code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() A_ :Tuple = logging.get_logger() @dataclass class __A : """simple docstring""" UpperCamelCase__ : nn.Module UpperCamelCase__ : List[nn.Module] =field(default_factory=a ) UpperCamelCase__ : list =field(default_factory=a ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Dict =len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase__ , nn.Convad ) or isinstance(lowerCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase__ ) def __call__( self , lowerCamelCase__ ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase__ ) [x.remove() for x in self.handles] return self @property def __lowercase ( self ): """simple docstring""" return list(filter(lambda lowerCamelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __A : """simple docstring""" UpperCamelCase__ : nn.Module UpperCamelCase__ : nn.Module UpperCamelCase__ : int =1 UpperCamelCase__ : List =field(default_factory=a ) UpperCamelCase__ : List =field(default_factory=a ) UpperCamelCase__ : bool =True def __call__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =Tracker(self.dest )(lowerCamelCase__ ).parametrized __UpperCamelCase : Dict =Tracker(self.src )(lowerCamelCase__ ).parametrized __UpperCamelCase : Union[str, Any] =list(filter(lambda lowerCamelCase__ : type(lowerCamelCase__ ) not in self.src_skip , lowerCamelCase__ ) ) __UpperCamelCase : Tuple =list(filter(lambda lowerCamelCase__ : type(lowerCamelCase__ ) not in self.dest_skip , lowerCamelCase__ ) ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(lowerCamelCase__ )} operations while' f' destination module has {len(lowerCamelCase__ )}.' ) for dest_m, src_m in zip(lowerCamelCase__ , lowerCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class __A ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" super().__init__() __UpperCamelCase : List[Tuple[str, nn.Module]] =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' __UpperCamelCase : Dict =len(lowerCamelCase__ ) + 1 feature_blocks.append((f'res{block_index}', v) ) __UpperCamelCase : Any =nn.ModuleDict(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return get_trunk_forward_outputs( lowerCamelCase__ , out_feat_keys=lowerCamelCase__ , feature_blocks=self._feature_blocks , ) class __A ( a ): """simple docstring""" def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , lowerCamelCase__ ): """simple docstring""" if x not in self: __UpperCamelCase : Any =self.convert_name_to_timm(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =partial(lambda: (timm.create_model(lowerCamelCase__ , pretrained=lowerCamelCase__ ).eval(), None) ) else: __UpperCamelCase : Dict =super().__getitem__(lowerCamelCase__ ) return val class __A ( a ): """simple docstring""" def __getitem__( self , lowerCamelCase__ ): """simple docstring""" if "seer" in x and "in1k" not in x: __UpperCamelCase : str =RegNetModel else: __UpperCamelCase : Union[str, Any] =RegNetForImageClassification return val def A ( a_ ,a_ ,a_ ) -> Any: for from_key, to_key in keys: __UpperCamelCase : str =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def A ( a_ ,a_ ,a_ ,a_ ,a_ ,a_ = True ,) -> Union[str, Any]: print(F'Converting {name}...' ) with torch.no_grad(): __UpperCamelCase , __UpperCamelCase : str =from_model_func() __UpperCamelCase : Dict =our_model_func(a_ ).eval() __UpperCamelCase : List[Any] =ModuleTransfer(src=a_ ,dest=a_ ,raise_if_mismatch=a_ ) __UpperCamelCase : List[str] =torch.randn((1, 3, 224, 224) ) module_transfer(a_ ) if from_state_dict is not None: __UpperCamelCase : Dict =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __UpperCamelCase : Optional[Any] =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] __UpperCamelCase : List[str] =manually_copy_vissl_head(a_ ,our_model.state_dict() ,a_ ) our_model.load_state_dict(a_ ) __UpperCamelCase : Optional[Any] =our_model(a_ ,output_hidden_states=a_ ) __UpperCamelCase : Union[str, Any] =( our_outputs.logits if isinstance(a_ ,a_ ) else our_outputs.last_hidden_state ) __UpperCamelCase : int =from_model(a_ ) __UpperCamelCase : Optional[Any] =from_output[-1] if type(a_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __UpperCamelCase : Optional[Any] =our_outputs.hidden_states[-1] assert torch.allclose(a_ ,a_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name ,commit_message='Add model' ,use_temp_dir=a_ ,) __UpperCamelCase : List[Any] =224 if 'seer' not in name else 384 # we can use the convnext one __UpperCamelCase : List[str] =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ,size=a_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name ,commit_message='Add image processor' ,use_temp_dir=a_ ,) print(F'Pushed {name}' ) def A ( a_ ,a_ = None ,a_ = True ) -> Union[str, Any]: __UpperCamelCase : Optional[Any] ='imagenet-1k-id2label.json' __UpperCamelCase : str =1_000 __UpperCamelCase : int =(1, num_labels) __UpperCamelCase : Tuple ='huggingface/label-files' __UpperCamelCase : Tuple =num_labels __UpperCamelCase : Dict =json.load(open(cached_download(hf_hub_url(a_ ,a_ ,repo_type='dataset' ) ) ,'r' ) ) __UpperCamelCase : Any ={int(a_ ): v for k, v in idalabel.items()} __UpperCamelCase : Optional[Any] =idalabel __UpperCamelCase : Tuple ={v: k for k, v in idalabel.items()} __UpperCamelCase : Tuple =partial(a_ ,num_labels=a_ ,idalabel=a_ ,labelaid=a_ ) __UpperCamelCase : Optional[Any] ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] ,hidden_sizes=[24, 56, 152, 368] ,groups_width=8 ,layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] ,hidden_sizes=[32, 64, 160, 384] ,groups_width=16 ,layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] ,hidden_sizes=[48, 96, 240, 528] ,groups_width=24 ,layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] ,hidden_sizes=[64, 128, 288, 672] ,groups_width=16 ,layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] ,hidden_sizes=[72, 168, 408, 912] ,groups_width=24 ,layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] ,hidden_sizes=[96, 192, 432, 1_008] ,groups_width=48 ,layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] ,hidden_sizes=[80, 240, 560, 1_360] ,groups_width=40 ,layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] ,hidden_sizes=[168, 392, 784, 1_624] ,groups_width=56 ,layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] ,hidden_sizes=[80, 240, 720, 1_920] ,groups_width=120 ,layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] ,hidden_sizes=[224, 448, 896, 2_240] ,groups_width=112 ,layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] ,hidden_sizes=[256, 512, 896, 2_048] ,groups_width=128 ,layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] ,hidden_sizes=[336, 672, 1_344, 2_520] ,groups_width=168 ,layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] ,hidden_sizes=[24, 56, 152, 368] ,groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] ,hidden_sizes=[48, 104, 208, 440] ,groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] ,hidden_sizes=[48, 112, 256, 608] ,groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] ,hidden_sizes=[64, 128, 320, 768] ,groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] ,hidden_sizes=[48, 120, 336, 888] ,groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] ,hidden_sizes=[72, 216, 576, 1_512] ,groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] ,hidden_sizes=[128, 192, 512, 1_088] ,groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] ,hidden_sizes=[144, 288, 576, 1_296] ,groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] ,hidden_sizes=[168, 448, 896, 2_016] ,groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] ,hidden_sizes=[224, 448, 896, 2_240] ,groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] ,hidden_sizes=[224, 448, 1_232, 3_024] ,groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] ,hidden_sizes=[232, 696, 1_392, 3_712] ,groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] ,hidden_sizes=[232, 696, 1_392, 3_712] ,groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] ,hidden_sizes=[328, 984, 1_968, 4_920] ,groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] ,hidden_sizes=[528, 1_056, 2_904, 7_392] ,groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] ,hidden_sizes=[640, 1_696, 2_544, 5_088] ,groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] ,hidden_sizes=[2_020, 4_040, 11_110, 28_280] ,groups_width=1_010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] ,hidden_sizes=[232, 696, 1_392, 3_712] ,groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] ,hidden_sizes=[328, 984, 1_968, 4_920] ,groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] ,hidden_sizes=[528, 1_056, 2_904, 7_392] ,groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] ,hidden_sizes=[640, 1_696, 2_544, 5_088] ,groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] ,hidden_sizes=[2_020, 4_040, 11_110, 28_280] ,groups_width=1_010 ), } __UpperCamelCase : Optional[int] =NameToOurModelFuncMap() __UpperCamelCase : Optional[Any] =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(a_ ,a_ ) -> Tuple[nn.Module, Dict]: __UpperCamelCase : Dict =torch.hub.load_state_dict_from_url(a_ ,model_dir=str(a_ ) ,map_location='cpu' ) __UpperCamelCase : List[Any] =model_func() # check if we have a head, if yes add it __UpperCamelCase : str =files['classy_state_dict']['base_model']['model'] __UpperCamelCase : Any =model_state_dict['trunk'] model.load_state_dict(a_ ) return model.eval(), model_state_dict["heads"] # pretrained __UpperCamelCase : Union[str, Any] =partial( a_ ,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' ,lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) ,) __UpperCamelCase : Optional[int] =partial( a_ ,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' ,lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) ,) __UpperCamelCase : str =partial( a_ ,'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' ,lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) ,) __UpperCamelCase : Optional[int] =partial( a_ ,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' ,lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 ,group_width=1_010 ,w_a=1_744 ,w_a=620.83 ,w_m=2.52 ) ) ) ,) # IN1K finetuned __UpperCamelCase : Union[str, Any] =partial( a_ ,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' ,lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) ,) __UpperCamelCase : Optional[int] =partial( a_ ,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' ,lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) ,) __UpperCamelCase : Union[str, Any] =partial( a_ ,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' ,lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) ,) __UpperCamelCase : str =partial( a_ ,'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' ,lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 ,group_width=1_010 ,w_a=1_744 ,w_a=620.83 ,w_m=2.52 ) ) ) ,) if model_name: convert_weight_and_push( a_ ,names_to_from_model_map[model_name] ,names_to_ours_model_map[model_name] ,names_to_config[model_name] ,a_ ,a_ ,) else: for model_name, config in names_to_config.items(): convert_weight_and_push( a_ ,names_to_from_model_map[model_name] ,names_to_ours_model_map[model_name] ,a_ ,a_ ,a_ ,) return config, expected_shape if __name__ == "__main__": A_ :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) A_ :List[Any] = parser.parse_args() A_ :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
71
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] ): '''simple docstring''' lowercase = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : List[str] ): '''simple docstring''' lowercase = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): '''simple docstring''' lowercase = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', 'stage2.cls_token') ) return token def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' lowercase = 'imagenet-1k-id2label.json' lowercase = 10_00 lowercase = 'huggingface/label-files' lowercase = num_labels lowercase = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type='dataset' ) ) , 'r' ) ) lowercase = {int(__snake_case ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} lowercase = lowercase = CvtConfig(num_labels=__snake_case , idalabel=__snake_case , labelaid=__snake_case ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowercase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowercase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase = [2, 2, 20] lowercase = [3, 12, 16] lowercase = [1_92, 7_68, 10_24] lowercase = CvtForImageClassification(__snake_case ) lowercase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowercase = image_size lowercase = torch.load(__snake_case , map_location=torch.device('cpu' ) ) lowercase = OrderedDict() lowercase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase = list_of_state_dict + cls_token(__snake_case ) lowercase = list_of_state_dict + embeddings(__snake_case ) for cnt in range(config.depth[idx] ): lowercase = list_of_state_dict + attention(__snake_case , __snake_case ) lowercase = list_of_state_dict + final() for gg in list_of_state_dict: print(__snake_case ) for i in range(len(__snake_case ) ): lowercase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_8_4, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _UpperCamelCase : Tuple = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
220
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str=13 , _lowerCAmelCase : Tuple=30 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : int=32 , _lowerCAmelCase : int=2 , _lowerCAmelCase : int=4 , _lowerCAmelCase : List[str]=37 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple=10 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Optional[Any]=0.6 , _lowerCAmelCase : Union[str, Any]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = mask_ratio SCREAMING_SNAKE_CASE_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : Optional[int] ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = TFViTMAEModel(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = TFViTMAEForPreTraining(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , training=_lowerCamelCase ) # expected sequence length = num_patches SCREAMING_SNAKE_CASE_ = (self.image_size // self.patch_size) ** 2 SCREAMING_SNAKE_CASE_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFViTMAEForPreTraining(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , training=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() (SCREAMING_SNAKE_CASE_) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase_ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowercase_ = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = TFViTMAEModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Any ): pass def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): np.random.seed(2 ) SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , noise=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = copy.deepcopy(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = model(**_lowerCamelCase , noise=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = outputs_dict[0].numpy() SCREAMING_SNAKE_CASE_ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCAmelCase_ ( self : List[Any] ): np.random.seed(2 ) SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCamelCase ): SCREAMING_SNAKE_CASE_ = v.numpy() else: SCREAMING_SNAKE_CASE_ = np.array(_lowerCamelCase ) return inputs_np_dict for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = prepare_numpy_arrays(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , noise=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCamelCase , noise=_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase , _lowerCamelCase ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): np.random.seed(2 ) SCREAMING_SNAKE_CASE_ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE_ = tf.constant(_lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument SCREAMING_SNAKE_CASE_ = tf_noise super().check_pt_tf_models(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCAmelCase_ ( self : Dict ): np.random.seed(2 ) SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCamelCase ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_lowerCamelCase , _lowerCamelCase ),) if isinstance(_lowerCamelCase , _lowerCamelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCamelCase , '_keras_serializable' , _lowerCamelCase ) } SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(_lowerCamelCase ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: SCREAMING_SNAKE_CASE_ = main_layer_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } SCREAMING_SNAKE_CASE_ = tf.keras.Model(_lowerCamelCase , outputs=main_layer(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCamelCase , 'keras_model.h5' ) model.save(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tf.keras.models.load_model( _lowerCamelCase , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCamelCase , tf.keras.Model ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase , _lowerCamelCase ) @slow def lowerCAmelCase_ ( self : str ): np.random.seed(2 ) SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , noise=_lowerCamelCase ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE_ = outputs.last_hidden_state.numpy() SCREAMING_SNAKE_CASE_ = 0 else: SCREAMING_SNAKE_CASE_ = outputs.logits.numpy() SCREAMING_SNAKE_CASE_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase , saved_model=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model_class.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , noise=_lowerCamelCase ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE_ = after_outputs['''last_hidden_state'''].numpy() SCREAMING_SNAKE_CASE_ = 0 else: SCREAMING_SNAKE_CASE_ = after_outputs['''logits'''].numpy() SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase , 1E-5 ) def lowerCAmelCase_ ( self : Optional[Any] ): np.random.seed(2 ) SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , noise=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config SCREAMING_SNAKE_CASE_ = model_class.from_config(model.config ) SCREAMING_SNAKE_CASE_ = new_model(_lowerCamelCase ) # Build model new_model.set_weights(model.get_weights() ) SCREAMING_SNAKE_CASE_ = new_model(_lowerCamelCase , noise=_lowerCamelCase ) self.assert_outputs_same(_lowerCamelCase , _lowerCamelCase ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowerCAmelCase_ ( self : List[str] ): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def lowerCAmelCase_ ( self : List[Any] ): pass @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( ) -> List[str]: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : int ): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self : Optional[Any] ): np.random.seed(2 ) SCREAMING_SNAKE_CASE_ = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCamelCase , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) SCREAMING_SNAKE_CASE_ = ViTMAEConfig() SCREAMING_SNAKE_CASE_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(1, num_patches) ) # forward pass SCREAMING_SNAKE_CASE_ = model(**_lowerCamelCase , noise=_lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _lowerCamelCase , atol=1E-4 )
354
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod @abstractmethod def lowerCAmelCase_ ( _lowerCAmelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowerCAmelCase_ ( self : Dict ): raise NotImplementedError()
210
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase = logging.get_logger(__name__) def __UpperCAmelCase ( a_): if isinstance(a_ , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(a_ , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(a_): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''') class UpperCamelCase_ ( UpperCamelCase__ ): '''simple docstring''' lowerCAmelCase = ["""pixel_values"""] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = True , a = None , a = True , a = 1 / 2_55 , a = True , a = None , a = None , **a , ) -> None: super().__init__(**lowerCAmelCase__ ) snake_case_ = size if size is not None else {"shortest_edge": 2_24} snake_case_ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) snake_case_ = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} snake_case_ = get_size_dict(lowerCAmelCase__ , param_name='crop_size' ) snake_case_ = do_resize snake_case_ = size snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = resample snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCamelCase ( self , a , a , a = PILImageResampling.BILINEAR , a = None , **a , ) -> np.ndarray: snake_case_ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" in size: snake_case_ = get_resize_output_image_size(lowerCAmelCase__ , size['shortest_edge'] , default_to_square=lowerCAmelCase__ ) elif "height" in size and "width" in size: snake_case_ = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self , a , a , a = None , **a , ) -> np.ndarray: snake_case_ = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase__ , size=(size['height'], size['width']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self , a , a , a = None , **a , ) -> int: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self , a , a , a , a = None , **a , ) -> np.ndarray: return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ = to_numpy_array(lowerCAmelCase__ ) if do_resize: snake_case_ = self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) if do_center_crop: snake_case_ = self.center_crop(lowerCAmelCase__ , size=lowerCAmelCase__ ) if do_rescale: snake_case_ = self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) if do_normalize: snake_case_ = self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) snake_case_ = to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) return image def _UpperCamelCase ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image: snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = resample if resample is not None else self.resample snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(lowerCAmelCase__ , param_name='crop_size' ) if not valid_images(lowerCAmelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) snake_case_ = make_batched(lowerCAmelCase__ ) snake_case_ = [ [ self._preprocess_image( image=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , do_center_crop=lowerCAmelCase__ , crop_size=lowerCAmelCase__ , do_rescale=lowerCAmelCase__ , rescale_factor=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , ) for img in video ] for video in videos ] snake_case_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
178
import numpy as np def _A ( SCREAMING_SNAKE_CASE : np.array ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
95
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def snake_case_ ( snake_case , snake_case=False ) -> Any: lowercase__: Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowercase__: List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def snake_case_ ( snake_case , snake_case , snake_case=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: lowercase__: Optional[Any] = '' else: lowercase__: Optional[int] = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__: List[str] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowercase__: List[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__: Optional[int] = in_proj_weight[ : config.hidden_size, : ] lowercase__: Union[str, Any] = in_proj_bias[: config.hidden_size] lowercase__: List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__: Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__: str = in_proj_weight[ -config.hidden_size :, : ] lowercase__: List[str] = in_proj_bias[-config.hidden_size :] def snake_case_ ( snake_case , snake_case , snake_case ) -> Union[str, Any]: lowercase__: List[Any] = dct.pop(snake_case ) lowercase__: Optional[int] = val def snake_case_ ( ) -> Tuple: lowercase__: str = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__: Dict = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def snake_case_ ( snake_case , snake_case ) -> List[Any]: lowercase__: Optional[Any] = DeiTConfig() # all deit models have fine-tuned heads lowercase__: Any = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowercase__: List[str] = 10_00 lowercase__: Union[str, Any] = 'huggingface/label-files' lowercase__: List[str] = 'imagenet-1k-id2label.json' lowercase__: Optional[Any] = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) lowercase__: Dict = {int(snake_case ): v for k, v in idalabel.items()} lowercase__: Union[str, Any] = idalabel lowercase__: Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__: List[str] = int(deit_name[-6:-4] ) lowercase__: Any = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): lowercase__: str = 1_92 lowercase__: List[str] = 7_68 lowercase__: str = 12 lowercase__: int = 3 elif deit_name[9:].startswith('small' ): lowercase__: Optional[int] = 3_84 lowercase__: Any = 15_36 lowercase__: str = 12 lowercase__: Union[str, Any] = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): lowercase__: Union[str, Any] = 10_24 lowercase__: int = 40_96 lowercase__: List[Any] = 24 lowercase__: Any = 16 # load original model from timm lowercase__: Tuple = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase__: List[str] = timm_model.state_dict() lowercase__: Optional[Any] = create_rename_keys(snake_case , snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) read_in_q_k_v(snake_case , snake_case , snake_case ) # load HuggingFace model lowercase__: Optional[Any] = DeiTForImageClassificationWithTeacher(snake_case ).eval() model.load_state_dict(snake_case ) # Check outputs on an image, prepared by DeiTImageProcessor lowercase__: Union[str, Any] = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowercase__: str = DeiTImageProcessor(size=snake_case , crop_size=config.image_size ) lowercase__: int = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase__: str = encoding['pixel_values'] lowercase__: Optional[int] = model(snake_case ) lowercase__: List[str] = timm_model(snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case , outputs.logits , atol=1e-3 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
288
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __a ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=30 , lowerCAmelCase__=400 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=1 / 255 , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=True , ) -> List[str]: '''simple docstring''' # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__: Dict = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} lowercase__: Tuple = parent lowercase__: Optional[Any] = batch_size lowercase__: Any = num_channels lowercase__: str = min_resolution lowercase__: Dict = max_resolution lowercase__: Any = do_resize lowercase__: str = size lowercase__: Any = do_rescale lowercase__: Union[str, Any] = rescale_factor lowercase__: Optional[int] = do_normalize lowercase__: Union[str, Any] = image_mean lowercase__: List[str] = image_std lowercase__: Optional[Any] = do_pad def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: '''simple docstring''' if not batched: lowercase__: List[Any] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): lowercase__ , lowercase__: List[str] = image.size else: lowercase__ , lowercase__: str = image.shape[1], image.shape[2] if w < h: lowercase__: Optional[int] = int(self.size['shortest_edge'] * h / w ) lowercase__: int = self.size['shortest_edge'] elif w > h: lowercase__: Tuple = self.size['shortest_edge'] lowercase__: int = int(self.size['shortest_edge'] * w / h ) else: lowercase__: Tuple = self.size['shortest_edge'] lowercase__: Optional[Any] = self.size['shortest_edge'] else: lowercase__: str = [] for image in image_inputs: lowercase__ , lowercase__: Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__: Union[str, Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] lowercase__: Any = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : Tuple = DetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Optional[int] = DetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_rescale' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'rescale_factor' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_pad' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) lowercase__: str = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' # Initialize image_processing lowercase__: Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__: str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input lowercase__: Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__: Tuple = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ , lowercase__: Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) lowercase__: Dict = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # Initialize image_processing lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__: Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input lowercase__: Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__: Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__: Union[str, Any] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values lowercase__ , lowercase__: Dict = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' # Initialize image_processing lowercase__: Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__: Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input lowercase__: Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase__ , lowercase__: Dict = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__: Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values lowercase__ , lowercase__: Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # prepare image and target lowercase__: Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowercase__: Optional[int] = json.loads(f.read() ) lowercase__: Optional[Any] = {'image_id': 39_769, 'annotations': target} # encode them lowercase__: Optional[Any] = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) lowercase__: List[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='pt' ) # verify pixel values lowercase__: Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowerCAmelCase__ ) lowercase__: Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area lowercase__: List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowerCAmelCase__ ) ) # verify boxes lowercase__: Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowerCAmelCase__ ) lowercase__: int = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id lowercase__: List[Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowerCAmelCase__ ) ) # verify is_crowd lowercase__: Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowerCAmelCase__ ) ) # verify class_labels lowercase__: List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowerCAmelCase__ ) ) # verify orig_size lowercase__: Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowerCAmelCase__ ) ) # verify size lowercase__: Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowerCAmelCase__ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # prepare image, target and masks_path lowercase__: List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowercase__: Tuple = json.loads(f.read() ) lowercase__: Tuple = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} lowercase__: List[str] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowercase__: Dict = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) lowercase__: Dict = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='pt' ) # verify pixel values lowercase__: Any = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowerCAmelCase__ ) lowercase__: Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area lowercase__: str = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowerCAmelCase__ ) ) # verify boxes lowercase__: Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowerCAmelCase__ ) lowercase__: str = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id lowercase__: Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowerCAmelCase__ ) ) # verify is_crowd lowercase__: List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowerCAmelCase__ ) ) # verify class_labels lowercase__: Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowerCAmelCase__ ) ) # verify masks lowercase__: str = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowerCAmelCase__ ) # verify orig_size lowercase__: Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowerCAmelCase__ ) ) # verify size lowercase__: Optional[int] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowerCAmelCase__ ) )
288
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> str: a : Dict = 0 def __a ( self ) -> List[str]: a : List[str] = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: a : List[str] = Path(lowerCAmelCase__ ) / "preprocessor_config.json" a : Optional[Any] = Path(lowerCAmelCase__ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCAmelCase__ , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCAmelCase__ , "w" ) ) a : Dict = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: a : Union[str, Any] = Path(lowerCAmelCase__ ) / "preprocessor_config.json" a : str = Path(lowerCAmelCase__ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(lowerCAmelCase__ , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCAmelCase__ , "w" ) ) a : Optional[Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: a : Optional[Any] = CLIPConfig() # Create a dummy config file with image_proceesor_type a : List[str] = Path(lowerCAmelCase__ ) / "preprocessor_config.json" a : Optional[Any] = Path(lowerCAmelCase__ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCAmelCase__ , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCAmelCase__ , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a : List[str] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ).to_dict() config_dict.pop("image_processor_type" ) a : Optional[int] = CLIPImageProcessor(**lowerCAmelCase__ ) # save in new folder model_config.save_pretrained(lowerCAmelCase__ ) config.save_pretrained(lowerCAmelCase__ ) a : str = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) # make sure private variable is not incorrectly saved a : List[Any] = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: a : Dict = Path(lowerCAmelCase__ ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCAmelCase__ , "w" ) , ) a : List[Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Any: with self.assertRaisesRegex( lowerCAmelCase__ , "clip-base is not a local folder and is not a valid model identifier" ): a : Union[str, Any] = AutoImageProcessor.from_pretrained("clip-base" ) def __a ( self ) -> Union[str, Any]: with self.assertRaisesRegex( lowerCAmelCase__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): a : Union[str, Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ , revision="aaaaaa" ) def __a ( self ) -> Union[str, Any]: with self.assertRaisesRegex( lowerCAmelCase__ , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): a : Optional[int] = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def __a ( self ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase__ ): a : Union[str, Any] = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__ ): a : Tuple = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCAmelCase__ ) a : Tuple = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase__ ) a : Dict = AutoImageProcessor.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def __a ( self ) -> int: try: AutoConfig.register("custom" , lowerCAmelCase__ ) AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: a : List[Any] = Path(lowerCAmelCase__ ) / "preprocessor_config.json" a : Any = Path(lowerCAmelCase__ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(lowerCAmelCase__ , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCAmelCase__ , "w" ) ) a : Optional[int] = CustomImageProcessor.from_pretrained(lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase__ ) a : List[Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __a ( self ) -> int: class __UpperCamelCase ( a__ ): lowerCamelCase : Tuple =True try: AutoConfig.register("custom" , lowerCAmelCase__ ) AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # If remote code is not set, the default is to use local a : Tuple = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a : Optional[int] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a : Optional[Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(lowerCAmelCase__ , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
105
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : list ) ->int: '''simple docstring''' if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] a : Union[str, Any] = grid[0] for row_n in range(1 , len(_lowercase ) ): a : Optional[Any] = grid[row_n] a : Tuple = fill_row(_lowercase , _lowercase ) a : List[Any] = grid[row_n] return grid[-1][-1] def _SCREAMING_SNAKE_CASE ( _lowercase : list , _lowercase : list ) ->list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(_lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
105
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : List[str] =logging.get_logger(__name__) lowerCAmelCase__ : Dict ={ 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """roc_bert""" def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=True , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=9_1_0 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=2_4_8_5_8 , lowerCAmelCase__=True , **lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = num_attention_heads SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = type_vocab_size SCREAMING_SNAKE_CASE_ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[int] = use_cache SCREAMING_SNAKE_CASE_ : Optional[int] = enable_pronunciation SCREAMING_SNAKE_CASE_ : Any = enable_shape SCREAMING_SNAKE_CASE_ : List[Any] = pronunciation_embed_dim SCREAMING_SNAKE_CASE_ : List[Any] = pronunciation_vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = shape_embed_dim SCREAMING_SNAKE_CASE_ : Optional[int] = shape_vocab_size SCREAMING_SNAKE_CASE_ : Any = concat_input SCREAMING_SNAKE_CASE_ : Any = position_embedding_type SCREAMING_SNAKE_CASE_ : Optional[int] = classifier_dropout super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
162
from collections.abc import Sequence def a__ ( A__, A__ = False ): if not arr: return 0 SCREAMING_SNAKE_CASE_ : str = 0 if allow_empty_subarrays else float('-inf' ) SCREAMING_SNAKE_CASE_ : Tuple = 0.0 for num in arr: SCREAMING_SNAKE_CASE_ : int = max(0 if allow_empty_subarrays else num, curr_sum + num ) SCREAMING_SNAKE_CASE_ : List[Any] = max(A__, A__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase__ : Union[str, Any] =[-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"""{max_subarray_sum(nums) = }""")
162
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase=None , __lowerCamelCase=None ) -> Union[str, Any]: return field(default_factory=lambda: default , metadata=__lowerCamelCase ) @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] = list_field( default=[] ,metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } ,) lowerCAmelCase : List[int] = list_field( default=[8] ,metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) lowerCAmelCase : List[int] = list_field( default=[8, 3_2, 1_2_8, 5_1_2] ,metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Use FP16 to accelerate inference."} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Benchmark training of model"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Verbose memory tracing"} ) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} ,) lowerCAmelCase : bool = field( default=A_ ,metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } ,) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Trace memory line by line"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Save result to a CSV file"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Save all print statements in a log file"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Whether to print environment information"} ) lowerCAmelCase : bool = field( default=A_ ,metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } ,) lowerCAmelCase : str = field( default=F"inference_time_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving time results to csv."} ,) lowerCAmelCase : str = field( default=F"inference_memory_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving memory results to csv."} ,) lowerCAmelCase : str = field( default=F"train_time_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving time results to csv for training."} ,) lowerCAmelCase : str = field( default=F"train_memory_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving memory results to csv for training."} ,) lowerCAmelCase : str = field( default=F"env_info_{round(time() )}.csv" ,metadata={"help": "CSV filename used if saving environment information."} ,) lowerCAmelCase : str = field( default=F"log_{round(time() )}.csv" ,metadata={"help": "Log filename used if print statements are saved in log."} ,) lowerCAmelCase : int = field(default=3 ,metadata={"help": "Times an experiment will be run."} ) lowerCAmelCase : bool = field( default=A_ ,metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } ,) def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' ,_snake_case ,) def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
16
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = (DDIMParallelScheduler,) SCREAMING_SNAKE_CASE__ : Optional[Any] = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : int = scheduler_class(**lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = 10, 0.0 UpperCAmelCase_ : Optional[int] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for t in scheduler.timesteps: UpperCAmelCase_ : Dict = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : List[str] = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowercase_ , num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowercase_ , eta=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.scheduler_classes[0] UpperCAmelCase_ : Optional[int] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = 10, 0.0 scheduler.set_timesteps(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_model() UpperCAmelCase_ : List[str] = self.dummy_sample_deter UpperCAmelCase_ : Any = self.dummy_sample_deter + 0.1 UpperCAmelCase_ : int = self.dummy_sample_deter - 0.1 UpperCAmelCase_ : List[Any] = samplea.shape[0] UpperCAmelCase_ : int = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase_ : int = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ ) UpperCAmelCase_ : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase_ : Optional[Any] = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase_ ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : str = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.full_loop() UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : List[str] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : List[str] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : Dict = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : int = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
