alloc(h_outputa.nbytes) __SCREAMING_SNAKE_CASE : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __SCREAMING_SNAKE_CASE : Tuple = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : str = timeit.default_timer() __SCREAMING_SNAKE_CASE : Dict = None for step, batch in enumerate(eval_dataloader): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = outputs __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(start_logits) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __SCREAMING_SNAKE_CASE : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __SCREAMING_SNAKE_CASE : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __SCREAMING_SNAKE_CASE : List[str] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __SCREAMING_SNAKE_CASE : List[str] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __SCREAMING_SNAKE_CASE : Tuple = nested_truncate(all_preds, len(eval_dataset)) __SCREAMING_SNAKE_CASE : str = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __SCREAMING_SNAKE_CASE : Optional[int] = post_processing_function(eval_examples, eval_dataset, all_preds) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
697
1
from collections.abc import Sequence def a ( A__ , A__ = False ) -> Union[str, Any]: '''simple docstring''' if not arr: return 0 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 if allow_empty_subarrays else float('''-inf''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.0 for num in arr: SCREAMING_SNAKE_CASE__ : Optional[int] = max(0 if allow_empty_subarrays else num , curr_sum + num ) SCREAMING_SNAKE_CASE__ : Optional[Any] = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() a_ :Dict = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
35
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__lowerCAmelCase ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Base Case if index == len(__lowerCAmelCase ): return True # Recursive Step for i in range(__lowerCAmelCase ): if valid_coloring(graph[index] , __lowerCAmelCase , __lowerCAmelCase ): # Color current vertex _snake_case : int = i # Validate coloring if util_color(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index + 1 ): return True # Backtrack _snake_case : Optional[Any] = -1 return False def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = [-1] * len(__lowerCAmelCase ) if util_color(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 0 ): return colored_vertices return []
304
0
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A = CpmAntTokenizer A = False def __a ( self ): super().setUp() SCREAMING_SNAKE_CASE : Dict = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def __a ( self ): SCREAMING_SNAKE_CASE : Dict = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) SCREAMING_SNAKE_CASE : Optional[Any] = '今天天气真好!' SCREAMING_SNAKE_CASE : Optional[int] = ['今天', '天气', '真', '好', '!'] SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = '今天天气真好!' SCREAMING_SNAKE_CASE : Union[str, Any] = [tokenizer.bos_token] + tokens SCREAMING_SNAKE_CASE : Dict = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.decode(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
705
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = 0 A = False A = 3.0 class _a ( unittest.TestCase ): """simple docstring""" def __a ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() ,{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() ,{'a': 2} ) self.assertDictEqual(MockClass(a=2 ,b=__SCREAMING_SNAKE_CASE ).to_kwargs() ,{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 ,c=2.25 ).to_kwargs() ,{'a': 2, 'c': 2.25} ) @require_cuda def __a ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. SCREAMING_SNAKE_CASE : Union[str, Any] = GradScalerKwargs(init_scale=1024 ,growth_factor=2 ) AcceleratorState._reset_state() SCREAMING_SNAKE_CASE : Optional[int] = Accelerator(mixed_precision='fp16' ,kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) SCREAMING_SNAKE_CASE : int = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale ,1024.0 ) self.assertEqual(scaler._growth_factor ,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor ,0.5 ) self.assertEqual(scaler._growth_interval ,2000 ) self.assertEqual(scaler._enabled ,__SCREAMING_SNAKE_CASE ) @require_multi_gpu def __a ( self ): SCREAMING_SNAKE_CASE : Optional[int] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__SCREAMING_SNAKE_CASE ,env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __UpperCAmelCase = Accelerator(kwargs_handlers=[ddp_scaler]) __UpperCAmelCase = torch.nn.Linear(100, 200) __UpperCAmelCase = accelerator.prepare(model) # Check the values changed in kwargs __UpperCAmelCase = '' __UpperCAmelCase = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
220
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class UpperCAmelCase_ ( A ): '''simple docstring''' def __init__( self : int , snake_case__ : str , snake_case__ : List[Any] ): '''simple docstring''' super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) def __call__( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Optional[int] = self.unet(snake_case__ , snake_case__ ).sample UpperCAmelCase__ : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample UpperCAmelCase__ : Dict = scheduler_output - scheduler_output + torch.ones_like(snake_case__ ) return result
199
'''simple docstring''' def snake_case_ ( lowercase__ ): if len(lowercase__ ) <= 1: return [tuple(lowercase__ )] UpperCAmelCase__ : Union[str, Any] = [] def generate(lowercase__ , lowercase__ ): UpperCAmelCase__ : str = [0] * n res.append(tuple(lowercase__ ) ) UpperCAmelCase__ : Any = 0 while i < n: if c[i] < i: if i % 2 == 0: UpperCAmelCase__ , UpperCAmelCase__ : str = arr[i], arr[0] else: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = arr[i], arr[c[i]] res.append(tuple(lowercase__ ) ) c[i] += 1 UpperCAmelCase__ : List[str] = 0 else: UpperCAmelCase__ : Dict = 0 i += 1 generate(len(lowercase__ ) , lowercase__ ) return res if __name__ == "__main__": SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
199
1
from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["flax", "transformers"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax""", """transformers"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["flax", "transformers"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax""", """transformers"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["flax", "transformers"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax""", """transformers"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["flax", "transformers"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax""", """transformers"""] )
713
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : torch.FloatTensor class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" @register_to_config def __init__( self ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = ("DownEncoderBlock2D",) ,UpperCAmelCase_ = ("UpDecoderBlock2D",) ,UpperCAmelCase_ = (64,) ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = "silu" ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = 2_56 ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0.18215 ,UpperCAmelCase_ = "group" ,): super().__init__() # pass init params to Encoder _lowercase : List[Any] = Encoder( in_channels=UpperCAmelCase_ ,out_channels=UpperCAmelCase_ ,down_block_types=UpperCAmelCase_ ,block_out_channels=UpperCAmelCase_ ,layers_per_block=UpperCAmelCase_ ,act_fn=UpperCAmelCase_ ,norm_num_groups=UpperCAmelCase_ ,double_z=UpperCAmelCase_ ,) _lowercase : Tuple = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowercase : int = nn.Convad(UpperCAmelCase_ ,UpperCAmelCase_ ,1 ) _lowercase : Union[str, Any] = VectorQuantizer(UpperCAmelCase_ ,UpperCAmelCase_ ,beta=0.25 ,remap=UpperCAmelCase_ ,sane_index_shape=UpperCAmelCase_ ) _lowercase : Union[str, Any] = nn.Convad(UpperCAmelCase_ ,UpperCAmelCase_ ,1 ) # pass init params to Decoder _lowercase : Union[str, Any] = Decoder( in_channels=UpperCAmelCase_ ,out_channels=UpperCAmelCase_ ,up_block_types=UpperCAmelCase_ ,block_out_channels=UpperCAmelCase_ ,layers_per_block=UpperCAmelCase_ ,act_fn=UpperCAmelCase_ ,norm_num_groups=UpperCAmelCase_ ,norm_type=UpperCAmelCase_ ,) @apply_forward_hook def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = True ): _lowercase : Any = self.encoder(UpperCAmelCase_ ) _lowercase : List[Any] = self.quant_conv(UpperCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase_ ) @apply_forward_hook def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ): # also go through quantization layer if not force_not_quantize: _lowercase , _lowercase , _lowercase : Union[str, Any] = self.quantize(UpperCAmelCase_ ) else: _lowercase : int = h _lowercase : Union[str, Any] = self.post_quant_conv(UpperCAmelCase_ ) _lowercase : List[Any] = self.decoder(UpperCAmelCase_ ,quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = True ): _lowercase : List[Any] = sample _lowercase : Optional[Any] = self.encode(UpperCAmelCase_ ).latents _lowercase : int = self.decode(UpperCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase_ )
600
0
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def _snake_case ( A ) -> np.ndarray: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def _snake_case ( A ) -> np.ndarray: return (gray > 127) & (gray <= 255) def _snake_case ( A , A ) -> np.ndarray: lowerCAmelCase__ = np.zeros_like(A ) lowerCAmelCase__ = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCAmelCase__ = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCAmelCase__ = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCAmelCase__ = int(summation > 0 ) return output if __name__ == "__main__": # read original image __UpperCAmelCase = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' __UpperCAmelCase = np.array(Image.open(lena_path)) # kernel to be applied __UpperCAmelCase = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __UpperCAmelCase = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __UpperCAmelCase = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
90
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __lowercase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ) -> Union[str, Any]: A : Dict = logging.get_logger() # the current default level is logging.WARNING A : List[Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__UpperCAmelCase ) def snake_case ( self ) -> str: A : Any = logging.get_verbosity() A : Optional[Any] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) A : Tuple = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__UpperCAmelCase ) as cl: logger.warning(__UpperCAmelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__UpperCAmelCase ) as cl: logger.warning(__UpperCAmelCase ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__UpperCAmelCase ) as cl: logger.warning(__UpperCAmelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(__UpperCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def snake_case ( self ) -> Optional[int]: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var A : int = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) A : Any = os.getenv('''TRANSFORMERS_VERBOSITY''' , __UpperCAmelCase ) A : List[str] = logging.log_levels[env_level_str] A : Optional[int] = logging.get_verbosity() self.assertEqual( __UpperCAmelCase , __UpperCAmelCase , f'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level A : str = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def snake_case ( self ) -> Optional[int]: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() A : str = logging.logging.getLogger() with CaptureLogger(__UpperCAmelCase ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def snake_case ( self ) -> Optional[int]: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() A : Union[str, Any] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) A : Optional[int] = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(__UpperCAmelCase ) as cl: logger.warning_advice(__UpperCAmelCase ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__UpperCAmelCase ) as cl: logger.warning_advice(__UpperCAmelCase ) self.assertEqual(cl.out , msg + '''\n''' ) def snake_case__ ( ): disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
542
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: str = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
713
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCAmelCase_ ( unittest.TestCase , lowercase ): """simple docstring""" def __a ( self :int ): UpperCamelCase__ :Dict = load_tool("""text-to-speech""" ) self.tool.setup() def __a ( self :Union[str, Any] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCamelCase__ :Tuple = self.tool("""hey""" ) UpperCamelCase__ :Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __a ( self :int ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCamelCase__ :List[str] = self.tool("""hey""" ) UpperCamelCase__ :Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
45
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase = int((256 / 224) * size["shortest_edge"] ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
18
0
import os def __magic_name__ ( ) -> Tuple: with open(os.path.dirname(lowercase__ ) + '/p022_names.txt' ) as file: _lowercase : List[Any] = str(file.readlines()[0] ) _lowercase : List[Any] = names.replace('"' , '' ).split(',' ) names.sort() _lowercase : Any = 0 _lowercase : int = 0 for i, name in enumerate(lowercase__ ): for letter in name: name_score += ord(lowercase__ ) - 64 total_score += (i + 1) * name_score _lowercase : Any = 0 return total_score if __name__ == "__main__": print(solution())
702
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __a( _a ): """simple docstring""" lowerCAmelCase = '''vivit''' def __init__( self ,_SCREAMING_SNAKE_CASE=224 ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=[2, 16, 16] ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu_fast" ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-06 ,_SCREAMING_SNAKE_CASE=True ,**_SCREAMING_SNAKE_CASE ,) -> int: UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Tuple = layer_norm_eps UpperCAmelCase_ : List[str] = image_size UpperCAmelCase_ : str = num_frames UpperCAmelCase_ : str = tubelet_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Any = qkv_bias super().__init__(**_SCREAMING_SNAKE_CASE )
30
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowercase_ = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowercase_ = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowercase_ = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowercase_ = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowercase_ = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowercase_ = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowercase_ = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = randrange(len(_lowercase ) ), randrange(len(_lowercase ) ) lowerCAmelCase_ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowerCAmelCase_ , lowerCAmelCase_ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCAmelCase ( _lowercase : int = 1_0_0 ) -> int: """simple docstring""" return (generate_random_hand() for _ in range(_lowercase )) @pytest.mark.parametrize('''hand, expected''' , _lowercase ) def UpperCAmelCase ( _lowercase : Union[str, Any] , _lowercase : Optional[int] ) -> str: """simple docstring""" assert PokerHand(_lowercase )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , _lowercase ) def UpperCAmelCase ( _lowercase : List[Any] , _lowercase : List[str] ) -> Optional[Any]: """simple docstring""" assert PokerHand(_lowercase )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , _lowercase ) def UpperCAmelCase ( _lowercase : str , _lowercase : Any , _lowercase : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase_ = PokerHand(_lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , _lowercase ) def UpperCAmelCase ( _lowercase : Any , _lowercase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" assert PokerHand(_lowercase )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , _lowercase ) def UpperCAmelCase ( _lowercase : Tuple , _lowercase : int ) -> str: """simple docstring""" assert PokerHand(_lowercase )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , _lowercase ) def UpperCAmelCase ( _lowercase : int , _lowercase : str , _lowercase : Tuple ) -> Union[str, Any]: """simple docstring""" assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def UpperCAmelCase ( _lowercase : Any , _lowercase : Dict , _lowercase : Dict ) -> Union[str, Any]: """simple docstring""" assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected def UpperCAmelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase_ = [PokerHand(_lowercase ) for hand in SORTED_HANDS] lowerCAmelCase_ = poker_hands.copy() shuffle(_lowercase ) lowerCAmelCase_ = chain(sorted(_lowercase ) ) for index, hand in enumerate(_lowercase ): assert hand == poker_hands[index] def UpperCAmelCase ( ) -> Any: """simple docstring""" lowerCAmelCase_ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=_lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCAmelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase_ = PokerHand('''2C 4S AS 3D 5C''' ) lowerCAmelCase_ = True lowerCAmelCase_ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCAmelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase_ = 0 lowerCAmelCase_ = os.path.abspath(os.path.dirname(_lowercase ) ) lowerCAmelCase_ = os.path.join(_lowercase , '''poker_hands.txt''' ) with open(_lowercase ) as file_hand: for line in file_hand: lowerCAmelCase_ = line[:1_4].strip() lowerCAmelCase_ = line[1_5:].strip() lowerCAmelCase_ , lowerCAmelCase_ = PokerHand(_lowercase ), PokerHand(_lowercase ) lowerCAmelCase_ = player.compare_with(_lowercase ) if output == "Win": answer += 1 assert answer == 3_7_6