61
0
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCAmelCase_( ctypes.Structure ): '''simple docstring''' __lowercase : Any = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" if os.name == "nt": lowerCAmelCase__ : int = CursorInfo() lowerCAmelCase__ : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) lowerCAmelCase__ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" if os.name == "nt": lowerCAmelCase__ : Any = CursorInfo() lowerCAmelCase__ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) lowerCAmelCase__ : Optional[Any] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
184
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
184
1
"""simple docstring""" from __future__ import annotations A__ : str = list[list[int]] # assigning initial values to the grid A__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _snake_case ( lowerCamelCase__ : Matrix , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _snake_case ( lowerCamelCase__ : Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _snake_case ( lowerCamelCase__ : Matrix ) -> Matrix | None: if location := find_empty_location(lowerCamelCase__ ): lowerCamelCase_ , lowerCamelCase_ : Optional[int] =location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ : Optional[int] =digit if sudoku(lowerCamelCase__ ) is not None: return grid lowerCamelCase_ : Optional[int] =0 return None def _snake_case ( lowerCamelCase__ : Matrix ) -> None: for row in grid: for cell in row: print(lowerCamelCase__ , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') A__ : Optional[int] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
144
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _snake_case ( lowerCamelCase__ : Tuple ) -> List[Any]: lowerCamelCase_ : Union[str, Any] =384 if "tiny" in model_name: lowerCamelCase_ : str =[3, 3, 9, 3] lowerCamelCase_ : Union[str, Any] =[96, 192, 384, 768] if "small" in model_name: lowerCamelCase_ : Tuple =[3, 3, 27, 3] lowerCamelCase_ : List[str] =[96, 192, 384, 768] if "base" in model_name: lowerCamelCase_ : Tuple =[3, 3, 27, 3] lowerCamelCase_ : Tuple =[128, 256, 512, 1_024] lowerCamelCase_ : str =512 if "large" in model_name: lowerCamelCase_ : Optional[int] =[3, 3, 27, 3] lowerCamelCase_ : Optional[int] =[192, 384, 768, 1_536] lowerCamelCase_ : Optional[Any] =768 if "xlarge" in model_name: lowerCamelCase_ : str =[3, 3, 27, 3] lowerCamelCase_ : Optional[Any] =[256, 512, 1_024, 2_048] lowerCamelCase_ : Any =1_024 # set label information lowerCamelCase_ : Dict =150 lowerCamelCase_ : Union[str, Any] ="huggingface/label-files" lowerCamelCase_ : Optional[int] ="ade20k-id2label.json" lowerCamelCase_ : str =json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ : Dict ={int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ : Optional[Any] ={v: k for k, v in idalabel.items()} lowerCamelCase_ : Optional[int] =ConvNextConfig( depths=lowerCamelCase__ , hidden_sizes=lowerCamelCase__ , out_features=["stage1", "stage2", "stage3", "stage4"] ) lowerCamelCase_ : Any =UperNetConfig( backbone_config=lowerCamelCase__ , auxiliary_in_channels=lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ , ) return config def _snake_case ( lowerCamelCase__ : str ) -> str: lowerCamelCase_ : List[str] =[] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any ) -> Dict: lowerCamelCase_ : List[str] =dct.pop(lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =val def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] ) -> Dict: lowerCamelCase_ : Union[str, Any] ={ "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } lowerCamelCase_ : Optional[int] =model_name_to_url[model_name] lowerCamelCase_ : Optional[Any] =torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" )["state_dict"] lowerCamelCase_ : List[Any] =get_upernet_config(lowerCamelCase__ ) lowerCamelCase_ : Tuple =UperNetForSemanticSegmentation(lowerCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase_ : Optional[Any] =state_dict.pop(lowerCamelCase__ ) if "bn" in key: lowerCamelCase_ : str =key.replace("bn" , "batch_norm" ) lowerCamelCase_ : Union[str, Any] =val # rename keys lowerCamelCase_ : Tuple =create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify on image lowerCamelCase_ : List[str] ="https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowerCamelCase_ : Union[str, Any] =Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("RGB" ) lowerCamelCase_ : List[str] =SegformerImageProcessor() lowerCamelCase_ : int =processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values with torch.no_grad(): lowerCamelCase_ : Tuple =model(lowerCamelCase__ ) if model_name == "upernet-convnext-tiny": lowerCamelCase_ : List[Any] =torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": lowerCamelCase_ : Dict =torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": lowerCamelCase_ : Tuple =torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": lowerCamelCase_ : Dict =torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": lowerCamelCase_ : List[Any] =torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A__ : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
144
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( snake_case_ ): lowerCamelCase_ : List[Any] = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ : Any = '''FlavaImageProcessor''' lowerCamelCase_ : str = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__(self , __magic_name__=None , __magic_name__=None , **__magic_name__ ) -> Any: '''simple docstring''' snake_case_ : List[str] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __magic_name__ , ) snake_case_ : Any = kwargs.pop('''feature_extractor''' ) snake_case_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__magic_name__ , __magic_name__ ) snake_case_ : Optional[Any] = self.image_processor def __call__(self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , __magic_name__ = False , __magic_name__ = False , __magic_name__ = None , __magic_name__ = 0 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = True , __magic_name__ = None , **__magic_name__ , ) -> str: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: snake_case_ : Tuple = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if images is not None: snake_case_ : Union[str, Any] = self.image_processor( __magic_name__ , return_image_mask=__magic_name__ , return_codebook_pixels=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if text is not None and images is not None: encoding.update(__magic_name__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Tuple = self.tokenizer.model_input_names snake_case_ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase (self ) -> Dict: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __magic_name__ , ) return self.image_processor_class @property def lowerCamelCase (self ) -> Dict: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __magic_name__ , ) return self.image_processor
353
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowerCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if os.path.exists(_UpperCamelCase ): if os.path.exists(os.path.join(_UpperCamelCase , '''config.json''' ) ) and os.path.isfile( os.path.join(_UpperCamelCase , '''config.json''' ) ): os.remove(os.path.join(_UpperCamelCase , '''config.json''' ) ) if os.path.exists(os.path.join(_UpperCamelCase , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(_UpperCamelCase , '''pytorch_model.bin''' ) ): os.remove(os.path.join(_UpperCamelCase , '''pytorch_model.bin''' ) ) else: os.makedirs(_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=False ) -> Optional[int]: """simple docstring""" snake_case_ : List[Any] = 2 if unlogit: snake_case_ : Any = torch.pow(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Optional[Any] = p * torch.log(_UpperCamelCase ) snake_case_ : Dict = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(_UpperCamelCase ) ) ) ) for row in range(len(_UpperCamelCase ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=False ) -> Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ : int = model.config.num_hidden_layers, model.config.num_attention_heads snake_case_ : int = torch.zeros(_UpperCamelCase , _UpperCamelCase ).to(args.device ) snake_case_ : Optional[int] = torch.zeros(_UpperCamelCase , _UpperCamelCase ).to(args.device ) if head_mask is None: snake_case_ : Tuple = torch.ones(_UpperCamelCase , _UpperCamelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=_UpperCamelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: snake_case_ : Dict = None snake_case_ : Tuple = 0.0 snake_case_ : Dict = 0.0 for step, inputs in enumerate(tqdm(_UpperCamelCase , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): snake_case_ : Any = tuple(t.to(args.device ) for t in inputs ) ((snake_case_) , ) : Union[str, Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) snake_case_ : List[str] = model(_UpperCamelCase , labels=_UpperCamelCase , head_mask=_UpperCamelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) snake_case_ , snake_case_ , snake_case_ : int = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_UpperCamelCase ): snake_case_ : Dict = entropy(attn.detach() , _UpperCamelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_UpperCamelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: snake_case_ : Union[str, Any] = 2 snake_case_ : Any = torch.pow(torch.pow(_UpperCamelCase , _UpperCamelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: snake_case_ : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(_UpperCamelCase ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(_UpperCamelCase ) logger.info('''Head ranked by importance scores''' ) snake_case_ : Optional[int] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) snake_case_ : Union[str, Any] = torch.arange( head_importance.numel() , device=args.device ) snake_case_ : Dict = head_ranks.view_as(_UpperCamelCase ) print_ad_tensor(_UpperCamelCase ) return attn_entropy, head_importance, total_loss def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" snake_case_ , snake_case_ , snake_case_ : Optional[int] = compute_heads_importance(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , compute_entropy=_UpperCamelCase ) snake_case_ : Any = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , _UpperCamelCase , original_score * args.masking_threshold ) snake_case_ : Any = torch.ones_like(_UpperCamelCase ) snake_case_ : Union[str, Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) snake_case_ : List[Any] = original_score while current_score >= original_score * args.masking_threshold: snake_case_ : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads snake_case_ : Optional[Any] = float('''Inf''' ) snake_case_ : List[Any] = head_importance.view(-1 ).sort()[1] if len(_UpperCamelCase ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads snake_case_ : Optional[int] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) snake_case_ : Optional[Any] = new_head_mask.view(-1 ) snake_case_ : int = 0.0 snake_case_ : List[Any] = new_head_mask.view_as(_UpperCamelCase ) snake_case_ : List[str] = new_head_mask.clone().detach() print_ad_tensor(_UpperCamelCase ) # Compute metric and head importance again snake_case_ , snake_case_ , snake_case_ : str = compute_heads_importance( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , compute_entropy=_UpperCamelCase , head_mask=_UpperCamelCase ) snake_case_ : Tuple = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , _UpperCamelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(_UpperCamelCase ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : str = datetime.now() snake_case_ , snake_case_ , snake_case_ : List[Any] = compute_heads_importance( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , compute_entropy=_UpperCamelCase , compute_importance=_UpperCamelCase , head_mask=_UpperCamelCase ) snake_case_ : Union[str, Any] = 1 / loss snake_case_ : Union[str, Any] = datetime.now() - before_time snake_case_ : int = sum(p.numel() for p in model.parameters() ) snake_case_ : Tuple = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_UpperCamelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ : Any = [ v, ] assert sum(len(_UpperCamelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_UpperCamelCase ) snake_case_ : Union[str, Any] = sum(p.numel() for p in model.parameters() ) snake_case_ : Dict = datetime.now() snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = compute_heads_importance( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , compute_entropy=_UpperCamelCase , compute_importance=_UpperCamelCase , head_mask=_UpperCamelCase , actually_pruned=_UpperCamelCase , ) snake_case_ : Union[str, Any] = 1 / loss snake_case_ : Optional[Any] = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , _UpperCamelCase , _UpperCamelCase , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , _UpperCamelCase , _UpperCamelCase ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(_UpperCamelCase , args.output_dir ) def lowerCamelCase_ ( ) -> Optional[int]: """simple docstring""" snake_case_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=_UpperCamelCase , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=_UpperCamelCase , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=_UpperCamelCase , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=_UpperCamelCase , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=_UpperCamelCase , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=_UpperCamelCase , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=_UpperCamelCase , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=_UpperCamelCase , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=_UpperCamelCase , default=42 ) parser.add_argument('''--local_rank''' , type=_UpperCamelCase , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=_UpperCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=_UpperCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) snake_case_ : Any = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_UpperCamelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: snake_case_ : Tuple = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) snake_case_ : Tuple = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) snake_case_ : List[str] = torch.device('''cuda''' , args.local_rank ) snake_case_ : Union[str, Any] = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) snake_case_ : int = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: snake_case_ : Any = nn.parallel.DistributedDataParallel( _UpperCamelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_UpperCamelCase ) elif args.n_gpu > 1: snake_case_ : Dict = nn.DataParallel(_UpperCamelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_UpperCamelCase ) torch.save(_UpperCamelCase , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , _UpperCamelCase ) # Prepare dataset snake_case_ : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) snake_case_ : Any = (torch.from_numpy(_UpperCamelCase ),) snake_case_ : Any = TensorDataset(*_UpperCamelCase ) snake_case_ : List[str] = RandomSampler(_UpperCamelCase ) snake_case_ : int = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: snake_case_ : List[str] = mask_heads(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) prune_heads(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
279
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] ) -> Dict: """simple docstring""" a_ : Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : str ) -> Optional[int]: """simple docstring""" a_ : Optional[int] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: a_ : Tuple = s_dict.pop(__A ) elif "subsample" in key: a_ : int = s_dict.pop(__A ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] ) -> Dict: """simple docstring""" a_ , a_ : List[Any] = emb.weight.shape a_ : Optional[Any] = nn.Linear(__A , __A , bias=__A ) a_ : List[Any] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : List[str] ) -> List[Any]: """simple docstring""" a_ : Optional[int] = torch.load(__A , map_location='cpu' ) a_ : List[str] = mam_aaa['args'] a_ : Union[str, Any] = mam_aaa['model'] a_ : Optional[Any] = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(__A ) rename_keys(__A ) a_ : int = state_dict['decoder.embed_tokens.weight'].shape[0] a_ : Dict = args.share_decoder_input_output_embed a_ : Tuple = [int(__A ) for i in args.conv_kernel_sizes.split(',' )] a_ : Union[str, Any] = SpeechaTextConfig( vocab_size=__A , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(__A ) , conv_channels=args.conv_channels , conv_kernel_sizes=__A , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__A , num_beams=5 , max_length=2_00 , use_cache=__A , decoder_start_token_id=2 , early_stopping=__A , ) a_ : Optional[int] = SpeechaTextForConditionalGeneration(__A ) a_ , a_ : Optional[int] = model.model.load_state_dict(__A , strict=__A ) if len(__A ) > 0 and not set(__A ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F""" but all the following weights are missing {missing}""" ) if tie_embeds: a_ : Dict = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a_ : Dict = lm_head_weights model.save_pretrained(__A ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
32
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCamelCase = TypeVar('''T''') class snake_case_ ( Generic[T] ): __A : deque[T] # Cache store of keys __A : set[T] # References of the keys in cache __A : int = 10 # Maximum capacity of cache def __init__( self : Union[str, Any] , lowercase_ : int ) -> None: lowercase__ : int = deque() lowercase__ : str = set() if not n: lowercase__ : str = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: lowercase__ : List[Any] = n def __UpperCamelCase ( self : Dict , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase__ : Dict = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def __UpperCamelCase ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Optional[int] ) -> str: return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
87
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } __a = { 'gpt2': 1_024, 'gpt2-medium': 1_024, 'gpt2-large': 1_024, 'gpt2-xl': 1_024, 'distilgpt2': 1_024, } class A__ ( UpperCamelCase__ ): """simple docstring""" UpperCamelCase_ : List[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[str] = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ : Optional[int] = GPTaTokenizer def __init__( self : Any , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Dict="<|endoftext|>" , lowerCAmelCase__ : Tuple="<|endoftext|>" , lowerCAmelCase__ : List[str]="<|endoftext|>" , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : str , ) -> Optional[Any]: """simple docstring""" super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) _UpperCAmelCase : int = kwargs.pop("add_bos_token" , UpperCamelCase_ ) _UpperCAmelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: _UpperCAmelCase : int = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) _UpperCAmelCase : str = add_prefix_space _UpperCAmelCase : List[str] = pre_tok_class(**UpperCamelCase_ ) _UpperCAmelCase : Union[str, Any] = add_prefix_space def _lowerCAmelCase ( self : Dict , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Optional[Any] ) -> BatchEncoding: """simple docstring""" _UpperCAmelCase : Dict = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCAmelCase ( self : Tuple , *lowerCAmelCase__ : int , **lowerCAmelCase__ : int ) -> BatchEncoding: """simple docstring""" _UpperCAmelCase : Optional[int] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" _UpperCAmelCase : Any = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : "Conversation" ) -> List[int]: """simple docstring""" _UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) + [self.eos_token_id] ) if len(UpperCamelCase_ ) > self.model_max_length: _UpperCAmelCase : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
354
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _SCREAMING_SNAKE_CASE = model_type_to_module_name(_a ) _SCREAMING_SNAKE_CASE = importlib.import_module(F'.{module_name}' ,"""transformers.models""" ) try: return getattr(_a ,_a ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_a ,"""__name__""" ,_a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _SCREAMING_SNAKE_CASE = importlib.import_module("""transformers""" ) if hasattr(_a ,_a ): return getattr(_a ,_a ) return None def __lowerCamelCase ( snake_case__ ,snake_case__ = None ,snake_case__ = False ,snake_case__ = False ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = False ,**snake_case__ ,) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = get_file_from_repo( _a ,_a ,cache_dir=_a ,force_download=_a ,resume_download=_a ,proxies=_a ,use_auth_token=_a ,revision=_a ,local_files_only=_a ,) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(_a ,encoding="""utf-8""" ) as reader: return json.load(_a ) class __UpperCAmelCase : def __init__( self: Optional[int] ): '''simple docstring''' raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(UpperCAmelCase_ ) def UpperCamelCase ( cls: Optional[int] , UpperCAmelCase_: List[str] , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.pop("""config""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = kwargs.pop("""trust_remote_code""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = ImageProcessingMixin.get_image_processor_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config_dict.get("""image_processor_type""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ): _SCREAMING_SNAKE_CASE = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _SCREAMING_SNAKE_CASE = config_dict.pop("""feature_extractor_type""" , UpperCAmelCase_ ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""" ) _SCREAMING_SNAKE_CASE = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _SCREAMING_SNAKE_CASE = config_dict["auto_map"]["AutoFeatureExtractor"] _SCREAMING_SNAKE_CASE = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # It could be in `config.image_processor_type`` _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , """image_processor_type""" , UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , """auto_map""" ) and "AutoImageProcessor" in config.auto_map: _SCREAMING_SNAKE_CASE = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _SCREAMING_SNAKE_CASE = image_processor_class_from_name(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processor_auto_map is not None _SCREAMING_SNAKE_CASE = image_processor_class is not None or type(UpperCAmelCase_ ) in IMAGE_PROCESSOR_MAPPING _SCREAMING_SNAKE_CASE = resolve_trust_remote_code( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if has_remote_code and trust_remote_code: _SCREAMING_SNAKE_CASE = get_class_from_dynamic_module( UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = kwargs.pop("""code_revision""" , UpperCAmelCase_ ) if os.path.isdir(UpperCAmelCase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCAmelCase_ ) in IMAGE_PROCESSOR_MAPPING: _SCREAMING_SNAKE_CASE = IMAGE_PROCESSOR_MAPPING[type(UpperCAmelCase_ )] return image_processor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) raise ValueError( F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def UpperCamelCase ( UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(UpperCAmelCase_ , UpperCAmelCase_ )
306
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE : Tuple = tokenizer("Hello there" , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : str = model(a , labels=a ).loss SCREAMING_SNAKE_CASE : Any = -tf.math.reduce_mean(a ).numpy() SCREAMING_SNAKE_CASE : Union[str, Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
76
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :List[Any] = KandinskyVaaImgaImgPipeline _lowerCamelCase :Any = ["image_embeds", "negative_image_embeds", "image"] _lowerCamelCase :Any = [ "image_embeds", "negative_image_embeds", "image", ] _lowerCamelCase :int = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _lowerCamelCase :List[Any] = False @property def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" return 32 @property def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" return 32 @property def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return self.time_input_dim @property def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" return 1_00 @property def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCAmelCase__ : Any = UNetaDConditionModel(**UpperCamelCase ) return model @property def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowerCAmelCase__ : List[Any] = self.dummy_unet lowerCAmelCase__ : Union[str, Any] = self.dummy_movq lowerCAmelCase__ : Any = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowerCAmelCase__ : int = DDIMScheduler(**UpperCamelCase ) lowerCAmelCase__ : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowerCAmelCase ( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict=0 ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) lowerCAmelCase__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase ) # create init_image lowerCAmelCase__ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) lowerCAmelCase__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ : Tuple = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(UpperCamelCase ).startswith("""mps""" ): lowerCAmelCase__ : Dict = torch.manual_seed(UpperCamelCase ) else: lowerCAmelCase__ : int = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[str] = """cpu""" lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : Union[str, Any] = self.pipeline_class(**UpperCamelCase ) lowerCAmelCase__ : Tuple = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) lowerCAmelCase__ : List[str] = output.images lowerCAmelCase__ : Dict = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Dict = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) lowerCAmelCase__ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCAmelCase__ : Dict = """A red cartoon frog, 4k""" lowerCAmelCase__ : Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) lowerCAmelCase__ : Dict = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) lowerCAmelCase__ : Tuple = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) lowerCAmelCase__ : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowerCAmelCase__ : Union[str, Any] = pipeline( image=UpperCamelCase , image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) lowerCAmelCase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
360
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowercase_ ( __UpperCAmelCase ) -> str: if isinstance(__UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _lowerCamelCase : def _lowerCAmelCase ( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : int ) -> int: """simple docstring""" pass def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" pass def _lowerCAmelCase ( self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : Any=None , **UpperCamelCase : Optional[Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(UpperCamelCase ) lowerCAmelCase__ : List[Any] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCAmelCase ( self : int , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Dict , UpperCamelCase : Any=None , **UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.get_vision_text_model(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase , text_model=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str]=None , **UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCAmelCase ( self : int , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : Tuple=None , **UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.get_vision_text_model(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase , text_model=UpperCamelCase ) lowerCAmelCase__ : List[Any] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase ) lowerCAmelCase__ : int = after_output[0].numpy() lowerCAmelCase__ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase , 1E-5 ) def _lowerCAmelCase ( self : int , UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : List[Any]=None , **UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : str = self.get_vision_text_model(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : int = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase , text_model=UpperCamelCase ) lowerCAmelCase__ : Dict = model( input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase , output_attentions=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Any = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : float ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = np.abs((a - b) ).max() self.assertLessEqual(UpperCamelCase , UpperCamelCase , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**UpperCamelCase ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCamelCase ) @slow def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : Union[str, Any] = model_a(**UpperCamelCase ) lowerCAmelCase__ : Any = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : List[str] = model_a(**UpperCamelCase ) lowerCAmelCase__ : Dict = after_outputs[0].numpy() lowerCAmelCase__ : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase , 1E-5 ) @require_tf class _lowerCamelCase ( a_ , unittest.TestCase ): def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) lowerCAmelCase__ : Optional[Any] = 13 lowerCAmelCase__ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Dict = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowerCAmelCase ( self : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : int ) -> str: """simple docstring""" lowerCAmelCase__ : str = TFViTModel(UpperCamelCase , name="""vision_model""" ) lowerCAmelCase__ : Any = TFBertModel(UpperCamelCase , name="""text_model""" ) return vision_model, text_model def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = TFViTModelTester(self ) lowerCAmelCase__ : str = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase ( a_ , unittest.TestCase ): def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. lowerCAmelCase__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) lowerCAmelCase__ : str = 13 lowerCAmelCase__ : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str=None , **UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self.get_vision_text_model(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase , text_model=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = model( input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase , output_attentions=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : Dict = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Any = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : Optional[Any] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCAmelCase ( self : int , UpperCamelCase : Any , UpperCamelCase : str ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = TFDeiTModel(UpperCamelCase , name="""vision_model""" ) lowerCAmelCase__ : str = TFRobertaModel(UpperCamelCase , name="""text_model""" ) return vision_model, text_model def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[Any] = TFDeiTModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFRobertaModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase ( a_ , unittest.TestCase ): def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) lowerCAmelCase__ : Any = 13 lowerCAmelCase__ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : str = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowerCAmelCase ( self : str , UpperCamelCase : str , UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ : int = TFCLIPVisionModel(UpperCamelCase , name="""vision_model""" ) lowerCAmelCase__ : List[str] = TFBertModel(UpperCamelCase , name="""text_model""" ) return vision_model, text_model def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : str = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : int = TFBertModelTester(self ) lowerCAmelCase__ : str = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Optional[int] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : Dict = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _lowerCamelCase ( unittest.TestCase ): @slow def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=UpperCamelCase ) lowerCAmelCase__ : Any = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowerCAmelCase__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase__ : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=UpperCamelCase , padding=UpperCamelCase , return_tensors="""np""" ) lowerCAmelCase__ : Tuple = model(**UpperCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[Any] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , UpperCamelCase , atol=1E-3 ) )
212
0
import cva import numpy as np class a__ : def __init__( self : Any,_A : float,_A : int ): """simple docstring""" if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ : Union[str, Any] = k SCREAMING_SNAKE_CASE_ : str = window_size else: raise ValueError("invalid k value" ) def __str__( self : Union[str, Any] ): """simple docstring""" return str(self.k ) def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = cva.imread(_A,0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = img.shape SCREAMING_SNAKE_CASE_ : list[list[int]] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = img.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = cva.cvtColor(_A,cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = np.gradient(_A ) SCREAMING_SNAKE_CASE_ : str = dx**2 SCREAMING_SNAKE_CASE_ : Optional[Any] = dy**2 SCREAMING_SNAKE_CASE_ : Optional[Any] = dx * dy SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.04 SCREAMING_SNAKE_CASE_ : str = self.window_size // 2 for y in range(_A,h - offset ): for x in range(_A,w - offset ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : int = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ : Optional[int] = wxx + wyy SCREAMING_SNAKE_CASE_ : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0),0 ) color_img.itemset((y, x, 1),0 ) color_img.itemset((y, x, 2),255 ) return color_img, corner_list if __name__ == "__main__": __lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) __lowerCamelCase , __lowerCamelCase : List[Any] = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
18
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __UpperCamelCase : Optional[Any] = ['gpt2'] __UpperCamelCase : str = 'gpt2' if is_tf_available(): class lowercase__ ( tf.Module): def __init__( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = tokenizer SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = TFGPTaLMHeadModel.from_config(UpperCamelCase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def __A ( self : str , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenized['''input_ids'''].to_tensor() SCREAMING_SNAKE_CASE : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) SCREAMING_SNAKE_CASE : List[Any] = self.model(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ )['''logits'''] return outputs @require_tf @require_keras_nlp class lowercase__ ( unittest.TestCase): def __A ( self : int ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[Any] = [GPTaTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] SCREAMING_SNAKE_CASE : List[str] = [TFGPTaTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) SCREAMING_SNAKE_CASE : Tuple = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] SCREAMING_SNAKE_CASE : Dict = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __A ( self : str ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE : Dict = tokenizer([test_inputs] , return_tensors='''tf''' ) SCREAMING_SNAKE_CASE : Any = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors SCREAMING_SNAKE_CASE : int = python_outputs[key].numpy() SCREAMING_SNAKE_CASE : int = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase__ , tf.intaa ) == tf_outputs_values ) ) @slow def __A ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : Optional[int] = tf.function(UpperCamelCase__ ) for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE : Optional[int] = tf.constant(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = compiled_tokenizer(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tf_tokenizer(UpperCamelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __A ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : str = ModelToSave(tokenizer=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.serving(UpperCamelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE : List[str] = Path(UpperCamelCase__ ) / '''saved.model''' tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={'''serving_default''': model.serving} ) SCREAMING_SNAKE_CASE : str = tf.saved_model.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = loaded_model.signatures['''serving_default'''](UpperCamelCase__ )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __A ( self : List[str] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Tuple = tf_tokenizer(UpperCamelCase__ ) # Build model with some sample inputs SCREAMING_SNAKE_CASE : Union[str, Any] = tf_tokenizer.get_config() SCREAMING_SNAKE_CASE : Optional[Any] = TFGPTaTokenizer.from_config(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = model_from_config(UpperCamelCase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __A ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run SCREAMING_SNAKE_CASE : Tuple = 12_3123 for max_length in [3, 5, 1024]: SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Tuple = tf_tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
182
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _snake_case ( lowerCamelCase__ : list[list[float]] ) -> list[list[float]]: lowerCamelCase_ : List[str] =Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCamelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCamelCase_ : Any =float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements lowerCamelCase_ : str =[[0.0, 0.0], [0.0, 0.0]] lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =matrix[1][1], matrix[0][0] lowerCamelCase_ , lowerCamelCase_ : int =-matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCamelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCamelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCamelCase_ : int =float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix lowerCamelCase_ : Optional[Any] =[ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCamelCase_ : Union[str, Any] =(d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCamelCase_ : Any =-( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCamelCase_ : List[str] =(d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCamelCase_ : int =-( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCamelCase_ : Any =(d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCamelCase_ : str =-( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCamelCase_ : List[str] =(d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCamelCase_ : Optional[Any] =-( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCamelCase_ : List[str] =(d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCamelCase_ : Optional[int] =array(lowerCamelCase__ ) for i in range(3 ): for j in range(3 ): lowerCamelCase_ : Optional[int] =cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCamelCase_ : Tuple =array(lowerCamelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCamelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCamelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
209
"""simple docstring""" def _snake_case ( lowerCamelCase__ : Optional[Any] ) -> Optional[int]: if not head: return True # split the list to two parts lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =head.next, head while fast and fast.next: lowerCamelCase_ : Optional[Any] =fast.next.next lowerCamelCase_ : str =slow.next lowerCamelCase_ : Tuple =slow.next lowerCamelCase_ : Any =None # Don't forget here! But forget still works! # reverse the second part lowerCamelCase_ : List[str] =None while second: lowerCamelCase_ : Any =second.next lowerCamelCase_ : Union[str, Any] =node lowerCamelCase_ : Union[str, Any] =second lowerCamelCase_ : Optional[Any] =nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCamelCase_ : List[str] =node.next lowerCamelCase_ : Optional[Any] =head.next return True def _snake_case ( lowerCamelCase__ : str ) -> Optional[int]: if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCamelCase_ : List[str] =head while fast and fast.next: lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =fast.next.next, slow.next # 2. Push the second half into the stack lowerCamelCase_ : List[Any] =[slow.val] while slow.next: lowerCamelCase_ : List[Any] =slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCamelCase_ : Union[str, Any] =cur.next return True def _snake_case ( lowerCamelCase__ : Dict ) -> Optional[Any]: if not head or not head.next: return True lowerCamelCase_ : Union[str, Any] ={} lowerCamelCase_ : List[Any] =0 while head: if head.val in d: d[head.val].append(lowerCamelCase__ ) else: lowerCamelCase_ : List[str] =[pos] lowerCamelCase_ : Optional[int] =head.next pos += 1 lowerCamelCase_ : Union[str, Any] =pos - 1 lowerCamelCase_ : Optional[int] =0 for v in d.values(): if len(lowerCamelCase__ ) % 2 != 0: middle += 1 else: lowerCamelCase_ : Optional[Any] =0 for i in range(0 , len(lowerCamelCase__ ) ): if v[i] + v[len(lowerCamelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
209
1
"""simple docstring""" def lowercase ( A_ , A_ )-> float: '''simple docstring''' if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A_ ) * abs(A_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
40
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: _snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
341
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int , snake_case : int , snake_case : Tuple=False )-> List[Any]: if isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): _lowerCamelCase = len(set_a.intersection(snake_case ) ) if alternative_union: _lowerCamelCase = len(snake_case ) + len(snake_case ) else: _lowerCamelCase = len(set_a.union(snake_case ) ) return intersection / union if isinstance(snake_case , (list, tuple) ) and isinstance(snake_case , (list, tuple) ): _lowerCamelCase = [element for element in set_a if element in set_b] if alternative_union: _lowerCamelCase = len(snake_case ) + len(snake_case ) return len(snake_case ) / union else: _lowerCamelCase = set_a + [element for element in set_b if element not in set_a] return len(snake_case ) / len(snake_case ) return len(snake_case ) / len(snake_case ) return None if __name__ == "__main__": A_ : Dict ={"""a""", """b""", """c""", """d""", """e"""} A_ : List[str] ={"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
365
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : int =logging.get_logger(__name__) A_ : Tuple ={ """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : int = "deta" SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , a__=None , a__=9_00 , a__=20_48 , a__=6 , a__=20_48 , a__=8 , a__=6 , a__=10_24 , a__=8 , a__=0.0 , a__=True , a__="relu" , a__=2_56 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.02 , a__=1.0 , a__=True , a__=False , a__="sine" , a__=5 , a__=4 , a__=4 , a__=True , a__=3_00 , a__=True , a__=True , a__=1 , a__=5 , a__=2 , a__=1 , a__=1 , a__=5 , a__=2 , a__=0.1 , a__=0.25 , **a__ , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowerCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(a__ , a__ ): _lowerCamelCase = backbone_config.pop('model_type' ) _lowerCamelCase = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase = config_class.from_dict(a__ ) _lowerCamelCase = backbone_config _lowerCamelCase = num_queries _lowerCamelCase = max_position_embeddings _lowerCamelCase = d_model _lowerCamelCase = encoder_ffn_dim _lowerCamelCase = encoder_layers _lowerCamelCase = encoder_attention_heads _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_attention_heads _lowerCamelCase = dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = activation_function _lowerCamelCase = init_std _lowerCamelCase = init_xavier_std _lowerCamelCase = encoder_layerdrop _lowerCamelCase = auxiliary_loss _lowerCamelCase = position_embedding_type # deformable attributes _lowerCamelCase = num_feature_levels _lowerCamelCase = encoder_n_points _lowerCamelCase = decoder_n_points _lowerCamelCase = two_stage _lowerCamelCase = two_stage_num_proposals _lowerCamelCase = with_box_refine _lowerCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _lowerCamelCase = class_cost _lowerCamelCase = bbox_cost _lowerCamelCase = giou_cost # Loss coefficients _lowerCamelCase = mask_loss_coefficient _lowerCamelCase = dice_loss_coefficient _lowerCamelCase = bbox_loss_coefficient _lowerCamelCase = giou_loss_coefficient _lowerCamelCase = eos_coefficient _lowerCamelCase = focal_alpha super().__init__(is_encoder_decoder=a__ , **a__ ) @property def snake_case_ ( self ): return self.encoder_attention_heads @property def snake_case_ ( self ): return self.d_model def snake_case_ ( self ): _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.backbone_config.to_dict() _lowerCamelCase = self.__class__.model_type return output
80
0
"""simple docstring""" def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :int ): if len(snake_case_ ) != len(snake_case_ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __UpperCAmelCase = [p / w for p, w in zip(snake_case_ , snake_case_ )] # Creating a copy of the list and sorting profit/weight in ascending order __UpperCAmelCase = sorted(snake_case_ ) # declaring useful variables __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __UpperCAmelCase = sorted_profit_by_weight[length - i - 1] __UpperCAmelCase = profit_by_weight.index(snake_case_ ) __UpperCAmelCase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) _lowercase : str = [int(x) for x in input('Input profits separated by spaces: ').split()] _lowercase : str = [int(x) for x in input('Input weights separated by spaces: ').split()] _lowercase : Any = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
332
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A__ ( nn.Module ): def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = nn.Convad( _UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) __lowercase = ACTaFN[activation] if activation is not None else nn.Identity() def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any: """simple docstring""" super().__init__() __lowercase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __lowercase = config.num_channels def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __lowercase = self.embedder(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: """simple docstring""" super().__init__() __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) __lowercase = nn.Sequential( nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def a__ ( self : str , _UpperCAmelCase : Dict ) -> str: """simple docstring""" __lowercase = self.pooler(_UpperCAmelCase ) __lowercase = self.attention(_UpperCAmelCase ) __lowercase = hidden_state * attention return hidden_state class A__ ( nn.Module ): def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict: """simple docstring""" super().__init__() __lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __lowercase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , ) def a__ ( self : Any , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = self.layers(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int: """simple docstring""" super().__init__() __lowercase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) ) def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" __lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase = hidden_states + (hidden_state,) __lowercase = stage_module(_UpperCAmelCase ) if output_hidden_states: __lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = RegNetConfig lowerCAmelCase__ : Optional[int] = "regnet" lowerCAmelCase__ : Dict = "pixel_values" lowerCAmelCase__ : List[str] = True def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = value SCREAMING_SNAKE_CASE__ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE__ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class A__ ( lowerCAmelCase__ ): def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config __lowercase = RegNetEmbeddings(_UpperCAmelCase ) __lowercase = RegNetEncoder(_UpperCAmelCase ) __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.embedder(_UpperCAmelCase ) __lowercase = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config.num_labels __lowercase = RegNetModel(_UpperCAmelCase ) # classification head __lowercase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier(_UpperCAmelCase ) __lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase = 'single_label_classification' else: __lowercase = 'multi_label_classification' if self.config.problem_type == "regression": __lowercase = MSELoss() if self.num_labels == 1: __lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase = BCEWithLogitsLoss() __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
325
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : Union[str, Any] =DanceDiffusionPipeline lowercase : Dict =UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase : List[str] =PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } lowercase : Dict =UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase : Any =False lowercase : Any =False def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :List[str] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=UpperCamelCase_ , use_timestep_embedding=UpperCamelCase_ , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) lowercase_ :Optional[Any] = IPNDMScheduler() lowercase_ :int = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase_ :Union[str, Any] = torch.manual_seed(UpperCamelCase_ ) else: lowercase_ :Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase_ :List[Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase ( self ): lowercase_ :Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ :Optional[int] = self.get_dummy_components() lowercase_ :str = DanceDiffusionPipeline(**UpperCamelCase_ ) lowercase_ :List[str] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :str = self.get_dummy_inputs(UpperCamelCase_ ) lowercase_ :Tuple = pipe(**UpperCamelCase_ ) lowercase_ :Optional[int] = output.audios lowercase_ :Optional[int] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowercase_ :List[str] = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase ( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase ( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase ( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase ( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): lowercase_ :str = torch_device lowercase_ :Optional[int] = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) lowercase_ :List[str] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :Union[str, Any] = torch.manual_seed(0 ) lowercase_ :List[Any] = pipe(generator=UpperCamelCase_ , num_inference_steps=100 , audio_length_in_s=4.096 ) lowercase_ :Tuple = output.audios lowercase_ :Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase_ :int = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :Tuple = torch_device lowercase_ :Any = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) lowercase_ :List[str] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :Union[str, Any] = torch.manual_seed(0 ) lowercase_ :Tuple = pipe(generator=UpperCamelCase_ , num_inference_steps=100 , audio_length_in_s=4.096 ) lowercase_ :Optional[Any] = output.audios lowercase_ :Optional[int] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase_ :int = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
355
from itertools import count def UpperCamelCase ( _a = 5_0 ) -> int: '''simple docstring''' lowercase_ :Dict = [1] * min_block_length for n in count(_a ): fill_count_functions.append(1 ) for block_length in range(_a , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(f"{solution() = }")
252
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCamelCase ( UpperCAmelCase_ : Dict ): """simple docstring""" a , a :Tuple = image.size a , a :Optional[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a :str = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a :Union[str, Any] = np.array(UpperCAmelCase_ ).astype(np.floataa ) / 255.0 a :Tuple = image[None].transpose(0 , 3 , 1 , 2 ) a :str = torch.from_numpy(UpperCAmelCase_ ) return 2.0 * image - 1.0 class _snake_case ( _snake_case ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): super().__init__() self.register_modules(vqvae=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 100 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , ): if isinstance(_lowerCamelCase , PIL.Image.Image ): a :List[str] = 1 elif isinstance(_lowerCamelCase , torch.Tensor ): a :int = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_lowerCamelCase )}''' ) if isinstance(_lowerCamelCase , PIL.Image.Image ): a :Dict = preprocess(_lowerCamelCase ) a , a :Optional[int] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a :Dict = (batch_size, self.unet.config.in_channels // 2, height, width) a :int = next(self.unet.parameters() ).dtype a :Tuple = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=_lowerCamelCase ) a :Optional[Any] = image.to(device=self.device , dtype=_lowerCamelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_lowerCamelCase , device=self.device ) a :Optional[int] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a :Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a :Any = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a :Tuple = {} if accepts_eta: a :Optional[int] = eta for t in self.progress_bar(_lowerCamelCase ): # concat latents and low resolution image in the channel dimension. a :Tuple = torch.cat([latents, image] , dim=1 ) a :int = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) # predict the noise residual a :Union[str, Any] = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 a :Optional[Any] = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample # decode the image latents with the VQVAE a :Optional[int] = self.vqvae.decode(_lowerCamelCase ).sample a :Optional[Any] = torch.clamp(_lowerCamelCase , -1.0 , 1.0 ) a :List[Any] = image / 2 + 0.5 a :Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a :int = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
94
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : Tuple = '''▁''' snake_case : Any = {'''vocab_file''': '''sentencepiece.bpe.model'''} snake_case : Tuple = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } snake_case : int = { '''xlm-roberta-base''': 5_12, '''xlm-roberta-large''': 5_12, '''xlm-roberta-large-finetuned-conll02-dutch''': 5_12, '''xlm-roberta-large-finetuned-conll02-spanish''': 5_12, '''xlm-roberta-large-finetuned-conll03-english''': 5_12, '''xlm-roberta-large-finetuned-conll03-german''': 5_12, } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase = None , **_lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it a :Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token a :int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) a :Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) a :str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a :Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a :List[str] = 1 a :Dict = len(self.sp_model ) + self.fairseq_offset a :List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): a :List[str] = self.__dict__.copy() a :Optional[int] = None a :int = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCamelCase ): a :Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a :Union[str, Any] = {} a :Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a :List[Any] = [self.cls_token_id] a :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): a :int = [self.sep_token_id] a :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def SCREAMING_SNAKE_CASE__ ( self ): a :Any = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a :Optional[Any] = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Tuple = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a :int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: a :List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
94
1
def _lowerCAmelCase ( ): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = 1 UpperCAmelCase = 2 while i * i <= n: UpperCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _lowerCAmelCase ( ): return next(i for i in triangle_number_generator() if count_divisors(lowercase_ ) > 500 ) if __name__ == "__main__": print(solution())
366
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _lowerCAmelCase ( lowercase_ ): random.seed(lowercase_ ) np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # ^^ safe to call this function even if cuda is not available class A_ : """simple docstring""" def __init__( self :Any , lowercase_ :Iterable[torch.nn.Parameter] , lowercase_ :float = 0.9999 , lowercase_ :float = 0.0 , lowercase_ :int = 0 , lowercase_ :bool = False , lowercase_ :Union[float, int] = 1.0 , lowercase_ :Union[float, int] = 2 / 3 , lowercase_ :Optional[Any] = None , lowercase_ :Dict[str, Any] = None , **lowercase_ :Dict , ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCAmelCase = True if kwargs.get('max_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['max_value'] if kwargs.get('min_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['min_value'] UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = [p.clone().detach() for p in parameters] if kwargs.get('device' , lowercase_ ) is not None: UpperCAmelCase = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) self.to(device=kwargs['device'] ) UpperCAmelCase = None UpperCAmelCase = decay UpperCAmelCase = min_decay UpperCAmelCase = update_after_step UpperCAmelCase = use_ema_warmup UpperCAmelCase = inv_gamma UpperCAmelCase = power UpperCAmelCase = 0 UpperCAmelCase = None # set in `step()` UpperCAmelCase = model_cls UpperCAmelCase = model_config @classmethod def UpperCAmelCase__ ( cls :int , lowercase_ :Union[str, Any] , lowercase_ :Any ) -> "EMAModel": UpperCAmelCase , UpperCAmelCase = model_cls.load_config(lowercase_ , return_unused_kwargs=lowercase_ ) UpperCAmelCase = model_cls.from_pretrained(lowercase_ ) UpperCAmelCase = cls(model.parameters() , model_cls=lowercase_ , model_config=model.config ) ema_model.load_state_dict(lowercase_ ) return ema_model def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[str] ) -> int: if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) UpperCAmelCase = self.model_cls.from_config(self.model_config ) UpperCAmelCase = self.state_dict() state_dict.pop('shadow_params' , lowercase_ ) model.register_to_config(**lowercase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :int ) -> float: UpperCAmelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCAmelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCAmelCase = (1 + step) / (10 + step) UpperCAmelCase = min(lowercase_ , self.decay ) # make sure decay is not smaller than min_decay UpperCAmelCase = max(lowercase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() UpperCAmelCase = list(lowercase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCAmelCase = self.get_decay(self.optimization_step ) UpperCAmelCase = decay UpperCAmelCase = 1 - decay UpperCAmelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowercase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCAmelCase = deepspeed.zero.GatheredParameters(lowercase_ , modifier_rank=lowercase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowercase_ ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = list(lowercase_ ) for s_param, param in zip(self.shadow_params , lowercase_ ): param.data.copy_(s_param.to(param.device ).data ) def UpperCAmelCase__ ( self :Dict , lowercase_ :Tuple=None , lowercase_ :Union[str, Any]=None ) -> None: UpperCAmelCase = [ p.to(device=lowercase_ , dtype=lowercase_ ) if p.is_floating_point() else p.to(device=lowercase_ ) for p in self.shadow_params ] def UpperCAmelCase__ ( self :Union[str, Any] ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = [param.detach().cpu().clone() for param in parameters] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , lowercase_ ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCAmelCase = None def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :dict ) -> None: UpperCAmelCase = copy.deepcopy(lowercase_ ) UpperCAmelCase = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) UpperCAmelCase = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , lowercase_ ): raise ValueError('Invalid min_decay' ) UpperCAmelCase = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , lowercase_ ): raise ValueError('Invalid optimization_step' ) UpperCAmelCase = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , lowercase_ ): raise ValueError('Invalid update_after_step' ) UpperCAmelCase = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowercase_ ): raise ValueError('Invalid use_ema_warmup' ) UpperCAmelCase = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) UpperCAmelCase = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) UpperCAmelCase = state_dict.get('shadow_params' , lowercase_ ) if shadow_params is not None: UpperCAmelCase = shadow_params if not isinstance(self.shadow_params , lowercase_ ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(lowercase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
181
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class a__( unittest.TestCase ): def __init__( self : int , __snake_case : str , __snake_case : Dict=7 , __snake_case : int=3 , __snake_case : int=30 , __snake_case : Dict=4_00 , __snake_case : Optional[Any]=True , __snake_case : List[str]=None , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=[0.5, 0.5, 0.5] , __snake_case : Union[str, Any]=[0.5, 0.5, 0.5] , __snake_case : List[Any]=True , __snake_case : List[Any]=1 / 2_55 , __snake_case : Any=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p a : Tuple = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} a : str = parent a : Any = batch_size a : Any = num_channels a : Optional[Any] = min_resolution a : Tuple = max_resolution a : str = do_resize a : List[str] = size a : List[str] = do_normalize a : List[Any] = image_mean a : Tuple = image_std a : Optional[Any] = do_rescale a : Any = rescale_factor a : int = do_pad def lowercase_ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : List[str] , __snake_case : str , __snake_case : Tuple=False ): if not batched: a : List[Any] = image_inputs[0] if isinstance(__snake_case , Image.Image ): a , a : Dict = image.size else: a , a : Union[str, Any] = image.shape[1], image.shape[2] if w < h: a : Optional[Any] = int(self.size['shortest_edge'] * h / w ) a : Optional[int] = self.size['shortest_edge'] elif w > h: a : List[str] = self.size['shortest_edge'] a : Tuple = int(self.size['shortest_edge'] * w / h ) else: a : Any = self.size['shortest_edge'] a : str = self.size['shortest_edge'] else: a : str = [] for image in image_inputs: a , a : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a : Tuple = max(__snake_case , key=lambda __snake_case : item[0] )[0] a : Tuple = max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Optional[Any] ): a : Dict = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ): a : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , 'image_mean' ) ) self.assertTrue(hasattr(__snake_case , 'image_std' ) ) self.assertTrue(hasattr(__snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(__snake_case , 'do_resize' ) ) self.assertTrue(hasattr(__snake_case , 'size' ) ) def lowercase_ ( self : Dict ): a : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , __snake_case ) a : str = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__snake_case ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __snake_case ) def lowercase_ ( self : List[str] ): pass def lowercase_ ( self : List[Any] ): # Initialize image_processing a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input a : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values a , a : Optional[int] = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a , a : Union[str, Any] = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) a : Dict = image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Any ): # Initialize image_processing a : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input a : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values a , a : Any = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a : str = image_processing(__snake_case , return_tensors='pt' ).pixel_values a , a : Tuple = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Optional[int] ): # Initialize image_processing a : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input a : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values a , a : List[str] = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a : Optional[int] = image_processing(__snake_case , return_tensors='pt' ).pixel_values a , a : Any = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Optional[int] ): # Initialize image_processings a : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) a : Tuple = self.image_processing_class(do_resize=__snake_case , do_normalize=__snake_case , do_rescale=__snake_case ) # create random PyTorch tensors a : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors a : str = image_processing_a.pad(__snake_case , return_tensors='pt' ) a : Optional[Any] = image_processing_a(__snake_case , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ): # prepare image and target a : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: a : int = json.loads(f.read() ) a : Tuple = {'image_id': 3_97_69, 'annotations': target} # encode them a : str = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) a : Optional[Any] = image_processing(images=__snake_case , annotations=__snake_case , return_tensors='pt' ) # verify pixel values a : Dict = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , __snake_case ) a : Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __snake_case , atol=1e-4 ) ) # verify area a : Union[str, Any] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __snake_case ) ) # verify boxes a : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __snake_case ) a : Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __snake_case , atol=1e-3 ) ) # verify image_id a : Any = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __snake_case ) ) # verify is_crowd a : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __snake_case ) ) # verify class_labels a : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __snake_case ) ) # verify orig_size a : Any = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __snake_case ) ) # verify size a : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __snake_case ) ) @slow def lowercase_ ( self : List[str] ): # prepare image, target and masks_path a : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: a : List[str] = json.loads(f.read() ) a : Union[str, Any] = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} a : List[str] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them a : Union[str, Any] = YolosImageProcessor(format='coco_panoptic' ) a : int = image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors='pt' ) # verify pixel values a : int = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , __snake_case ) a : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __snake_case , atol=1e-4 ) ) # verify area a : List[Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __snake_case ) ) # verify boxes a : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __snake_case ) a : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __snake_case , atol=1e-3 ) ) # verify image_id a : str = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __snake_case ) ) # verify is_crowd a : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __snake_case ) ) # verify class_labels a : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __snake_case ) ) # verify masks a : Dict = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __snake_case ) # verify orig_size a : int = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __snake_case ) ) # verify size a : Optional[int] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __snake_case ) )
297
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowerCamelCase__ ( _A , _A ): if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
297
1
def _A ( lowerCAmelCase_ : int ): """simple docstring""" return str(lowerCAmelCase_ ) == str(lowerCAmelCase_ )[::-1] def _A ( lowerCAmelCase_ : int ): """simple docstring""" return int(lowerCAmelCase_ ) + int(str(lowerCAmelCase_ )[::-1] ) def _A ( lowerCAmelCase_ : int = 1_0000 ): """simple docstring""" lowerCAmelCase__ = [] for num in range(1 , lowerCAmelCase_ ): lowerCAmelCase__ = 0 lowerCAmelCase__ = num while iterations < 50: lowerCAmelCase__ = sum_reverse(lowerCAmelCase_ ) iterations += 1 if is_palindrome(lowerCAmelCase_ ): break else: lychrel_nums.append(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) if __name__ == "__main__": print(F"""{solution() = }""")
370
from math import pi, sqrt def _A ( lowerCAmelCase_ : float ): """simple docstring""" if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(lowerCAmelCase_ ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(lowerCAmelCase_ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _A ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCAmelCase_ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = 1.0 while num: UpperCamelCase = float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
221
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :int ) -> Dict: __SCREAMING_SNAKE_CASE : Dict = 0 def __magic_name__( self :Dict ) -> Any: __SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Tuple = Path(lowerCAmelCase__ ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : List[Any] = Path(lowerCAmelCase__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase__ , '''w''' ) ) __SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> str: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : str = Path(lowerCAmelCase__ ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : Optional[Any] = Path(lowerCAmelCase__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase__ , '''w''' ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :int ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : List[str] = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE : Tuple = Path(lowerCAmelCase__ ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : List[Any] = Path(lowerCAmelCase__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE : Any = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ).to_dict() config_dict.pop('''image_processor_type''' ) __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor(**lowerCAmelCase__ ) # save in new folder model_config.save_pretrained(lowerCAmelCase__ ) config.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE : List[str] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :str ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Tuple = Path(lowerCAmelCase__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase__ , '''w''' ) , ) __SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :int ) -> Union[str, Any]: with self.assertRaisesRegex( lowerCAmelCase__ , '''clip-base is not a local folder and is not a valid model identifier''' ): __SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __magic_name__( self :Dict ) -> Dict: with self.assertRaisesRegex( lowerCAmelCase__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __SCREAMING_SNAKE_CASE : Tuple = AutoImageProcessor.from_pretrained(lowerCAmelCase__ , revision='''aaaaaa''' ) def __magic_name__( self :Tuple ) -> List[str]: with self.assertRaisesRegex( lowerCAmelCase__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __magic_name__( self :Optional[Any] ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __magic_name__( self :Dict ) -> Tuple: try: AutoConfig.register('''custom''' , lowerCAmelCase__ ) AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Dict = Path(lowerCAmelCase__ ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : List[Any] = Path(lowerCAmelCase__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase__ , '''w''' ) ) __SCREAMING_SNAKE_CASE : List[str] = CustomImageProcessor.from_pretrained(lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __magic_name__( self :List[Any] ) -> int: class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = True try: AutoConfig.register('''custom''' , lowerCAmelCase__ ) AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(lowerCAmelCase__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
9
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = VideoMAEConfig() set_architecture_configs(lowerCamelCase__ , lowerCamelCase__ ) if "finetuned" not in model_name: A_ : Dict = False if "finetuned" in model_name: A_ : List[Any] = """huggingface/label-files""" if "kinetics" in model_name: A_ : Dict = 4_00 A_ : List[str] = """kinetics400-id2label.json""" elif "ssv2" in model_name: A_ : Tuple = 1_74 A_ : str = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) A_ : Dict = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) A_ : List[str] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} A_ : Optional[Any] = idalabel A_ : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if "small" in model_name: A_ : int = 3_84 A_ : Union[str, Any] = 15_36 A_ : List[str] = 12 A_ : Optional[int] = 16 A_ : Any = 12 A_ : int = 3 A_ : Optional[Any] = 1_92 A_ : Union[str, Any] = 7_68 elif "large" in model_name: A_ : List[Any] = 10_24 A_ : Optional[Any] = 40_96 A_ : Optional[Any] = 24 A_ : List[str] = 16 A_ : Any = 12 A_ : str = 8 A_ : str = 5_12 A_ : int = 20_48 elif "huge" in model_name: A_ : Optional[Any] = 12_80 A_ : str = 51_20 A_ : str = 32 A_ : int = 16 A_ : Any = 12 A_ : Union[str, Any] = 8 A_ : Dict = 6_40 A_ : Optional[Any] = 25_60 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def a ( lowerCamelCase__ ): '''simple docstring''' if "encoder." in name: A_ : List[Any] = name.replace("""encoder.""" , """""" ) if "cls_token" in name: A_ : List[str] = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: A_ : Tuple = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: A_ : int = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: A_ : Optional[Any] = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: A_ : Dict = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: A_ : List[str] = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: A_ : List[str] = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: A_ : str = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: A_ : str = name.replace("""attn""" , """attention.self""" ) if "attn" in name: A_ : Union[str, Any] = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: A_ : Any = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: A_ : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: A_ : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: A_ : List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: A_ : Optional[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: A_ : Tuple = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: A_ : Tuple = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: A_ : Dict = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: A_ : List[str] = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: A_ : Optional[Any] = name.replace("""head""" , """classifier""" ) return name def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A_ : str = orig_state_dict.pop(lowerCamelCase__ ) if key.startswith("""encoder.""" ): A_ : Tuple = key.replace("""encoder.""" , """""" ) if "qkv" in key: A_ : Optional[int] = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): A_ : Union[str, Any] = config.decoder_hidden_size A_ : Any = int(key_split[2] ) A_ : int = """decoder.decoder_layers.""" if "weight" in key: A_ : Optional[Any] = val[:dim, :] A_ : Any = val[dim : dim * 2, :] A_ : Dict = val[-dim:, :] else: A_ : List[Any] = config.hidden_size A_ : List[Any] = int(key_split[1] ) A_ : int = """videomae.encoder.layer.""" if "weight" in key: A_ : Any = val[:dim, :] A_ : Union[str, Any] = val[dim : dim * 2, :] A_ : List[str] = val[-dim:, :] else: A_ : Union[str, Any] = val return orig_state_dict def a ( ): '''simple docstring''' A_ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) A_ : Optional[Any] = np.load(lowerCamelCase__ ) return list(lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Any = get_videomae_config(lowerCamelCase__ ) if "finetuned" in model_name: A_ : List[str] = VideoMAEForVideoClassification(lowerCamelCase__ ) else: A_ : Optional[Any] = VideoMAEForPreTraining(lowerCamelCase__ ) # download original checkpoint, hosted on Google Drive A_ : Optional[Any] = """pytorch_model.bin""" gdown.cached_download(lowerCamelCase__ , lowerCamelCase__ , quiet=lowerCamelCase__ ) A_ : Any = torch.load(lowerCamelCase__ , map_location="""cpu""" ) if "model" in files: A_ : Any = files["""model"""] else: A_ : Dict = files["""module"""] A_ : Any = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify model on basic input A_ : int = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) A_ : Union[str, Any] = prepare_video() A_ : str = image_processor(lowerCamelCase__ , return_tensors="""pt""" ) if "finetuned" not in model_name: A_ : List[str] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) A_ : Optional[Any] = torch.load(lowerCamelCase__ ) A_ : Dict = model(**lowerCamelCase__ ) A_ : List[Any] = outputs.logits A_ : Any = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": A_ : str = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([-0.9_291, -0.4_061, -0.9_307] ) elif model_name == "videomae-small-finetuned-ssv2": A_ : str = torch.Size([1, 1_74] ) A_ : Union[str, Any] = torch.tensor([0.2_671, -0.4_689, -0.8_235] ) elif model_name == "videomae-base": A_ : Tuple = torch.Size([1, 14_08, 15_36] ) A_ : List[str] = torch.tensor([[0.7_739, 0.7_968, 0.7_089], [0.6_701, 0.7_487, 0.6_209], [0.4_287, 0.5_158, 0.4_773]] ) elif model_name == "videomae-base-short": A_ : Dict = torch.Size([1, 14_08, 15_36] ) A_ : List[str] = torch.tensor([[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] ) # we verified the loss both for normalized and unnormalized targets for this one A_ : List[Any] = torch.tensor([0.5_142] ) if config.norm_pix_loss else torch.tensor([0.6_469] ) elif model_name == "videomae-large": A_ : str = torch.Size([1, 14_08, 15_36] ) A_ : Dict = torch.tensor([[0.7_149, 0.7_997, 0.6_966], [0.6_768, 0.7_869, 0.6_948], [0.5_139, 0.6_221, 0.5_605]] ) elif model_name == "videomae-large-finetuned-kinetics": A_ : int = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([0.0_771, 0.0_011, -0.3_625] ) elif model_name == "videomae-huge-finetuned-kinetics": A_ : Union[str, Any] = torch.Size([1, 4_00] ) A_ : Optional[int] = torch.tensor([0.2_433, 0.1_632, -0.4_894] ) elif model_name == "videomae-base-short-finetuned-kinetics": A_ : List[Any] = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([0.6_588, 0.0_990, -0.2_493] ) elif model_name == "videomae-base-finetuned-kinetics": A_ : Union[str, Any] = torch.Size([1, 4_00] ) A_ : Tuple = torch.tensor([0.3_669, -0.0_688, -0.2_421] ) elif model_name == "videomae-base-short-ssv2": A_ : Optional[Any] = torch.Size([1, 14_08, 15_36] ) A_ : List[Any] = torch.tensor([[0.4_712, 0.5_296, 0.5_786], [0.2_278, 0.2_729, 0.4_026], [0.0_352, 0.0_730, 0.2_506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": A_ : Any = torch.Size([1, 1_74] ) A_ : Any = torch.tensor([-0.0_537, -0.1_539, -0.3_266] ) elif model_name == "videomae-base-ssv2": A_ : Dict = torch.Size([1, 14_08, 15_36] ) A_ : Dict = torch.tensor([[0.8_131, 0.8_727, 0.8_546], [0.7_366, 0.9_377, 0.8_870], [0.5_935, 0.8_874, 0.8_564]] ) elif model_name == "videomae-base-finetuned-ssv2": A_ : Any = torch.Size([1, 1_74] ) A_ : str = torch.tensor([0.1_961, -0.8_337, -0.6_389] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": A_ : Optional[int] = outputs.loss assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase__ , organization="""nielsr""" ) if __name__ == "__main__": lowerCamelCase :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase :Union[str, Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
206
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __A = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __A = typing.Union[np.floataa, int, float] # noqa: UP007 def __a ( lowerCAmelCase_ : Vector ,lowerCAmelCase_ : Vector ) -> VectorOut: '''simple docstring''' return np.sqrt(np.sum((np.asarray(lowerCAmelCase_ ) - np.asarray(lowerCAmelCase_ )) ** 2 ) ) def __a ( lowerCAmelCase_ : Vector ,lowerCAmelCase_ : Vector ) -> VectorOut: '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase_ ,lowerCAmelCase_ ) ) ** (1 / 2) if __name__ == "__main__": def __a ( ) -> None: '''simple docstring''' from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" ,number=1_00_00 ,globals=globals() ,) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" ,number=1_00_00 ,globals=globals() ,) ) benchmark()
277
__A = 6_5521 def __a ( lowerCAmelCase_ : str ) -> int: '''simple docstring''' UpperCAmelCase_= 1 UpperCAmelCase_= 0 for plain_chr in plain_text: UpperCAmelCase_= (a + ord(lowerCAmelCase_ )) % MOD_ADLER UpperCAmelCase_= (b + a) % MOD_ADLER return (b << 16) | a
277
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging a__ : Dict = logging.get_logger(__name__) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" try: with open(_lowerCamelCase , '''rb''' ) as flax_state_f: SCREAMING_SNAKE_CASE : Dict = from_bytes(_lowerCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(_lowerCamelCase ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE : Dict = flatten_dict(jax.tree_util.tree_map(lambda a__ : x.dtype == jnp.bfloataa , _lowerCamelCase ) ).values() if any(_lowerCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) SCREAMING_SNAKE_CASE : Optional[int] = jax.tree_util.tree_map( lambda a__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = "" SCREAMING_SNAKE_CASE : str = flatten_dict(_lowerCamelCase , sep='''.''' ) SCREAMING_SNAKE_CASE : Optional[int] = pt_model.state_dict() # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Optional[int] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE : Union[str, Any] = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: SCREAMING_SNAKE_CASE : List[str] = flax_key_tuple_array[:-1] + ["weight"] SCREAMING_SNAKE_CASE : Any = jnp.transpose(_lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": SCREAMING_SNAKE_CASE : int = flax_key_tuple_array[:-1] + ["weight"] SCREAMING_SNAKE_CASE : Dict = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": SCREAMING_SNAKE_CASE : Optional[Any] = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(_lowerCamelCase ): SCREAMING_SNAKE_CASE : str = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) SCREAMING_SNAKE_CASE : List[Any] = ".".join(_lowerCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE : int = np.asarray(_lowerCamelCase ) if not isinstance(_lowerCamelCase , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(_lowerCamelCase ) # remove from missing keys missing_keys.remove(_lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCamelCase ) pt_model.load_state_dict(_lowerCamelCase ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE : str = list(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(_lowerCamelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) return pt_model
313