552
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """nielsr/canine-s""": 2048, } # Unicode defines 1,114,112 total “codepoints” _lowercase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowercase = 0 _lowercase = 0xE0_00 _lowercase = 0xE0_01 _lowercase = 0xE0_02 _lowercase = 0xE0_03 _lowercase = 0xE0_04 # Maps special codepoints to human-readable names. _lowercase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: """[CLS]""", SEP: """[SEP]""", BOS: """[BOS]""", MASK: """[MASK]""", PAD: """[PAD]""", RESERVED: """[RESERVED]""", } # Maps special codepoint human-readable names to their codepoint values. _lowercase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowercase=chr(_lowercase ) , _lowercase=chr(_lowercase ) , _lowercase=chr(_lowercase ) , _lowercase=chr(_lowercase ) , _lowercase=chr(_lowercase ) , _lowercase=chr(_lowercase ) , _lowercase=False , _lowercase=2_048 , **_lowercase , ): """simple docstring""" _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , model_max_length=_lowercase , **_lowercase , ) # Creates a mapping for looking up the IDs of special symbols. _lowerCAmelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _lowerCAmelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _lowerCAmelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } _lowerCAmelCase = UNICODE_VOCAB_SIZE _lowerCAmelCase = len(self._special_codepoints ) @property def _lowercase ( self ): """simple docstring""" return self._unicode_vocab_size def _lowercase ( self , _lowercase ): """simple docstring""" return list(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" try: return ord(_lowercase ) except TypeError: raise ValueError(F'invalid token: \'{token}\'' ) def _lowercase ( self , _lowercase ): """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_lowercase ) except TypeError: raise ValueError(F'invalid id: {index}' ) def _lowercase ( self , _lowercase ): """simple docstring""" return "".join(_lowercase ) def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] _lowerCAmelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) _lowerCAmelCase = [1] + ([0] * len(_lowercase )) + [1] if token_ids_a is not None: result += ([0] * len(_lowercase )) + [1] return result def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] _lowerCAmelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" return ()
713
'''simple docstring''' from torch import nn class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__() _lowerCAmelCase = class_size _lowerCAmelCase = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _lowerCAmelCase = nn.Linear(_lowercase , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.mlp(_lowercase ) return logits
162
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case__ ( UpperCamelCase_ ): def __init__( self : int , _lowerCamelCase : str , _lowerCamelCase : Tuple ): super().__init__() # make sure scheduler can always be converted to DDIM snake_case__ : List[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self : Optional[int] , _lowerCamelCase : int = 1 , _lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCamelCase : float = 0.0 , _lowerCamelCase : int = 5_0 , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , _lowerCamelCase ): snake_case__ : Optional[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: snake_case__ : Any = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case__ : int = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case__ : Optional[int] = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case__ : int = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , eta=_lowerCamelCase , use_clipped_model_output=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample snake_case__ : int = (image / 2 + 0.5).clamp(0 , 1 ) snake_case__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case__ : Union[str, Any] = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
170
0
'''simple docstring''' def __a ( __lowerCamelCase : list[int] , __lowerCamelCase : list[int] ) -> tuple[float, float]: '''simple docstring''' if not len(__lowerCamelCase ) == len(__lowerCamelCase ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients lowercase_ , lowercase_ , lowercase_ = equationa lowercase_ , lowercase_ , lowercase_ = equationa # Calculate the determinants of the matrices lowercase_ = aa * ba - aa * ba lowercase_ = ca * ba - ca * ba lowercase_ = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: lowercase_ = determinant_x / determinant lowercase_ = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
461
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowercase ( __lowerCamelCase , unittest.TestCase ): lowerCamelCase_ =ReformerTokenizer lowerCamelCase_ =ReformerTokenizerFast lowerCamelCase_ =True lowerCamelCase_ =False lowerCamelCase_ =True def __UpperCAmelCase ( self : Optional[Any]) -> Optional[Any]: super().setUp() lowercase_ = ReformerTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def __UpperCAmelCase ( self : int) -> int: lowercase_ = "<s>" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase) , __lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase) , __lowerCAmelCase) def __UpperCAmelCase ( self : Tuple) -> Optional[int]: lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<unk>") self.assertEqual(vocab_keys[1] , "<s>") self.assertEqual(vocab_keys[-1] , "j") self.assertEqual(len(__lowerCAmelCase) , 1000) def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __UpperCAmelCase ( self : List[Any]) -> List[Any]: if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = "I was born in 92000, and this is falsé." lowercase_ = tokenizer.tokenize(__lowerCAmelCase) lowercase_ = rust_tokenizer.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) lowercase_ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) lowercase_ = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(__lowerCAmelCase) lowercase_ = rust_tokenizer.encode(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) def __UpperCAmelCase ( self : Tuple , __lowerCAmelCase : List[str]=15) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase_ = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) # Simple input lowercase_ = "This is a simple input" lowercase_ = ["This is a simple input 1", "This is a simple input 2"] lowercase_ = ("This is a simple input", "This is a pair") lowercase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length" , ) def __UpperCAmelCase ( self : Tuple) -> Tuple: pass def __UpperCAmelCase ( self : Any) -> Optional[Any]: lowercase_ = ReformerTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) lowercase_ = tokenizer.tokenize("This is a test") self.assertListEqual(__lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [285, 46, 10, 170, 382] , ) lowercase_ = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase_ = tokenizer.convert_ids_to_tokens(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __UpperCAmelCase ( self : List[str]) -> Any: return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") @slow def __UpperCAmelCase ( self : Tuple) -> str: lowercase_ = "Hello World!" lowercase_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase)) @slow def __UpperCAmelCase ( self : Any) -> Dict: lowercase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowercase_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase)) @require_torch @slow def __UpperCAmelCase ( self : Any) -> Tuple: import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowercase_ = list(self.big_tokenizer.get_vocab().keys())[:10] lowercase_ = " ".join(__lowerCAmelCase) lowercase_ = self.big_tokenizer.encode_plus(__lowerCAmelCase , return_tensors="pt") lowercase_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt") lowercase_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowercase_ = encoded_sequence["input_ids"].shape lowercase_ = ReformerModel(__lowerCAmelCase) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowerCAmelCase) model(**__lowerCAmelCase) @slow def __UpperCAmelCase ( self : List[Any]) -> Tuple: # fmt: off lowercase_ = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowercase_ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=__lowerCAmelCase , sequences=__lowerCAmelCase , )
461
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' lowercase = FunnelConfig.from_json_file(__magic_name__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase = FunnelBaseModel(__magic_name__ ) if base_model else FunnelModel(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __magic_name__ ) if __name__ == "__main__": _snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _snake_case : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
441
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _snake_case : List[Any] = logging.get_logger(__name__) @add_end_docstrings(__a ) class UpperCamelCase_ ( __a ): '''simple docstring''' def __init__( self :Tuple , **lowerCAmelCase__ :Dict ) ->int: super().__init__(**lowerCAmelCase__ ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :Tuple , **lowerCAmelCase__ :Union[str, Any] ) ->List[Any]: lowercase = {} lowercase = {} lowercase = {} # preprocess args if "points_per_batch" in kwargs: lowercase = kwargs["points_per_batch"] if "points_per_crop" in kwargs: lowercase = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: lowercase = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: lowercase = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: lowercase = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: lowercase = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: lowercase = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: lowercase = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: lowercase = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: lowercase = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: lowercase = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: lowercase = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self :List[str] , lowerCAmelCase__ :int , *lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Any=None , **lowerCAmelCase__ :List[str] ) ->Optional[int]: return super().__call__(lowerCAmelCase__ , *lowerCAmelCase__ , num_workers=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :float = 512 / 1500 , lowerCAmelCase__ :Optional[int] = 32 , lowerCAmelCase__ :Optional[int] = 1 , ) ->Any: lowercase = load_image(lowerCAmelCase__ ) lowercase = self.image_processor.size["longest_edge"] lowercase , lowercase , lowercase , lowercase = self.image_processor.generate_crop_boxes( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = self.image_processor(images=lowerCAmelCase__ , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": lowercase = self.get_inference_context() with inference_context(): lowercase = self._ensure_tensor_on_device(lowerCAmelCase__ , device=self.device ) lowercase = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) lowercase = image_embeddings lowercase = grid_points.shape[1] lowercase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = grid_points[:, i : i + points_per_batch, :, :] lowercase = input_labels[:, i : i + points_per_batch] lowercase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def SCREAMING_SNAKE_CASE( self :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict=0.88 , lowerCAmelCase__ :Dict=0.95 , lowerCAmelCase__ :str=0 , lowerCAmelCase__ :int=1 , ) ->str: lowercase = model_inputs.pop("input_boxes" ) lowercase = model_inputs.pop("is_last" ) lowercase = model_inputs.pop("original_sizes" ).tolist() lowercase = model_inputs.pop("reshaped_input_sizes" ).tolist() lowercase = self.model(**lowerCAmelCase__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase = model_outputs["pred_masks"] lowercase = self.image_processor.post_process_masks( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , binarize=lowerCAmelCase__ ) lowercase = model_outputs["iou_scores"] lowercase , lowercase , lowercase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def SCREAMING_SNAKE_CASE( self :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :str=False , lowerCAmelCase__ :int=0.7 , ) ->List[Any]: lowercase = [] lowercase = [] lowercase = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) lowercase = torch.cat(lowerCAmelCase__ ) lowercase = torch.cat(lowerCAmelCase__ ) lowercase , lowercase , lowercase , lowercase = self.image_processor.post_process_for_mask_generation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = defaultdict(lowerCAmelCase__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase__ ) lowercase = {} if output_rle_mask: lowercase = rle_mask if output_bboxes_mask: lowercase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
441
1
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): a_ : List[str] = True from torch.cuda.amp import autocast a_ : int = logging.getLogger(__name__) def UpperCAmelCase ( A__: Any=None , A__: List[Any]=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=A__ ) @dataclass class __lowercase: '''simple docstring''' __a : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __a : Optional[str] = field( default=lowercase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __a : Optional[bool] = field( default=lowercase__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) __a : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) __a : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) __a : Optional[float] = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) __a : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) __a : Optional[float] = field( default=0.0_5 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) __a : Optional[float] = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class __lowercase: '''simple docstring''' __a : Optional[str] = field( default=lowercase__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __a : Optional[str] = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) __a : bool = field( default=lowercase__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __a : Optional[int] = field( default=lowercase__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __a : Optional[int] = field( default=lowercase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __a : Optional[int] = field( default=lowercase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) __a : List[str] = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class __lowercase: '''simple docstring''' __a : WavaVecaProcessor __a : Union[bool, str] = True __a : Optional[int] = None __a : Optional[int] = None __a : Optional[int] = None __a : Optional[int] = None def __call__( self , __a ): # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCamelCase : Union[str, Any] = [{'input_values': feature['input_values']} for feature in features] __lowerCamelCase : Dict = [{'input_ids': feature['labels']} for feature in features] __lowerCamelCase : Tuple = self.processor.pad( __a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCamelCase : Union[str, Any] = self.processor.pad( labels=__a , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCamelCase : List[str] = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) __lowerCamelCase : Any = labels return batch class __lowercase( lowercase__ ): '''simple docstring''' def snake_case_ ( self , __a , __a ): model.train() __lowerCamelCase : Union[str, Any] = self._prepare_inputs(__a ) if self.use_amp: with autocast(): __lowerCamelCase : Union[str, Any] = self.compute_loss(__a , __a ) else: __lowerCamelCase : int = self.compute_loss(__a , __a ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCamelCase : Optional[int] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCamelCase : List[Any] = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: __lowerCamelCase : Optional[int] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a ).backward() elif self.use_apex: with amp.scale_loss(__a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a ) else: loss.backward() return loss.detach() def UpperCAmelCase ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCamelCase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , A__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCamelCase : List[Any] = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) __lowerCamelCase : Any = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer __lowerCamelCase : List[Any] = f'''[{"".join(data_args.chars_to_ignore )}]''' def remove_special_characters(A__: Union[str, Any] ): __lowerCamelCase : str = re.sub(A__ , '' , batch['sentence'] ).lower() + ' ' return batch __lowerCamelCase : Optional[int] = train_dataset.map(A__ , remove_columns=['sentence'] ) __lowerCamelCase : Tuple = eval_dataset.map(A__ , remove_columns=['sentence'] ) def extract_all_chars(A__: str ): __lowerCamelCase : Optional[int] = ' '.join(batch['text'] ) __lowerCamelCase : Optional[int] = list(set(A__ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCamelCase : Optional[int] = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=train_dataset.column_names , ) __lowerCamelCase : List[Any] = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=eval_dataset.column_names , ) __lowerCamelCase : List[str] = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCamelCase : List[Any] = {v: k for k, v in enumerate(A__ )} __lowerCamelCase : Optional[Any] = vocab_dict[' '] del vocab_dict[" "] __lowerCamelCase : List[str] = len(A__ ) __lowerCamelCase : int = len(A__ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(A__ , A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase : Optional[Any] = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) __lowerCamelCase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=A__ , return_attention_mask=A__ ) __lowerCamelCase : List[Any] = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) __lowerCamelCase : Union[str, Any] = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __lowerCamelCase : str = min(len(A__ ) , data_args.max_train_samples ) __lowerCamelCase : str = train_dataset.select(range(A__ ) ) if data_args.max_val_samples is not None: __lowerCamelCase : List[str] = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCamelCase : int = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(A__: Optional[int] ): __lowerCamelCase , __lowerCamelCase : int = torchaudio.load(batch['path'] ) __lowerCamelCase : Any = resampler(A__ ).squeeze().numpy() __lowerCamelCase : List[str] = 16000 __lowerCamelCase : Union[str, Any] = batch['text'] return batch __lowerCamelCase : Union[str, Any] = train_dataset.map( A__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __lowerCamelCase : List[str] = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(A__: Dict ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), f'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' __lowerCamelCase : Optional[Any] = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(A__ ) return batch __lowerCamelCase : str = train_dataset.map( A__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) __lowerCamelCase : Optional[int] = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) # Metric __lowerCamelCase : Optional[Any] = datasets.load_metric('wer' ) def compute_metrics(A__: Tuple ): __lowerCamelCase : int = pred.predictions __lowerCamelCase : Optional[Any] = np.argmax(A__ , axis=-1 ) __lowerCamelCase : int = processor.tokenizer.pad_token_id __lowerCamelCase : Optional[int] = processor.batch_decode(A__ ) # we do not want to group tokens when computing the metrics __lowerCamelCase : Tuple = processor.batch_decode(pred.label_ids , group_tokens=A__ ) __lowerCamelCase : Dict = wer_metric.compute(predictions=A__ , references=A__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCamelCase : Union[str, Any] = DataCollatorCTCWithPadding(processor=A__ , padding=A__ ) # Initialize our Trainer __lowerCamelCase : int = CTCTrainer( model=A__ , data_collator=A__ , args=A__ , compute_metrics=A__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCamelCase : Any = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCamelCase : Optional[Any] = model_args.model_name_or_path else: __lowerCamelCase : Any = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCamelCase : str = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() __lowerCamelCase : Dict = train_result.metrics __lowerCamelCase : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ ) ) __lowerCamelCase : Optional[Any] = min(A__ , len(A__ ) ) trainer.log_metrics('train' , A__ ) trainer.save_metrics('train' , A__ ) trainer.save_state() # Evaluation __lowerCamelCase : str = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCamelCase : Dict = trainer.evaluate() __lowerCamelCase : Optional[int] = data_args.max_val_samples if data_args.max_val_samples is not None else len(A__ ) __lowerCamelCase : Union[str, Any] = min(A__ , len(A__ ) ) trainer.log_metrics('eval' , A__ ) trainer.save_metrics('eval' , A__ ) return results if __name__ == "__main__": main()
263
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowercase: '''simple docstring''' __a : Optional[Any] = LEDConfig __a : Dict = {} __a : int = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , __a=4 , ): __lowerCamelCase : str = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : List[str] = seq_length __lowerCamelCase : Optional[Any] = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : Any = vocab_size __lowerCamelCase : int = hidden_size __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : List[str] = intermediate_size __lowerCamelCase : str = hidden_dropout_prob __lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob __lowerCamelCase : Any = max_position_embeddings __lowerCamelCase : str = eos_token_id __lowerCamelCase : str = pad_token_id __lowerCamelCase : str = bos_token_id __lowerCamelCase : int = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __lowerCamelCase : Dict = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __lowerCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def snake_case_ ( self ): __lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __lowerCamelCase : int = prepare_led_inputs_dict(__a , __a , __a ) __lowerCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) __lowerCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def snake_case_ ( self , __a , __a ): __lowerCamelCase : Optional[int] = TFLEDModel(config=__a ).get_decoder() __lowerCamelCase : List[str] = inputs_dict['input_ids'] __lowerCamelCase : Dict = input_ids[:1, :] __lowerCamelCase : Any = inputs_dict['attention_mask'][:1, :] __lowerCamelCase : Tuple = 1 # first forward pass __lowerCamelCase : List[str] = model(__a , attention_mask=__a , use_cache=__a ) __lowerCamelCase , __lowerCamelCase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCamelCase : Any = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCamelCase : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCamelCase : Dict = model(__a , attention_mask=__a )[0] __lowerCamelCase : Optional[int] = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCamelCase : int = output_from_no_past[:, -3:, random_slice_idx] __lowerCamelCase : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1E-3 ) def UpperCAmelCase ( A__: Any , A__: Union[str, Any] , A__: Dict , A__: int=None , A__: str=None , A__: Tuple=None , A__: List[Any]=None , ) -> Optional[Any]: if attention_mask is None: __lowerCamelCase : Optional[int] = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCamelCase : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCamelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCamelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowercase( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' __a : Union[str, Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __a : Any = (TFLEDForConditionalGeneration,) if is_tf_available() else () __a : str = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __a : Union[str, Any] = True __a : str = False __a : Dict = False __a : List[Any] = False def snake_case_ ( self ): __lowerCamelCase : int = TFLEDModelTester(self ) __lowerCamelCase : List[str] = ConfigTester(self , config_class=__a ) def snake_case_ ( self ): self.config_tester.run_common_tests() def snake_case_ ( self ): __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def snake_case_ ( self ): __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[Any] = tf.zeros_like(inputs_dict['attention_mask'] ) __lowerCamelCase : Any = 2 __lowerCamelCase : Dict = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) __lowerCamelCase : List[Any] = True __lowerCamelCase : Tuple = self.model_tester.seq_length __lowerCamelCase : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a ): __lowerCamelCase : List[Any] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a ): __lowerCamelCase : List[str] = [t.numpy() for t in outputs.encoder_attentions] __lowerCamelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __lowerCamelCase : int = True __lowerCamelCase : int = False __lowerCamelCase : Tuple = False __lowerCamelCase : List[Any] = model_class(__a ) __lowerCamelCase : Optional[Any] = model(self._prepare_for_class(__a , __a ) ) __lowerCamelCase : Tuple = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowerCamelCase : Any = model_class(__a ) __lowerCamelCase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowerCamelCase : Tuple = True __lowerCamelCase : Dict = model_class(__a ) __lowerCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowerCamelCase : List[Any] = True __lowerCamelCase : int = True __lowerCamelCase : List[str] = model_class(__a ) __lowerCamelCase : Dict = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def snake_case_ ( self ): pass def snake_case_ ( self ): # TODO: Head-masking not yet implement pass def UpperCAmelCase ( A__: Union[str, Any] ) -> List[Any]: return tf.constant(A__ , dtype=tf.intaa ) a_ : Tuple = 1e-4 @slow @require_tf class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): __lowerCamelCase : Tuple = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here __lowerCamelCase : Union[str, Any] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __lowerCamelCase : Dict = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __lowerCamelCase : Optional[int] = prepare_led_inputs_dict(model.config , __a , __a ) __lowerCamelCase : str = model(**__a )[0] __lowerCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here __lowerCamelCase : int = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 ) def snake_case_ ( self ): __lowerCamelCase : List[str] = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here __lowerCamelCase : Union[str, Any] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __lowerCamelCase : Dict = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __lowerCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) __lowerCamelCase : Dict = model(**__a )[0] __lowerCamelCase : List[Any] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here __lowerCamelCase : Optional[Any] = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 , rtol=1E-3 )
263
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def a ( A__ , A__=1 ) -> int: '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def a ( A__ , A__=0 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [] for old_item in old_list: SCREAMING_SNAKE_CASE__ : int = old_item.replace('''in_layers.0''' , '''norm1''' ) SCREAMING_SNAKE_CASE__ : Tuple = new_item.replace('''in_layers.2''' , '''conv1''' ) SCREAMING_SNAKE_CASE__ : Dict = new_item.replace('''out_layers.0''' , '''norm2''' ) SCREAMING_SNAKE_CASE__ : List[str] = new_item.replace('''out_layers.3''' , '''conv2''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) SCREAMING_SNAKE_CASE__ : Dict = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) SCREAMING_SNAKE_CASE__ : int = shave_segments(A__ , n_shave_prefix_segments=A__ ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def a ( A__ , A__=0 ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = [] for old_item in old_list: SCREAMING_SNAKE_CASE__ : Optional[Any] = old_item SCREAMING_SNAKE_CASE__ : List[Any] = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) SCREAMING_SNAKE_CASE__ : Dict = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) SCREAMING_SNAKE_CASE__ : List[Any] = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) SCREAMING_SNAKE_CASE__ : int = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = shave_segments(A__ , n_shave_prefix_segments=A__ ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def a ( A__ , A__ , A__ , A__=None , A__=None , A__=None ) -> Optional[int]: '''simple docstring''' assert isinstance(A__ , A__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): SCREAMING_SNAKE_CASE__ : Optional[Any] = old_checkpoint[path] SCREAMING_SNAKE_CASE__ : Optional[Any] = old_tensor.shape[0] // 3 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) SCREAMING_SNAKE_CASE__ : Optional[int] = old_tensor.shape[0] // config['''num_head_channels'''] // 3 SCREAMING_SNAKE_CASE__ : List[Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = old_tensor.split(channels // num_heads , dim=1 ) SCREAMING_SNAKE_CASE__ : Tuple = query.reshape(A__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = key.reshape(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = value.reshape(A__ ) for path in paths: SCREAMING_SNAKE_CASE__ : Optional[int] = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here SCREAMING_SNAKE_CASE__ : Any = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) SCREAMING_SNAKE_CASE__ : int = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) SCREAMING_SNAKE_CASE__ : Tuple = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: SCREAMING_SNAKE_CASE__ : Tuple = old_checkpoint[path['''old''']][:, :, 0] else: SCREAMING_SNAKE_CASE__ : int = old_checkpoint[path['''old''']] def a ( A__ , A__ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} SCREAMING_SNAKE_CASE__ : Optional[Any] = checkpoint['''time_embed.0.weight'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = checkpoint['''time_embed.0.bias'''] SCREAMING_SNAKE_CASE__ : int = checkpoint['''time_embed.2.weight'''] SCREAMING_SNAKE_CASE__ : List[Any] = checkpoint['''time_embed.2.bias'''] SCREAMING_SNAKE_CASE__ : List[str] = checkpoint['''input_blocks.0.0.weight'''] SCREAMING_SNAKE_CASE__ : Tuple = checkpoint['''input_blocks.0.0.bias'''] SCREAMING_SNAKE_CASE__ : int = checkpoint['''out.0.weight'''] SCREAMING_SNAKE_CASE__ : Dict = checkpoint['''out.0.bias'''] SCREAMING_SNAKE_CASE__ : List[str] = checkpoint['''out.2.weight'''] SCREAMING_SNAKE_CASE__ : Optional[int] = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only SCREAMING_SNAKE_CASE__ : str = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) SCREAMING_SNAKE_CASE__ : Tuple = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A__ ) } # Retrieves the keys for the middle blocks only SCREAMING_SNAKE_CASE__ : str = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) SCREAMING_SNAKE_CASE__ : List[str] = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A__ ) } # Retrieves the keys for the output blocks only SCREAMING_SNAKE_CASE__ : Dict = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) SCREAMING_SNAKE_CASE__ : Any = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A__ ) } for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = (i - 1) // (config['''num_res_blocks'''] + 1) SCREAMING_SNAKE_CASE__ : Optional[int] = (i - 1) % (config['''num_res_blocks'''] + 1) SCREAMING_SNAKE_CASE__ : Optional[Any] = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] SCREAMING_SNAKE_CASE__ : Any = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: SCREAMING_SNAKE_CASE__ : List[str] = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] SCREAMING_SNAKE_CASE__ : str = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue SCREAMING_SNAKE_CASE__ : Union[str, Any] = renew_resnet_paths(A__ ) SCREAMING_SNAKE_CASE__ : str = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} SCREAMING_SNAKE_CASE__ : Any = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A__ , A__ , A__ , additional_replacements=[meta_path, resnet_op] , config=A__ ) if len(A__ ): SCREAMING_SNAKE_CASE__ : int = renew_attention_paths(A__ ) SCREAMING_SNAKE_CASE__ : Any = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } SCREAMING_SNAKE_CASE__ : Any = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A__ , A__ , A__ , additional_replacements=[meta_path] , attention_paths_to_split=A__ , config=A__ , ) SCREAMING_SNAKE_CASE__ : Dict = middle_blocks[0] SCREAMING_SNAKE_CASE__ : Any = middle_blocks[1] SCREAMING_SNAKE_CASE__ : int = middle_blocks[2] SCREAMING_SNAKE_CASE__ : Optional[int] = renew_resnet_paths(A__ ) assign_to_checkpoint(A__ , A__ , A__ , config=A__ ) SCREAMING_SNAKE_CASE__ : str = renew_resnet_paths(A__ ) assign_to_checkpoint(A__ , A__ , A__ , config=A__ ) SCREAMING_SNAKE_CASE__ : Dict = renew_attention_paths(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A__ , A__ , A__ , attention_paths_to_split=A__ , config=A__ ) for i in range(A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = i // (config['''num_res_blocks'''] + 1) SCREAMING_SNAKE_CASE__ : Optional[Any] = i % (config['''num_res_blocks'''] + 1) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [shave_segments(A__ , 2 ) for name in output_blocks[i]] SCREAMING_SNAKE_CASE__ : Any = {} for layer in output_block_layers: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = layer.split('''.''' )[0], shave_segments(A__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A__ ) else: SCREAMING_SNAKE_CASE__ : Any = [layer_name] if len(A__ ) > 1: SCREAMING_SNAKE_CASE__ : Any = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] SCREAMING_SNAKE_CASE__ : List[str] = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] SCREAMING_SNAKE_CASE__ : Any = renew_resnet_paths(A__ ) SCREAMING_SNAKE_CASE__ : Any = renew_resnet_paths(A__ ) SCREAMING_SNAKE_CASE__ : Tuple = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): SCREAMING_SNAKE_CASE__ : List[str] = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) SCREAMING_SNAKE_CASE__ : List[str] = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] SCREAMING_SNAKE_CASE__ : Optional[Any] = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A__ ) == 2: SCREAMING_SNAKE_CASE__ : List[Any] = [] if len(A__ ): SCREAMING_SNAKE_CASE__ : Any = renew_attention_paths(A__ ) SCREAMING_SNAKE_CASE__ : str = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } SCREAMING_SNAKE_CASE__ : Dict = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A__ , A__ , A__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A__ , ) else: SCREAMING_SNAKE_CASE__ : List[Any] = renew_resnet_paths(A__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''.'''.join(['''output_blocks''', str(A__ ), path['''old''']] ) SCREAMING_SNAKE_CASE__ : int = '''.'''.join(['''up_blocks''', str(A__ ), '''resnets''', str(A__ ), path['''new''']] ) SCREAMING_SNAKE_CASE__ : Tuple = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": a_ :Dict = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') a_ :Optional[Any] = parser.parse_args() a_ :Any = torch.load(args.checkpoint_path) with open(args.config_file) as f: a_ :List[str] = json.loads(f.read()) a_ :Tuple = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] a_ :int = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: a_ :Optional[int] = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) a_ :Dict = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) a_ :Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