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = '''hf-internal-testing/tiny-random-bert''' __A = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') __A = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Dict = cached_file(UpperCAmelCase , UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) ) with open(os.path.join(UpperCAmelCase , "refs" , "main" ) ) as f: __lowerCamelCase : Dict = f.read() self.assertEqual(UpperCAmelCase , os.path.join(UpperCAmelCase , "snapshots" , UpperCAmelCase , UpperCAmelCase ) ) self.assertTrue(os.path.isfile(UpperCAmelCase ) ) # File is cached at the same place the second time. __lowerCamelCase : Tuple = cached_file(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # Using a specific revision to test the full commit hash. __lowerCamelCase : List[str] = cached_file(UpperCAmelCase , UpperCAmelCase , revision="9b8c223" ) self.assertEqual(UpperCAmelCase , os.path.join(UpperCAmelCase , "snapshots" , UpperCAmelCase , UpperCAmelCase ) ) def lowerCamelCase__ ( self : List[str] ): with self.assertRaisesRegex(UpperCAmelCase , "is not a valid model identifier" ): __lowerCamelCase : Optional[Any] = cached_file("tiny-random-bert" , UpperCAmelCase ) with self.assertRaisesRegex(UpperCAmelCase , "is not a valid git identifier" ): __lowerCamelCase : Dict = cached_file(UpperCAmelCase , UpperCAmelCase , revision="aaaa" ) with self.assertRaisesRegex(UpperCAmelCase , "does not appear to have a file named" ): __lowerCamelCase : List[Any] = cached_file(UpperCAmelCase , "conf" ) def lowerCamelCase__ ( self : str ): with self.assertRaisesRegex(UpperCAmelCase , "does not appear to have a file named" ): __lowerCamelCase : Any = cached_file(UpperCAmelCase , "conf" ) with open(os.path.join(UpperCAmelCase , "refs" , "main" ) ) as f: __lowerCamelCase : List[str] = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase , ".no_exist" , UpperCAmelCase , "conf" ) ) ) __lowerCamelCase : List[str] = cached_file(UpperCAmelCase , "conf" , _raise_exceptions_for_missing_entries=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = cached_file(UpperCAmelCase , "conf" , local_files_only=UpperCAmelCase , _raise_exceptions_for_missing_entries=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) __lowerCamelCase : str = mock.Mock() __lowerCamelCase : Union[str, Any] = 500 __lowerCamelCase : Tuple = {} __lowerCamelCase : Dict = HTTPError __lowerCamelCase : Any = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase ) as mock_head: __lowerCamelCase : Any = cached_file(UpperCAmelCase , "conf" , _raise_exceptions_for_connection_errors=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase__ ( self : str ): self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase ) ) def lowerCamelCase__ ( self : Any ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , UpperCAmelCase , revision="ahaha" ) __lowerCamelCase : str = get_file_from_repo("bert-base-cased" , UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. __lowerCamelCase : Tuple = json.loads(open(UpperCAmelCase , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCamelCase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Union[str, Any] = Path(UpperCAmelCase ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase , "a.txt" ) , str(UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase , "b.txt" ) )
135
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] = 10_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =1, 1 _SCREAMING_SNAKE_CASE =2 while True: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =fa + fa _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =fa, f index += 1 for _ in str(a__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
361
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: """simple docstring""" if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_UpperCamelCase ) * abs(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
114
0
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowercase ( lowerCAmelCase__ : Dict[str, torch.Tensor] ) -> List[Any]: __a = [] __a = [] __a = [] for rt in rc.restypes: __a = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __a = {name: i for i, name in enumerate(snake_case__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) __a = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) __a = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) __a = torch.tensor( snake_case__ , dtype=torch.floataa , device=protein['''aatype'''].device , ) __a = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __a = restype_atomaa_to_atomaa[protein_aatype] __a = restype_atomaa_mask[protein_aatype] __a = residx_atomaa_mask __a = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __a = restype_atomaa_to_atomaa[protein_aatype] __a = residx_atomaa_to_atomaa.long() # create the corresponding mask __a = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): __a = rc.restype_atoa[restype_letter] __a = rc.residue_atoms[restype_name] for atom_name in atom_names: __a = rc.atom_order[atom_name] __a = 1 __a = restype_atomaa_mask[protein_aatype] __a = residx_atomaa_mask return protein def lowercase ( lowerCAmelCase__ : Dict[str, torch.Tensor] ) -> Any: __a = tree_map(lambda lowerCAmelCase__ : torch.tensor(snake_case__ , device=batch['''aatype'''].device ) , snake_case__ , np.ndarray ) __a = tensor_tree_map(lambda lowerCAmelCase__ : np.array(snake_case__ ) , make_atomaa_masks(snake_case__ ) ) return out
45
import os def a ( ): '''simple docstring''' lowercase_ = os.path.join(os.path.dirname(snake_case__ ) , '''num.txt''' ) with open(snake_case__ ) as file_hand: return str(sum(int(snake_case__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
30
0
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def snake_case_ (UpperCamelCase : int ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def snake_case_ (): '''simple docstring''' with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" _a = [1, 2, 3] with pytest.raises(UpperCamelCase ): with parallel_backend('''unsupported backend''' ): map_nested(UpperCamelCase , UpperCamelCase , num_proc=2 ) with pytest.raises(UpperCamelCase ): with parallel_backend('''unsupported backend''' ): map_nested(UpperCamelCase , UpperCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def snake_case_ (UpperCamelCase : str ): '''simple docstring''' _a = [1, 2] _a = {'''a''': 1, '''b''': 2} _a = {'''a''': [1, 2], '''b''': [3, 4]} _a = {'''a''': {'''1''': 1}, '''b''': 2} _a = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} _a = [2, 3] _a = {'''a''': 2, '''b''': 3} _a = {'''a''': [2, 3], '''b''': [4, 5]} _a = {'''a''': {'''1''': 2}, '''b''': 3} _a = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(UpperCamelCase , UpperCamelCase , num_proc=UpperCamelCase ) == expected_map_nested_sa assert map_nested(UpperCamelCase , UpperCamelCase , num_proc=UpperCamelCase ) == expected_map_nested_sa assert map_nested(UpperCamelCase , UpperCamelCase , num_proc=UpperCamelCase ) == expected_map_nested_sa assert map_nested(UpperCamelCase , UpperCamelCase , num_proc=UpperCamelCase ) == expected_map_nested_sa assert map_nested(UpperCamelCase , UpperCamelCase , num_proc=UpperCamelCase ) == expected_map_nested_sa
179
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _snake_case : int = get_tests_dir('fixtures') _snake_case : Tuple = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _snake_case : Optional[int] = get_tests_dir('fixtures/dummy-config.json') class A ( unittest.TestCase ): def __lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _a = 0 def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _a = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ).to_dict() config_dict.pop('''feature_extractor_type''' ) _a = WavaVecaFeatureExtractor(**lowerCAmelCase_ ) # save in new folder model_config.save_pretrained(lowerCAmelCase_ ) config.save_pretrained(lowerCAmelCase_ ) _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) # make sure private variable is not incorrectly saved _a = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): _a = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase_ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase_ ): _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCAmelCase_ ) _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCAmelCase_ ) _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" try: AutoConfig.register('''custom''' , lowerCAmelCase_ ) AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API _a = CustomFeatureExtractor.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCAmelCase_ ) _a = AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" class A ( _a ): lowercase_ = True try: AutoConfig.register('''custom''' , lowerCAmelCase_ ) AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # If remote code is not set, the default is to use local _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _a = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(lowerCAmelCase_ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
179
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = None A__ = BloomTokenizerFast A__ = BloomTokenizerFast A__ = True A__ = False A__ = '''tokenizer_file''' A__ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def lowerCamelCase__ (self : str ) -> int: """simple docstring""" super().setUp() lowercase__ = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ (self : List[str] , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.get_rust_tokenizer() lowercase__ = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] lowercase__ = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] lowercase__ = tokenizer.batch_encode_plus(_UpperCAmelCase )["""input_ids"""] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=6 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__ = """This is a simple input""" lowercase__ = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase__ = ("""This is a simple input""", """This is a pair""") lowercase__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) lowercase__ = None # Hotfixing padding = None self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" , ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.get_rust_tokenizer() lowercase__ = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=_UpperCAmelCase ) lowercase__ = next(iter(_UpperCAmelCase ) )["""premise"""] # pick up one data lowercase__ = list(sample_data.values() ) lowercase__ = list(map(tokenizer.encode , _UpperCAmelCase ) ) lowercase__ = [tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for x in output_tokens] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['DPTFeatureExtractor'] A : int = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
305
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class A__ ( unittest.TestCase ): lowercase = inspect.getfile(accelerate.test_utils ) lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) lowercase = ['accelerate', 'launch'] lowercase = Path.home() / '.cache/huggingface/accelerate' lowercase = 'default_config.yaml' lowercase = config_folder / config_file lowercase = config_folder / '_default_config.yaml' lowercase = Path('tests/test_configs' ) @classmethod def _lowerCamelCase ( cls : Dict ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _lowerCamelCase ( cls : List[Any] ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=a ): execute_subprocess_async( self.base_cmd + ['--config_file', str(a ), self.test_file_path] , env=os.environ.copy() ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class A__ ( unittest.TestCase ): lowercase = 'test-tpu' lowercase = 'us-central1-a' lowercase = 'ls' lowercase = ['accelerate', 'tpu-config'] lowercase = 'cd /usr/share' lowercase = 'tests/test_samples/test_command_file.sh' lowercase = 'Running gcloud compute tpus tpu-vm ssh' def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , a , ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , a , ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=a ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Any = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , a , ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , a , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Tuple = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , a , )
307
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
1
import numpy # List of input, output pairs UpperCAmelCase_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCAmelCase_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) UpperCAmelCase_ = [2, 4, 1, 5] UpperCAmelCase_ = len(train_data) UpperCAmelCase_ = 0.009 def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]="train" ): '''simple docstring''' return calculate_hypothesis_value(A__ , A__ ) - output( A__ , A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = 0 for i in range(len(A__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Dict ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase__ ( A__ : Dict , A__ : int ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase__ ( A__ : str , A__ : List[Any]=m ): '''simple docstring''' __lowerCamelCase = 0 for i in range(A__ ): if index == -1: summation_value += _error(A__ ) else: summation_value += _error(A__ ) * train_data[i][0][index] return summation_value def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = summation_of_cost_derivative(A__ , A__ ) / m return cost_derivative_value def lowerCamelCase__ ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCamelCase = 0.000_002 __lowerCamelCase = 0 __lowerCamelCase = 0 while True: j += 1 __lowerCamelCase = [0, 0, 0, 0] for i in range(0 , len(A__ ) ): __lowerCamelCase = get_cost_derivative(i - 1 ) __lowerCamelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( A__ , A__ , atol=A__ , rtol=A__ , ): break __lowerCamelCase = temp_parameter_vector print(("""Number of iterations:""", j) ) def lowerCamelCase__ ( ): '''simple docstring''' for i in range(len(A__ ) ): print(("""Actual output value:""", output(A__ , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(A__ , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
12
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): _A , _A : Any = np.shape(snake_case_ ) if rows != columns: _A : Optional[Any] = ( """'table' has to be of square shaped array but got a """ f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(snake_case_ ) _A : List[Any] = np.zeros((rows, columns) ) _A : Optional[int] = np.zeros((rows, columns) ) for i in range(snake_case_ ): for j in range(snake_case_ ): _A : Tuple = sum(lower[i][k] * upper[k][j] for k in range(snake_case_ ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) _A : Tuple = (table[i][j] - total) / upper[j][j] _A : Optional[int] = 1 for j in range(snake_case_,snake_case_ ): _A : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(snake_case_ ) ) _A : Optional[Any] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
343
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowerCAmelCase_ ( snake_case_ = "mumbai" ): _A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ): _A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
343
1
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ :str = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ :Dict = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase__ :Dict = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ :int = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCAmelCase__ :Optional[int] = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def lowerCAmelCase__ ( a__: Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = None # source code of `config_class` _UpperCAmelCase = inspect.getsource(lowercase__ ) _UpperCAmelCase = _re_checkpoint.findall(lowercase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): _UpperCAmelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = ckpt_name break return checkpoint def lowerCAmelCase__ ( ) -> str: '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCAmelCase = get_checkpoint_from_config_class(lowercase__ ) _UpperCAmelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowercase__ ) if len(lowercase__ ) > 0: _UpperCAmelCase = "\n".join(sorted(lowercase__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
329
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Optional[Any] = """mask2former""" a__ : Union[str, Any] = ["""swin"""] a__ : Dict = {"""hidden_size""": """hidden_dim"""} def __init__( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 1_024 , SCREAMING_SNAKE_CASE = "relu" , SCREAMING_SNAKE_CASE = 6 , SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 8 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 2_048 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = 4 , SCREAMING_SNAKE_CASE = 255 , SCREAMING_SNAKE_CASE = 100 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 2.0 , SCREAMING_SNAKE_CASE = 5.0 , SCREAMING_SNAKE_CASE = 5.0 , SCREAMING_SNAKE_CASE = 12_544 , SCREAMING_SNAKE_CASE = 3.0 , SCREAMING_SNAKE_CASE = 0.75 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = [4, 8, 16, 32] , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) snake_case : List[str] = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=SCREAMING_SNAKE_CASE , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : Tuple = backbone_config.pop("model_type" ) snake_case : Dict = CONFIG_MAPPING[backbone_model_type] snake_case : Optional[int] = config_class.from_dict(SCREAMING_SNAKE_CASE ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) snake_case : List[str] = backbone_config snake_case : Optional[int] = feature_size snake_case : Optional[int] = mask_feature_size snake_case : Optional[int] = hidden_dim snake_case : List[str] = encoder_feedforward_dim snake_case : Dict = activation_function snake_case : Optional[Any] = encoder_layers snake_case : Any = decoder_layers snake_case : Optional[int] = num_attention_heads snake_case : List[str] = dropout snake_case : List[Any] = dim_feedforward snake_case : Tuple = pre_norm snake_case : int = enforce_input_projection snake_case : str = common_stride snake_case : List[Any] = ignore_value snake_case : Optional[int] = num_queries snake_case : Optional[int] = no_object_weight snake_case : Dict = class_weight snake_case : Tuple = mask_weight snake_case : Tuple = dice_weight snake_case : Tuple = train_num_points snake_case : int = oversample_ratio snake_case : Dict = importance_sample_ratio snake_case : Tuple = init_std snake_case : Dict = init_xavier_std snake_case : List[Any] = use_auxiliary_loss snake_case : Dict = feature_strides snake_case : List[Any] = output_auxiliary_logits snake_case : Union[str, Any] = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase_ ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" return cls( backbone_config=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = copy.deepcopy(self.__dict__ ) snake_case : str = self.backbone_config.to_dict() snake_case : Optional[int] = self.__class__.model_type return output
148
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path __snake_case = '''src/transformers''' # Matches is_xxx_available() __snake_case = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} __snake_case = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __snake_case = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available __snake_case = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") __snake_case = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __snake_case = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", __snake_case = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], __snake_case = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo __snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: __snake_case = re.compile(r'''^\s*try:''') # Catches a line with else: __snake_case = re.compile(r'''^\s*else:''') def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" if _re_test_backend.search(_lowerCAmelCase ) is None: return None _a = [b[0] for b in _re_backend.findall(_lowerCAmelCase )] backends.sort() return "_and_".join(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" with open(_lowerCAmelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: _a = f.readlines() _a = 0 while line_index < len(_lowerCAmelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure _a = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _a = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_lowerCAmelCase ): _a = _re_one_line_import_struct.search(_lowerCAmelCase ).groups()[0] _a = re.findall('''\[([^\]]+)\]''', _lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _a = _re_import_struct_key_value.search(_lowerCAmelCase ) if single_line_import_search is not None: _a = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _a = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _a = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _a = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _a = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _a = lines[line_index] if _re_import_struct_add_one.search(_lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(_lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_lowerCAmelCase ) is not None: _a = _re_import_struct_add_many.search(_lowerCAmelCase ).groups()[0].split(''', ''' ) _a = [obj[1:-1] for obj in imports if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif _re_between_brackets.search(_lowerCAmelCase ) is not None: _a = _re_between_brackets.search(_lowerCAmelCase ).groups()[0].split(''', ''' ) _a = [obj[1:-1] for obj in imports if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif _re_quote_object.search(_lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(_lowerCAmelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _a = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _a = [] while ( line_index < len(_lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _a = lines[line_index] _a = _re_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _a = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. _a = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _a = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _a = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _a = lines[line_index] _a = _re_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _a = objects else: line_index += 1 return import_dict_objects, type_hint_objects def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Union[str, Any] ): """simple docstring""" def find_duplicates(_lowerCAmelCase : Dict ): return [k for k, v in collections.Counter(_lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _a = [] for key in import_dict_objects.keys(): _a = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) _a = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _a = '''base imports''' if key == '''none''' else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A_ ( ): """simple docstring""" _a = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: _a = os.path.join(_lowerCAmelCase, '''__init__.py''' ) _a = parse_init(_lowerCAmelCase ) if objects is not None: _a = analyze_results(*_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('''\n'''.join(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) > 0: raise ValueError('''\n\n'''.join(_lowerCAmelCase ) ) def A_ ( ): """simple docstring""" _a = [] for path, directories, files in os.walk(_lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_lowerCAmelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue _a = str((Path(_lowerCAmelCase ) / folder).relative_to(_lowerCAmelCase ) ) _a = short_path.replace(os.path.sep, '''.''' ) submodules.append(_lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue _a = str((Path(_lowerCAmelCase ) / fname).relative_to(_lowerCAmelCase ) ) _a = short_path.replace('''.py''', '''''' ).replace(os.path.sep, '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_lowerCAmelCase ) return submodules __snake_case = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def A_ ( ): """simple docstring""" _a = importlib.util.spec_from_file_location( '''transformers''', os.path.join(_lowerCAmelCase, '''__init__.py''' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _a = spec.loader.load_module() _a = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_lowerCAmelCase ) > 0: _a = '''\n'''.join(f'- {module}' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'{list_of_modules}\n' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
153
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = RobertaTokenizer A_ : Any = RobertaTokenizerFast A_ : Dict = True A_ : Tuple = {'cls_token': '<s>'} def _UpperCAmelCase ( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: _a = '''lower newer''' _a = '''lower newer''' return input_text, output_text def _UpperCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''lower newer''' _a = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a = tokenizer.tokenize(__UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__UpperCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__UpperCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _UpperCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained('''roberta-base''' ) _a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.encode( '''sequence builders''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() _a = '''Encode this sequence.''' _a = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing spaces after special tokens _a = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase )} ) # mask token has a left space _a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) _a = '''Encode <mask> sequence''' _a = '''Encode <mask>sequence''' _a = tokenizer.encode(__UpperCAmelCase ) _a = encoded.index(__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase ) _a = encoded.index(__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _a = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _a = '''A, <mask> AllenNLP sentence.''' _a = tokenizer_r.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) _a = tokenizer_p.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _UpperCAmelCase ( self ) -> Any: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __UpperCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __UpperCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _a = F'{text_of_1_token} {text_of_1_token}' _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , )
153
1
from math import pi, sqrt, tan def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float ) -> float: """simple docstring""" if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float ) -> float: """simple docstring""" if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) SCREAMING_SNAKE_CASE__ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(__UpperCamelCase , 2 ) * torus_radius * tube_radius def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) SCREAMING_SNAKE_CASE__ = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE__ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float ) -> float: """simple docstring""" if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : float ) -> float: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('''\nSurface Areas of various geometric shapes: \n''') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
219
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : str = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp __lowerCamelCase : Any = 5 __lowerCamelCase : Dict = 10 @require_sentencepiece @require_tokenizers class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = SpeechaTextTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def __a ( self : Tuple ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = sp.SentencePieceProcessor() spm_model.Load(_lowercase ) SCREAMING_SNAKE_CASE__ = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_lowercase ) )] SCREAMING_SNAKE_CASE__ = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ = Path(self.tmpdirname ) save_json(_lowercase , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowercase , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) SCREAMING_SNAKE_CASE__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """<pad>""" SCREAMING_SNAKE_CASE__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_lowercase ) , 10_01 ) def __a ( self : List[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [2_89, 50, 14, 1_74, 3_86] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""input_ids""": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class __snake_case ( unittest.TestCase ): lowerCAmelCase_ = "valhalla/s2t_mustc_multilinguial_medium" lowerCAmelCase_ = "C'est trop cool" lowerCAmelCase_ = "Esto es genial" @classmethod def __a ( cls : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __a ( self : Dict ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def __a ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def __a ( self : int ): """simple docstring""" self.assertIn(_lowercase , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ = [ES_CODE, 4, 16_01, 47, 76_47, 2] SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """fr""" SCREAMING_SNAKE_CASE__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _lowercase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE__ = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
219
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A__ : Dict = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(A__ ) A__ : List[Any] = -1 A__ : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A__ ) A__ : Dict = model.generate(A__ , max_new_tokens=10 , do_sample=A__ ) A__ : Tuple = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A__ : Dict = TextStreamer(A__ ) model.generate(A__ , max_new_tokens=10 , do_sample=A__ , streamer=A__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A__ : Optional[Any] = cs.out[:-1] self.assertEqual(A__ , A__ ) def __A ( self ): A__ : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A__ : List[str] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(A__ ) A__ : Optional[Any] = -1 A__ : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A__ ) A__ : Any = model.generate(A__ , max_new_tokens=10 , do_sample=A__ ) A__ : Any = tokenizer.decode(greedy_ids[0] ) A__ : List[Any] = TextIteratorStreamer(A__ ) A__ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} A__ : List[str] = Thread(target=model.generate , kwargs=A__ ) thread.start() A__ : List[Any] = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(A__ , A__ ) def __A ( self ): A__ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A__ : List[str] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(A__ ) A__ : List[Any] = -1 A__ : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A__ ) A__ : Optional[int] = model.generate(A__ , max_new_tokens=10 , do_sample=A__ ) A__ : Dict = greedy_ids[:, input_ids.shape[1] :] A__ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A__ : int = TextStreamer(A__ , skip_prompt=A__ ) model.generate(A__ , max_new_tokens=10 , do_sample=A__ , streamer=A__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A__ : List[Any] = cs.out[:-1] self.assertEqual(A__ , A__ ) def __A ( self ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them A__ : Tuple = AutoTokenizer.from_pretrained("""distilgpt2""" ) A__ : List[str] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(A__ ) A__ : int = -1 A__ : Optional[Any] = torch.ones((1, 5) , device=A__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: A__ : List[str] = TextStreamer(A__ , skip_special_tokens=A__ ) model.generate(A__ , max_new_tokens=1 , do_sample=A__ , streamer=A__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A__ : int = cs.out[:-1] # Remove the final "\n" A__ : Optional[Any] = tokenizer(A__ , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __A ( self ): A__ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A__ : List[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(A__ ) A__ : List[Any] = -1 A__ : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A__ ) A__ : Union[str, Any] = TextIteratorStreamer(A__ , timeout=0.0_0_1 ) A__ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} A__ : Dict = Thread(target=model.generate , kwargs=A__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(A__ ): A__ : Optional[int] = """""" for new_text in streamer: streamer_text += new_text
361
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=A__ ).to(A__ ) A__ : str = AutoTokenizer.from_pretrained("""google/mt5-small""" ) A__ : int = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids A__ : List[Any] = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids A__ : Union[str, Any] = model(input_ids.to(A__ ) , labels=labels.to(A__ ) ).loss A__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) A__ : Any = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
141
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: int = logging.get_logger(__name__) A__: Tuple = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str = "data2vec-vision" def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Dict=7_6_8 , SCREAMING_SNAKE_CASE :Dict=1_2 , SCREAMING_SNAKE_CASE :str=1_2 , SCREAMING_SNAKE_CASE :Dict=3_0_7_2 , SCREAMING_SNAKE_CASE :Tuple="gelu" , SCREAMING_SNAKE_CASE :Optional[int]=0.0 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE :List[Any]=0.02 , SCREAMING_SNAKE_CASE :Optional[int]=1e-12 , SCREAMING_SNAKE_CASE :str=2_2_4 , SCREAMING_SNAKE_CASE :Dict=1_6 , SCREAMING_SNAKE_CASE :Any=3 , SCREAMING_SNAKE_CASE :Any=False , SCREAMING_SNAKE_CASE :str=False , SCREAMING_SNAKE_CASE :Tuple=False , SCREAMING_SNAKE_CASE :int=False , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[Any]=0.1 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :Dict=[3, 5, 7, 1_1] , SCREAMING_SNAKE_CASE :Any=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :List[str]=0.4 , SCREAMING_SNAKE_CASE :Tuple=2_5_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=1 , SCREAMING_SNAKE_CASE :str=False , SCREAMING_SNAKE_CASE :Any=2_5_5 , **SCREAMING_SNAKE_CASE :Optional[Any] , ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _a : List[str] =hidden_size _a : Union[str, Any] =num_hidden_layers _a : Any =num_attention_heads _a : Optional[int] =intermediate_size _a : Optional[Any] =hidden_act _a : int =hidden_dropout_prob _a : Tuple =attention_probs_dropout_prob _a : Union[str, Any] =initializer_range _a : Dict =layer_norm_eps _a : int =image_size _a : Any =patch_size _a : Optional[int] =num_channels _a : Union[str, Any] =use_mask_token _a : Optional[Any] =use_absolute_position_embeddings _a : List[str] =use_relative_position_bias _a : int =use_shared_relative_position_bias _a : str =layer_scale_init_value _a : List[str] =drop_path_rate _a : Tuple =use_mean_pooling # decode head attributes (semantic segmentation) _a : Any =out_indices _a : int =pool_scales # auxiliary head attributes (semantic segmentation) _a : int =use_auxiliary_head _a : Optional[Any] =auxiliary_loss_weight _a : List[Any] =auxiliary_channels _a : List[str] =auxiliary_num_convs _a : Union[str, Any] =auxiliary_concat_input _a : List[Any] =semantic_loss_ignore_index class A__ ( UpperCAmelCase__ ): __UpperCamelCase : List[Any] = version.parse("1.11" ) @property def __UpperCAmelCase ( self :int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCAmelCase ( self :int ) -> float: '''simple docstring''' return 1e-4
276
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run a_ = True except (ImportError, AttributeError): a_ = object def __UpperCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): pass a_ = False a_ = logging.get_logger('transformers-cli/serving') def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Optional[Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__UpperCamelCase , args.host , args.port , args.workers ) class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): @staticmethod def _lowerCamelCase ( UpperCamelCase_ ) -> Tuple: __lowercase : Dict = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=UpperCamelCase_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=UpperCamelCase_ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=UpperCamelCase_ , default=88_88 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=UpperCamelCase_ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=UpperCamelCase_ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=UpperCamelCase_ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=UpperCamelCase_ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=UpperCamelCase_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: __lowercase : List[Any] = pipeline __lowercase : str = host __lowercase : List[str] = port __lowercase : str = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) __lowercase : int = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''POST'''] , ), ] , timeout=6_00 , ) def _lowerCamelCase ( self ) -> Union[str, Any]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def _lowerCamelCase ( self ) -> Tuple: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _lowerCamelCase ( self , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) ) -> Optional[int]: try: __lowercase : Any = self._pipeline.tokenizer.tokenize(UpperCamelCase_ ) if return_ids: __lowercase : Dict = self._pipeline.tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) return ServeTokenizeResult(tokens=UpperCamelCase_ , tokens_ids=UpperCamelCase_ ) else: return ServeTokenizeResult(tokens=UpperCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(UpperCamelCase_ )} ) def _lowerCamelCase ( self , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , ) -> Dict: try: __lowercase : Tuple = self._pipeline.tokenizer.decode(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return ServeDeTokenizeResult(model='''''' , text=UpperCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(UpperCamelCase_ )} ) async def _lowerCamelCase ( self , UpperCamelCase_=Body(UpperCamelCase_ , embed=UpperCamelCase_ ) ) -> Union[str, Any]: # Check we don't have empty string if len(UpperCamelCase_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __lowercase : Optional[Any] = self._pipeline(UpperCamelCase_ ) return ServeForwardResult(output=UpperCamelCase_ ) except Exception as e: raise HTTPException(5_00 , {'''error''': str(UpperCamelCase_ )} )
249
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase = { "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
1
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : def __init__( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]=13 , lowercase_ : Optional[int]=30 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : int=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : Dict=4 , lowercase_ : List[str]=37 , lowercase_ : List[str]="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Any=0.1 , lowercase_ : List[str]=10 , lowercase_ : Any=0.02 , lowercase_ : List[str]=None , lowercase_ : str=2 , ): lowercase_ : List[Any] = parent lowercase_ : Any = batch_size lowercase_ : Union[str, Any] = image_size lowercase_ : Tuple = patch_size lowercase_ : int = num_channels lowercase_ : str = is_training lowercase_ : Union[str, Any] = use_labels lowercase_ : Optional[int] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : int = hidden_act lowercase_ : str = hidden_dropout_prob lowercase_ : Union[str, Any] = attention_probs_dropout_prob lowercase_ : List[str] = type_sequence_label_size lowercase_ : Optional[int] = initializer_range lowercase_ : Tuple = scope lowercase_ : List[Any] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : int = (image_size // patch_size) ** 2 lowercase_ : Optional[int] = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : int = None if self.use_labels: lowercase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : int ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = ViTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ): lowercase_ : int = ViTForMaskedImageModeling(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Tuple = model(lowercase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ : List[str] = 1 lowercase_ : List[str] = ViTForMaskedImageModeling(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : str = model(lowercase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[str] ): lowercase_ : Dict = self.type_sequence_label_size lowercase_ : Any = ViTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : int = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : int = 1 lowercase_ : Optional[Any] = ViTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : str = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Dict = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Union[str, Any] = config_and_inputs lowercase_ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase__ = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Any = ViTModelTester(self ) lowercase_ : str = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[str] = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[str] = model_class(lowercase_ ) lowercase_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Optional[Any] = [*signature.parameters.keys()] lowercase_ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[Any] = ViTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowerCamelCase ( ) -> str: lowercase_ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Any ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Any = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(lowercase_ ) lowercase_ : Optional[Any] = self.default_image_processor lowercase_ : List[Any] = prepare_img() lowercase_ : str = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : int = model(**lowercase_ ) # verify the logits lowercase_ : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase_ : List[str] = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : str ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. lowercase_ : Optional[int] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(lowercase_ ) lowercase_ : str = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=480 ) lowercase_ : Optional[int] = prepare_img() lowercase_ : int = image_processor(images=lowercase_ , return_tensors="""pt""" ) lowercase_ : Union[str, Any] = inputs.pixel_values.to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : Any = model(lowercase_ , interpolate_pos_encoding=lowercase_ ) # verify the logits lowercase_ : List[Any] = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase_ ) lowercase_ : Optional[Any] = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase_ : Optional[Any] = self.default_image_processor lowercase_ : Optional[Any] = prepare_img() lowercase_ : Union[str, Any] = image_processor(images=lowercase_ , return_tensors="""pt""" ) lowercase_ : Union[str, Any] = inputs.pixel_values.to(lowercase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ : Optional[Any] = model(lowercase_ )
239
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowercase : List[str] = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowercase : Tuple = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _lowercase : Optional[int] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class __magic_name__ ( datasets.Metric): def SCREAMING_SNAKE_CASE_ ( self : int ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , ): lowercase_ : int = len(references[0] ) if any(len(lowercase_ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase_ : Optional[int] = [[refs[i] for refs in references] for i in range(lowercase_ )] lowercase_ : List[str] = TER( normalized=lowercase_ , no_punct=lowercase_ , asian_support=lowercase_ , case_sensitive=lowercase_ , ) lowercase_ : List[str] = sb_ter.corpus_score(lowercase_ , lowercase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
239
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a__ = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( __a : Optional[int] ) -> str: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def __UpperCAmelCase ( __a : Optional[int] ) -> str: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _a : Union[str, Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__a ,id=__a )
355
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = '▁' UpperCAmelCase__ : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} UpperCAmelCase__ : Any = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } UpperCAmelCase__ : Tuple = {'vinai/bartpho-syllable': 1024} class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]="<s>" , lowerCAmelCase_ : Tuple="</s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : Optional[int]="<unk>" , lowerCAmelCase_ : Optional[int]="<pad>" , lowerCAmelCase_ : Optional[int]="<mask>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it _A: Union[str, Any] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token _A: Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) _A: int = vocab_file _A: Optional[Any] = monolingual_vocab_file _A: List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A: Dict = {} _A: Dict = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCAmelCase_ ) not in self.fairseq_tokens_to_ids: _A: str = cnt cnt += 1 with open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A: Optional[Any] = line.strip().split()[0] _A: Union[str, Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCAmelCase_ ) not in self.fairseq_tokens_to_ids: _A: Optional[int] = len(self.fairseq_tokens_to_ids ) _A: Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ): """simple docstring""" _A: Optional[int] = self.__dict__.copy() _A: str = None _A: List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A: str = {} _A: str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __magic_name__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A: Union[str, Any] = [self.cls_token_id] _A: int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def __magic_name__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" _A: Optional[int] = [self.sep_token_id] _A: Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Any = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self : List[str] , lowerCAmelCase_ : str ): """simple docstring""" return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __magic_name__ ( self : int , lowerCAmelCase_ : Any ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: Optional[Any] = ''''''.join(lowerCAmelCase_ ).replace(lowerCAmelCase_ , ''' ''' ).strip() return out_string def __magic_name__ ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Optional[int] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , '''wb''' ) as fi: _A: Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCAmelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(lowerCAmelCase_ )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
121
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ : Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCamelCase__ ( a , a , a=8 ) -> List[Any]: _A: int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A: str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase__ ( a , a=5_12 , a=5_12 ) -> Dict: _A: Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _A: Tuple = np.array(pil_image.convert('''RGB''' ) ) _A: List[str] = arr.astype(np.floataa ) / 127.5 - 1 _A: Tuple = np.transpose(a , [2, 0, 1] ) _A: Any = torch.from_numpy(a ).unsqueeze(0 ) return image class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , movq=lowerCAmelCase_ , ) _A: List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" # get the original timestep using init_timestep _A: Union[str, Any] = min(int(num_inference_steps * strength ) , lowerCAmelCase_ ) _A: str = max(num_inference_steps - init_timestep , 0 ) _A: str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_ )}""" ) _A: Optional[int] = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _A: Union[str, Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _A: Optional[int] = image else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase_ ) ] _A: Optional[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) else: _A: Optional[int] = self.movq.encode(lowerCAmelCase_ ).latent_dist.sample(lowerCAmelCase_ ) _A: int = self.movq.config.scaling_factor * init_latents _A: Optional[Any] = torch.cat([init_latents] , dim=0 ) _A: Any = init_latents.shape _A: Optional[Any] = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) # get latents _A: Union[str, Any] = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[str] = init_latents return latents def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _A: Any = torch.device(F"""cuda:{gpu_id}""" ) _A: int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Any=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _A: Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowerCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A: int = None for cpu_offloaded_model in [self.unet, self.movq]: _A , _A: List[Any] = cpu_offload_with_hook(lowerCAmelCase_ , lowerCAmelCase_ , prev_module_hook=lowerCAmelCase_ ) # We'll offload the last model manually. _A: Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __magic_name__ ( self : List[Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase_ ) def __call__( self : Optional[Any] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : float = 0.3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Any = self._execution_device _A: Any = guidance_scale > 1.0 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Any = torch.cat(lowerCAmelCase_ , dim=0 ) _A: int = image_embeds.shape[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: Dict = torch.cat(lowerCAmelCase_ , dim=0 ) if do_classifier_free_guidance: _A: Any = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) _A: str = negative_image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) _A: Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase_ ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A: List[str] = [image] if not all(isinstance(lowerCAmelCase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(lowerCAmelCase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _A: List[str] = torch.cat([prepare_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i in image] , dim=0 ) _A: Tuple = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase_ ) _A: Optional[Any] = self.movq.encode(lowerCAmelCase_ )['''latents'''] _A: Optional[int] = latents.repeat_interleave(lowerCAmelCase_ , dim=0 ) self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_ ) _A , _A: List[Any] = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: Dict = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _A , _A: Optional[int] = downscale_height_and_width(lowerCAmelCase_ , lowerCAmelCase_ , self.movq_scale_factor ) _A: Any = self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_ ) for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _A: Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A: str = {'''image_embeds''': image_embeds} _A: Optional[int] = self.unet( sample=lowerCAmelCase_ , timestep=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , added_cond_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] if do_classifier_free_guidance: _A , _A: str = noise_pred.split(latents.shape[1] , dim=1 ) _A , _A: int = noise_pred.chunk(2 ) _A , _A: int = variance_pred.chunk(2 ) _A: Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A: List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A , _A: Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A: Any = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ , )[0] # post-processing _A: Tuple = self.movq.decode(lowerCAmelCase_ , force_not_quantize=lowerCAmelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _A: int = image * 0.5 + 0.5 _A: Any = image.clamp(0 , 1 ) _A: Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A: Union[str, Any] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
121
1
import os from collections.abc import Iterator def snake_case( __magic_name__ = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__magic_name__ ): lowercase : Tuple = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__magic_name__ )[1] in (".py", ".ipynb"): yield os.path.join(__magic_name__ , __magic_name__ ).lstrip('''./''' ) def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' return F"""{i * ' '}*""" if i else "\n##" def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Dict = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__magic_name__ ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(__magic_name__ )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def snake_case( __magic_name__ = "." ) -> None: '''simple docstring''' lowercase : str = '''''' for filepath in sorted(good_file_paths(__magic_name__ ) ): lowercase , lowercase : Optional[int] = os.path.split(__magic_name__ ) if filepath != old_path: lowercase : str = print_path(__magic_name__ , __magic_name__ ) lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase : Optional[Any] = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) lowercase : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F"""{md_prefix(__magic_name__ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
116
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' lowerCAmelCase_ = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' lowerCAmelCase_ = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def __a ( self : List[Any] ) -> int: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def __a ( self : Any , _A : Dict , _A : Any , _A : Any=None , _A : Any="uniform_average" , _A : Optional[Any]=True ) -> Dict: """simple docstring""" lowercase : Any = mean_squared_error( _A , _A , sample_weight=_A , multioutput=_A , squared=_A ) return {"mse": mse}
116
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCAmelCase__ ( UpperCAmelCase_ : NDArray[floataa] , UpperCAmelCase_ : NDArray[floataa] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , ) -> list[float]: __lowerCamelCase , __lowerCamelCase : Optional[int] = coefficient_matrix.shape __lowerCamelCase , __lowerCamelCase : Dict = constant_matrix.shape if rowsa != colsa: __lowerCamelCase : Union[str, Any] = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(UpperCAmelCase_ ) if colsa != 1: __lowerCamelCase : int = F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(UpperCAmelCase_ ) if rowsa != rowsa: __lowerCamelCase : Tuple = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) != rowsa: __lowerCamelCase : Optional[Any] = ( 'Number of initial values must be equal to number of rows in coefficient ' F'matrix but received {len(UpperCAmelCase_ )} and {rowsa}' ) raise ValueError(UpperCAmelCase_ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) __lowerCamelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __lowerCamelCase , __lowerCamelCase : Dict = table.shape strictly_diagonally_dominant(UpperCAmelCase_ ) # Iterates the whole matrix for given number of times for _ in range(UpperCAmelCase_ ): __lowerCamelCase : Optional[int] = [] for row in range(UpperCAmelCase_ ): __lowerCamelCase : Any = 0 for col in range(UpperCAmelCase_ ): if col == row: __lowerCamelCase : Union[str, Any] = table[row][col] elif col == cols - 1: __lowerCamelCase : Optional[int] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __lowerCamelCase : Union[str, Any] = (temp + val) / denom new_val.append(UpperCAmelCase_ ) __lowerCamelCase : Optional[Any] = new_val return [float(UpperCAmelCase_ ) for i in new_val] def UpperCAmelCase__ ( UpperCAmelCase_ : NDArray[floataa] ) -> bool: __lowerCamelCase , __lowerCamelCase : Optional[int] = table.shape __lowerCamelCase : str = True for i in range(0 , UpperCAmelCase_ ): __lowerCamelCase : int = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
185
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
185
1
'''simple docstring''' from __future__ import annotations def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> bool: if len(_snake_case ) == 0: return False snake_case__ : Dict = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": __a = input("Enter numbers separated by comma:\n").strip() __a = [int(item.strip()) for item in user_input.split(",")] __a = int(input("Enter the number to be found in the list:\n").strip()) __a = "" if binary_search(sequence, target) else "not " print(F"{target} was {not_str}found in {sequence}")
369
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCAmelCase_ : """simple docstring""" def lowerCamelCase ( self : Optional[Any] , snake_case_ : Optional[int] ): raise NotImplementedError() def lowerCamelCase ( self : Optional[int] ): raise NotImplementedError() class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Tuple , snake_case_ : "AutoTokenizer" , snake_case_ : bool = False , **snake_case_ : Tuple ): snake_case__ : Tuple = tokenizer snake_case__ : List[str] = skip_prompt snake_case__ : Optional[int] = decode_kwargs # variables used in the streaming process snake_case__ : Optional[int] = [] snake_case__ : Optional[int] = 0 snake_case__ : List[Any] = True def lowerCamelCase ( self : List[str] , snake_case_ : int ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: snake_case__ : Optional[Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: snake_case__ : List[Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) snake_case__ : Tuple = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): snake_case__ : int = text[self.print_len :] snake_case__ : Optional[int] = [] snake_case__ : int = 0 # If the last token is a CJK character, we print the characters. elif len(snake_case_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): snake_case__ : str = text[self.print_len :] self.print_len += len(snake_case_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: snake_case__ : Dict = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(snake_case_ ) self.on_finalized_text(snake_case_ ) def lowerCamelCase ( self : int ): # Flush the cache, if it exists if len(self.token_cache ) > 0: snake_case__ : Union[str, Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) snake_case__ : Optional[Any] = text[self.print_len :] snake_case__ : Tuple = [] snake_case__ : int = 0 else: snake_case__ : int = """""" snake_case__ : Union[str, Any] = True self.on_finalized_text(snake_case_ , stream_end=snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : str , snake_case_ : bool = False ): print(snake_case_ , flush=snake_case_ , end="""""" if not stream_end else None ) def lowerCamelCase ( self : int , snake_case_ : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Optional[int] , snake_case_ : "AutoTokenizer" , snake_case_ : bool = False , snake_case_ : Optional[float] = None , **snake_case_ : List[Any] ): super().__init__(snake_case_ , snake_case_ , **snake_case_ ) snake_case__ : Dict = Queue() snake_case__ : List[Any] = None snake_case__ : int = timeout def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : bool = False ): self.text_queue.put(snake_case_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : List[str] ): return self def lowerCamelCase ( self : str ): snake_case__ : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
43
0
'''simple docstring''' import datasets from .evaluate import evaluate _lowerCamelCase : List[str] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _lowerCamelCase : List[Any] = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _lowerCamelCase : Dict = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def A (self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def A (self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): A = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase ) return score
258
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(A__ ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Tuple , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[str] ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A (self : Any , _lowerCAmelCase : str=None ): A = {} if top_k is not None: A = top_k return {}, {}, postprocess_params def __call__(self : str , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : int ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def A (self : List[str] , _lowerCAmelCase : List[Any] ): A = load_image(_lowerCAmelCase ) A = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A (self : Union[str, Any] , _lowerCAmelCase : Optional[int] ): A = self.model(**_lowerCAmelCase ) return model_outputs def A (self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int=5 ): if top_k > self.model.config.num_labels: A = self.model.config.num_labels if self.framework == "pt": A = model_outputs.logits.softmax(-1 )[0] A , A = probs.topk(_lowerCAmelCase ) elif self.framework == "tf": A = stable_softmax(model_outputs.logits , axis=-1 )[0] A = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase ) A , A = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) A = scores.tolist() A = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCAmelCase , _lowerCAmelCase )]
258
1
'''simple docstring''' import argparse import os import re _snake_case : List[str] = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _snake_case : Any = re.compile(R'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings _snake_case : List[str] = re.compile(R'\s*\(\s*"(\S[^"]+)"') def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool = False ): '''simple docstring''' with open(UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f: _a = f.read() _a = content.split('''\n''' ) _a = [] _a = 0 while line_idx < len(UpperCamelCase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _a = len(re.search(R'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 _a = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _a = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _a = sorted(UpperCamelCase , key=lambda UpperCamelCase : _re_identifier.search(UpperCamelCase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(UpperCamelCase ) ) elif "\n".join(UpperCamelCase ) != content: return True def snake_case_ (UpperCamelCase : bool = False ): '''simple docstring''' _a = [os.path.join(UpperCamelCase , UpperCamelCase ) for f in os.listdir(UpperCamelCase ) if f.endswith('''.py''' )] _a = [sort_auto_mapping(UpperCamelCase , overwrite=UpperCamelCase ) for fname in fnames] if not overwrite and any(UpperCamelCase ): _a = [f for f, d in zip(UpperCamelCase , UpperCamelCase ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(UpperCamelCase )}. Run `make style` to fix' ''' this.''' ) if __name__ == "__main__": _snake_case : Tuple = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _snake_case : Tuple = parser.parse_args() sort_all_auto_mappings(not args.check_only)
179
'''simple docstring''' from __future__ import annotations def snake_case_ (UpperCamelCase : list[int] ): '''simple docstring''' if not nums: return 0 _a = nums[0] _a = 0 for num in nums[1:]: _a , _a = ( max_excluding + num, max(UpperCamelCase , UpperCamelCase ), ) return max(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
179
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """sentencepiece.model"""} lowerCamelCase__ = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } lowerCamelCase__ = { """google/rembert""": 256, } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Tuple =VOCAB_FILES_NAMES __lowerCamelCase : str =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , __lowercase : List[str] , __lowercase : Dict=False , __lowercase : List[Any]=True , __lowercase : str=True , __lowercase : int="[CLS]" , __lowercase : List[str]="[SEP]" , __lowercase : Dict="[UNK]" , __lowercase : str="[SEP]" , __lowercase : Any="[PAD]" , __lowercase : Tuple="[CLS]" , __lowercase : str="[MASK]" , **__lowercase : Dict , ): '''simple docstring''' super().__init__( do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = spm.SentencePieceProcessor() self.sp_model.Load(__lowercase ) @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : Tuple , __lowercase : Any ): '''simple docstring''' __a = d __a = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : str , __lowercase : Optional[int] , __lowercase : Optional[int]=False ): '''simple docstring''' __a = self.sp_model.EncodeAsPieces(__lowercase ) return pieces def UpperCamelCase_ ( self : str , __lowercase : Optional[Any] ): '''simple docstring''' return self.sp_model.PieceToId(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : Optional[Any] ): '''simple docstring''' return self.sp_model.IdToPiece(__lowercase ) def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Tuple ): '''simple docstring''' __a = self.sp_model.decode_pieces(__lowercase ) return out_string def UpperCamelCase_ ( self : List[str] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : int , __lowercase : List[int] , __lowercase : Optional[List[int]] = None , __lowercase : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1] def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowercase ): logger.error("""Vocabulary path ({}) should be a directory""".format(__lowercase ) ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
302
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ): '''simple docstring''' super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = additional_embeddings __a = time_embed_dim or inner_dim __a = embedding_proj_dim or embedding_dim __a = clip_embed_dim or embedding_dim __a = Timesteps(__lowercase , __lowercase , 0 ) __a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) if embedding_proj_norm_type is None: __a = None elif embedding_proj_norm_type == "layer": __a = nn.LayerNorm(__lowercase ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __a = nn.Linear(__lowercase , __lowercase ) if encoder_hid_proj_type is None: __a = None elif encoder_hid_proj_type == "linear": __a = nn.Linear(__lowercase , __lowercase ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) ) if added_emb_type == "prd": __a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) ) elif added_emb_type is None: __a = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __a = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , ) for d in range(__lowercase ) ] ) if norm_in_type == "layer": __a = nn.LayerNorm(__lowercase ) elif norm_in_type is None: __a = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) __a = nn.LayerNorm(__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) __a = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __a = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = {} def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ): if hasattr(__lowercase , """set_processor""" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __a = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ): if hasattr(__lowercase , """set_processor""" ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ): '''simple docstring''' __a = hidden_states.shape[0] __a = timestep if not torch.is_tensor(__lowercase ): __a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device ) __a = self.time_proj(__lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a = timesteps_projected.to(dtype=self.dtype ) __a = self.time_embedding(__lowercase ) if self.embedding_proj_norm is not None: __a = self.embedding_proj_norm(__lowercase ) __a = self.embedding_proj(__lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a = self.encoder_hidden_states_proj(__lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __a = self.proj_in(__lowercase ) __a = self.positional_embedding.to(hidden_states.dtype ) __a = [] __a = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a = hidden_states[:, None, :] __a = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 ) additional_embeds.append(__lowercase ) __a = torch.cat( __lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a = F.pad( __lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a = hidden_states + positional_embeddings if attention_mask is not None: __a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 ) __a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a = self.norm_in(__lowercase ) for block in self.transformer_blocks: __a = block(__lowercase , attention_mask=__lowercase ) __a = self.norm_out(__lowercase ) if self.prd_embedding is not None: __a = hidden_states[:, -1] else: __a = hidden_states[:, additional_embeddings_len:] __a = self.proj_to_clip_embeddings(__lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Tuple ): '''simple docstring''' __a = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
302
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _lowerCamelCase : Any = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') _lowerCamelCase : Any = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _lowerCamelCase : Optional[int] = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _lowerCamelCase : str = sorted(arg_to_scheduler.keys()) _lowerCamelCase : Dict = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class lowercase ( pl.LightningModule ): def __init__( self : int , _UpperCamelCase : argparse.Namespace , _UpperCamelCase : int=None , _UpperCamelCase : Union[str, Any]="base" , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Optional[Any]=None , **_UpperCamelCase : Dict , ) -> List[Any]: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = Path(self.hparams.output_dir ) SCREAMING_SNAKE_CASE = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=_UpperCamelCase , **_UpperCamelCase , ) else: SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , _UpperCamelCase , _UpperCamelCase ): assert hasattr(self.config , _UpperCamelCase ), F"model config doesn't have a `{p}` attribute" setattr(self.config , _UpperCamelCase , getattr(self.hparams , _UpperCamelCase ) ) if tokenizer is None: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_UpperCamelCase , ) else: SCREAMING_SNAKE_CASE = tokenizer SCREAMING_SNAKE_CASE = MODEL_MODES[mode] if model is None: SCREAMING_SNAKE_CASE = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_UpperCamelCase , ) else: SCREAMING_SNAKE_CASE = model def __snake_case( self : Optional[Any] , *_UpperCamelCase : List[Any] , **_UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_type.from_pretrained(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = arg_to_scheduler[self.hparams.lr_scheduler] SCREAMING_SNAKE_CASE = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) SCREAMING_SNAKE_CASE = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def __snake_case( self : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model SCREAMING_SNAKE_CASE = ["bias", "LayerNorm.weight"] SCREAMING_SNAKE_CASE = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: SCREAMING_SNAKE_CASE = Adafactor( _UpperCamelCase , lr=self.hparams.learning_rate , scale_parameter=_UpperCamelCase , relative_step=_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = AdamW( _UpperCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) SCREAMING_SNAKE_CASE = optimizer SCREAMING_SNAKE_CASE = self.get_lr_scheduler() return [optimizer], [scheduler] def __snake_case( self : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' return self.validation_step(_UpperCamelCase , _UpperCamelCase ) def __snake_case( self : Optional[Any] , _UpperCamelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.validation_end(_UpperCamelCase ) def __snake_case( self : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores SCREAMING_SNAKE_CASE = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __snake_case( self : Any , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' if stage == "test": SCREAMING_SNAKE_CASE = len(self.test_dataloader().dataset ) else: SCREAMING_SNAKE_CASE = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=_UpperCamelCase ) SCREAMING_SNAKE_CASE = len(self.train_dataloader().dataset ) def __snake_case( self : Dict , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : bool = False ) -> Optional[int]: '''simple docstring''' raise NotImplementedError("You must implement this for your task" ) def __snake_case( self : Any ) -> str: '''simple docstring''' return self.train_loader def __snake_case( self : str ) -> int: '''simple docstring''' return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=_UpperCamelCase ) def __snake_case( self : Dict ) -> Union[str, Any]: '''simple docstring''' return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=_UpperCamelCase ) def __snake_case( self : List[Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( _UpperCamelCase , list(filter(_UpperCamelCase , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __snake_case( self : Optional[int] , _UpperCamelCase : Dict[str, Any] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = self.output_dir.joinpath("best_tfmr" ) SCREAMING_SNAKE_CASE = self.step_count self.model.save_pretrained(_UpperCamelCase ) self.tokenizer.save_pretrained(_UpperCamelCase ) @staticmethod def __snake_case( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' parser.add_argument( "--model_name_or_path" , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=_UpperCamelCase , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=_UpperCamelCase , type=_UpperCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(_UpperCamelCase ).parent / "test_run" / "cache" ) , type=_UpperCamelCase , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=_UpperCamelCase , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=_UpperCamelCase , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=_UpperCamelCase , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=_UpperCamelCase , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=_UpperCamelCase , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=_UpperCamelCase , metavar=_UpperCamelCase , type=_UpperCamelCase , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=_UpperCamelCase , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=_UpperCamelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=_UpperCamelCase , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=_UpperCamelCase , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=_UpperCamelCase ) parser.add_argument("--train_batch_size" , default=32 , type=_UpperCamelCase ) parser.add_argument("--eval_batch_size" , default=32 , type=_UpperCamelCase ) parser.add_argument("--adafactor" , action="store_true" ) class lowercase ( pl.Callback ): def __snake_case( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any ) -> Tuple: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowercase ( pl.Callback ): def __snake_case( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_UpperCamelCase ) class lowercase ( pl.Callback ): def __snake_case( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = trainer.lr_schedulers[0]["scheduler"] SCREAMING_SNAKE_CASE = {F"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_UpperCamelCase ) def __snake_case( self : str , _UpperCamelCase : pl.Trainer , _UpperCamelCase : pl.LightningModule ) -> List[str]: '''simple docstring''' rank_zero_info("***** Validation results *****" ) SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log results for key in sorted(_UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(_UpperCamelCase , str(metrics[key] ) ) ) def __snake_case( self : List[Any] , _UpperCamelCase : pl.Trainer , _UpperCamelCase : pl.LightningModule ) -> Dict: '''simple docstring''' rank_zero_info("***** Test results *****" ) SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log and save results to file SCREAMING_SNAKE_CASE = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(_UpperCamelCase , "w" ) as writer: for key in sorted(_UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(_UpperCamelCase , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(_UpperCamelCase , str(metrics[key] ) ) ) def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir" , default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "model_checkpoints" ) , type=UpperCAmelCase__ , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=UpperCAmelCase__ , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=UpperCAmelCase__ ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=UpperCAmelCase__ , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=UpperCAmelCase__ , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=UpperCAmelCase__ , default=4_2 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-train-data" ) , type=UpperCAmelCase__ , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def __lowerCamelCase (UpperCAmelCase__ : BaseTransformer , UpperCAmelCase__ : argparse.Namespace , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[str]=[] , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Optional[Any]=None , **UpperCAmelCase__ : Union[str, Any] , ): pl.seed_everything(args.seed ) # init model SCREAMING_SNAKE_CASE = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=UpperCAmelCase__ ) # add custom checkpoints if checkpoint_callback is None: SCREAMING_SNAKE_CASE = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(UpperCAmelCase__ ) if logging_callback is None: SCREAMING_SNAKE_CASE = LoggingCallback() SCREAMING_SNAKE_CASE = {} if args.fpaa: SCREAMING_SNAKE_CASE = 1_6 if args.gpus > 1: SCREAMING_SNAKE_CASE = "auto" SCREAMING_SNAKE_CASE = "ddp" SCREAMING_SNAKE_CASE = args.accumulate_grad_batches SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = "auto" SCREAMING_SNAKE_CASE = pl.Trainer.from_argparse_args( UpperCAmelCase__ , weights_summary=UpperCAmelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=UpperCAmelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **UpperCAmelCase__ , ) if args.do_train: trainer.fit(UpperCAmelCase__ ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
206
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowercase : lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : torch.Tensor # [batch_size x 3] lowercase__ : int lowercase__ : int lowercase__ : float lowercase__ : float lowercase__ : Tuple[int] def __snake_case( self : str ) -> Dict: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __snake_case( self : int ) -> str: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def __snake_case( self : Tuple ) -> List[str]: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def __snake_case( self : Any ) -> torch.Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(_UpperCamelCase , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def __snake_case( self : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE = self.shape SCREAMING_SNAKE_CASE = int(np.prod(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = self.get_image_coords() SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) SCREAMING_SNAKE_CASE = self.get_camera_rays(_UpperCamelCase ) SCREAMING_SNAKE_CASE = rays.view(_UpperCamelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def __snake_case( self : Optional[int] , _UpperCamelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] SCREAMING_SNAKE_CASE = coords.view(_UpperCamelCase , -1 , 2 ) SCREAMING_SNAKE_CASE = self.resolution() SCREAMING_SNAKE_CASE = self.fov() SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) SCREAMING_SNAKE_CASE = fracs.view(_UpperCamelCase , -1 , 2 ) SCREAMING_SNAKE_CASE = ( self.z.view(_UpperCamelCase , 1 , 3 ) + self.x.view(_UpperCamelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_UpperCamelCase , 1 , 3 ) * fracs[:, :, 1:] ) SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(_UpperCamelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_UpperCamelCase , *_UpperCamelCase , 2 , 3 ) def __snake_case( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_UpperCamelCase , height=_UpperCamelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase (UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): SCREAMING_SNAKE_CASE = np.array([np.sin(UpperCAmelCase__ ), np.cos(UpperCAmelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) SCREAMING_SNAKE_CASE = -z * 4 SCREAMING_SNAKE_CASE = np.array([np.cos(UpperCAmelCase__ ), -np.sin(UpperCAmelCase__ ), 0.0] ) SCREAMING_SNAKE_CASE = np.cross(UpperCAmelCase__ , UpperCAmelCase__ ) origins.append(UpperCAmelCase__ ) xs.append(UpperCAmelCase__ ) ys.append(UpperCAmelCase__ ) zs.append(UpperCAmelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(UpperCAmelCase__ , axis=0 ) ).float() , width=UpperCAmelCase__ , height=UpperCAmelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(UpperCAmelCase__ )) , )
206
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _UpperCAmelCase : Any = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , **A_ ) -> Tuple: """simple docstring""" super().__init__(**A_ ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , A_ , **A_ ) -> str: """simple docstring""" return super().__call__(A_ , **A_ ) def __UpperCamelCase ( self , **A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCamelCase ( self , A_ , A_=None , A_="This is a sound of {}." ) -> Tuple: """simple docstring""" if isinstance(A_ , A_ ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png UpperCamelCase = requests.get(A_ ).content else: with open(A_ , 'rb' ) as f: UpperCamelCase = f.read() if isinstance(A_ , A_ ): UpperCamelCase = ffmpeg_read(A_ , self.feature_extractor.sampling_rate ) if not isinstance(A_ , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) UpperCamelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(A_ ) for x in candidate_labels] UpperCamelCase = self.tokenizer(A_ , return_tensors=self.framework , padding=A_ ) UpperCamelCase = [text_inputs] return inputs def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = model_inputs.pop('candidate_labels' ) UpperCamelCase = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , A_ ): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**A_ , **A_ ) UpperCamelCase = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def __UpperCamelCase ( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = model_outputs.pop('candidate_labels' ) UpperCamelCase = model_outputs['logits'][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=0 ) UpperCamelCase = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) UpperCamelCase = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(A_ , A_ ) , key=lambda A_ : -x[0] ) ] return result
222
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCamelCase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = 'sgugger/tiny-distilbert-classification' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , only_pretrain_model=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , torchscript=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , fpaa=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = AutoConfig.from_pretrained(A_ ) # set architectures equal to `None` UpperCamelCase = None UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A_ , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'sshleifer/tinier_bart' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = 'sshleifer/tinier_bart' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , save_to_csv=A_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A_ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(A_ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(A_ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(A_ , 'train_time.csv' ) , env_info_csv_file=os.path.join(A_ , 'env.csv' ) , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) benchmark.run() self.assertTrue(Path(os.path.join(A_ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'env.csv' ) ).exists() ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(A_ ): self.assertTrue(hasattr(A_ , 'sequential' ) ) self.assertTrue(hasattr(A_ , 'cumulative' ) ) self.assertTrue(hasattr(A_ , 'current' ) ) self.assertTrue(hasattr(A_ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A_ , 'log.txt' ) , log_print=A_ , trace_memory_line_by_line=A_ , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A_ , 'log.txt' ) ).exists() )
222
1
from collections.abc import Callable import numpy as np def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: """simple docstring""" snake_case__ : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) snake_case__ : List[str] = np.zeros((n + 1,) ) snake_case__ : Any = ya snake_case__ : List[Any] = xa for k in range(__lowerCAmelCase ): snake_case__ : List[Any] = y[k] + step_size * ode_func(__lowerCAmelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
44
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Dict = TransfoXLTokenizer __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[str] = False def __lowerCamelCase ( self :Union[str, Any] ): super().setUp() snake_case__ : Optional[int] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] snake_case__ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCamelCase ( self :int ,**__lowercase :Any ): snake_case__ : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**__lowercase ) def __lowerCamelCase ( self :int ,__lowercase :Optional[int] ): snake_case__ : int = '''<unk> UNwanted , running''' snake_case__ : List[Any] = '''<unk> unwanted, running''' return input_text, output_text def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[Any] = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=__lowercase ) snake_case__ : Tuple = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(__lowercase ,['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,[0, 4, 8, 7] ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[Any] = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Any = TransfoXLTokenizer(lower_case=__lowercase ) snake_case__ : List[str] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' snake_case__ : Union[str, Any] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__lowercase ) ,__lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Any = self.get_tokenizer() snake_case__ : Optional[Any] = len(__lowercase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowercase ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,'''new1''' )
44
1
'''simple docstring''' import math import qiskit def __lowerCamelCase ( A__ = 1 , A__ = 1 , A__ = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(A__ , A__ ) or isinstance(A__ , A__ ) or isinstance(A__ , A__ ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(A__ ) != input_a) or (math.floor(A__ ) != input_a) or (math.floor(A__ ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers UpperCamelCase = qiskit.QuantumRegister(4 , 'qr' ) UpperCamelCase = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries UpperCamelCase = [input_a, input_a, carry_in] UpperCamelCase = qiskit.QuantumCircuit(A__ , A__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(A__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(A__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(A__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , A__ ) # measure the last two qbits UpperCamelCase = qiskit.Aer.get_backend('aer_simulator' ) UpperCamelCase = qiskit.execute(A__ , A__ , shots=1_000 ) return job.result().get_counts(A__ ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
28