35
# Function to print upper half of diamond (pyramid) def a ( a ) ->Optional[Any]: '''simple docstring''' for i in range(0 , a ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def a ( a ) ->Union[str, Any]: '''simple docstring''' for i in range(a , 0 , -1 ): for _ in range(a , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def a ( a ) ->Optional[int]: '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(a ) # upper half reverse_floyd(a ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') __lowerCAmelCase = 1 while K: __lowerCAmelCase = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __lowerCAmelCase = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
201
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( __a ): """simple docstring""" lowercase__ = ['''image_processor''', '''tokenizer'''] lowercase__ = '''ChineseCLIPImageProcessor''' lowercase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : int ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) __UpperCamelCase =kwargs.pop('''feature_extractor''' ) __UpperCamelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =self.image_processor def __call__( self : List[str] , UpperCamelCase__ : str=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : int=None , **UpperCamelCase__ : Dict ) -> Dict: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __UpperCamelCase =self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: __UpperCamelCase =self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: __UpperCamelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def UpperCAmelCase_ ( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : str ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : int , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : List[str] ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' __UpperCamelCase =self.tokenizer.model_input_names __UpperCamelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase_ ( self : Any ) -> int: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase__ , ) return self.image_processor_class
296
"""simple docstring""" import sys __lowercase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def lowerCAmelCase (__UpperCamelCase : str = N ): """simple docstring""" __UpperCamelCase =-sys.maxsize - 1 for i in range(len(__UpperCamelCase ) - 1_2 ): __UpperCamelCase =1 for j in range(1_3 ): product *= int(n[i + j] ) if product > largest_product: __UpperCamelCase =product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
296
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = tempfile.mkdtemp() # fmt: off UpperCAmelCase__ : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase__ : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) UpperCAmelCase__ : List[Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] UpperCAmelCase__ : List[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) UpperCAmelCase__ : Optional[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( self , **_lowerCAmelCase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __UpperCAmelCase ( self , **_lowerCAmelCase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __UpperCAmelCase ( self , **_lowerCAmelCase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __UpperCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase__ : Union[str, Any] = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : List[str] = self.get_rust_tokenizer() UpperCAmelCase__ : int = self.get_image_processor() UpperCAmelCase__ : Tuple = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) UpperCAmelCase__ : Dict = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase__ : str = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) UpperCAmelCase__ : str = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.get_image_processor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : str = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase__ : str = self.prepare_image_inputs() UpperCAmelCase__ : str = image_processor(_lowerCAmelCase , return_tensors="""np""" ) UpperCAmelCase__ : List[Any] = processor(images=_lowerCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = self.get_image_processor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = """lower newer""" UpperCAmelCase__ : int = processor(text=_lowerCAmelCase ) UpperCAmelCase__ : Dict = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.get_image_processor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : List[Any] = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = """lower newer""" UpperCAmelCase__ : int = self.prepare_image_inputs() UpperCAmelCase__ : Optional[int] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = self.get_image_processor() UpperCAmelCase__ : Any = self.get_tokenizer() UpperCAmelCase__ : Tuple = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase__ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ : Any = processor.batch_decode(_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[Any] = self.get_image_processor() UpperCAmelCase__ : List[str] = self.get_tokenizer() UpperCAmelCase__ : Any = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase__ : str = """lower newer""" UpperCAmelCase__ : Optional[Any] = self.prepare_image_inputs() UpperCAmelCase__ : List[Any] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
79
'''simple docstring''' def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" _UpperCamelCase =[redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: _UpperCamelCase =1 - (matter_density + radiation_density + dark_energy) _UpperCamelCase =( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _UpperCamelCase =hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __lowerCamelCase : Optional[Any] = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
404
0
'''simple docstring''' import os import sys import unittest lowercase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase__ = os.path.join(git_repo_path, "src", "transformers") lowercase__ = "\n{0} = None\n" lowercase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" lowercase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def a_ ( self ) -> Optional[Any]: _a = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(__UpperCamelCase ) _a = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(__UpperCamelCase , "tokenizers" ) _a = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(__UpperCamelCase , "tensorflow_text" ) _a = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(__UpperCamelCase , "sentencepiece_and_tokenizers" ) _a = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(__UpperCamelCase , "sentencepiece_and_tensorflow_text" ) _a = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(__UpperCamelCase , "sentencepiece_and_tokenizers_and_vision" ) def a_ ( self ) -> str: _a = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , __UpperCamelCase ) self.assertIn("tensorflow_text" , __UpperCamelCase ) self.assertIn("sentencepiece_and_tokenizers" , __UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertModel" , objects["tf"] ) self.assertIn("FlaxBertModel" , objects["flax"] ) self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertTokenizer" , objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer" , objects["sentencepiece_and_tokenizers"] ) def a_ ( self ) -> List[Any]: _a = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(__UpperCamelCase , "\nCONSTANT = None\n" ) _a = create_dummy_object("function" , "'torch'" ) self.assertEqual( __UpperCamelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) _a = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" _a = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def a_ ( self ) -> Union[str, Any]: _a = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" _a = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , __UpperCamelCase )
276
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): UpperCAmelCase = '''convbert''' def __init__( self , __UpperCamelCase=30_522 , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3_072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=768 , __UpperCamelCase=2 , __UpperCamelCase=9 , __UpperCamelCase=1 , __UpperCamelCase=None , **__UpperCamelCase , ) -> Optional[int]: super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = embedding_size _a = head_ratio _a = conv_kernel_size _a = num_groups _a = classifier_dropout class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def a_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
276
1
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCamelCase : Union[str, Any] = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCamelCase : Optional[Any] = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __lowerCamelCase : Optional[int] = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" def remove_articles(lowerCAmelCase_ ): lowercase = re.compile(R"\b(a|an|the)\b" , re.UNICODE ) return re.sub(snake_case__ , " " , snake_case__ ) def white_space_fix(lowerCAmelCase_ ): return " ".join(text.split() ) def remove_punc(lowerCAmelCase_ ): lowercase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCAmelCase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__ ) ) ) ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return int(normalize_answer(snake_case__ ) == normalize_answer(snake_case__ ) ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = [any(compute_exact(snake_case__ , snake_case__ ) for ref in refs ) for pred, refs in zip(snake_case__ , snake_case__ )] return (sum(snake_case__ ) / len(snake_case__ )) * 100 def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = [rgram for rgrams in rgramslist for rgram in rgrams] lowercase = Counter(snake_case__ ) lowercase = Counter(snake_case__ ) lowercase = Counter() for sgram, scount in sgramcounter.items(): lowercase = scount * numref lowercase = Counter(snake_case__ ) lowercase = Counter() for cgram, ccount in cgramcounter.items(): lowercase = ccount * numref # KEEP lowercase = sgramcounter_rep & cgramcounter_rep lowercase = keepgramcounter_rep & rgramcounter lowercase = sgramcounter_rep & rgramcounter lowercase = 0 lowercase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase = 1 lowercase = 1 if len(snake_case__ ) > 0: lowercase = keeptmpscorea / len(snake_case__ ) if len(snake_case__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowercase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowercase = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowercase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowercase = sgramcounter_rep - cgramcounter_rep lowercase = delgramcounter_rep - rgramcounter lowercase = sgramcounter_rep - rgramcounter lowercase = 0 lowercase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase = 1 if len(snake_case__ ) > 0: lowercase = deltmpscorea / len(snake_case__ ) # ADDITION lowercase = set(snake_case__ ) - set(snake_case__ ) lowercase = set(snake_case__ ) & set(snake_case__ ) lowercase = set(snake_case__ ) - set(snake_case__ ) lowercase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase = 1 lowercase = 1 if len(snake_case__ ) > 0: lowercase = addtmpscore / len(snake_case__ ) if len(snake_case__ ) > 0: lowercase = addtmpscore / len(snake_case__ ) lowercase = 0 if addscore_precision > 0 or addscore_recall > 0: lowercase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = len(snake_case__ ) lowercase = ssent.split(" " ) lowercase = csent.split(" " ) lowercase = [] lowercase = [] lowercase = [] lowercase = [] lowercase = [] lowercase = [] lowercase = [] lowercase = [] lowercase = [] lowercase = [] for rsent in rsents: lowercase = rsent.split(" " ) lowercase = [] lowercase = [] lowercase = [] ragramslist.append(snake_case__ ) for i in range(0 , len(snake_case__ ) - 1 ): if i < len(snake_case__ ) - 1: lowercase = ragrams[i] + " " + ragrams[i + 1] ragrams.append(snake_case__ ) if i < len(snake_case__ ) - 2: lowercase = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(snake_case__ ) if i < len(snake_case__ ) - 3: lowercase = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(snake_case__ ) ragramslist.append(snake_case__ ) ragramslist.append(snake_case__ ) ragramslist.append(snake_case__ ) for i in range(0 , len(snake_case__ ) - 1 ): if i < len(snake_case__ ) - 1: lowercase = sagrams[i] + " " + sagrams[i + 1] sagrams.append(snake_case__ ) if i < len(snake_case__ ) - 2: lowercase = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(snake_case__ ) if i < len(snake_case__ ) - 3: lowercase = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(snake_case__ ) for i in range(0 , len(snake_case__ ) - 1 ): if i < len(snake_case__ ) - 1: lowercase = cagrams[i] + " " + cagrams[i + 1] cagrams.append(snake_case__ ) if i < len(snake_case__ ) - 2: lowercase = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(snake_case__ ) if i < len(snake_case__ ) - 3: lowercase = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(snake_case__ ) ((lowercase) , (lowercase) , (lowercase)) = SARIngram(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ((lowercase) , (lowercase) , (lowercase)) = SARIngram(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ((lowercase) , (lowercase) , (lowercase)) = SARIngram(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ((lowercase) , (lowercase) , (lowercase)) = SARIngram(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowercase = sum([delascore, delascore, delascore, delascore] ) / 4 lowercase = sum([addascore, addascore, addascore, addascore] ) / 4 lowercase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ = True , lowerCAmelCase_ = "13a" , lowerCAmelCase_ = True ): """simple docstring""" if lowercase: lowercase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowercase = sacrebleu.metrics.bleu._get_tokenizer(snake_case__ )()(snake_case__ ) else: lowercase = sacrebleu.TOKENIZERS[tokenizer]()(snake_case__ ) elif tokenizer == "moses": lowercase = sacremoses.MosesTokenizer().tokenize(snake_case__ , return_str=snake_case__ , escape=snake_case__ ) elif tokenizer == "penn": lowercase = sacremoses.MosesTokenizer().penn_tokenize(snake_case__ , return_str=snake_case__ ) else: lowercase = sentence if not return_str: lowercase = normalized_sent.split() return normalized_sent def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if not (len(snake_case__ ) == len(snake_case__ ) == len(snake_case__ )): raise ValueError("Sources length must match predictions and references lengths." ) lowercase = 0 for src, pred, refs in zip(snake_case__ , snake_case__ , snake_case__ ): sari_score += SARIsent(normalize(snake_case__ ) , normalize(snake_case__ ) , [normalize(snake_case__ ) for sent in refs] ) lowercase = sari_score / len(snake_case__ ) return 100 * sari_score def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="exp" , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ): """simple docstring""" lowercase = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) lowercase = [[refs[i] for refs in references] for i in range(snake_case__ )] lowercase = sacrebleu.corpus_bleu( snake_case__ , snake_case__ , smooth_method=snake_case__ , smooth_value=snake_case__ , force=snake_case__ , lowercase=snake_case__ , use_effective_order=snake_case__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase__ (self : List[Any] ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def UpperCAmelCase__ (self : Optional[Any] , A__ : Optional[int] , A__ : str , A__ : Any ) -> Union[str, Any]: lowercase = {} result.update({"sari": compute_sari(sources=lowercase_ , predictions=lowercase_ , references=lowercase_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=lowercase_ , references=lowercase_ )} ) result.update({"exact": compute_em(predictions=lowercase_ , references=lowercase_ )} ) return result
310
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase__ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase__ : Optional[Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __lowercase : __UpperCAmelCase = 42 __UpperCAmelCase = 42 class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = None for i in sorted(lowercase_ , reverse=lowercase_): __snake_case = Node(lowercase_ , self.head) def __iter__( self) -> Iterator[int]: __snake_case = self.head while node: yield node.data __snake_case = node.next_node def __len__( self) -> int: return sum(1 for _ in self) def __str__( self) -> str: return " -> ".join([str(lowercase_) for node in self]) def A ( snake_case__ : SortedLinkedList , snake_case__ : SortedLinkedList ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(snake_case__ ) + list(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : Optional[int] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
313
0