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowerCamelCase : Any = logging.get_logger(__name__) @add_end_docstrings(_a ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Union[str, Any] ): """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) requires_backends(self , 'decord' ) self.check_model_type(UpperCamelCase__ ) def A ( self : Optional[int] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" UpperCamelCase = {} if frame_sampling_rate is not None: UpperCamelCase = frame_sampling_rate if num_frames is not None: UpperCamelCase = num_frames UpperCamelCase = {} if top_k is not None: UpperCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , UpperCamelCase__ : Union[str, List[str]] , **UpperCamelCase__ : Dict ): """simple docstring""" return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Tuple=1 ): """simple docstring""" if num_frames is None: UpperCamelCase = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): UpperCamelCase = BytesIO(requests.get(UpperCamelCase__ ).content ) UpperCamelCase = VideoReader(UpperCamelCase__ ) videoreader.seek(0 ) UpperCamelCase = 0 UpperCamelCase = num_frames * frame_sampling_rate - 1 UpperCamelCase = np.linspace(UpperCamelCase__ , UpperCamelCase__ , num=UpperCamelCase__ , dtype=np.intaa ) UpperCamelCase = videoreader.get_batch(UpperCamelCase__ ).asnumpy() UpperCamelCase = list(UpperCamelCase__ ) UpperCamelCase = self.image_processor(UpperCamelCase__ , return_tensors=self.framework ) return model_inputs def A ( self : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.model(**UpperCamelCase__ ) return model_outputs def A ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase = self.model.config.num_labels if self.framework == "pt": UpperCamelCase = model_outputs.logits.softmax(-1 )[0] UpperCamelCase , UpperCamelCase = probs.topk(UpperCamelCase__ ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCamelCase = scores.tolist() UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase__ , UpperCamelCase__ )]
28
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): UpperCAmelCase__ : Any = StableDiffusionSAGPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : Union[str, Any] = False def snake_case_ ( self ) -> str: torch.manual_seed(0 ) UpperCamelCase : str = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) UpperCamelCase : Any = DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=lowercase_, set_alpha_to_one=lowercase_, ) torch.manual_seed(0 ) UpperCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0 ) UpperCamelCase : Any = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) UpperCamelCase : Dict = CLIPTextModel(lowercase_ ) UpperCamelCase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> List[str]: if str(lowercase_ ).startswith('mps' ): UpperCamelCase : Tuple = torch.manual_seed(lowercase_ ) else: UpperCamelCase : str = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCamelCase : Any = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: UpperCamelCase : str = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase : Optional[int] = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase : str = """.""" UpperCamelCase : List[Any] = torch.manual_seed(0 ) UpperCamelCase : int = sag_pipe( [prompt], generator=lowercase_, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np' ) UpperCamelCase : Dict = output.images UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : List[str] = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def snake_case_ ( self ) -> int: UpperCamelCase : Tuple = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase : Tuple = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase : str = """.""" UpperCamelCase : Any = torch.manual_seed(0 ) UpperCamelCase : Optional[int] = sag_pipe( [prompt], generator=lowercase_, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np' ) UpperCamelCase : str = output.images UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Any = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase : Union[str, Any] = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase : Optional[Any] = """.""" UpperCamelCase : List[str] = torch.manual_seed(0 ) UpperCamelCase : int = sag_pipe( [prompt], width=768, height=512, generator=lowercase_, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type='np', ) UpperCamelCase : int = output.images assert image.shape == (1, 512, 768, 3)
371
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') __UpperCAmelCase = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: __UpperCAmelCase = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __UpperCAmelCase = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
103
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> int: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="M-CLIP" def __init__( self : Tuple , a : Optional[int]=10_24 , a : Tuple=7_68 , **a : List[str] ): """simple docstring""" __lowerCamelCase = transformerDimSize __lowerCamelCase = imageDimSize super().__init__(**a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] =MCLIPConfig def __init__( self : str , a : List[Any] , *a : Dict , **a : str ): """simple docstring""" super().__init__(a , *a , **a ) __lowerCamelCase = XLMRobertaModel(a ) __lowerCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : int , a : List[Any] ): """simple docstring""" __lowerCamelCase = self.transformer(input_ids=a , attention_mask=a )[0] __lowerCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(a ), embs
67
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): A : List[str] = GPTaTokenizer A : int = GPTaTokenizerFast A : int = True A : Tuple = {'add_prefix_space': True} A : Dict = False def __lowerCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowercase : Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) lowercase : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase : Tuple = {"unk_token": "<unk>"} lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = "lower newer" lowercase : Any = "lower newer" return input_text, output_text def __lowerCamelCase ( self ): lowercase : str = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase : Union[str, Any] = "lower newer" lowercase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowercase : str = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = tokens + [tokenizer.unk_token] lowercase : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): if not self.test_rust_tokenizer: return lowercase : str = self.get_tokenizer() lowercase : str = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = "lower newer" # Testing tokenization lowercase : Optional[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing conversion to ids without special tokens lowercase : List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing conversion to ids with special tokens lowercase : str = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) lowercase : Any = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing the unknown token lowercase : List[str] = tokens + [rust_tokenizer.unk_token] lowercase : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): pass def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # Simple input lowercase : str = "This is a simple input" lowercase : List[Any] = ["This is a simple input 1", "This is a simple input 2"] lowercase : Tuple = ("This is a simple input", "This is a pair") lowercase : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' , ) def __lowerCamelCase ( self ): lowercase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input lowercase : Union[str, Any] = "This is a simple input" lowercase : Optional[int] = ["This is a simple input looooooooong", "This is a simple input"] lowercase : Optional[Any] = ("This is a simple input", "This is a pair") lowercase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowercase : int = tokenizer.pad_token_id lowercase : List[str] = tokenizer(SCREAMING_SNAKE_CASE__ , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) lowercase : int = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncate=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) lowercase : Any = tokenizer(*SCREAMING_SNAKE_CASE__ , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) lowercase : List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncate=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def __lowerCamelCase ( self ): lowercase : Optional[Any] = "$$$" lowercase : Optional[int] = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=SCREAMING_SNAKE_CASE__ , add_bos_token=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = "This is a simple input" lowercase : str = ["This is a simple input 1", "This is a simple input 2"] lowercase : Optional[Any] = tokenizer.bos_token_id lowercase : List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertEqual(out_s.input_ids[0] , SCREAMING_SNAKE_CASE__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowercase : List[Any] = tokenizer.decode(out_s.input_ids ) lowercase : Any = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , SCREAMING_SNAKE_CASE__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): lowercase : List[str] = [self.get_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , add_bos_token=SCREAMING_SNAKE_CASE__ )] for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowercase : str = "Encode this." lowercase : Optional[Any] = "This one too please." lowercase : int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) encoded_sequence += tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = tokenizer.encode_plus( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_special_tokens_mask=SCREAMING_SNAKE_CASE__ , ) lowercase : Union[str, Any] = encoded_sequence_dict["input_ids"] lowercase : Optional[int] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) lowercase : List[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(SCREAMING_SNAKE_CASE__ ) ] lowercase : int = [x for x in filtered_sequence if x is not None] self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : List[Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = "A photo of a cat" lowercase : Dict = tokenizer.encode( SCREAMING_SNAKE_CASE__ , ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('''test_opt''' ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''./test_opt''' ) lowercase : str = tokenizer.encode( SCREAMING_SNAKE_CASE__ , ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [2, 250, 1345, 9, 10, 4758] ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = "A photo of a cat" lowercase : Union[str, Any] = tokenizer.encode( SCREAMING_SNAKE_CASE__ , ) # Same as above self.assertEqual(SCREAMING_SNAKE_CASE__ , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def __lowerCamelCase ( self ): lowercase : Optional[int] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=SCREAMING_SNAKE_CASE__ ) lowercase : Any = "bos" lowercase : Tuple = tokenizer.get_vocab()["bos"] lowercase : Optional[int] = "A photo of a cat" lowercase : Any = tokenizer.encode( SCREAMING_SNAKE_CASE__ , ) # We changed the bos token self.assertEqual(SCREAMING_SNAKE_CASE__ , [31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('''./tok''' ) lowercase : Tuple = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) lowercase : Optional[Any] = tokenizer.encode( SCREAMING_SNAKE_CASE__ , ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [31957, 250, 1345, 9, 10, 4758] )
354
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( A__ ): A : Union[str, Any] = 'audio-spectrogram-transformer' def __init__( self , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=128 , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase : Any = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : Any = num_attention_heads lowercase : Optional[int] = intermediate_size lowercase : List[str] = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : Optional[Any] = initializer_range lowercase : str = layer_norm_eps lowercase : Any = patch_size lowercase : Tuple = qkv_bias lowercase : str = frequency_stride lowercase : Union[str, Any] = time_stride lowercase : Dict = max_length lowercase : List[str] = num_mel_bins
173
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = 42 class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , _snake_case = 16 , _snake_case = 88 , _snake_case = None , _snake_case = None , _snake_case = 1 , _snake_case = 0.0 , _snake_case = 32 , _snake_case = None , _snake_case = False , _snake_case = None , _snake_case = "geglu" , _snake_case = True , _snake_case = True , ): """simple docstring""" super().__init__() _lowerCAmelCase = num_attention_heads _lowerCAmelCase = attention_head_dim _lowerCAmelCase = num_attention_heads * attention_head_dim _lowerCAmelCase = in_channels _lowerCAmelCase = torch.nn.GroupNorm(num_groups=_snake_case , num_channels=_snake_case , eps=1e-6 , affine=_snake_case ) _lowerCAmelCase = nn.Linear(_snake_case , _snake_case ) # 3. Define transformers blocks _lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock( _snake_case , _snake_case , _snake_case , dropout=_snake_case , cross_attention_dim=_snake_case , activation_fn=_snake_case , attention_bias=_snake_case , double_self_attention=_snake_case , norm_elementwise_affine=_snake_case , ) for d in range(_snake_case ) ] ) _lowerCAmelCase = nn.Linear(_snake_case , _snake_case ) def snake_case ( self , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=1 , _snake_case=None , _snake_case = True , ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = hidden_states.shape _lowerCAmelCase = batch_frames // num_frames _lowerCAmelCase = hidden_states _lowerCAmelCase = hidden_states[None, :].reshape(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) _lowerCAmelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) _lowerCAmelCase = self.norm(_snake_case ) _lowerCAmelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _snake_case , _snake_case ) _lowerCAmelCase = self.proj_in(_snake_case ) # 2. Blocks for block in self.transformer_blocks: _lowerCAmelCase = block( _snake_case , encoder_hidden_states=_snake_case , timestep=_snake_case , cross_attention_kwargs=_snake_case , class_labels=_snake_case , ) # 3. Output _lowerCAmelCase = self.proj_out(_snake_case ) _lowerCAmelCase = ( hidden_states[None, None, :] .reshape(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) _lowerCAmelCase = hidden_states.reshape(_snake_case , _snake_case , _snake_case , _snake_case ) _lowerCAmelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_snake_case )
82
from math import isqrt, loga def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case , snake_case ): _lowerCAmelCase = False return [i for i in range(2 , snake_case ) if is_prime[i]] def _UpperCAmelCase ( snake_case = 80_08_00 , snake_case = 80_08_00 ): """simple docstring""" _lowerCAmelCase = degree * loga(snake_case ) _lowerCAmelCase = int(snake_case ) _lowerCAmelCase = calculate_prime_numbers(snake_case ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
82
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __A ( unittest.TestCase ): def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =jnp.ones((batch_size, length) ) / length return scores def _snake_case ( self ): lowerCamelCase =None lowerCamelCase =20 lowerCamelCase =self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase_ ) # tweak scores to not be uniform anymore lowerCamelCase =scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase =scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase =jax.nn.softmax(UpperCAmelCase_ , axis=-1 ) lowerCamelCase =FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase =FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase =jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase_ , scores.copy() , cur_len=UpperCAmelCase_ ) , axis=-1 ) lowerCamelCase =jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase_ , scores.copy() , cur_len=UpperCAmelCase_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _snake_case ( self ): lowerCamelCase =None lowerCamelCase =10 lowerCamelCase =2 # create ramp distribution lowerCamelCase =np.broadcast_to(np.arange(UpperCAmelCase_ )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase =ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase =FlaxTopKLogitsWarper(3 ) lowerCamelCase =top_k_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase =5 lowerCamelCase =FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase =np.broadcast_to(np.arange(UpperCAmelCase_ )[None, :] , (batch_size, length) ).copy() lowerCamelCase =top_k_warp_safety_check(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _snake_case ( self ): lowerCamelCase =None lowerCamelCase =10 lowerCamelCase =2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase =np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase =FlaxTopPLogitsWarper(0.8 ) lowerCamelCase =np.exp(top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase =np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase =np.broadcast_to(np.arange(UpperCAmelCase_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase =ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase =FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase =top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _snake_case ( self ): lowerCamelCase =20 lowerCamelCase =4 lowerCamelCase =0 lowerCamelCase =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase_ ) # check that min length is applied at length 5 lowerCamelCase =ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase =5 lowerCamelCase =self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =min_dist_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase =self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =15 lowerCamelCase =min_dist_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertFalse(jnp.isinf(UpperCAmelCase_ ).any() ) def _snake_case ( self ): lowerCamelCase =20 lowerCamelCase =4 lowerCamelCase =0 lowerCamelCase =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase_ ) # check that all scores are -inf except the bos_token_id score lowerCamelCase =ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase =1 lowerCamelCase =self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase =3 lowerCamelCase =self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertFalse(jnp.isinf(UpperCAmelCase_ ).any() ) def _snake_case ( self ): lowerCamelCase =20 lowerCamelCase =4 lowerCamelCase =0 lowerCamelCase =5 lowerCamelCase =FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase =ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase =4 lowerCamelCase =self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase =3 lowerCamelCase =self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertFalse(jnp.isinf(UpperCAmelCase_ ).any() ) def _snake_case ( self ): lowerCamelCase =4 lowerCamelCase =10 lowerCamelCase =15 lowerCamelCase =2 lowerCamelCase =1 lowerCamelCase =15 # dummy input_ids and scores lowerCamelCase =ids_tensor((batch_size, sequence_length) , UpperCAmelCase_ ) lowerCamelCase =input_ids.copy() lowerCamelCase =self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =scores.copy() # instantiate all dist processors lowerCamelCase =FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase =FlaxTopKLogitsWarper(3 ) lowerCamelCase =FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase_ ) lowerCamelCase =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase_ ) lowerCamelCase =FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) lowerCamelCase =10 # no processor list lowerCamelCase =temp_dist_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCamelCase =top_k_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCamelCase =top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCamelCase =min_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCamelCase =bos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCamelCase =eos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # with processor list lowerCamelCase =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase =processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _snake_case ( self ): lowerCamelCase =4 lowerCamelCase =10 lowerCamelCase =15 lowerCamelCase =2 lowerCamelCase =1 lowerCamelCase =15 # dummy input_ids and scores lowerCamelCase =ids_tensor((batch_size, sequence_length) , UpperCAmelCase_ ) lowerCamelCase =input_ids.copy() lowerCamelCase =self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =scores.copy() # instantiate all dist processors lowerCamelCase =FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase =FlaxTopKLogitsWarper(3 ) lowerCamelCase =FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase_ ) lowerCamelCase =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase_ ) lowerCamelCase =FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) lowerCamelCase =10 # no processor list def run_no_processor_list(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =temp_dist_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCamelCase =top_k_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCamelCase =top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCamelCase =min_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCamelCase =bos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) lowerCamelCase =eos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) return scores # with processor list def run_processor_list(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase =processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) return scores lowerCamelCase =jax.jit(UpperCAmelCase_ ) lowerCamelCase =jax.jit(UpperCAmelCase_ ) lowerCamelCase =jitted_run_no_processor_list(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =jitted_run_processor_list(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
350
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =(1 - _cos) / 2 lowerCamelCase =1 - _cos lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =(1 + _cos) / 2 lowerCamelCase =-1 - _cos lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =_sin / 2 lowerCamelCase =0 lowerCamelCase =-ba lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =1 - alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 + alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =1 + alpha * big_a lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha * big_a lowerCamelCase =1 + alpha / big_a lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha / big_a lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =(big_a + 1) - (big_a - 1) * _cos lowerCamelCase =(big_a + 1) + (big_a - 1) * _cos lowerCamelCase =(big_a - 1) - (big_a + 1) * _cos lowerCamelCase =(big_a - 1) + (big_a + 1) * _cos lowerCamelCase =2 * sqrt(_UpperCAmelCase ) * alpha lowerCamelCase =big_a * (pmc + aaa) lowerCamelCase =2 * big_a * mpc lowerCamelCase =big_a * (pmc - aaa) lowerCamelCase =ppmc + aaa lowerCamelCase =-2 * pmpc lowerCamelCase =ppmc - aaa lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =(big_a + 1) - (big_a - 1) * _cos lowerCamelCase =(big_a + 1) + (big_a - 1) * _cos lowerCamelCase =(big_a - 1) - (big_a + 1) * _cos lowerCamelCase =(big_a - 1) + (big_a + 1) * _cos lowerCamelCase =2 * sqrt(_UpperCAmelCase ) * alpha lowerCamelCase =big_a * (ppmc + aaa) lowerCamelCase =-2 * big_a * pmpc lowerCamelCase =big_a * (ppmc - aaa) lowerCamelCase =pmc + aaa lowerCamelCase =2 * mpc lowerCamelCase =pmc - aaa lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
262
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = TapasConfig.from_json_file(__UpperCamelCase ) # set absolute/relative position embeddings parameter SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": SCREAMING_SNAKE_CASE__ = TapasForQuestionAnswering(config=__UpperCamelCase ) elif task == "WTQ": # run_task_main.py hparams SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = True # hparam_utils.py hparams SCREAMING_SNAKE_CASE__ = 0.66_4694 SCREAMING_SNAKE_CASE__ = 0.20_7951 SCREAMING_SNAKE_CASE__ = 0.12_1194 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0.035_2513 SCREAMING_SNAKE_CASE__ = TapasForQuestionAnswering(config=__UpperCamelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = False # hparam_utils.py hparams SCREAMING_SNAKE_CASE__ = 36.4519 SCREAMING_SNAKE_CASE__ = 0.90_3421 SCREAMING_SNAKE_CASE__ = 222.088 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 0.76_3141 SCREAMING_SNAKE_CASE__ = TapasForQuestionAnswering(config=__UpperCamelCase ) elif task == "TABFACT": SCREAMING_SNAKE_CASE__ = TapasForSequenceClassification(config=__UpperCamelCase ) elif task == "MLM": SCREAMING_SNAKE_CASE__ = TapasForMaskedLM(config=__UpperCamelCase ) elif task == "INTERMEDIATE_PRETRAINING": SCREAMING_SNAKE_CASE__ = TapasModel(config=__UpperCamelCase ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCamelCase ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) SCREAMING_SNAKE_CASE__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=5_12 ) tokenizer.save_pretrained(__UpperCamelCase ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCamelCase : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
219
import warnings from ..trainer import Trainer from ..utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): def __init__( self : Tuple , _lowercase : Optional[int]=None , **_lowercase : List[Any] ): """simple docstring""" warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , _lowercase , ) super().__init__(args=_lowercase , **_lowercase )
219
1
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed UpperCamelCase_ =logging.getLogger(__name__) def a_ ( _lowercase=2 , _lowercase=3 , _lowercase=16 , _lowercase = 10 , _lowercase = 2 ): def get_dataset(_lowercase ): _UpperCamelCase : int = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(A__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _UpperCamelCase : List[str] = get_dataset(A__ ) _UpperCamelCase : int = get_dataset(A__ ) _UpperCamelCase : List[str] = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) _UpperCamelCase : Dict = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def a_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ): _UpperCamelCase : str = [] for epoch in range(A__ ): # Train quickly model.train() for batch in dataloader: _UpperCamelCase , _UpperCamelCase : str = batch _UpperCamelCase : int = model(A__ ) _UpperCamelCase : str = torch.nn.functional.mse_loss(A__ , A__ ) accelerator.backward(A__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _a ( nn.Module ): def __init__( self : Dict ) -> Tuple: '''simple docstring''' super().__init__() _UpperCamelCase : Dict = nn.Parameter(torch.randn(1 ) ) _UpperCamelCase : List[str] = nn.Parameter(torch.randn(1 ) ) def snake_case ( self : List[Any], lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return x * self.a + self.b class _a ( unittest.TestCase ): def snake_case ( self : str ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _UpperCamelCase : List[str] = DummyModel() _UpperCamelCase : Optional[int] = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) _UpperCamelCase , _UpperCamelCase : List[Any] = dummy_dataloaders() _UpperCamelCase : str = ProjectConfiguration(total_limit=1, project_dir=UpperCamelCase_, automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline _UpperCamelCase : str = Accelerator(project_config=UpperCamelCase_ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Tuple = accelerator.prepare( UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ), 1 ) def snake_case ( self : Dict ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _UpperCamelCase : Optional[Any] = DummyModel() _UpperCamelCase : List[str] = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) _UpperCamelCase , _UpperCamelCase : str = dummy_dataloaders() # Train baseline _UpperCamelCase : Union[str, Any] = Accelerator() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = accelerator.prepare( UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) # Save initial _UpperCamelCase : Union[str, Any] = os.path.join(UpperCamelCase_, '''initial''' ) accelerator.save_state(UpperCamelCase_ ) ((_UpperCamelCase) , (_UpperCamelCase)) : Union[str, Any] = model.a.item(), model.b.item() _UpperCamelCase : List[Any] = optimizer.state_dict() _UpperCamelCase : List[Any] = train(3, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) ((_UpperCamelCase) , (_UpperCamelCase)) : List[str] = model.a.item(), model.b.item() _UpperCamelCase : int = optimizer.state_dict() # Train partially set_seed(4_2 ) _UpperCamelCase : Dict = DummyModel() _UpperCamelCase : Optional[int] = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) _UpperCamelCase , _UpperCamelCase : List[str] = dummy_dataloaders() _UpperCamelCase : Tuple = Accelerator() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = accelerator.prepare( UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) accelerator.load_state(UpperCamelCase_ ) ((_UpperCamelCase) , (_UpperCamelCase)) : Tuple = model.a.item(), model.b.item() _UpperCamelCase : int = optimizer.state_dict() self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) _UpperCamelCase : Optional[Any] = train(2, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) # Save everything _UpperCamelCase : Dict = os.path.join(UpperCamelCase_, '''checkpoint''' ) accelerator.save_state(UpperCamelCase_ ) # Load everything back in and make sure all states work accelerator.load_state(UpperCamelCase_ ) test_rands += train(1, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) ((_UpperCamelCase) , (_UpperCamelCase)) : List[str] = model.a.item(), model.b.item() _UpperCamelCase : str = optimizer.state_dict() self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) def snake_case ( self : int ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _UpperCamelCase : List[str] = DummyModel() _UpperCamelCase : List[str] = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) _UpperCamelCase , _UpperCamelCase : List[str] = dummy_dataloaders() _UpperCamelCase : Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline _UpperCamelCase : List[Any] = Accelerator(project_dir=UpperCamelCase_, project_config=UpperCamelCase_ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = accelerator.prepare( UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) # Save initial accelerator.save_state() ((_UpperCamelCase) , (_UpperCamelCase)) : List[Any] = model.a.item(), model.b.item() _UpperCamelCase : Union[str, Any] = optimizer.state_dict() _UpperCamelCase : Dict = train(3, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) ((_UpperCamelCase) , (_UpperCamelCase)) : Any = model.a.item(), model.b.item() _UpperCamelCase : Optional[int] = optimizer.state_dict() # Train partially set_seed(4_2 ) _UpperCamelCase : List[str] = DummyModel() _UpperCamelCase : int = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) _UpperCamelCase , _UpperCamelCase : Dict = dummy_dataloaders() _UpperCamelCase : List[Any] = ProjectConfiguration(iteration=1, automatic_checkpoint_naming=UpperCamelCase_ ) _UpperCamelCase : Any = Accelerator(project_dir=UpperCamelCase_, project_config=UpperCamelCase_ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = accelerator.prepare( UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) accelerator.load_state(os.path.join(UpperCamelCase_, '''checkpoints''', '''checkpoint_0''' ) ) ((_UpperCamelCase) , (_UpperCamelCase)) : Optional[int] = model.a.item(), model.b.item() _UpperCamelCase : List[Any] = optimizer.state_dict() self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) _UpperCamelCase : Tuple = train(2, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase_, '''checkpoints''', '''checkpoint_1''' ) ) test_rands += train(1, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) ((_UpperCamelCase) , (_UpperCamelCase)) : Optional[int] = model.a.item(), model.b.item() _UpperCamelCase : List[str] = optimizer.state_dict() self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) def snake_case ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = torch.tensor([1, 2, 3] ) _UpperCamelCase : int = torch.tensor([2, 3, 4] ) _UpperCamelCase : List[str] = DummyModel() _UpperCamelCase : int = torch.optim.Adam(net.parameters() ) _UpperCamelCase : str = Accelerator() with self.assertRaises(UpperCamelCase_ ) as ve: accelerator.register_for_checkpointing(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) _UpperCamelCase : Dict = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def snake_case ( self : int ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _UpperCamelCase : int = DummyModel() _UpperCamelCase : str = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) _UpperCamelCase : List[Any] = torch.optim.lr_scheduler.StepLR(UpperCamelCase_, step_size=1, gamma=0.99 ) _UpperCamelCase , _UpperCamelCase : Any = dummy_dataloaders() _UpperCamelCase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline _UpperCamelCase : List[str] = Accelerator(project_dir=UpperCamelCase_, project_config=UpperCamelCase_ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Dict = accelerator.prepare( UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) # Save initial accelerator.save_state() _UpperCamelCase : List[str] = scheduler.state_dict() train(3, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_, scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase_, '''checkpoints''', '''checkpoint_0''' ) ) self.assertEqual(UpperCamelCase_, scheduler.state_dict() ) def snake_case ( self : List[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) _UpperCamelCase : Tuple = DummyModel() _UpperCamelCase : Any = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_, total_limit=2 ) # Train baseline _UpperCamelCase : Any = Accelerator(project_dir=UpperCamelCase_, project_config=UpperCamelCase_ ) _UpperCamelCase : Tuple = accelerator.prepare(UpperCamelCase_ ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(UpperCamelCase_, '''checkpoints''', '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_, '''checkpoints''', '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_, '''checkpoints''', '''checkpoint_10''' ) ) ) @require_cuda def snake_case ( self : Any ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : int = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase_, env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase_ ="""/tmp/accelerate/state_checkpointing""" UpperCamelCase_ =DummyModel() UpperCamelCase_ =torch.optim.Adam(params=model.parameters(), lr=1e-3) UpperCamelCase_ =torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) UpperCamelCase_ , UpperCamelCase_ =dummy_dataloaders() UpperCamelCase_ =ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline UpperCamelCase_ =Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) UpperCamelCase_ , UpperCamelCase_ =accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: UpperCamelCase_ =group["""params"""][0].device break assert param_device.type == accelerator.device.type UpperCamelCase_ =model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: UpperCamelCase_ =group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: UpperCamelCase_ =group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
357
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCamelCase_ ="""bart""" UpperCamelCase_ =True @st.cache(allow_output_mutation=_lowercase ) def a_ ( ): if LOAD_DENSE_INDEX: _UpperCamelCase : Dict = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase : Union[str, Any] = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase : str = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase : List[Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase : Dict = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase : List[Any] = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowercase ) def a_ ( ): if LOAD_DENSE_INDEX: _UpperCamelCase : List[Any] = faiss.StandardGpuResources() _UpperCamelCase : List[str] = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase : Tuple = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) _UpperCamelCase : Optional[int] = faiss.IndexFlatIP(128 ) _UpperCamelCase : Tuple = faiss.index_cpu_to_gpu(_lowercase , 1 , _lowercase ) wikiaab_gpu_index_flat.add(_lowercase ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase : Tuple = (None, None) _UpperCamelCase : List[Any] = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowercase ) def a_ ( ): _UpperCamelCase : Optional[Any] = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _UpperCamelCase : Any = elia['''train_eli5'''] _UpperCamelCase : Union[str, Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) _UpperCamelCase : str = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowercase ) return (elia_train, eli5_train_q_index) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =load_indexes() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =load_models() UpperCamelCase_ , UpperCamelCase_ =load_train_data() def a_ ( _lowercase , _lowercase=10 ): _UpperCamelCase : Any = embed_questions_for_retrieval([question] , _lowercase , _lowercase ) _UpperCamelCase , _UpperCamelCase : List[Any] = eli5_train_q_index.search(_lowercase , _lowercase ) _UpperCamelCase : Tuple = [elia_train[int(_lowercase )] for i in I[0]] return nn_examples def a_ ( _lowercase , _lowercase="wiki40b" , _lowercase="dense" , _lowercase=10 ): if source == "none": _UpperCamelCase , _UpperCamelCase : List[str] = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase : Dict = query_qa_dense_index( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) else: _UpperCamelCase , _UpperCamelCase : List[str] = query_es_index( _lowercase , _lowercase , index_name='''english_wiki40b_snippets_100w''' , n_results=_lowercase , ) _UpperCamelCase : Any = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase : List[Any] = '''question: {} context: {}'''.format(_lowercase , _lowercase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowercase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowercase : None), } ) def a_ ( _lowercase , _lowercase , _lowercase , _lowercase=64 , _lowercase=256 , _lowercase=False , _lowercase=2 , _lowercase=0.95 , _lowercase=0.8 ): with torch.no_grad(): _UpperCamelCase : List[Any] = qa_sas_generate( _lowercase , _lowercase , _lowercase , num_answers=1 , num_beams=_lowercase , min_len=_lowercase , max_len=_lowercase , do_sample=_lowercase , temp=_lowercase , top_p=_lowercase , top_k=_lowercase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar UpperCamelCase_ ="""<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" UpperCamelCase_ =""" <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCamelCase_ =""" This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) UpperCamelCase_ =[ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] UpperCamelCase_ =st.sidebar.checkbox("""Demo options""") if demo_options: UpperCamelCase_ =st.sidebar.selectbox( """""", action_list, index=3, ) UpperCamelCase_ =action_list.index(action_st) UpperCamelCase_ =st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) UpperCamelCase_ =show_type == """Show full text of passages""" else: UpperCamelCase_ =3 UpperCamelCase_ =True UpperCamelCase_ =st.sidebar.checkbox("""Retrieval options""") if retrieval_options: UpperCamelCase_ =""" ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) UpperCamelCase_ =st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) UpperCamelCase_ =st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: UpperCamelCase_ ="""wiki40b""" UpperCamelCase_ ="""dense""" UpperCamelCase_ ="""beam""" UpperCamelCase_ =2 UpperCamelCase_ =64 UpperCamelCase_ =256 UpperCamelCase_ =None UpperCamelCase_ =None UpperCamelCase_ =st.sidebar.checkbox("""Generation options""") if generate_options: UpperCamelCase_ =""" ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) UpperCamelCase_ =st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) UpperCamelCase_ =st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCamelCase_ =st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCamelCase_ =st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCamelCase_ =st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCamelCase_ =st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCamelCase_ =None # start main text UpperCamelCase_ =[ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] UpperCamelCase_ =st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCamelCase_ =st.text_input("""Enter your question here:""", """""") else: UpperCamelCase_ =question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": UpperCamelCase_ , UpperCamelCase_ =make_support(question, source=wiki_source, method="""dense""", n_results=10) UpperCamelCase_ , UpperCamelCase_ =make_support(question, source=wiki_source, method="""sparse""", n_results=10) UpperCamelCase_ =[] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCamelCase_ =support_list[:10] UpperCamelCase_ ="""<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: UpperCamelCase_ , UpperCamelCase_ =make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCamelCase_ , UpperCamelCase_ =answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): UpperCamelCase_ ="""https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) UpperCamelCase_ =res[1].strip() if sec_titles == "": UpperCamelCase_ ="""[{}]({})""".format(res[0], wiki_url) else: UpperCamelCase_ =sec_titles.split(""" & """) UpperCamelCase_ =""" & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: UpperCamelCase_ =find_nearest_training(question) UpperCamelCase_ =nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) UpperCamelCase_ =[ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) UpperCamelCase_ =""" --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
128
0
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> str: # Initialise PyTorch model _snake_case = TaConfig.from_json_file(UpperCamelCase__ ) print(F'Building PyTorch model from configuration: {config}' ) _snake_case = TaForConditionalGeneration(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
42
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore __A =namedtuple('covid_data', 'cases deaths recovered') def _UpperCamelCase ( UpperCamelCase__ = "https://www.worldometers.info/coronavirus/" ): UpperCAmelCase__ : Union[str, Any] = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(UpperCamelCase__ ).content ).xpath(UpperCamelCase__ ) ) __A ='Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
163