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __a ( A ): '''simple docstring''' lowercase__ = checkpoints.load_tax_checkpoint(A ) lowercase__ = flatten_dict(A ) return flax_params def __a ( A ): '''simple docstring''' lowercase__ = {} lowercase__ = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } lowercase__ = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase__ = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(A , A ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(A , A ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase__ = re.sub(r"layers_(\d+)" , r"layer.\1" , A ) lowercase__ = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase__ = re.sub(r"layers_(\d+)" , r"layer.\1" , A ) lowercase__ = flax_dict[key] lowercase__ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase__ = torch.from_numpy(converted_dict[key].T ) else: lowercase__ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __a ( A , A , A=False , A=False ): '''simple docstring''' lowercase__ = get_flax_param(A ) if not use_large: lowercase__ = PixaStructVisionConfig() lowercase__ = PixaStructTextConfig() else: lowercase__ = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase__ = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) lowercase__ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=A ) lowercase__ = PixaStructForConditionalGeneration(A ) lowercase__ = rename_and_convert_flax_params(A ) model.load_state_dict(A ) lowercase__ = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) lowercase__ = PixaStructImageProcessor() lowercase__ = PixaStructProcessor(image_processor=A , tokenizer=A ) if use_large: lowercase__ = 40_96 lowercase__ = True # mkdir if needed os.makedirs(A , exist_ok=A ) model.save_pretrained(A ) processor.save_pretrained(A ) print("Model saved in {}".format(A ) ) if __name__ == "__main__": lowerCAmelCase_: List[str] = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") lowerCAmelCase_: int = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
668
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
1
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ) -> int: if len(_lowercase ) != len(_lowercase ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _snake_case = [p / w for p, w in zip(_lowercase , _lowercase )] # Creating a copy of the list and sorting profit/weight in ascending order _snake_case = sorted(_lowercase ) # declaring useful variables _snake_case = len(_lowercase ) _snake_case = 0 _snake_case = 0 _snake_case = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _snake_case = sorted_profit_by_weight[length - i - 1] _snake_case = profit_by_weight.index(_lowercase ) _snake_case = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) UpperCAmelCase__ = [int(x) for x in input('Input profits separated by spaces: ').split()] UpperCAmelCase__ = [int(x) for x in input('Input weights separated by spaces: ').split()] UpperCAmelCase__ = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
224
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase = logging.get_logger(__name__) class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : str = """linear""" lowerCamelCase_ : int = """cosine""" lowerCamelCase_ : str = """cosine_with_restarts""" lowerCamelCase_ : Union[str, Any] = """polynomial""" lowerCamelCase_ : Tuple = """constant""" lowerCamelCase_ : List[Any] = """constant_with_warmup""" lowerCamelCase_ : Optional[int] = """piecewise_constant""" def lowerCamelCase_ ( _lowercase , _lowercase = -1 ) -> Tuple: return LambdaLR(_lowercase , lambda _lowercase : 1 , last_epoch=_lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase = -1 ) -> Union[str, Any]: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1.0 , _lowercase ) ) return 1.0 return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase = -1 ) -> Any: __A : str = {} __A : str = step_rules.split("," ) for rule_str in rule_list[:-1]: __A , __A : List[Any] = rule_str.split(":" ) __A : Dict = int(_lowercase ) __A : Dict = float(_lowercase ) __A : List[Any] = value __A : List[Any] = float(rule_list[-1] ) def create_rules_function(_lowercase , _lowercase ): def rule_func(_lowercase ) -> float: __A : Optional[int] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowercase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __A : Dict = create_rules_function(_lowercase , _lowercase ) return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase=-1 ) -> Dict: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase = 0.5 , _lowercase = -1 ) -> int: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) __A : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowercase ) * 2.0 * progress )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase = 1 , _lowercase = -1 ) -> Tuple: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) __A : Any = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowercase ) * progress) % 1.0) )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase=1E-7 , _lowercase=1.0 , _lowercase=-1 ) -> Optional[Any]: __A : str = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __A : Optional[Any] = lr_init - lr_end __A : List[Any] = num_training_steps - num_warmup_steps __A : Tuple = 1 - (current_step - num_warmup_steps) / decay_steps __A : Optional[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowercase , _lowercase , _lowercase ) UpperCamelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = 1 , _lowercase = 1.0 , _lowercase = -1 , ) -> Dict: __A : List[str] = SchedulerType(_lowercase ) __A : int = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowercase , last_epoch=_lowercase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowercase , step_rules=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowercase , num_warmup_steps=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , num_cycles=_lowercase , last_epoch=_lowercase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , power=_lowercase , last_epoch=_lowercase , ) return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , last_epoch=_lowercase )
520
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _lowerCAmelCase = None _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } _lowerCAmelCase = { "google/fnet-base": 5_12, "google/fnet-large": 5_12, } _lowerCAmelCase = "▁" class UpperCamelCase (_UpperCAmelCase ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Tuple = ['''input_ids''', '''token_type_ids'''] _SCREAMING_SNAKE_CASE : Union[str, Any] = FNetTokenizer def __init__( self :List[Any] , __magic_name__ :Dict=None , __magic_name__ :List[str]=None , __magic_name__ :str=False , __magic_name__ :Union[str, Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]="<unk>" , __magic_name__ :Optional[int]="[SEP]" , __magic_name__ :Any="<pad>" , __magic_name__ :Dict="[CLS]" , __magic_name__ :Any="[MASK]" , **__magic_name__ :Optional[Any] , ) ->Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase : Tuple = ( AddedToken(A_ , lstrip=A_ , rstrip=A_ , normalized=A_ ) if isinstance(A_ , A_ ) else mask_token ) super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , remove_space=A_ , keep_accents=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , **A_ , ) lowercase : int = do_lower_case lowercase : Any = remove_space lowercase : Any = keep_accents lowercase : Any = vocab_file lowercase : Optional[int] = False if not self.vocab_file else True def __snake_case ( self :List[str] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ) ->List[int]: lowercase : Optional[Any] = [self.sep_token_id] lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __snake_case ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ) ->List[int]: lowercase : Optional[int] = [self.sep_token_id] lowercase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case ( self :Any , __magic_name__ :str , __magic_name__ :Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Tuple = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
705
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase (metaclass=__snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self :List[str] , *__magic_name__ :int , **__magic_name__ :Tuple ) ->Dict: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :List[Any] , *__magic_name__ :Any , **__magic_name__ :Union[str, Any] ) ->Dict: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :str , *__magic_name__ :Optional[Any] , **__magic_name__ :Union[str, Any] ) ->Tuple: requires_backends(cls , ["""flax""", """transformers"""] ) class UpperCamelCase (metaclass=__snake_case ): _SCREAMING_SNAKE_CASE : List[str] = ["""flax""", """transformers"""] def __init__( self :str , *__magic_name__ :int , **__magic_name__ :List[str] ) ->str: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :Optional[int] , *__magic_name__ :Tuple , **__magic_name__ :Dict ) ->Dict: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :Tuple , *__magic_name__ :Tuple , **__magic_name__ :Optional[int] ) ->Optional[Any]: requires_backends(cls , ["""flax""", """transformers"""] ) class UpperCamelCase (metaclass=__snake_case ): _SCREAMING_SNAKE_CASE : Tuple = ["""flax""", """transformers"""] def __init__( self :Tuple , *__magic_name__ :Dict , **__magic_name__ :Optional[int] ) ->Dict: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :List[str] , *__magic_name__ :Any , **__magic_name__ :Tuple ) ->Dict: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :Any , *__magic_name__ :List[Any] , **__magic_name__ :Optional[Any] ) ->Optional[int]: requires_backends(cls , ["""flax""", """transformers"""] ) class UpperCamelCase (metaclass=__snake_case ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["""flax""", """transformers"""] def __init__( self :List[str] , *__magic_name__ :int , **__magic_name__ :Dict ) ->Optional[int]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :str , *__magic_name__ :Any , **__magic_name__ :Any ) ->Optional[int]: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :int , *__magic_name__ :List[str] , **__magic_name__ :Any ) ->Any: requires_backends(cls , ["""flax""", """transformers"""] )
348
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase__ = Mapping[str, np.ndarray] lowerCamelCase__ = Mapping[str, Any] # Is a nested dict. lowerCamelCase__ = 0.01 @dataclasses.dataclass(frozen=snake_case__ ) class UpperCamelCase : __UpperCamelCase = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __UpperCamelCase = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __UpperCamelCase = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __UpperCamelCase = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __UpperCamelCase = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions __UpperCamelCase = None # Optional remark about the protein. Included as a comment in output PDB # files __UpperCamelCase = None # Templates used to generate this protein (prediction-only) __UpperCamelCase = None # Chain corresponding to each parent __UpperCamelCase = None def _lowerCamelCase( __snake_case ) -> Protein: __snake_case = r"(\[[A-Z]+\]\n)" __snake_case = [tag.strip() for tag in re.split(__snake_case , __snake_case ) if len(__snake_case ) > 0] __snake_case = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) __snake_case = ["N", "CA", "C"] __snake_case = None __snake_case = None __snake_case = None for g in groups: if "[PRIMARY]" == g[0]: __snake_case = g[1][0].strip() for i in range(len(__snake_case ) ): if seq[i] not in residue_constants.restypes: __snake_case = "X" # FIXME: strings are immutable __snake_case = np.array( [residue_constants.restype_order.get(__snake_case , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __snake_case = [] for axis in range(3 ): tertiary.append(list(map(__snake_case , g[1][axis].split() ) ) ) __snake_case = np.array(__snake_case ) __snake_case = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): __snake_case = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __snake_case = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) __snake_case = np.zeros( ( len(__snake_case ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): __snake_case = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__snake_case , atom_mask=__snake_case , aatype=__snake_case , residue_index=np.arange(len(__snake_case ) ) , b_factors=__snake_case , ) def _lowerCamelCase( __snake_case , __snake_case = 0 ) -> List[str]: __snake_case = [] __snake_case = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) __snake_case = prot.parents __snake_case = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __snake_case = [p for i, p in zip(__snake_case , __snake_case ) if i == chain_id] if parents is None or len(__snake_case ) == 0: __snake_case = ["N/A"] pdb_headers.append(f"""PARENT {" ".join(__snake_case )}""" ) return pdb_headers def _lowerCamelCase( __snake_case , __snake_case ) -> str: __snake_case = [] __snake_case = pdb_str.split("\n" ) __snake_case = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) __snake_case = 42 if prot.parents is not None and len(prot.parents ) > 0: __snake_case = [] if prot.parents_chain_index is not None: __snake_case = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__snake_case ) , [] ) parent_dict[str(__snake_case )].append(__snake_case ) __snake_case = max([int(__snake_case ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __snake_case = parent_dict.get(str(__snake_case ) , ["N/A"] ) parents_per_chain.append(__snake_case ) else: parents_per_chain.append(list(prot.parents ) ) else: __snake_case = [["N/A"]] def make_parent_line(__snake_case ) -> str: return f"""PARENT {" ".join(__snake_case )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __snake_case = 0 for i, l in enumerate(__snake_case ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__snake_case ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__snake_case ): __snake_case = parents_per_chain[chain_counter] else: __snake_case = ["N/A"] out_pdb_lines.append(make_parent_line(__snake_case ) ) return "\n".join(__snake_case ) def _lowerCamelCase( __snake_case ) -> str: __snake_case = residue_constants.restypes + ["X"] def res_atoa(__snake_case ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) __snake_case = residue_constants.atom_types __snake_case = [] __snake_case = prot.atom_mask __snake_case = prot.aatype __snake_case = prot.atom_positions __snake_case = prot.residue_index.astype(np.intaa ) __snake_case = prot.b_factors __snake_case = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) __snake_case = get_pdb_headers(__snake_case ) if len(__snake_case ) > 0: pdb_lines.extend(__snake_case ) __snake_case = aatype.shape[0] __snake_case = 1 __snake_case = 0 __snake_case = string.ascii_uppercase __snake_case = None # Add all atom sites. for i in range(__snake_case ): __snake_case = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__snake_case , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __snake_case = "ATOM" __snake_case = atom_name if len(__snake_case ) == 4 else f""" {atom_name}""" __snake_case = "" __snake_case = "" __snake_case = 1.0_0 __snake_case = atom_name[0] # Protein supports only C, N, O, S, this works. __snake_case = "" __snake_case = "A" if chain_index is not None: __snake_case = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __snake_case = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__snake_case ) atom_index += 1 __snake_case = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __snake_case = True __snake_case = chain_index[i + 1] if should_terminate: # Close the chain. __snake_case = "TER" __snake_case = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__snake_case ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__snake_case , __snake_case ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__snake_case ) def _lowerCamelCase( __snake_case ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _lowerCamelCase( __snake_case , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , ) -> Protein: return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__snake_case , remark=__snake_case , parents=__snake_case , parents_chain_index=__snake_case , )
524
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCamelCase__ = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _lowerCamelCase( __snake_case , __snake_case , __snake_case=None ) -> str: if rng is None: __snake_case = random.Random() __snake_case = 1 for dim in shape: total_dims *= dim __snake_case = [] for _ in range(__snake_case ): values.append(rng.randint(0 , vocab_size - 1 ) ) __snake_case = np.array(__snake_case , dtype=jnp.intaa ).reshape(__snake_case ) return output def _lowerCamelCase( __snake_case , __snake_case=None ) -> Optional[int]: __snake_case = ids_tensor(__snake_case , vocab_size=2 , rng=__snake_case ) # make sure that at least one token is attended to for each batch __snake_case = 1 return attn_mask @require_flax class UpperCamelCase : __UpperCamelCase = None __UpperCamelCase = () def UpperCamelCase_ ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __snake_case = 2 __snake_case = inputs["input_ids"].shape[-1] // 2 __snake_case = inputs["input_ids"][:max_batch_size, :sequence_length] __snake_case = jnp.ones_like(_lowerCAmelCase ) __snake_case = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __snake_case = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __snake_case = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCamelCase_ ( self : str ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = self._get_input_ids_and_config() __snake_case = False __snake_case = max_length __snake_case = 0 for model_class in self.all_generative_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = model_class.__name__[4:] # Skip the "Flax" at the beginning __snake_case = getattr(_lowerCAmelCase ,_lowerCAmelCase ) __snake_case = pt_model_class(_lowerCAmelCase ).eval() __snake_case = load_flax_weights_in_pytorch_model(_lowerCAmelCase ,flax_model.params ) __snake_case = flax_model.generate(_lowerCAmelCase ).sequences __snake_case = pt_model.generate(torch.tensor(_lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __snake_case = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def UpperCamelCase_ ( self : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = self._get_input_ids_and_config() __snake_case = False __snake_case = max_length for model_class in self.all_generative_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = model.generate(_lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_lowerCAmelCase ) __snake_case = jit(model.generate ) __snake_case = jit_generate(_lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = self._get_input_ids_and_config() __snake_case = True __snake_case = max_length for model_class in self.all_generative_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = model.generate(_lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_lowerCAmelCase ) __snake_case = jit(model.generate ) __snake_case = jit_generate(_lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def UpperCamelCase_ ( self : Dict ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = self._get_input_ids_and_config() __snake_case = False __snake_case = max_length __snake_case = 2 for model_class in self.all_generative_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = model.generate(_lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_lowerCAmelCase ) __snake_case = jit(model.generate ) __snake_case = jit_generate(_lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = self._get_input_ids_and_config() __snake_case = False __snake_case = max_length __snake_case = 2 __snake_case = 2 for model_class in self.all_generative_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = model.generate(_lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def UpperCamelCase_ ( self : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = self._get_input_ids_and_config() __snake_case = True __snake_case = max_length __snake_case = 0.8 __snake_case = 10 __snake_case = 0.3 __snake_case = 1 __snake_case = 8 __snake_case = 9 for model_class in self.all_generative_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = model.generate(_lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_lowerCAmelCase ) __snake_case = jit(model.generate ) __snake_case = jit_generate(_lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def UpperCamelCase_ ( self : int ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = self._get_input_ids_and_config() __snake_case = max_length __snake_case = 1 __snake_case = 8 __snake_case = 9 for model_class in self.all_generative_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = model.generate(_lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_lowerCAmelCase ) __snake_case = jit(model.generate ) __snake_case = jit_generate(_lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def UpperCamelCase_ ( self : Optional[int] ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = self._get_input_ids_and_config() __snake_case = max_length __snake_case = 2 __snake_case = 1 __snake_case = 8 __snake_case = 9 for model_class in self.all_generative_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = model.generate(_lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_lowerCAmelCase ) __snake_case = jit(model.generate ) __snake_case = jit_generate(_lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = self._get_input_ids_and_config() # pad attention mask on the left __snake_case = attention_mask.at[(0, 0)].set(0 ) __snake_case = False __snake_case = max_length for model_class in self.all_generative_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = model.generate(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_lowerCAmelCase ) __snake_case = jit(model.generate ) __snake_case = jit_generate(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def UpperCamelCase_ ( self : int ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = self._get_input_ids_and_config() # pad attention mask on the left __snake_case = attention_mask.at[(0, 0)].set(0 ) __snake_case = True __snake_case = max_length for model_class in self.all_generative_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = model.generate(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_lowerCAmelCase ) __snake_case = jit(model.generate ) __snake_case = jit_generate(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def UpperCamelCase_ ( self : Any ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = self._get_input_ids_and_config() # pad attention mask on the left __snake_case = attention_mask.at[(0, 0)].set(0 ) __snake_case = 2 __snake_case = max_length for model_class in self.all_generative_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = model.generate(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_lowerCAmelCase ) __snake_case = jit(model.generate ) __snake_case = jit_generate(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self : int ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) __snake_case = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) __snake_case = "Hello world" __snake_case = tokenizer(_lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_lowerCAmelCase ,"do_samples" ): model.generate(_lowerCAmelCase ,do_samples=_lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_lowerCAmelCase ,"foo" ): __snake_case = {"foo": "bar"} model.generate(_lowerCAmelCase ,**_lowerCAmelCase )
524
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _A( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=0.9 , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , ): __A : str = size if size is not None else {'shortest_edge': 30} __A : Union[str, Any] = crop_size if crop_size is not None else {'height': 30, 'width': 30} __A : List[Any] = parent __A : List[str] = batch_size __A : Dict = num_channels __A : str = min_resolution __A : Any = max_resolution __A : Union[str, Any] = do_resize_and_center_crop __A : Dict = size __A : Any = crop_pct __A : str = crop_size __A : List[Any] = do_normalize __A : Union[str, Any] = image_mean __A : Tuple = image_std def UpperCAmelCase_ ( self ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : int = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ): __A : str = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ): __A : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'crop_pct' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) def UpperCAmelCase_ ( self ): __A : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) __A : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __A : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __A : Tuple = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __A : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __A : Tuple = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __A : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __A : List[Any] = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
708
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _SCREAMING_SNAKE_CASE ( ) -> None: print('Making key files...' ) make_key_files('rsa' , 10_24 ) print('Key files generation successful.' ) def _SCREAMING_SNAKE_CASE ( a ) -> tuple[tuple[int, int], tuple[int, int]]: print('Generating prime p...' ) __A : Optional[Any] = rabinMiller.generate_large_prime(a ) print('Generating prime q...' ) __A : Union[str, Any] = rabinMiller.generate_large_prime(a ) __A : Tuple = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: __A : Dict = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(a , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) __A : Any = cryptoMath.find_mod_inverse(a , (p - 1) * (q - 1) ) __A : Dict = (n, e) __A : Dict = (n, d) return (public_key, private_key) def _SCREAMING_SNAKE_CASE ( a , a ) -> None: if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() __A , __A : Optional[int] = generate_key(a ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
77
0
"""simple docstring""" from __future__ import annotations def __lowercase ( _a ): if not nums: return 0 snake_case_ : List[str] = nums[0] snake_case_ : Tuple = 0 for num in nums[1:]: snake_case_, snake_case_ : int = ( max_excluding + num, max(__A , __A ), ) return max(__A , __A ) if __name__ == "__main__": import doctest doctest.testmod()
123
from collections import deque def A__ ( __A : Optional[Any] ) ->Tuple: __A =len(__A ) __A =deque() __A =[False for _ in range(__A )] __A =[-1 for _ in range(__A )] __A =index_of[:] def strong_connect(__A : Union[str, Any] , __A : int , __A : Optional[int] ): __A =index # the number when this node is seen __A =index # lowest rank node reachable from here index += 1 stack.append(__A ) __A =True for w in g[v]: if index_of[w] == -1: __A =strong_connect(__A , __A , __A ) __A =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __A =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __A =[] __A =stack.pop() __A =False component.append(__A ) while w != v: __A =stack.pop() __A =False component.append(__A ) components.append(__A ) return index __A =[] for v in range(__A ): if index_of[v] == -1: strong_connect(__A , 0 , __A ) return components def A__ ( __A : List[Any] , __A : Optional[int] ) ->Tuple: __A =[[] for _ in range(__A )] for u, v in edges: g[u].append(__A ) return g if __name__ == "__main__": # Test _lowerCamelCase : int = 7 _lowerCamelCase : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] _lowerCamelCase : Dict = [1, 3, 2, 0, 1, 4, 5, 6, 5] _lowerCamelCase : Optional[Any] = [(u, v) for u, v in zip(source, target)] _lowerCamelCase : Dict = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
184
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __lowercase : Optional[int] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: Tuple , *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: Tuple ) -> None: '''simple docstring''' warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
550
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __lowercase : Optional[int] =TypeVar("""T""") def a__ ( lowercase__ ): '''simple docstring''' return (position - 1) // 2 def a__ ( lowercase__ ): '''simple docstring''' return (2 * position) + 1 def a__ ( lowercase__ ): '''simple docstring''' return (2 * position) + 2 class A ( Generic[T] ): def __init__( self: List[str] ) -> None: '''simple docstring''' UpperCAmelCase_ =[] UpperCAmelCase_ ={} UpperCAmelCase_ =0 def __len__( self: Union[str, Any] ) -> int: '''simple docstring''' return self.elements def __repr__( self: Dict ) -> str: '''simple docstring''' return str(self.heap ) def lowerCAmelCase__ ( self: Any ) -> bool: '''simple docstring''' return self.elements == 0 def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: T , _lowerCAmelCase: int ) -> None: '''simple docstring''' self.heap.append((elem, weight) ) UpperCAmelCase_ =self.elements self.elements += 1 self._bubble_up(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple ) -> T: '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCAmelCase_ , UpperCAmelCase_ =self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCAmelCase_ , UpperCAmelCase_ =self.heap[0] self._bubble_down(_lowerCAmelCase ) return elem def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: T , _lowerCAmelCase: int ) -> None: '''simple docstring''' UpperCAmelCase_ =self.position_map[elem] UpperCAmelCase_ =(elem, weight) if position > 0: UpperCAmelCase_ =get_parent_position(_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCAmelCase ) else: self._bubble_down(_lowerCAmelCase ) else: self._bubble_down(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: T ) -> None: '''simple docstring''' UpperCAmelCase_ =self.position_map[elem] if curr_pos == 0: return None UpperCAmelCase_ =get_parent_position(_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =self.heap[curr_pos] UpperCAmelCase_ , UpperCAmelCase_ =self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_up(_lowerCAmelCase ) return None def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: T ) -> None: '''simple docstring''' UpperCAmelCase_ =self.position_map[elem] UpperCAmelCase_ , UpperCAmelCase_ =self.heap[curr_pos] UpperCAmelCase_ =get_child_left_position(_lowerCAmelCase ) UpperCAmelCase_ =get_child_right_position(_lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ =self.heap[child_left_position] UpperCAmelCase_ , UpperCAmelCase_ =self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) if child_left_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ =self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) else: return None if child_right_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ =self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) return None def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: int , _lowerCAmelCase: int ) -> None: '''simple docstring''' UpperCAmelCase_ =self.heap[nodea_pos][0] UpperCAmelCase_ =self.heap[nodea_pos][0] UpperCAmelCase_ , UpperCAmelCase_ =( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCAmelCase_ =nodea_pos UpperCAmelCase_ =nodea_pos class A ( Generic[T] ): def __init__( self: Tuple ) -> None: '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =0 def __repr__( self: List[str] ) -> str: '''simple docstring''' return str(self.connections ) def __len__( self: Optional[Any] ) -> int: '''simple docstring''' return self.nodes def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: T ) -> None: '''simple docstring''' if node not in self.connections: UpperCAmelCase_ ={} self.nodes += 1 def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: T , _lowerCAmelCase: T , _lowerCAmelCase: int ) -> None: '''simple docstring''' self.add_node(_lowerCAmelCase ) self.add_node(_lowerCAmelCase ) UpperCAmelCase_ =weight UpperCAmelCase_ =weight def a__ ( lowercase__ , ): '''simple docstring''' UpperCAmelCase_ ={node: maxsize for node in graph.connections} UpperCAmelCase_ ={node: None for node in graph.connections} UpperCAmelCase_ =MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowercase__ , lowercase__ ) if priority_queue.is_empty(): return dist, parent # initialization UpperCAmelCase_ =priority_queue.extract_min() UpperCAmelCase_ =0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCAmelCase_ =dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowercase__ , dist[neighbour] ) UpperCAmelCase_ =node # running prim's algorithm while not priority_queue.is_empty(): UpperCAmelCase_ =priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCAmelCase_ =dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowercase__ , dist[neighbour] ) UpperCAmelCase_ =node return dist, parent
550
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow SCREAMING_SNAKE_CASE = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class A_ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self , _A , _A = None , _A = None , _A = None , _A = True , ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[str] = [file for file in os.listdir(_A) if os.path.isfile(os.path.join(_A , _A))] if identifier is not None: _UpperCAmelCase : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_A , _A): for n_ in n_identifier: _UpperCAmelCase : Optional[Any] = [file for file in files if n_ not in file] else: _UpperCAmelCase : Optional[int] = [file for file in files if n_identifier not in file] _UpperCAmelCase : Any = ignore_files or [] ignore_files.append('''__init__.py''') _UpperCAmelCase : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , _A) if only_modules: _UpperCAmelCase : Tuple = file.split('''.''')[0] try: _UpperCAmelCase : str = getattr(_A , _A) _UpperCAmelCase : Optional[int] = doctest.DocTestSuite(_A) _UpperCAmelCase : int = unittest.TextTestRunner().run(_A) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(f'''{module_identifier} is not a module.''') else: _UpperCAmelCase : List[Any] = doctest.testfile(str('''..''' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def snake_case__ ( self) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[Any] = Path('''src/transformers''') _UpperCAmelCase : List[str] = '''modeling''' _UpperCAmelCase : List[Any] = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(_A , identifier=_A , ignore_files=_A) def snake_case__ ( self) -> Any: """simple docstring""" _UpperCAmelCase : Dict = Path('''src/transformers''') _UpperCAmelCase : List[str] = '''tokenization''' self.analyze_directory(_A , identifier=_A) def snake_case__ ( self) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = Path('''src/transformers''') _UpperCAmelCase : Optional[int] = '''configuration''' self.analyze_directory(_A , identifier=_A) def snake_case__ ( self) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = Path('''src/transformers''') _UpperCAmelCase : Any = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(_A , n_identifier=_A) def snake_case__ ( self) -> str: """simple docstring""" _UpperCAmelCase : Dict = Path('''docs/source''') _UpperCAmelCase : List[Any] = ['''favicon.ico'''] self.analyze_directory(_A , ignore_files=_A , only_modules=_A)
485
import os import sys SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) SCREAMING_SNAKE_CASE = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def _lowerCamelCase ( *__A : Any , **__A : List[Any] ) -> str: return AutoConfig.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _lowerCamelCase ( *__A : int , **__A : str ) -> List[Any]: return AutoTokenizer.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModel.__doc__ ) def _lowerCamelCase ( *__A : Any , **__A : str ) -> Dict: return AutoModel.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _lowerCamelCase ( *__A : Optional[int] , **__A : str ) -> List[Any]: return AutoModelForCausalLM.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _lowerCamelCase ( *__A : List[Any] , **__A : Any ) -> int: return AutoModelForMaskedLM.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _lowerCamelCase ( *__A : List[str] , **__A : Any ) -> Optional[Any]: return AutoModelForSequenceClassification.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _lowerCamelCase ( *__A : int , **__A : Any ) -> Any: return AutoModelForQuestionAnswering.from_pretrained(*__A , **__A )