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _lowercase ( __lowerCAmelCase ) -> str: def wrapper(*__lowerCAmelCase , **__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : str = timeit.default_timer() SCREAMING_SNAKE_CASE__ : List[Any] = func(*__lowerCAmelCase , **__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = timeit.default_timer() - starttime return delta SCREAMING_SNAKE_CASE__ : Optional[int] = func.__name__ return wrapper def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=None ) -> int: SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : Dict = seq_shapes or {} for i in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__lowerCAmelCase , _ArrayXD ): SCREAMING_SNAKE_CASE__ : Dict = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__lowerCAmelCase , datasets.Value ): if v.dtype == "string": SCREAMING_SNAKE_CASE__ : Optional[int] = """The small grey turtle was surprisingly fast when challenged.""" else: SCREAMING_SNAKE_CASE__ : List[str] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__lowerCAmelCase , datasets.Sequence ): while isinstance(__lowerCAmelCase , datasets.Sequence ): SCREAMING_SNAKE_CASE__ : Optional[Any] = v.feature SCREAMING_SNAKE_CASE__ : str = seq_shapes[k] SCREAMING_SNAKE_CASE__ : List[str] = np.random.rand(*__lowerCAmelCase ).astype(v.dtype ) SCREAMING_SNAKE_CASE__ : Any = data dummy_data.append((i, example) ) return dummy_data def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=None ) -> str: SCREAMING_SNAKE_CASE__ : Tuple = generate_examples(__lowerCAmelCase , num_examples=__lowerCAmelCase , seq_shapes=__lowerCAmelCase ) with ArrowWriter(features=__lowerCAmelCase , path=__lowerCAmelCase ) as writer: for key, record in dummy_data: SCREAMING_SNAKE_CASE__ : List[str] = features.encode_example(__lowerCAmelCase ) writer.write(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = datasets.Dataset.from_file(filename=__lowerCAmelCase , info=datasets.DatasetInfo(features=__lowerCAmelCase ) ) return dataset
56
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=False , _a=True , _a="None" , _a=3 , _a=4 , _a=None , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : str = seq_length SCREAMING_SNAKE_CASE__ : str = is_training SCREAMING_SNAKE_CASE__ : List[Any] = use_input_mask SCREAMING_SNAKE_CASE__ : str = use_token_type_ids SCREAMING_SNAKE_CASE__ : Tuple = use_labels SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = type_vocab_size SCREAMING_SNAKE_CASE__ : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = num_labels SCREAMING_SNAKE_CASE__ : Optional[int] = num_choices SCREAMING_SNAKE_CASE__ : List[str] = relative_attention SCREAMING_SNAKE_CASE__ : str = position_biased_input SCREAMING_SNAKE_CASE__ : List[str] = pos_att_type SCREAMING_SNAKE_CASE__ : Union[str, Any] = scope def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> Tuple: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_config() SCREAMING_SNAKE_CASE__ : Any = 300 return config def _a ( self , _a ) -> List[str]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = DebertaModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(_a , attention_mask=_a , token_type_ids=_a )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , token_type_ids=_a )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForMaskedLM(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Tuple = DebertaForSequenceClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_a ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForTokenClassification(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : int = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForQuestionAnswering(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model( _a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :str = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Union[str, Any] = True _SCREAMING_SNAKE_CASE :str = False _SCREAMING_SNAKE_CASE :Dict = False _SCREAMING_SNAKE_CASE :Dict = False _SCREAMING_SNAKE_CASE :Union[str, Any] = False def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = DebertaModelTester(self ) SCREAMING_SNAKE_CASE__ : str = ConfigTester(self , config_class=_a , hidden_size=37 ) def _a ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_a ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_a ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_a ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_a ) @slow def _a ( self ) -> Optional[int]: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Dict = DebertaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @require_sentencepiece @require_tokenizers class __a (unittest.TestCase): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def _a ( self ) -> Any: """simple docstring""" pass @slow def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a , attention_mask=_a )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
56
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : Tuple = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } _lowerCamelCase : int = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } _lowerCamelCase : List[Any] = """▁""" class lowercase ( UpperCamelCase__): __lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any]=True , _lowerCamelCase : int=True , _lowerCamelCase : List[Any]=False , _lowerCamelCase : Union[str, Any]="[CLS]" , _lowerCamelCase : str="[SEP]" , _lowerCamelCase : List[Any]="<unk>" , _lowerCamelCase : Optional[Any]="[SEP]" , _lowerCamelCase : List[str]="<pad>" , _lowerCamelCase : Optional[Any]="[CLS]" , _lowerCamelCase : List[Any]="[MASK]" , _lowerCamelCase : Optional[int] = None , **_lowerCamelCase : Any , ): """simple docstring""" A_ : List[str] = ( AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ , normalized=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token ) A_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) A_ : Tuple = do_lower_case A_ : int = remove_space A_ : List[Any] = keep_accents A_ : List[Any] = vocab_file A_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) @property def a_ ( self : Optional[int] ): """simple docstring""" return len(self.sp_model ) def a_ ( self : Optional[int] ): """simple docstring""" A_ : Tuple = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): """simple docstring""" A_ : Union[str, Any] = self.__dict__.copy() A_ : Optional[int] = None return state def __setstate__( self : Dict , _lowerCamelCase : Any ): """simple docstring""" A_ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : List[Any] , _lowerCamelCase : List[str] ): """simple docstring""" if self.remove_space: A_ : Dict = " ".join(inputs.strip().split() ) else: A_ : List[Any] = inputs A_ : str = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: A_ : List[Any] = unicodedata.normalize('''NFKD''' , lowerCAmelCase__ ) A_ : Any = "".join([c for c in outputs if not unicodedata.combining(lowerCAmelCase__ )] ) if self.do_lower_case: A_ : int = outputs.lower() return outputs def a_ ( self : Optional[int] , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : Optional[int] = self.preprocess_text(lowerCAmelCase__ ) A_ : Optional[Any] = self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) A_ : Optional[int] = [] for piece in pieces: if len(lowerCAmelCase__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): A_ : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A_ : Optional[Any] = cur_pieces[1:] else: A_ : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCAmelCase__ ) else: new_pieces.append(lowerCAmelCase__ ) return new_pieces def a_ ( self : str , _lowerCamelCase : Optional[int] ): """simple docstring""" return self.sp_model.PieceToId(lowerCAmelCase__ ) def a_ ( self : Dict , _lowerCamelCase : Any ): """simple docstring""" return self.sp_model.IdToPiece(lowerCAmelCase__ ) def a_ ( self : Tuple , _lowerCamelCase : Tuple ): """simple docstring""" A_ : Dict = [] A_ : Tuple = "" A_ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token A_ : str = True A_ : Tuple = [] else: current_sub_tokens.append(lowerCAmelCase__ ) A_ : List[Any] = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def a_ ( self : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] = None ): """simple docstring""" A_ : Union[str, Any] = [self.sep_token_id] A_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] = None , _lowerCamelCase : int = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] def a_ ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : int = None ): """simple docstring""" A_ : Tuple = [self.sep_token_id] A_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a_ ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : int = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A_ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
167
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , ) -> Optional[int]: '''simple docstring''' a__ : str =size if size is not None else {"shortest_edge": 2_0} a__ : Union[str, Any] =crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} a__ : Tuple =parent a__ : Optional[int] =batch_size a__ : Any =num_channels a__ : List[str] =image_size a__ : Dict =min_resolution a__ : List[Any] =max_resolution a__ : Dict =do_resize a__ : Union[str, Any] =size a__ : str =do_center_crop a__ : List[str] =crop_size def _lowercase ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[int] =MobileNetVaImageProcessingTester(self ) @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "crop_size" ) ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Any =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) a__ : Dict =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowercase ( self ) -> Any: '''simple docstring''' pass def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input a__ : List[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : Dict =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> int: '''simple docstring''' a__ : str =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input a__ : List[str] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : Union[str, Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Any =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input a__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : str =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
95
0
import itertools import string from collections.abc import Generator, Iterable def __lowerCamelCase ( __a :List[str] , __a :Optional[int] ) -> List[Any]: """simple docstring""" A__ = iter(A_ ) while True: A__ = tuple(itertools.islice(A_ , A_ ) ) if not chunk: return yield chunk def __lowerCamelCase ( __a :Union[str, Any] ) -> Optional[int]: """simple docstring""" A__ = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) A__ = '''''' if len(A_ ) < 2: return dirty for i in range(len(A_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(A_ ) & 1: clean += "X" return clean def __lowerCamelCase ( __a :Optional[Any] ) -> List[Any]: """simple docstring""" A__ = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler A__ = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(A_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(A_ ) return table def __lowerCamelCase ( __a :int , __a :Any ) -> str: """simple docstring""" A__ = generate_table(A_ ) A__ = prepare_input(A_ ) A__ = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(A_ , 2 ): A__ = divmod(table.index(A_ ) , 5 ) A__ = divmod(table.index(A_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __lowerCamelCase ( __a :Dict , __a :int ) -> List[str]: """simple docstring""" A__ = generate_table(A_ ) A__ = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(A_ , 2 ): A__ = divmod(table.index(A_ ) , 5 ) A__ = divmod(table.index(A_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
358
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class A : '''simple docstring''' __lowerCamelCase : Optional[Any] = BlenderbotSmallConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : List[Any] = '''gelu''' def __init__( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str]=13 , __lowerCAmelCase : List[Any]=7 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Union[str, Any]=99 , __lowerCAmelCase : Union[str, Any]=32 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : List[str]=20 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : int=0 , ) -> Any: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def a_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_small_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def a_ ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" A__ = TFBlenderbotSmallModel(config=__lowerCAmelCase ).get_decoder() A__ = inputs_dict["""input_ids"""] A__ = input_ids[:1, :] A__ = inputs_dict["""attention_mask"""][:1, :] A__ = inputs_dict["""head_mask"""] A__ = 1 # first forward pass A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , head_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) def __lowerCamelCase ( __a :Dict , __a :Tuple , __a :List[Any] , __a :List[str]=None , __a :List[Any]=None , __a :Optional[Any]=None , __a :List[str]=None , __a :int=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: A__ = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __lowerCamelCase : List[Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Tuple = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Dict = True __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Tuple = False def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" A__ = TFBlenderbotSmallModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase ) def a_ ( self : List[str] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[str] ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCAmelCase ) @require_tokenizers @require_tf class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] __lowerCamelCase : Optional[int] = '''facebook/blenderbot_small-90M''' @cached_property def a_ ( self : Optional[int] ) -> List[str]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def a_ ( self : List[str] ) -> List[str]: """simple docstring""" A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def a_ ( self : int ) -> Optional[Any]: """simple docstring""" A__ = self.tokenizer(self.src_text , return_tensors="""tf""" ) A__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCAmelCase , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
276
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _UpperCAmelCase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _UpperCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) _UpperCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING _UpperCAmelCase = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def UpperCamelCase ( __lowercase : Union[str, Any] ,__lowercase : Union[str, Any] ,__lowercase : Union[str, Any] ,__lowercase : Dict ): '''simple docstring''' A_ : Union[str, Any] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): A_ : str = True # Deal with multi-line cases elif ( re.search( rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' ,__lowercase ,) is not None ): A_ : int = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: A_ : List[Any] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files A_ : List[Any] = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] A_ : List[str] = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed A_ : Any = True if not attribute_used: A_ : List[str] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: A_ : int = True elif attribute in ["tie_word_embeddings"] and default_value is False: A_ : Optional[int] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: A_ : int = True elif attribute.endswith('_token_id' ): A_ : Any = True # configuration class specific cases if not case_allowed: A_ : Any = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ ,[] ) A_ : Tuple = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( __lowercase : List[Any] ): '''simple docstring''' A_ : Tuple = dict(inspect.signature(config_class.__init__ ).parameters ) A_ : int = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] A_ : Any = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass A_ : Tuple = {} if len(config_class.attribute_map ) > 0: A_ : Dict = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files A_ : str = inspect.getsourcefile(__lowercase ) A_ : List[str] = os.path.dirname(__lowercase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. A_ : str = [os.path.join(__lowercase ,__lowercase ) for fn in os.listdir(__lowercase ) if fn.startswith('modeling_' )] # Get the source code strings A_ : Optional[Any] = [] for path in modeling_paths: if os.path.isfile(__lowercase ): with open(__lowercase ) as fp: modeling_sources.append(fp.read() ) A_ : Dict = [] for config_param, default_value in zip(__lowercase ,__lowercase ): # `attributes` here is all the variant names for `config_param` A_ : Tuple = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__lowercase ,__lowercase ,__lowercase ,__lowercase ): unused_attributes.append(attributes[0] ) return sorted(__lowercase ) def UpperCamelCase ( ): '''simple docstring''' A_ : List[str] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) A_ : str = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) ,lambda __lowercase : inspect.isclass(__lowercase ) and issubclass(__lowercase ,__lowercase ) and inspect.getmodule(__lowercase ) == inspect.getmodule(_config_class ) ,) ] for config_class in config_classes_in_module: A_ : int = check_config_attributes_being_used(__lowercase ) if len(__lowercase ) > 0: A_ : Optional[int] = unused_attributes if len(__lowercase ) > 0: A_ : Union[str, Any] = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(__lowercase ) if __name__ == "__main__": check_config_attributes()
140
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _UpperCAmelCase = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] _UpperCAmelCase = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] _UpperCAmelCase = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) _UpperCAmelCase = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) _UpperCAmelCase = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Tuple ): '''simple docstring''' for tf_name, hf_name in patterns: A_ : Tuple = k.replace(__lowercase ,__lowercase ) return k def UpperCamelCase ( __lowercase : dict ,__lowercase : dict ): '''simple docstring''' A_ : int = BigBirdPegasusConfig(**__lowercase ) A_ : Any = BigBirdPegasusForConditionalGeneration(__lowercase ) A_ : Union[str, Any] = torch_model.state_dict() A_ : Any = {} # separating decoder weights A_ : Any = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} A_ : str = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() ,'tf -> hf conversion' ): A_ : Optional[int] = [k.endswith(__lowercase ) for ending in KEYS_TO_IGNORE] if any(__lowercase ): continue A_ : Optional[Any] = DECODER_PATTERNS A_ : Tuple = rename_state_dict_key(__lowercase ,__lowercase ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): A_ : Any = v.T A_ : Any = torch.from_numpy(__lowercase ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() ,'tf -> hf conversion' ): A_ : int = [k.endswith(__lowercase ) for ending in KEYS_TO_IGNORE] if any(__lowercase ): continue A_ : Any = REMAINING_PATTERNS A_ : List[str] = rename_state_dict_key(__lowercase ,__lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): A_ : int = v.T A_ : Dict = torch.from_numpy(__lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' A_ : Optional[int] = mapping['model.embed_positions.weight'] A_ : Tuple = mapping.pop('model.embed_positions.weight' ) A_ , A_ : Optional[Any] = torch_model.load_state_dict(__lowercase ,strict=__lowercase ) A_ : Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( __lowercase : Union[str, Any] ): '''simple docstring''' A_ : str = tf.train.list_variables(__lowercase ) A_ : Union[str, Any] = {} A_ : Optional[Any] = ['global_step'] for name, shape in tqdm(__lowercase ,desc='converting tf checkpoint to dict' ): A_ : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue A_ : Tuple = tf.train.load_variable(__lowercase ,__lowercase ) A_ : Dict = array return tf_weights def UpperCamelCase ( __lowercase : str ,__lowercase : str ,__lowercase : dict ): '''simple docstring''' A_ : Optional[Any] = get_tf_weights_as_numpy(__lowercase ) A_ : Dict = convert_bigbird_pegasus(__lowercase ,__lowercase ) torch_model.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
140
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Dict = 'blip_2_vision_model' def __init__( self : Dict ,_UpperCAmelCase : int=1408 ,_UpperCAmelCase : Any=6144 ,_UpperCAmelCase : Union[str, Any]=39 ,_UpperCAmelCase : Union[str, Any]=16 ,_UpperCAmelCase : List[str]=224 ,_UpperCAmelCase : Optional[int]=14 ,_UpperCAmelCase : Tuple="gelu" ,_UpperCAmelCase : Tuple=0.0_00_01 ,_UpperCAmelCase : Dict=0.0 ,_UpperCAmelCase : Union[str, Any]=1E-10 ,_UpperCAmelCase : int=True ,**_UpperCAmelCase : Tuple ,): super().__init__(**a_ ) _a : Union[str, Any] = hidden_size _a : List[str] = intermediate_size _a : Dict = num_hidden_layers _a : List[Any] = num_attention_heads _a : Any = patch_size _a : Union[str, Any] = image_size _a : Union[str, Any] = initializer_range _a : Union[str, Any] = attention_dropout _a : Optional[int] = layer_norm_eps _a : Optional[Any] = hidden_act _a : List[str] = qkv_bias @classmethod def __lowercase ( cls : Any ,_UpperCAmelCase : Union[str, os.PathLike] ,**_UpperCAmelCase : Any ): cls._set_token_in_kwargs(a_ ) _a , _a : Optional[Any] = cls.get_config_dict(a_ ,**a_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _a : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a_ ,**a_ ) class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Optional[int] = 'blip_2_qformer' def __init__( self : Tuple ,_UpperCAmelCase : Tuple=30522 ,_UpperCAmelCase : Any=768 ,_UpperCAmelCase : Union[str, Any]=12 ,_UpperCAmelCase : Optional[int]=12 ,_UpperCAmelCase : Union[str, Any]=3072 ,_UpperCAmelCase : List[Any]="gelu" ,_UpperCAmelCase : Dict=0.1 ,_UpperCAmelCase : Dict=0.1 ,_UpperCAmelCase : List[Any]=512 ,_UpperCAmelCase : Any=0.02 ,_UpperCAmelCase : Optional[Any]=1E-12 ,_UpperCAmelCase : str=0 ,_UpperCAmelCase : List[str]="absolute" ,_UpperCAmelCase : List[str]=2 ,_UpperCAmelCase : List[Any]=1408 ,**_UpperCAmelCase : Tuple ,): super().__init__(pad_token_id=a_ ,**a_ ) _a : int = vocab_size _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : List[Any] = num_attention_heads _a : List[Any] = hidden_act _a : int = intermediate_size _a : Optional[Any] = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Optional[int] = max_position_embeddings _a : List[Any] = initializer_range _a : Optional[Any] = layer_norm_eps _a : Any = position_embedding_type _a : Optional[int] = cross_attention_frequency _a : Tuple = encoder_hidden_size @classmethod def __lowercase ( cls : Optional[int] ,_UpperCAmelCase : Union[str, os.PathLike] ,**_UpperCAmelCase : List[str] ): cls._set_token_in_kwargs(a_ ) _a , _a : Dict = cls.get_config_dict(a_ ,**a_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _a : int = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a_ ,**a_ ) class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Optional[int] = 'blip-2' lowerCAmelCase : Dict = True def __init__( self : Dict ,_UpperCAmelCase : List[Any]=None ,_UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : Dict=None ,_UpperCAmelCase : Tuple=32 ,**_UpperCAmelCase : Optional[int] ): super().__init__(**a_ ) if vision_config is None: _a : List[Any] = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _a : List[Any] = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _a : Optional[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _a : Optional[Any] = BlipaVisionConfig(**a_ ) _a : Optional[Any] = BlipaQFormerConfig(**a_ ) _a : Optional[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _a : Dict = CONFIG_MAPPING[text_model_type](**a_ ) _a : Dict = self.text_config.tie_word_embeddings _a : Union[str, Any] = self.text_config.is_encoder_decoder _a : str = num_query_tokens _a : int = self.vision_config.hidden_size _a : Optional[int] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _a : int = 1.0 _a : Any = 0.02 @classmethod def __lowercase ( cls : int ,_UpperCAmelCase : BlipaVisionConfig ,_UpperCAmelCase : BlipaQFormerConfig ,_UpperCAmelCase : PretrainedConfig ,**_UpperCAmelCase : int ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**a_ ,) def __lowercase ( self : Tuple ): _a : Tuple = copy.deepcopy(self.__dict__ ) _a : str = self.vision_config.to_dict() _a : Any = self.qformer_config.to_dict() _a : Optional[int] = self.text_config.to_dict() _a : Any = self.__class__.model_type return output
359
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class __magic_name__ : def __init__( self : Union[str, Any] ,_UpperCAmelCase : int = 14 ): if group not in primes: raise ValueError('Unsupported Group' ) _a : str = primes[group]['prime'] _a : Optional[int] = primes[group]['generator'] _a : Tuple = int(hexlify(urandom(32 ) ) ,base=16 ) def __lowercase ( self : Dict ): return hex(self.__private_key )[2:] def __lowercase ( self : List[str] ): _a : int = pow(self.generator ,self.__private_key ,self.prime ) return hex(_UpperCAmelCase )[2:] def __lowercase ( self : int ,_UpperCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_UpperCAmelCase ,(self.prime - 1) // 2 ,self.prime ) == 1 ) def __lowercase ( self : Tuple ,_UpperCAmelCase : str ): _a : List[Any] = int(_UpperCAmelCase ,base=16 ) if not self.is_valid_public_key(_UpperCAmelCase ): raise ValueError('Invalid public key' ) _a : Any = pow(_UpperCAmelCase ,self.__private_key ,self.prime ) return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest() @staticmethod def __lowercase ( _UpperCAmelCase : int ,_UpperCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_UpperCAmelCase ,(prime - 1) // 2 ,_UpperCAmelCase ) == 1 ) @staticmethod def __lowercase ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : int = 14 ): _a : str = int(_UpperCAmelCase ,base=16 ) _a : int = int(_UpperCAmelCase ,base=16 ) _a : Any = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(_UpperCAmelCase ,_UpperCAmelCase ): raise ValueError('Invalid public key' ) _a : List[str] = pow(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
107
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='LayoutLMv3ImageProcessor' __a =('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Tuple , __a : int=None , __a : Union[str, Any]=None , **__a : Optional[Any] ): _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Any , __a : List[str] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Dict , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor _a = self.image_processor(images=__a , return_tensors=__a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__a , __a ): _a = [text] # add batch dimension (as the image processor always adds a batch dimension) _a = features["words"] _a = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel values _a = features.pop("pixel_values" ) if return_overflowing_tokens is True: _a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] ) _a = images return encoded_inputs def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : List[Any] ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__a ) != len(__a ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f' {len(__a )} and {len(__a )}' ) return images_with_overflow def UpperCamelCase__ ( self : int , *__a : str , **__a : Tuple ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : str , *__a : List[Any] , **__a : List[str] ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : Tuple ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCamelCase__ ( self : int ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : List[str] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
63
import numpy as np def a_ ( __lowercase : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
282
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
297
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
1
"""simple docstring""" import argparse import os import re lowercase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowercase__ = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ = re.compile(R"""\[([^\]]+)\]""") def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = _re_indent.search(a__ ) return "" if search is None else search.groups()[0] def _snake_case ( lowercase__ , lowercase__="" , lowercase__=None , lowercase__=None ): _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : int = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(a__ ): index += 1 _lowerCamelCase : str = ['''\n'''.join(lines[:index] )] else: _lowerCamelCase : List[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCamelCase : Optional[Any] = [lines[index]] index += 1 while index < len(a__ ) and (end_prompt is None or not lines[index].startswith(a__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(a__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(a__ ) ) if index < len(a__ ) - 1: _lowerCamelCase : List[str] = [lines[index + 1]] index += 1 else: _lowerCamelCase : Union[str, Any] = [] else: blocks.append('\n'.join(a__ ) ) _lowerCamelCase : Union[str, Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(a__ ) > 0: blocks.append('\n'.join(a__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a__ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _snake_case ( lowercase__ ): def _inner(lowercase__ ): return key(a__ ).lower().replace('_' , '' ) return _inner def _snake_case ( lowercase__ , lowercase__=None ): def noop(lowercase__ ): return x if key is None: _lowerCamelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCamelCase : Union[str, Any] = [obj for obj in objects if key(a__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCamelCase : int = [obj for obj in objects if key(a__ )[0].isupper() and not key(a__ ).isupper()] # Functions begin with a lowercase, they go last. _lowerCamelCase : Dict = [obj for obj in objects if not key(a__ )[0].isupper()] _lowerCamelCase : Optional[int] = ignore_underscore(a__ ) return sorted(a__ , key=a__ ) + sorted(a__ , key=a__ ) + sorted(a__ , key=a__ ) def _snake_case ( lowercase__ ): def _replace(lowercase__ ): _lowerCamelCase : List[Any] = match.groups()[0] if "," not in imports: return f'''[{imports}]''' _lowerCamelCase : Optional[int] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : List[Any] = keys[:-1] return "[" + ", ".join([f'''\"{k}\"''' for k in sort_objects(a__ )] ) + "]" _lowerCamelCase : Dict = import_statement.split('\n' ) if len(a__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCamelCase : Dict = 2 if lines[1].strip() == '''[''' else 1 _lowerCamelCase : Dict = [(i, _re_strip_line.search(a__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCamelCase : Union[str, Any] = sort_objects(a__ , key=lambda lowercase__ : x[1] ) _lowerCamelCase : int = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(a__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCamelCase : str = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCamelCase : Any = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : Dict = keys[:-1] _lowerCamelCase : List[str] = get_indent(lines[1] ) + ''', '''.join([f'''\"{k}\"''' for k in sort_objects(a__ )] ) return "\n".join(a__ ) else: # Finally we have to deal with imports fitting on one line _lowerCamelCase : str = _re_bracket_content.sub(_replace , a__ ) return import_statement def _snake_case ( lowercase__ , lowercase__=True ): with open(a__ , encoding='utf-8' ) as f: _lowerCamelCase : List[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCamelCase : Tuple = split_code_in_indented_blocks( a__ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCamelCase : str = main_blocks[block_idx] _lowerCamelCase : str = block.split('\n' ) # Get to the start of the imports. _lowerCamelCase : str = 0 while line_idx < len(a__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCamelCase : Tuple = len(a__ ) else: line_idx += 1 if line_idx >= len(a__ ): continue # Ignore beginning and last line: they don't contain anything. _lowerCamelCase : Optional[Any] = '''\n'''.join(block_lines[line_idx:-1] ) _lowerCamelCase : Optional[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCamelCase : Optional[Any] = split_code_in_indented_blocks(a__ , indent_level=a__ ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCamelCase : Optional[Any] = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCamelCase : Dict = [(pattern.search(a__ ).groups()[0] if pattern.search(a__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCamelCase : Any = [(i, key) for i, key in enumerate(a__ ) if key is not None] _lowerCamelCase : Union[str, Any] = [x[0] for x in sorted(a__ , key=lambda lowercase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : str = [] for i in range(len(a__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCamelCase : int = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(a__ ) count += 1 # And we put our main block back together with its first and last line. _lowerCamelCase : Union[str, Any] = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(a__ ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(a__ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(a__ ) ) def _snake_case ( lowercase__=True ): _lowerCamelCase : Tuple = [] for root, _, files in os.walk(a__ ): if "__init__.py" in files: _lowerCamelCase : str = sort_imports(os.path.join(a__ , '__init__.py' ) , check_only=a__ ) if result: _lowerCamelCase : str = [os.path.join(a__ , '__init__.py' )] if len(a__ ) > 0: raise ValueError(f'''Would overwrite {len(a__ )} files, run `make style`.''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowercase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
96
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' __UpperCamelCase =tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __UpperCamelCase =tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __UpperCamelCase =tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above __UpperCamelCase =tf_top_k_top_p_filtering(UpperCamelCase__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __UpperCamelCase =output[output != -float('''inf''' )] __UpperCamelCase =tf.cast( tf.where(tf.not_equal(UpperCamelCase__ , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-12 ) tf.debugging.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) @require_tf class _lowercase ( unittest.TestCase , __a ): """simple docstring""" if is_tf_available(): lowercase__ = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def UpperCAmelCase_ ( self : Optional[int] ) -> int: '''simple docstring''' __UpperCamelCase =TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCamelCase =2 __UpperCamelCase =2 class _lowercase ( tf.Module ): """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' super(UpperCamelCase__ , self ).__init__() __UpperCamelCase =model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=UpperCamelCase__ , ) def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ) -> str: '''simple docstring''' __UpperCamelCase =self.model.generate( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , max_new_tokens=UpperCamelCase__ , return_dict_in_generate=UpperCamelCase__ , ) return {"sequences": outputs["sequences"]} __UpperCamelCase =[[2, 0], [102, 103]] __UpperCamelCase =[[1, 0], [1, 1]] __UpperCamelCase =DummyModel(model=UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={'''serving_default''': dummy_model.serving} ) __UpperCamelCase =tf.saved_model.load(UpperCamelCase__ ).signatures['''serving_default'''] for batch_size in range(1 , len(UpperCamelCase__ ) + 1 ): __UpperCamelCase ={ '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } __UpperCamelCase =serving_func(**UpperCamelCase__ )['''sequences'''] __UpperCamelCase =test_model.generate(**UpperCamelCase__ , max_new_tokens=UpperCamelCase__ ) tf.debugging.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' __UpperCamelCase =TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCamelCase =1 __UpperCamelCase =2 class _lowercase ( tf.Module ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : Tuple ) -> str: '''simple docstring''' super(UpperCamelCase__ , self ).__init__() __UpperCamelCase =model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=UpperCamelCase__ , ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> Any: '''simple docstring''' __UpperCamelCase =self.model.generate( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , max_new_tokens=UpperCamelCase__ , return_dict_in_generate=UpperCamelCase__ , ) return {"sequences": outputs["sequences"]} __UpperCamelCase =[[2], [102, 103]] __UpperCamelCase =[[1], [1, 1]] __UpperCamelCase =DummyModel(model=UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={'''serving_default''': dummy_model.serving} ) __UpperCamelCase =tf.saved_model.load(UpperCamelCase__ ).signatures['''serving_default'''] for input_row in range(len(UpperCamelCase__ ) ): __UpperCamelCase ={ '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } __UpperCamelCase =serving_func(**UpperCamelCase__ )['''sequences'''] __UpperCamelCase =test_model.generate(**UpperCamelCase__ , max_new_tokens=UpperCamelCase__ ) tf.debugging.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) @slow @require_tensorflow_text def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=UpperCamelCase__ ) class _lowercase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' super().__init__() __UpperCamelCase =text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCamelCase__ , '''spiece.model''' ) , '''rb''' ).read() ) __UpperCamelCase =TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def UpperCAmelCase_ ( self : str , UpperCamelCase__ : Any , *UpperCamelCase__ : Any , **UpperCamelCase__ : Dict ) -> int: '''simple docstring''' __UpperCamelCase =self.tokenizer.tokenize(UpperCamelCase__ ) __UpperCamelCase , __UpperCamelCase =text.pad_model_inputs( UpperCamelCase__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __UpperCamelCase =self.model.generate(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) return self.tokenizer.detokenize(UpperCamelCase__ ) __UpperCamelCase =CompleteSentenceTransformer() __UpperCamelCase =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) __UpperCamelCase =complete_model(UpperCamelCase__ ) __UpperCamelCase =tf.keras.Model(UpperCamelCase__ , UpperCamelCase__ ) keras_model.save(UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' __UpperCamelCase ={ '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 10, '''temperature''': 0.7, } __UpperCamelCase =14 __UpperCamelCase =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCamelCase ='''Hello, my dog is cute and''' __UpperCamelCase =tokenizer(UpperCamelCase__ , return_tensors='''tf''' ) __UpperCamelCase =TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCamelCase =638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) __UpperCamelCase =model.generate(**UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __UpperCamelCase =[638, 198] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) __UpperCamelCase =model.generate(**UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' __UpperCamelCase =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) __UpperCamelCase ='''Hugging Face is a technology company based in New York and Paris.''' __UpperCamelCase =bart_tokenizer(UpperCamelCase__ , return_tensors='''tf''' ).input_ids __UpperCamelCase =TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) __UpperCamelCase =bart_model.generate(UpperCamelCase__ ).numpy() class _lowercase ( __a ): """simple docstring""" def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=None , **UpperCamelCase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' return super().call(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) __UpperCamelCase =bart_model.generate(UpperCamelCase__ , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(UpperCamelCase__ , UpperCamelCase__ ) ) class _lowercase ( bart_model.model.encoder.__class__ ): """simple docstring""" def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : List[str] , **UpperCamelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' return super().call(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =FakeEncoder(bart_model.config , bart_model.model.shared ) __UpperCamelCase =fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __UpperCamelCase =bart_model.generate(UpperCamelCase__ ).numpy() with self.assertRaises(UpperCamelCase__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCamelCase__ , foo='''bar''' )
85
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''albert''' def __init__( self : List[Any] , UpperCamelCase__ : List[Any]=30000 , UpperCamelCase__ : int=128 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Union[str, Any]=64 , UpperCamelCase__ : Any=16384 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Optional[int]="gelu_new" , UpperCamelCase__ : int=0 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Dict=512 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Tuple=1E-12 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=3 , **UpperCamelCase__ : List[str] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =vocab_size __UpperCamelCase =embedding_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_hidden_groups __UpperCamelCase =num_attention_heads __UpperCamelCase =inner_group_num __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =classifier_dropout_prob __UpperCamelCase =position_embedding_type class _lowercase ( __a ): """simple docstring""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCamelCase ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
85
1