485
1
_UpperCAmelCase : List[str] = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on _UpperCAmelCase : Tuple = {value: key for key, value in MORSE_CODE_DICT.items()} def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = 'Morse code here!' print(UpperCamelCase__ ) snake_case_ = encrypt(UpperCamelCase__ ) print(UpperCamelCase__ ) snake_case_ = decrypt(UpperCamelCase__ ) print(UpperCamelCase__ ) if __name__ == "__main__": main()
108
def __lowerCamelCase ( UpperCamelCase__ = 50000000 ): '''simple docstring''' snake_case_ = set() snake_case_ = int((limit - 24) ** (1 / 2) ) snake_case_ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , UpperCamelCase__ ) ) ) for primea in primes: snake_case_ = primea * primea for primea in primes: snake_case_ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: snake_case_ = primea * primea * primea * primea snake_case_ = square + cube + tetr if total >= limit: break ret.add(UpperCamelCase__ ) return len(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
108
1
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowercase ( __magic_name__ ): @require_torch def UpperCamelCase__ ( self ) -> Any: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __a = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' __a = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' __a = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache __a = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(UpperCamelCase ) BertModel.from_pretrained(UpperCamelCase ) BertTokenizer.from_pretrained(UpperCamelCase ) pipeline(task='fill-mask' , model=UpperCamelCase ) # baseline - just load from_pretrained with normal network __a = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed __a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __a = '1' __a = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def UpperCamelCase__ ( self ) -> Tuple: # python one-liner segments # this must be loaded before socket.socket is monkey-patched __a = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' __a = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' __a = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache __a = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(UpperCamelCase ) BertModel.from_pretrained(UpperCamelCase ) BertTokenizer.from_pretrained(UpperCamelCase ) pipeline(task='fill-mask' , model=UpperCamelCase ) # baseline - just load from_pretrained with normal network __a = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed __a = self.get_env() __a = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def UpperCamelCase__ ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __a = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' __a = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' __a = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network __a = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed __a = self.get_env() __a = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network __a = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __a = '1' __a = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def UpperCamelCase__ ( self ) -> List[Any]: __a = '\nfrom transformers import pipeline\n ' __a = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' __a = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' __a = self.get_env() __a = '1' __a = [sys.executable, '-c', '\n'.join([load, mock, run] )] __a = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: __a = '\nfrom transformers import AutoModel\n ' __a = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network __a = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed __a = self.get_env() __a = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __a = '1' __a = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
539
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class __lowercase ( __magic_name__ ): _a = """imagegpt""" _a = ["""past_key_values"""] _a = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase=512 + 1 , UpperCamelCase=32 * 32 , UpperCamelCase=512 , UpperCamelCase=24 , UpperCamelCase=8 , UpperCamelCase=None , UpperCamelCase="quick_gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=1e-5 , UpperCamelCase=0.02 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , **UpperCamelCase , ) -> int: __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = scale_attn_by_inverse_layer_idx __a = reorder_and_upcast_attn __a = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCamelCase , **UpperCamelCase ) class __lowercase ( __magic_name__ ): @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ] ) def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase = 1 , UpperCamelCase = -1 , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = 3 , UpperCamelCase = 32 , UpperCamelCase = 32 , ) -> Mapping[str, Any]: __a = self._generate_dummy_images(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __a = dict(preprocessor(images=UpperCamelCase , return_tensors=UpperCamelCase ) ) return inputs
539
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A : List[Any] = logging.get_logger(__name__) A : Optional[Any] = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''swin''' lowerCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[Any] , __magic_name__ : Dict=224 , __magic_name__ : Tuple=4 , __magic_name__ : str=3 , __magic_name__ : Tuple=96 , __magic_name__ : Optional[int]=[2, 2, 6, 2] , __magic_name__ : Tuple=[3, 6, 12, 24] , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Optional[int]=4.0 , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Any=0.1 , __magic_name__ : Tuple="gelu" , __magic_name__ : Optional[int]=False , __magic_name__ : Dict=0.02 , __magic_name__ : Optional[Any]=1e-5 , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Any=None , __magic_name__ : str=None , **__magic_name__ : Tuple , ) -> List[Any]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) ) SCREAMING_SNAKE_CASE_ = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(__magic_name__ ) + 1 )] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_aligned_output_features_output_indices( out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = version.parse('''1.11''' ) @property def __A ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __A ( self : Optional[Any] ) -> float: return 1e-4
702
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A : str = logging.getLogger(__name__) @dataclass class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''whether to use adafactor'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) lowerCamelCase__ = field( default='''linear''' , metadata={'''help''': f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
356
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __snake_case = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""ViTFeatureExtractor"""] __snake_case = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
451
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
451
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=0.9_99 , lowerCAmelCase__ : int="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) __a : str = [] for i in range(lowerCAmelCase__ ): __a : str = i / num_diffusion_timesteps __a : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class UpperCamelCase__ ( __lowercase ,__lowercase ): _SCREAMING_SNAKE_CASE : List[str] = [e.name for e in KarrasDiffusionSchedulers] _SCREAMING_SNAKE_CASE : Optional[int] = 2 @register_to_config def __init__(self : Any , snake_case_ : int = 1_0_0_0 , snake_case_ : float = 0.0_0085 , snake_case_ : float = 0.012 , snake_case_ : str = "linear" , snake_case_ : Optional[Union[np.ndarray, List[float]]] = None , snake_case_ : str = "epsilon" , snake_case_ : Optional[bool] = False , snake_case_ : Optional[bool] = False , snake_case_ : float = 1.0 , snake_case_ : str = "linspace" , snake_case_ : int = 0 , ): if trained_betas is not None: __a : Tuple = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": __a : List[Any] = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a : Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a : Optional[Any] = betas_for_alpha_bar(snake_case_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": __a : str = betas_for_alpha_bar(snake_case_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) __a : Optional[int] = 1.0 - self.betas __a : str = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) __a : Optional[int] = use_karras_sigmas def lowerCAmelCase (self : Dict , snake_case_ : Dict , snake_case_ : Union[str, Any]=None ): if schedule_timesteps is None: __a : Optional[int] = self.timesteps __a : List[Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a : Tuple = 1 if len(snake_case_ ) > 1 else 0 else: __a : Tuple = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep __a : Dict = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase (self : List[str] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase (self : Dict , snake_case_ : torch.FloatTensor , snake_case_ : Union[float, torch.FloatTensor] , ): __a : List[str] = self.index_for_timestep(snake_case_ ) __a : Tuple = self.sigmas[step_index] __a : Tuple = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase (self : int , snake_case_ : int , snake_case_ : Union[str, torch.device] = None , snake_case_ : Optional[int] = None , ): __a : int = num_inference_steps __a : Any = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a : str = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __a : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a : List[Any] = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a : Tuple = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) __a : List[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a : Optional[Any] = np.log(snake_case_ ) __a : List[Any] = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) if self.config.use_karras_sigmas: __a : Union[str, Any] = self._convert_to_karras(in_sigmas=snake_case_ , num_inference_steps=self.num_inference_steps ) __a : List[str] = np.array([self._sigma_to_t(snake_case_ , snake_case_ ) for sigma in sigmas] ) __a : Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a : int = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) __a : Optional[Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __a : Tuple = torch.from_numpy(snake_case_ ) __a : List[Any] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case_ ).startswith('''mps''' ): # mps does not support float64 __a : List[Any] = timesteps.to(snake_case_ , dtype=torch.floataa ) else: __a : Any = timesteps.to(device=snake_case_ ) # empty dt and derivative __a : List[str] = None __a : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a : List[str] = defaultdict(snake_case_ ) def lowerCAmelCase (self : List[Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] ): # get log sigma __a : int = np.log(snake_case_ ) # get distribution __a : str = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __a : List[str] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __a : List[Any] = low_idx + 1 __a : int = log_sigmas[low_idx] __a : List[Any] = log_sigmas[high_idx] # interpolate sigmas __a : Union[str, Any] = (low - log_sigma) / (low - high) __a : List[Any] = np.clip(snake_case_ , 0 , 1 ) # transform interpolation to time range __a : Any = (1 - w) * low_idx + w * high_idx __a : int = t.reshape(sigma.shape ) return t def lowerCAmelCase (self : int , snake_case_ : torch.FloatTensor , snake_case_ : Dict ): __a : float = in_sigmas[-1].item() __a : float = in_sigmas[0].item() __a : str = 7.0 # 7.0 is the value used in the paper __a : Union[str, Any] = np.linspace(0 , 1 , snake_case_ ) __a : List[Any] = sigma_min ** (1 / rho) __a : Optional[int] = sigma_max ** (1 / rho) __a : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase (self : int ): return self.dt is None def lowerCAmelCase (self : Dict , snake_case_ : Union[torch.FloatTensor, np.ndarray] , snake_case_ : Union[float, torch.FloatTensor] , snake_case_ : Union[torch.FloatTensor, np.ndarray] , snake_case_ : bool = True , ): __a : Optional[Any] = self.index_for_timestep(snake_case_ ) # advance index counter by 1 __a : Dict = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a : Tuple = self.sigmas[step_index] __a : List[Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __a : Any = self.sigmas[step_index - 1] __a : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a : Union[str, Any] = 0 __a : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_next __a : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a : Dict = sigma_hat if self.state_in_first_order else sigma_next __a : str = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __a : List[str] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: __a : List[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a : List[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a : Optional[Any] = sigma_next - sigma_hat # store for 2nd order step __a : Dict = derivative __a : Union[str, Any] = dt __a : Union[str, Any] = sample else: # 2. 2nd order / Heun's method __a : List[Any] = (sample - pred_original_sample) / sigma_next __a : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __a : int = self.dt __a : Union[str, Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __a : Union[str, Any] = None __a : Any = None __a : Dict = None __a : List[str] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : torch.FloatTensor , snake_case_ : torch.FloatTensor , snake_case_ : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a : List[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 __a : Optional[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a : Union[str, Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a : Union[str, Any] = self.timesteps.to(original_samples.device ) __a : Union[str, Any] = timesteps.to(original_samples.device ) __a : Optional[int] = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] __a : Any = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a : Dict = sigma.unsqueeze(-1 ) __a : List[str] = original_samples + noise * sigma return noisy_samples def __len__(self : Optional[int] ): return self.config.num_train_timesteps
326
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=1_0 ): __a : Tuple = [] for _ in range(lowerCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str=1_0 ): __a : int = [] for step in range(lowerCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __a : Any = os.path.join(lowerCAmelCase__ , '''schedule.bin''' ) torch.save(scheduler.state_dict() , lowerCAmelCase__ ) __a : str = torch.load(lowerCAmelCase__ ) scheduler.load_state_dict(lowerCAmelCase__ ) return lrs @require_torch class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : Tuple , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : int ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for a, b in zip(snake_case_ , snake_case_ ): self.assertAlmostEqual(snake_case_ , snake_case_ , delta=snake_case_ ) def lowerCAmelCase (self : Dict ): __a : List[str] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case_ ) __a : Optional[int] = torch.tensor([0.4, 0.2, -0.5] ) __a : str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __a : Tuple = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): __a : Optional[int] = criterion(snake_case_ , snake_case_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCAmelCase (self : Any ): __a : int = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case_ ) __a : Optional[Any] = torch.tensor([0.4, 0.2, -0.5] ) __a : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __a : Tuple = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case_ , weight_decay=0.0 , relative_step=snake_case_ , scale_parameter=snake_case_ , warmup_init=snake_case_ , ) for _ in range(1_0_0_0 ): __a : str = criterion(snake_case_ , snake_case_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = nn.Linear(50 ,50 ) if is_torch_available() else None _SCREAMING_SNAKE_CASE : Any = AdamW(m.parameters() ,lr=10.0 ) if is_torch_available() else None _SCREAMING_SNAKE_CASE : Tuple = 10 def lowerCAmelCase (self : int , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : str=None ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for a, b in zip(snake_case_ , snake_case_ ): self.assertAlmostEqual(snake_case_ , snake_case_ , delta=snake_case_ , msg=snake_case_ ) def lowerCAmelCase (self : int ): __a : Tuple = {'''num_warmup_steps''': 2, '''num_training_steps''': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __a : Tuple = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __a , __a : Union[str, Any] = data __a : int = scheduler_func(self.optimizer , **snake_case_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __a : Tuple = unwrap_schedule(snake_case_ , self.num_steps ) self.assertListAlmostEqual( snake_case_ , snake_case_ , tol=1E-2 , msg=f"failed for {scheduler_func} in normal scheduler" , ) __a : Any = scheduler_func(self.optimizer , **snake_case_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(snake_case_ ) # wrap to test picklability of the schedule __a : Tuple = unwrap_and_save_reload_schedule(snake_case_ , self.num_steps ) self.assertListEqual(snake_case_ , snake_case_ , msg=f"failed for {scheduler_func} in save and reload" ) class UpperCamelCase__ : def __init__(self : Any , snake_case_ : str ): __a : Optional[int] = fn def __call__(self : Any , *snake_case_ : List[Any] , **snake_case_ : Any ): return self.fn(*snake_case_ , **snake_case_ ) @classmethod def lowerCAmelCase (self : Tuple , snake_case_ : List[str] ): __a : Any = list(map(self , scheduler.lr_lambdas ) )
326
1
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters __UpperCAmelCase = False __UpperCAmelCase = False def lowercase__ ( lowerCamelCase : Namespace ) -> str: return TrainCommand(UpperCAmelCase_ ) class lowercase_ ( _lowerCAmelCase ): @staticmethod def _lowerCAmelCase ( _lowercase : List[Any] ): lowerCAmelCase__ : Tuple = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=SCREAMING_SNAKE_CASE__ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=SCREAMING_SNAKE_CASE__ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=SCREAMING_SNAKE_CASE__ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=SCREAMING_SNAKE_CASE__ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=SCREAMING_SNAKE_CASE__ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=SCREAMING_SNAKE_CASE__ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE__ , default=3_2 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=SCREAMING_SNAKE_CASE__ , default=6_4 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=SCREAMING_SNAKE_CASE__ , default=1e-0_8 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self : Optional[Any] , _lowercase : int ): lowerCAmelCase__ : List[Any] = logging.get_logger("transformers-cli/training" ) lowerCAmelCase__ : List[Any] = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Union[str, Any] = args.output lowerCAmelCase__ : Tuple = args.column_label lowerCAmelCase__ : int = args.column_text lowerCAmelCase__ : List[Any] = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": lowerCAmelCase__ : List[str] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}" ) lowerCAmelCase__ : Tuple = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase__ : int = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}" ) lowerCAmelCase__ : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase__ : Any = args.validation_split lowerCAmelCase__ : List[str] = args.train_batch_size lowerCAmelCase__ : Optional[Any] = args.valid_batch_size lowerCAmelCase__ : Tuple = args.learning_rate lowerCAmelCase__ : List[str] = args.adam_epsilon def _lowerCAmelCase ( self : Optional[int] ): if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowerCAmelCase ( self : Union[str, Any] ): raise NotImplementedError def _lowerCAmelCase ( self : Dict ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
308
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
104
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap _A = "Usage of script: script_name <size_of_canvas:int>" _A = [0] * 1_00 + [1] * 10 random.shuffle(choice) def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = [[False for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] return canvas def lowerCamelCase__ ( __lowerCAmelCase : list[list[bool]] ): """simple docstring""" for i, row in enumerate(__lowerCAmelCase ): for j, _ in enumerate(__lowerCAmelCase ): lowerCAmelCase_ = bool(random.getrandbits(1 ) ) def lowerCamelCase__ ( __lowerCAmelCase : list[list[bool]] ): """simple docstring""" lowerCAmelCase_ = np.array(__lowerCAmelCase ) lowerCAmelCase_ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__lowerCAmelCase ): for c, pt in enumerate(__lowerCAmelCase ): lowerCAmelCase_ = __judge_point( __lowerCAmelCase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowerCAmelCase_ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowerCAmelCase_ = current_canvas.tolist() return return_canvas def lowerCamelCase__ ( __lowerCAmelCase : bool , __lowerCAmelCase : list[list[bool]] ): """simple docstring""" lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowerCAmelCase_ = pt if pt: if alive < 2: lowerCAmelCase_ = False elif alive == 2 or alive == 3: lowerCAmelCase_ = True elif alive > 3: lowerCAmelCase_ = False else: if alive == 3: lowerCAmelCase_ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) _A = int(sys.argv[1]) # main working structure of this module. _A = create_canvas(canvas_size) seed(c) _A, _A = plt.subplots() fig.show() _A = ListedColormap(["w", "k"]) try: while True: _A = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
279
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a__( lowerCamelCase__ ): lowercase__ = (DDPMScheduler,) def lowercase_ ( self : Optional[int] , **__snake_case : Optional[int] ): a : Optional[Any] = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**__snake_case ) return config def lowercase_ ( self : Optional[Any] ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case ) def lowercase_ ( self : List[str] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def lowercase_ ( self : int ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__snake_case ) def lowercase_ ( self : Dict ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__snake_case ) def lowercase_ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__snake_case ) def lowercase_ ( self : List[str] ): self.check_over_configs(thresholding=__snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__snake_case , prediction_type=__snake_case , sample_max_value=__snake_case , ) def lowercase_ ( self : Union[str, Any] ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def lowercase_ ( self : str ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__snake_case ) def lowercase_ ( self : List[Any] ): a : int = self.scheduler_classes[0] a : Tuple = self.get_scheduler_config() a : int = scheduler_class(**__snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def lowercase_ ( self : Dict ): a : Tuple = self.scheduler_classes[0] a : List[Any] = self.get_scheduler_config() a : Any = scheduler_class(**__snake_case ) a : Union[str, Any] = len(__snake_case ) a : Optional[Any] = self.dummy_model() a : Tuple = self.dummy_sample_deter a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(__snake_case ) ): # 1. predict noise residual a : Optional[Any] = model(__snake_case , __snake_case ) # 2. predict previous mean of sample x_t-1 a : Tuple = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance a : List[Any] = pred_prev_sample a : int = torch.sum(torch.abs(__snake_case ) ) a : Optional[Any] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def lowercase_ ( self : List[str] ): a : Tuple = self.scheduler_classes[0] a : int = self.get_scheduler_config(prediction_type='v_prediction' ) a : List[Any] = scheduler_class(**__snake_case ) a : str = len(__snake_case ) a : Optional[int] = self.dummy_model() a : List[Any] = self.dummy_sample_deter a : str = torch.manual_seed(0 ) for t in reversed(range(__snake_case ) ): # 1. predict noise residual a : List[Any] = model(__snake_case , __snake_case ) # 2. predict previous mean of sample x_t-1 a : Tuple = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance a : List[str] = pred_prev_sample a : Dict = torch.sum(torch.abs(__snake_case ) ) a : Optional[int] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def lowercase_ ( self : List[str] ): a : Any = self.scheduler_classes[0] a : List[Any] = self.get_scheduler_config() a : Tuple = scheduler_class(**__snake_case ) a : Dict = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__snake_case ) a : Optional[Any] = scheduler.timesteps for i, timestep in enumerate(__snake_case ): if i == len(__snake_case ) - 1: a : int = -1 else: a : List[str] = timesteps[i + 1] a : Union[str, Any] = scheduler.previous_timestep(__snake_case ) a : str = prev_t.item() self.assertEqual(__snake_case , __snake_case ) def lowercase_ ( self : str ): a : List[Any] = self.scheduler_classes[0] a : List[Any] = self.get_scheduler_config() a : Dict = scheduler_class(**__snake_case ) a : int = [1_00, 87, 50, 51, 0] with self.assertRaises(__snake_case , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=__snake_case ) def lowercase_ ( self : Any ): a : Tuple = self.scheduler_classes[0] a : Dict = self.get_scheduler_config() a : str = scheduler_class(**__snake_case ) a : str = [1_00, 87, 50, 1, 0] a : Dict = len(__snake_case ) with self.assertRaises(__snake_case , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=__snake_case , timesteps=__snake_case ) def lowercase_ ( self : int ): a : Union[str, Any] = self.scheduler_classes[0] a : Optional[Any] = self.get_scheduler_config() a : List[str] = scheduler_class(**__snake_case ) a : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( __snake_case , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=__snake_case )
526
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase: List[Any] = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowerCAmelCase: str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
526
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "big_bird" def __init__(self : Optional[int] , snake_case_ : Any=5_0_3_5_8 , snake_case_ : int=7_6_8 , snake_case_ : Optional[Any]=1_2 , snake_case_ : int=1_2 , snake_case_ : Tuple=3_0_7_2 , snake_case_ : str="gelu_new" , snake_case_ : Optional[Any]=0.1 , snake_case_ : Any=0.1 , snake_case_ : Tuple=4_0_9_6 , snake_case_ : Dict=2 , snake_case_ : Dict=0.02 , snake_case_ : Any=1E-12 , snake_case_ : str=True , snake_case_ : Optional[int]=0 , snake_case_ : Optional[Any]=1 , snake_case_ : Tuple=2 , snake_case_ : int=6_6 , snake_case_ : List[Any]="block_sparse" , snake_case_ : Optional[int]=True , snake_case_ : str=False , snake_case_ : List[str]=6_4 , snake_case_ : List[str]=3 , snake_case_ : Dict=None , **snake_case_ : Any , ): super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , sep_token_id=snake_case_ , **snake_case_ , ) __a : List[str] = vocab_size __a : List[Any] = max_position_embeddings __a : Union[str, Any] = hidden_size __a : int = num_hidden_layers __a : List[Any] = num_attention_heads __a : List[Any] = intermediate_size __a : Dict = hidden_act __a : int = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : Optional[int] = initializer_range __a : List[str] = type_vocab_size __a : Any = layer_norm_eps __a : List[str] = use_cache __a : Any = rescale_embeddings __a : List[Any] = attention_type __a : str = use_bias __a : Dict = block_size __a : List[Any] = num_random_blocks __a : List[str] = classifier_dropout class UpperCamelCase__ ( __lowercase ): @property def lowerCAmelCase (self : List[Any] ): if self.task == "multiple-choice": __a : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
721
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Model name or path of model to be trained."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="./" ,metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot-clean-train" ,metadata={"help": "Name or path of training dataset."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot-clean-valid" ,metadata={"help": "Name or path of validation dataset."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 ,metadata={"help": "Batch size for training."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 ,metadata={"help": "Batch size for evaluation."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.1 ,metadata={"help": "Value of weight decay."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=10_000 ,metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=2e-4 ,metadata={"help": "Learning rate fo training."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default="cosine" ,metadata={"help": "Learning rate."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=750 ,metadata={"help": "Number of warmup steps in the learning rate schedule."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=16 ,metadata={"help": "Number of gradient accumulation steps."} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__lowercase ,metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=50_000 ,metadata={"help": "Maximum number of training steps."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 ,metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1_024 ,metadata={"help": "Sequence lengths used for training."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 ,metadata={"help": "Training seed."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_024 ,metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} ,) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase ,metadata={"help": "States path if the training should continue from a checkpoint folder."} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field(default=__lowercase ,metadata={"help": "If True the data is pretokenized."} ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Model name or path of model to be evaluated."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot-clean-valid" ,metadata={"help": "Name or path of validation dataset."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 ,metadata={"help": "Batch size used for evaluation."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 ,metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1_024 ,metadata={"help": "Length of sequences to be evaluated."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 ,metadata={"help": "Random seed used for evaluation."} ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Model name or path of model to be evaluated."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=__lowercase ,metadata={"help": "Number of workers used for code evaluation."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase ,metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} ,) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__lowercase ,metadata={"help": "Sample from the language model's output distribution."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.2 ,metadata={"help": "Sampling temperature used for generation."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=256 ,metadata={"help": "Maximum number of newly generated tokens."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=0 ,metadata={"help": "Top-k parameter used for generation."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.95 ,metadata={"help": "Top-p parameter used for nucleus sampling."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=10 ,metadata={"help": "Number of generations to run in parallel."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=200 ,metadata={"help": "Number of completions to generate for each sample."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 ,metadata={"help": "Random seed used for evaluation."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="eval_results.json" ,metadata={"help": "Random seed used for evaluation."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="0" ,metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 ,metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } ,) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase ,metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } ,) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="transformersbook/codeparrot" ,metadata={"help": "Folder or name of dataset to process."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot-clean" ,metadata={"help": "Folder to save processed processed dataset."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=100_000 ,metadata={"help": "Number of files to save per JSON output file."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default="content" ,metadata={"help": "Column containing text data to process."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=1_000 ,metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=100 ,metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.25 ,metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=1.5 ,metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.7 ,metadata={"help": "Probability for filtering config, test and uncommon files."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Name or path to the tokenizer."} ,) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__lowercase ,metadata={"help": "If True, near-duplicate samples are removed."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.85 ,metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="gpt2" ,metadata={"help": "Base tokenizer to build new tokenizer from."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="transformersbook/codeparrot-train" ,metadata={"help": "Dataset to train tokenizer on."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default="content" ,metadata={"help": "Column containing text data to process."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=200_000 ,metadata={"help": "Number of examples to train tokenizer on."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=32_768 ,metadata={"help": "Number of examples to train the tokenizer on."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default="codeparrot" ,metadata={"help": "Name of new tokenizer."} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field(default=__lowercase ,metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Name or path to the tokenizer."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot-clean-train" ,metadata={"help": "Name or path to the dataset to pretokenize."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="tokenized-codeparrot-train" ,metadata={"help": "Repo name of the pretokenized data."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=__lowercase ,metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="gpt2-large" ,metadata={"help": "Configuration to use for model initialization."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Tokenizer attached to model."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default="codeparrot" ,metadata={"help": "Name of the created model."} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field(default=__lowercase ,metadata={"help": "Push saved tokenizer to the hub."} )
326
0