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __lowerCamelCase ( A__ , A__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = XCLIPTextConfig() # derive patch size from model name UpperCamelCase = model_name.find('patch' ) UpperCamelCase = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCamelCase = XCLIPVisionConfig(patch_size=A__ , num_frames=A__ ) if "large" in model_name: UpperCamelCase = 768 UpperCamelCase = 3_072 UpperCamelCase = 12 UpperCamelCase = 1_024 UpperCamelCase = 4_096 UpperCamelCase = 16 UpperCamelCase = 24 UpperCamelCase = 768 UpperCamelCase = 3_072 if model_name == "xclip-large-patch14-16-frames": UpperCamelCase = 336 UpperCamelCase = XCLIPConfig.from_text_vision_configs(A__ , A__ ) if "large" in model_name: UpperCamelCase = 768 return config def __lowerCamelCase ( A__ ) -> Tuple: """simple docstring""" # text encoder if name == "token_embedding.weight": UpperCamelCase = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCamelCase = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCamelCase = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCamelCase = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCamelCase = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCamelCase = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCamelCase = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCamelCase = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCamelCase = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCamelCase = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCamelCase = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCamelCase = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCamelCase = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCamelCase = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCamelCase = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCamelCase = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCamelCase = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCamelCase = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCamelCase = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCamelCase = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCamelCase = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCamelCase = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def __lowerCamelCase ( A__ , A__ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(A__ ) if "attn.in_proj" in key: UpperCamelCase = key.split('.' ) if key.startswith('visual' ): UpperCamelCase = key_split[3] UpperCamelCase = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCamelCase = val[ :dim, : ] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[ -dim:, : ] else: UpperCamelCase = val[ :dim ] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[ -dim: ] else: if "weight" in key: UpperCamelCase = val[ :dim, : ] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[ -dim:, : ] else: UpperCamelCase = val[:dim] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[-dim:] elif key.startswith('mit' ): UpperCamelCase = key_split[2] UpperCamelCase = config.vision_config.mit_hidden_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = key_split[2] UpperCamelCase = config.text_config.hidden_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[-dim:] else: UpperCamelCase = rename_key(A__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCamelCase = val.T UpperCamelCase = val return orig_state_dict def __lowerCamelCase ( A__ ) -> Optional[Any]: """simple docstring""" if num_frames == 8: UpperCamelCase = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCamelCase = 'eating_spaghetti.npy' elif num_frames == 32: UpperCamelCase = 'eating_spaghetti_32_frames.npy' UpperCamelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=A__ , repo_type='dataset' , ) UpperCamelCase = np.load(A__ ) return list(A__ ) def __lowerCamelCase ( A__ , A__=None , A__=False ) -> List[Any]: """simple docstring""" UpperCamelCase = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCamelCase = model_to_url[model_name] UpperCamelCase = 8 if "16-frames" in model_name: UpperCamelCase = 16 elif "shot" in model_name: UpperCamelCase = 32 UpperCamelCase = get_xclip_config(A__ , A__ ) UpperCamelCase = XCLIPModel(A__ ) model.eval() if "drive" in checkpoint_url: UpperCamelCase = 'pytorch_model.bin' gdown.cached_download(A__ , A__ , quiet=A__ ) UpperCamelCase = torch.load(A__ , map_location='cpu' )['model'] else: UpperCamelCase = torch.hub.load_state_dict_from_url(A__ )['model'] UpperCamelCase = convert_state_dict(A__ , A__ ) UpperCamelCase = XCLIPModel(A__ ) UpperCamelCase , UpperCamelCase = model.load_state_dict(A__ , strict=A__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCamelCase = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 UpperCamelCase = VideoMAEImageProcessor(size=A__ ) UpperCamelCase = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCamelCase = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCamelCase = XCLIPProcessor(image_processor=A__ , tokenizer=A__ ) UpperCamelCase = prepare_video(A__ ) UpperCamelCase = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=A__ , return_tensors='pt' , padding=A__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCamelCase = model(**A__ ) # Verify outputs UpperCamelCase = outputs.logits_per_video UpperCamelCase = logits_per_video.softmax(dim=1 ) print('Probs:' , A__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCamelCase = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCamelCase = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": UpperCamelCase = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCamelCase = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": UpperCamelCase = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCamelCase = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCamelCase = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCamelCase = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCamelCase = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCamelCase = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCamelCase = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCamelCase = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCamelCase = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCamelCase = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCamelCase = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCamelCase = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCamelCase = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCamelCase = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(F"""Model name {model_name} not supported""" ) assert torch.allclose(A__ , A__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(A__ , organization='nielsr' ) processor.push_to_hub(A__ , organization='nielsr' ) slow_tokenizer.push_to_hub(A__ , organization='nielsr' ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCamelCase : str = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __lowerCamelCase ( A__ , A__ , A__=1e-1_2 ) -> Dict: """simple docstring""" UpperCamelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A__ , axis=1 ) , a_min=A__ ) ).T UpperCamelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A__ , axis=1 ) , a_min=A__ ) ).T return jnp.matmul(A__ , norm_emb_a.T ) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = jnp.floataa def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = FlaxCLIPVisionModule(self.config.vision_config ) UpperCamelCase = nn.Dense(self.config.projection_dim , use_bias=UpperCamelCase__ , dtype=self.dtype ) UpperCamelCase = self.param('concept_embeds' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) UpperCamelCase = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCamelCase = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (1_7,) ) UpperCamelCase = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self : str , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.vision_model(UpperCamelCase__ )[1] UpperCamelCase = self.visual_projection(UpperCamelCase__ ) UpperCamelCase = jax_cosine_distance(UpperCamelCase__ , self.special_care_embeds ) UpperCamelCase = jax_cosine_distance(UpperCamelCase__ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCamelCase = 0.0 UpperCamelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCamelCase = jnp.round(UpperCamelCase__ , 3 ) UpperCamelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=UpperCamelCase__ ) # Use a lower threshold if an image has any special care concept UpperCamelCase = is_special_care * 0.0_1 UpperCamelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCamelCase = jnp.round(UpperCamelCase__ , 3 ) UpperCamelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = CLIPConfig _SCREAMING_SNAKE_CASE = """clip_input""" _SCREAMING_SNAKE_CASE = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Union[str, Any] , UpperCamelCase__ : CLIPConfig , UpperCamelCase__ : Optional[Tuple] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : jnp.dtype = jnp.floataa , UpperCamelCase__ : bool = True , **UpperCamelCase__ : List[str] , ): """simple docstring""" if input_shape is None: UpperCamelCase = (1, 2_2_4, 2_2_4, 3) UpperCamelCase = self.module_class(config=UpperCamelCase__ , dtype=UpperCamelCase__ , **UpperCamelCase__ ) super().__init__(UpperCamelCase__ , UpperCamelCase__ , input_shape=UpperCamelCase__ , seed=UpperCamelCase__ , dtype=UpperCamelCase__ , _do_init=_do_init ) def A ( self : int , UpperCamelCase__ : jax.random.KeyArray , UpperCamelCase__ : Tuple , UpperCamelCase__ : FrozenDict = None ): """simple docstring""" UpperCamelCase = jax.random.normal(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = jax.random.split(UpperCamelCase__ ) UpperCamelCase = {'params': params_rng, 'dropout': dropout_rng} UpperCamelCase = self.module.init(UpperCamelCase__ , UpperCamelCase__ )['params'] return random_params def __call__( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : dict = None , ): """simple docstring""" UpperCamelCase = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(UpperCamelCase__ , dtype=jnp.floataa ) , rngs={} , )
28
1
from __future__ import annotations from math import pi def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
232
from math import isqrt def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> list[int]: __lowerCAmelCase : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int = 10**8 ) -> int: __lowerCAmelCase : int = calculate_prime_numbers(max_number // 2 ) __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : List[Any] = len(SCREAMING_SNAKE_CASE ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
232
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : List[str] = logging.get_logger(__name__) a__ : Optional[int] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class lowercase_ ( a__ ): __UpperCAmelCase = 'deta' __UpperCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , a=None , a=9_00 , a=20_48 , a=6 , a=20_48 , a=8 , a=6 , a=10_24 , a=8 , a=0.0 , a=True , a="relu" , a=2_56 , a=0.1 , a=0.0 , a=0.0 , a=0.02 , a=1.0 , a=True , a=False , a="sine" , a=5 , a=4 , a=4 , a=True , a=3_00 , a=True , a=True , a=1 , a=5 , a=2 , a=1 , a=1 , a=5 , a=2 , a=0.1 , a=0.25 , **a , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase__ = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(a , a ): UpperCamelCase__ = backbone_config.pop("model_type" ) UpperCamelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ = config_class.from_dict(a ) UpperCamelCase__ = backbone_config UpperCamelCase__ = num_queries UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = d_model UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = init_xavier_std UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = auxiliary_loss UpperCamelCase__ = position_embedding_type # deformable attributes UpperCamelCase__ = num_feature_levels UpperCamelCase__ = encoder_n_points UpperCamelCase__ = decoder_n_points UpperCamelCase__ = two_stage UpperCamelCase__ = two_stage_num_proposals UpperCamelCase__ = with_box_refine UpperCamelCase__ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = mask_loss_coefficient UpperCamelCase__ = dice_loss_coefficient UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient UpperCamelCase__ = focal_alpha super().__init__(is_encoder_decoder=a , **a ) @property def __a ( self ): return self.encoder_attention_heads @property def __a ( self ): return self.d_model def __a ( self ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.backbone_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
80
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 1_0 lowercase_ = 2_5_6 def lowercase ( lowerCAmelCase__ : List[str] ) -> Optional[MinHash]: if len(lowerCAmelCase__ ) < MIN_NUM_TOKENS: return None __a = MinHash(num_perm=lowerCAmelCase__ ) for token in set(lowerCAmelCase__ ): min_hash.update(token.encode() ) return min_hash def lowercase ( lowerCAmelCase__ : str ) -> Set[str]: return {t for t in NON_ALPHA.split(lowerCAmelCase__ ) if len(t.strip() ) > 0} class __lowerCAmelCase : '''simple docstring''' def __init__( self , *, _a = 0.85 , ): __a = duplication_jaccard_threshold __a = NUM_PERM __a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a , _a ): __a = self._index.query(_a ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(_a , _a ) if len(_a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_a ) break else: self._duplicate_clusters[close_duplicates[0]].add(_a ) def __UpperCAmelCase ( self ): __a = [] for base, duplicates in self._duplicate_clusters.items(): __a = [base] + list(_a ) # reformat the cluster to be a list of dict __a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_a ) return duplicate_clusters def __UpperCAmelCase ( self , _a ): __a = self.get_duplicate_clusters() with open(_a , '''w''' ) as f: json.dump(_a , _a ) def lowercase ( lowerCAmelCase__ : List[str] ) -> int: __a , __a = element __a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowercase ( lowerCAmelCase__ : Type[Dataset] ) -> str: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase__ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def lowercase ( lowerCAmelCase__ : Type[Dataset] , lowerCAmelCase__ : float ) -> Dict: __a = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase__ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase__ , lowerCAmelCase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> float: __a = get_tokens(lowerCAmelCase__ ) __a = get_tokens(lowerCAmelCase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowercase_ = None def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Any: __a = [] for elementa in cluster: __a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: __a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(lowerCAmelCase__ , lowerCAmelCase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __a = 1 extremes.append(lowerCAmelCase__ ) return extremes def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: global _shared_dataset __a = dataset __a = [] __a = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase__ , lowerCAmelCase__ , ) , total=len(lowerCAmelCase__ ) , ): extremes_list.append(lowerCAmelCase__ ) return extremes_list def lowercase ( lowerCAmelCase__ : Type[Dataset] , lowerCAmelCase__ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: __a = make_duplicate_clusters(lowerCAmelCase__ , lowerCAmelCase__ ) __a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} __a = {} __a = find_extremes(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for extremes in extremes_clusters: for element in extremes: __a = element __a = duplicate_indices - set(extreme_dict.keys() ) __a = dataset.filter(lambda lowerCAmelCase__ , lowerCAmelCase__ : idx not in remove_indices , with_indices=lowerCAmelCase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __a = element['''base_index'''] in extreme_dict if element["is_extreme"]: __a = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(lowerCAmelCase__ )}''' ) print(f'''Number of duplicate clusters: {len(lowerCAmelCase__ )}''' ) print(f'''Files in duplicate cluster: {len(lowerCAmelCase__ )}''' ) print(f'''Unique files in duplicate cluster: {len(lowerCAmelCase__ )}''' ) print(f'''Filtered dataset size: {len(lowerCAmelCase__ )}''' ) return ds_filter, duplicate_clusters
45
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } UpperCamelCase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _UpperCamelCase (a__ :Optional[Any] , a__ :Dict , a__ :str , a__ :Optional[int] , a__ :str ): """simple docstring""" for attribute in key.split(""".""" ): UpperCamelCase__ = getattr(a__ , a__ ) if weight_type is not None: UpperCamelCase__ = getattr(a__ , a__ ).shape else: UpperCamelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase__ = value elif weight_type == "weight_g": UpperCamelCase__ = value elif weight_type == "weight_v": UpperCamelCase__ = value elif weight_type == "bias": UpperCamelCase__ = value elif weight_type == "running_mean": UpperCamelCase__ = value elif weight_type == "running_var": UpperCamelCase__ = value elif weight_type == "num_batches_tracked": UpperCamelCase__ = value elif weight_type == "inv_freq": UpperCamelCase__ = value else: UpperCamelCase__ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _UpperCamelCase (a__ :Tuple , a__ :Union[str, Any] , a__ :Any ): """simple docstring""" UpperCamelCase__ = [] UpperCamelCase__ = fairseq_model.state_dict() UpperCamelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCamelCase__ = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCamelCase__ = True if "*" in mapped_key: UpperCamelCase__ = name.split(a__ )[0].split(""".""" )[-2] UpperCamelCase__ = mapped_key.replace("""*""" , a__ ) if "pos_bias_u" in name: UpperCamelCase__ = None elif "pos_bias_v" in name: UpperCamelCase__ = None elif "weight_g" in name: UpperCamelCase__ = """weight_g""" elif "weight_v" in name: UpperCamelCase__ = """weight_v""" elif "bias" in name: UpperCamelCase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ = """weight""" elif "running_mean" in name: UpperCamelCase__ = """running_mean""" elif "inv_freq" in name: UpperCamelCase__ = """inv_freq""" elif "running_var" in name: UpperCamelCase__ = """running_var""" elif "num_batches_tracked" in name: UpperCamelCase__ = """num_batches_tracked""" else: UpperCamelCase__ = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _UpperCamelCase (a__ :Tuple , a__ :Optional[int] , a__ :Optional[Any] , a__ :List[str] , a__ :List[Any] ): """simple docstring""" UpperCamelCase__ = full_name.split("""conv_layers.""" )[-1] UpperCamelCase__ = name.split(""".""" ) UpperCamelCase__ = int(items[0] ) UpperCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a__ ) @torch.no_grad() def _UpperCamelCase (a__ :List[str] , a__ :Optional[int] , a__ :Optional[Any]=None , a__ :List[Any]=None , a__ :Optional[Any]=True ): """simple docstring""" if config_path is not None: UpperCamelCase__ = WavaVecaConformerConfig.from_pretrained(a__ , hidden_act="""swish""" ) else: UpperCamelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCamelCase__ = """rotary""" if is_finetuned: if dict_path: UpperCamelCase__ = Dictionary.load(a__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ = target_dict.pad_index UpperCamelCase__ = target_dict.bos_index UpperCamelCase__ = target_dict.eos_index UpperCamelCase__ = len(target_dict.symbols ) UpperCamelCase__ = os.path.join(a__ , """vocab.json""" ) if not os.path.isdir(a__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(a__ ) ) return os.makedirs(a__ , exist_ok=a__ ) UpperCamelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ = 0 UpperCamelCase__ = 1 with open(a__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(a__ , a__ ) UpperCamelCase__ = WavaVecaCTCTokenizer( a__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=a__ , ) UpperCamelCase__ = True if config.feat_extract_norm == """layer""" else False UpperCamelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) UpperCamelCase__ = WavaVecaProcessor(feature_extractor=a__ , tokenizer=a__ ) processor.save_pretrained(a__ ) UpperCamelCase__ = WavaVecaConformerForCTC(a__ ) else: UpperCamelCase__ = WavaVecaConformerForPreTraining(a__ ) if is_finetuned: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCamelCase__ = argparse.Namespace(task="""audio_pretraining""" ) UpperCamelCase__ = fairseq.tasks.setup_task(a__ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=a__ ) UpperCamelCase__ = model[0].eval() recursively_load_weights(a__ , a__ , not is_finetuned ) hf_wavavec.save_pretrained(a__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase__ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
87
UpperCamelCase__ = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) UpperCamelCase__ = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def _UpperCamelCase (a__ :float , a__ :str , a__ :str ): """simple docstring""" UpperCamelCase__ = from_type.lower().strip("""s""" ) UpperCamelCase__ = to_type.lower().strip("""s""" ) UpperCamelCase__ = UNIT_SYMBOL.get(a__ , a__ ) UpperCamelCase__ = UNIT_SYMBOL.get(a__ , a__ ) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase__ = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a__ )}""" ) raise ValueError(a__ ) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase__ = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a__ )}""" ) raise ValueError(a__ ) UpperCamelCase__ = METRIC_CONVERSION[from_sanitized] UpperCamelCase__ = METRIC_CONVERSION[to_sanitized] UpperCamelCase__ = 1 if from_exponent > to_exponent: UpperCamelCase__ = from_exponent - to_exponent else: UpperCamelCase__ = -(to_exponent - from_exponent) return value * pow(10 , a__ ) if __name__ == "__main__": from doctest import testmod testmod()
87
1
import re from filelock import FileLock try: import nltk snake_case_ = True except (ImportError, ModuleNotFoundError): snake_case_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' re.sub('<n>' , '' , SCREAMING_SNAKE_CASE_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE_ ) )
214
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal snake_case_ = datasets.utils.logging.get_logger(__name__) snake_case_ = ['''names''', '''prefix'''] snake_case_ = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] snake_case_ = ['''encoding_errors''', '''on_bad_lines'''] snake_case_ = ['''date_format'''] @dataclass class SCREAMING_SNAKE_CASE__ (datasets.BuilderConfig ): __lowerCamelCase : str = "," __lowerCamelCase : Optional[str] = None __lowerCamelCase : Optional[Union[int, List[int], str]] = "infer" __lowerCamelCase : Optional[List[str]] = None __lowerCamelCase : Optional[List[str]] = None __lowerCamelCase : Optional[Union[int, str, List[int], List[str]]] = None __lowerCamelCase : Optional[Union[List[int], List[str]]] = None __lowerCamelCase : Optional[str] = None __lowerCamelCase : bool = True __lowerCamelCase : Optional[Literal["c", "python", "pyarrow"]] = None __lowerCamelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __lowerCamelCase : Optional[list] = None __lowerCamelCase : Optional[list] = None __lowerCamelCase : bool = False __lowerCamelCase : Optional[Union[int, List[int]]] = None __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[Union[str, List[str]]] = None __lowerCamelCase : bool = True __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = True __lowerCamelCase : Optional[str] = None __lowerCamelCase : str = "." __lowerCamelCase : Optional[str] = None __lowerCamelCase : str = '"' __lowerCamelCase : int = 0 __lowerCamelCase : Optional[str] = None __lowerCamelCase : Optional[str] = None __lowerCamelCase : Optional[str] = None __lowerCamelCase : Optional[str] = None __lowerCamelCase : bool = True __lowerCamelCase : bool = True __lowerCamelCase : int = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : Optional[str] = None __lowerCamelCase : int = 1_0000 __lowerCamelCase : Optional[datasets.Features] = None __lowerCamelCase : Optional[str] = "strict" __lowerCamelCase : Literal["error", "warn", "skip"] = "error" __lowerCamelCase : Optional[str] = None def snake_case_ ( self): if self.delimiter is not None: lowercase__ : List[Any] = self.delimiter if self.column_names is not None: lowercase__ : Optional[int] = self.column_names @property def snake_case_ ( self): lowercase__ : Dict = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , a): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ (datasets.ArrowBasedBuilder ): __lowerCamelCase : Optional[Any] = CsvConfig def snake_case_ ( self): return datasets.DatasetInfo(features=self.config.features) def snake_case_ ( self , a): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") lowercase__ : Any = dl_manager.download_and_extract(self.config.data_files) if isinstance(a , (str, list, tuple)): lowercase__ : List[str] = data_files if isinstance(a , a): lowercase__ : Optional[Any] = [files] lowercase__ : Optional[int] = [dl_manager.iter_files(a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] lowercase__ : int = [] for split_name, files in data_files.items(): if isinstance(a , a): lowercase__ : Optional[int] = [files] lowercase__ : Tuple = [dl_manager.iter_files(a) for file in files] splits.append(datasets.SplitGenerator(name=a , gen_kwargs={'files': files})) return splits def snake_case_ ( self , a): if self.config.features is not None: lowercase__ : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(a) for feature in self.config.features.values()): # cheaper cast lowercase__ : Dict = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=a) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowercase__ : Optional[Any] = table_cast(a , a) return pa_table def snake_case_ ( self , a): lowercase__ : List[Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowercase__ : Optional[int] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(a) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(a)): lowercase__ : int = pd.read_csv(a , iterator=a , dtype=a , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(a): lowercase__ : List[str] = pa.Table.from_pandas(a) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(a) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a)}: {e}""") raise
214
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''', out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) SCREAMING_SNAKE_CASE_ = MaskFormerConfig(backbone_config=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE_ = 8_47 SCREAMING_SNAKE_CASE_ = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE_ = 1_50 SCREAMING_SNAKE_CASE_ = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE_ = 1_71 SCREAMING_SNAKE_CASE_ = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE_ = 1_33 SCREAMING_SNAKE_CASE_ = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE_ = 19 SCREAMING_SNAKE_CASE_ = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE_ = 65 SCREAMING_SNAKE_CASE_ = '''mapillary-vistas-id2label.json''' SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type='''dataset''' ), '''r''' ) ) SCREAMING_SNAKE_CASE_ = {int(__lowerCamelCase ): v for k, v in idalabel.items()} return config def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = dct.pop(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = val def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE_ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE_ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[-dim :] # fmt: on def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE_ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE_ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE_ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE_ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[-hidden_size :] # fmt: on def A__ ( ): SCREAMING_SNAKE_CASE_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): SCREAMING_SNAKE_CASE_ = get_maskformer_config(__lowerCamelCase ) # load original state_dict with open(__lowerCamelCase, '''rb''' ) as f: SCREAMING_SNAKE_CASE_ = pickle.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE_ = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase, config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase, __lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE_ = torch.from_numpy(__lowerCamelCase ) # load 🤗 model SCREAMING_SNAKE_CASE_ = MaskFormerForInstanceSegmentation(__lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCamelCase, param.shape ) SCREAMING_SNAKE_CASE_ = model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCamelCase ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results SCREAMING_SNAKE_CASE_ = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE_ = 65 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE_ = 6_55_35 else: SCREAMING_SNAKE_CASE_ = 2_55 SCREAMING_SNAKE_CASE_ = True if '''ade''' in model_name else False SCREAMING_SNAKE_CASE_ = MaskFormerImageProcessor(ignore_index=__lowerCamelCase, reduce_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = image_processor(__lowerCamelCase, return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = model(**__lowerCamelCase ) print('''Logits:''', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE_ = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], __lowerCamelCase, atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you\'d like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCAmelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
367
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
257
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "t5" a = ["past_key_values"] a = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Union[str, Any] , __lowerCamelCase : str=3_2128 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : List[Any]=2048 , __lowerCamelCase : Optional[Any]=6 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[str]=8 , __lowerCamelCase : int=32 , __lowerCamelCase : Dict=128 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Dict=1e-6 , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : str="relu" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : Union[str, Any]=1 , **__lowerCamelCase : List[Any] , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = d_kv SCREAMING_SNAKE_CASE__ = d_ff SCREAMING_SNAKE_CASE__ = num_layers SCREAMING_SNAKE_CASE__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ = relative_attention_max_distance SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = feed_forward_proj SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = self.feed_forward_proj.split('''-''' ) SCREAMING_SNAKE_CASE__ = act_info[-1] SCREAMING_SNAKE_CASE__ = act_info[0] == '''gated''' if len(__lowerCamelCase ) > 1 and act_info[0] != "gated" or len(__lowerCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE__ = '''gelu_new''' super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase , ) class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Any ) -> Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE__ = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: SCREAMING_SNAKE_CASE__ = '''past_encoder_sequence + sequence''' SCREAMING_SNAKE_CASE__ = {0: '''batch'''} SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction='''inputs''' ) return common_inputs @property def lowercase_ ( self : Tuple ) -> int: return 13
314
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
1
"""simple docstring""" import pytest UpperCAmelCase ="__dummy_dataset1__" UpperCAmelCase ="\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _A ( _a : str , _a : List[Any] , _a : List[Any] ): """simple docstring""" A = dataset_loading_script_name A = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=_a ) A = script_dir / f'{script_name}.py' with open(_a , """w""" ) as f: f.write(_a ) return str(_a )
77
"""simple docstring""" from math import factorial def _A ( _a : int = 1_0_0 ): """simple docstring""" return sum(map(_a , str(factorial(_a ) ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
77
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } lowercase__ : Optional[Any] = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } lowercase__ : Optional[Any] = "</w>" lowercase__ : int = "@@ " def A_ ( snake_case : Dict ) -> int: '''simple docstring''' __UpperCamelCase = set() __UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCamelCase = char return pairs # Speech2Text2 has no max input length lowercase__ : Dict = {"facebook/s2t-wav2vec2-large-en-de": 1_0_2_4} class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , )-> Optional[Any]: '''simple docstring''' super().__init__( unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = do_lower_case with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: __UpperCamelCase = json.load(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) __UpperCamelCase = None __UpperCamelCase = None else: with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: __UpperCamelCase = merges_handle.read().split('''\n''' )[:-1] __UpperCamelCase = [tuple(merge.split()[:2] ) for merge in merges] __UpperCamelCase = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __UpperCamelCase = {} @property def A__ ( self )-> int: '''simple docstring''' return len(self.decoder ) def A__ ( self )-> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __UpperCamelCase = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: __UpperCamelCase = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __UpperCamelCase , __UpperCamelCase = bigram __UpperCamelCase = [] __UpperCamelCase = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: __UpperCamelCase = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCamelCase = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCamelCase = tuple(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: __UpperCamelCase = get_pairs(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE_ ) if word == "\n " + BPE_TOKEN_MERGES: __UpperCamelCase = '''\n''' + BPE_TOKEN_MERGES if word.endswith(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = word.replace(SCREAMING_SNAKE_CASE_ , '''''' ) __UpperCamelCase = word.replace(''' ''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = word return word def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: __UpperCamelCase = text.lower() __UpperCamelCase = text.split() __UpperCamelCase = [] for token in text: if token: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) ) return split_tokens def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) return result def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE_ ) # make sure @@ tokens are concatenated __UpperCamelCase = ''''''.join(string.split(SCREAMING_SNAKE_CASE_ ) ) return string def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) __UpperCamelCase = 0 if self.bpe_ranks is None: return (vocab_file,) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) __UpperCamelCase = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
328
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case : Union[str, Any] = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
109
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): a__ , a__ = array[indexa], array[indexa] def __lowercase ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): if length > 1: a__ = int(length / 2 ) for i in range(__lowerCAmelCase , low + middle ): comp_and_swap(__lowerCAmelCase , __lowerCAmelCase , i + middle , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , low + middle , __lowerCAmelCase , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): if length > 1: a__ = int(length / 2 ) bitonic_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) bitonic_sort(__lowerCAmelCase , low + middle , __lowerCAmelCase , 0 ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": snake_case : int = input('''Enter numbers separated by a comma:\n''').strip() snake_case : Optional[int] = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
109
1
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _snake_case = '\\n Text data.\n Second line of data.' _snake_case = 'file' @pytest.fixture(scope="session" ) def _A ( snake_case ) -> List[Any]: _lowercase : List[Any] = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowercase : str = bytes(A__ , "utf-8" ) with zstd.open(A__ , "wb" ) as f: f.write(A__ ) return path @pytest.fixture def _A ( snake_case ) -> Optional[Any]: with open(os.path.join(tmpfs.local_root_dir , A__ ) , "w" ) as f: f.write(A__ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def _A ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[str]: _lowercase : List[str] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowercase : List[Any] = input_paths[compression_format] _lowercase : int = tmp_path / "cache" _lowercase : Optional[int] = DownloadConfig(cache_dir=A__ , extract_compressed_file=A__ ) _lowercase : str = cached_path(A__ , download_config=A__ ) with open(A__ ) as f: _lowercase : Any = f.read() with open(A__ ) as f: _lowercase : List[Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def _A ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[str]: _lowercase : Optional[Any] = "custom_cache" _lowercase : str = "custom_extracted_dir" _lowercase : Dict = tmp_path / "custom_extracted_path" if default_extracted: _lowercase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , A__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(A__ ) ) _lowercase : List[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowercase : str = xz_file _lowercase : Optional[Any] = ( DownloadConfig(extract_compressed_file=A__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=A__ ) ) _lowercase : Tuple = cached_path(A__ , download_config=A__ ) assert Path(A__ ).parent.parts[-2:] == expected def _A ( snake_case ) -> Any: # absolute path _lowercase : Union[str, Any] = str(Path(A__ ).resolve() ) assert cached_path(A__ ) == text_file # relative path _lowercase : Dict = str(Path(A__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(A__ ) == text_file def _A ( snake_case ) -> int: # absolute path _lowercase : Dict = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(A__ ): cached_path(A__ ) # relative path _lowercase : Any = "./__missing_file__.txt" with pytest.raises(A__ ): cached_path(A__ ) def _A ( snake_case ) -> Any: _lowercase : Union[str, Any] = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(A__ ) as f: _lowercase : Optional[Any] = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , A__ ) def _A ( ) -> Optional[Any]: with pytest.raises(A__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , A__ ) def _A ( snake_case ) -> Optional[Any]: _lowercase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(A__ ): http_get("https://huggingface.co" , temp_file=A__ ) with pytest.raises(A__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , A__ ) def _A ( snake_case ) -> Optional[int]: _lowercase : str = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(A__ ): ftp_get("ftp://huggingface.co" , temp_file=A__ ) with pytest.raises(A__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , A__ ) def _A ( snake_case ) -> Optional[Any]: _lowercase : List[str] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(A__ ): fsspec_get("s3://huggingface.co" , temp_file=A__ ) with pytest.raises(A__ ): fsspec_head("s3://huggingface.co" )
250
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCamelCase_ (__A ): def __init__( self : int , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[str] ) -> Optional[Any]: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Optional[int]=None ) -> List[Any]: UpperCAmelCase_ : str = {} if top_k is not None: UpperCAmelCase_ : List[str] = top_k return {}, {}, postprocess_params def __call__( self : str , lowerCAmelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCAmelCase_ : Any ) -> Tuple: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : str ) -> Any: UpperCAmelCase_ : Tuple = load_image(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = self.image_processor(images=lowerCAmelCase_ , return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Dict ) -> str: UpperCAmelCase_ : Any = self.model(**lowerCAmelCase_ ) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int]=5 ) -> Any: if top_k > self.model.config.num_labels: UpperCAmelCase_ : int = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ : str = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = probs.topk(lowerCAmelCase_ ) elif self.framework == "tf": UpperCAmelCase_ : str = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase_ : Union[str, Any] = tf.math.top_k(lowerCAmelCase_ , k=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCAmelCase_ : int = scores.tolist() UpperCAmelCase_ : Optional[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase_ , lowerCAmelCase_ )]
268
0
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def is_in_circle(SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> bool: lowerCAmelCase : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowerCAmelCase : Any = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. lowerCAmelCase : List[str] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Callable[[float], float] , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) for _ in range(SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 ): '''simple docstring''' def identity_function(SCREAMING_SNAKE_CASE : float ) -> float: return x lowerCAmelCase : Union[str, Any] = area_under_curve_estimator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def function_to_integrate(SCREAMING_SNAKE_CASE : float ) -> float: return sqrt(4.0 - x * x ) lowerCAmelCase : Dict = area_under_curve_estimator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
133
"""simple docstring""" import re from filelock import FileLock try: import nltk lowerCAmelCase__ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' re.sub("<n>" , "" , SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE ) )
133
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = (DDPMScheduler,) def _snake_case ( self ,**a_ ) -> List[str]: _UpperCAmelCase : List[str] = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**a_ ) return config def _snake_case ( self ) -> Any: for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=a_ ) def _snake_case ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=a_ ,beta_end=a_ ) def _snake_case ( self ) -> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a_ ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=a_ ) def _snake_case ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=a_ ) def _snake_case ( self ) -> int: self.check_over_configs(thresholding=a_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=a_ ,prediction_type=a_ ,sample_max_value=a_ ,) def _snake_case ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def _snake_case ( self ) -> Optional[Any]: for t in [0, 500, 999]: self.check_over_forward(time_step=a_ ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**a_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Dict = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**a_ ) _UpperCAmelCase : List[Any] = len(a_ ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Tuple = self.dummy_sample_deter _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) for t in reversed(range(a_ ) ): # 1. predict noise residual _UpperCAmelCase : List[Any] = model(a_ ,a_ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : Union[str, Any] = scheduler.step(a_ ,a_ ,a_ ,generator=a_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : str = pred_prev_sample _UpperCAmelCase : List[str] = torch.sum(torch.abs(a_ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Dict: _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _UpperCAmelCase : str = scheduler_class(**a_ ) _UpperCAmelCase : Tuple = len(a_ ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : Dict = self.dummy_sample_deter _UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(a_ ) ): # 1. predict noise residual _UpperCAmelCase : Dict = model(a_ ,a_ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : Tuple = scheduler.step(a_ ,a_ ,a_ ,generator=a_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : Any = pred_prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(a_ ) ) _UpperCAmelCase : List[str] = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : Any = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**a_ ) _UpperCAmelCase : Tuple = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=a_ ) _UpperCAmelCase : str = scheduler.timesteps for i, timestep in enumerate(a_ ): if i == len(a_ ) - 1: _UpperCAmelCase : Any = -1 else: _UpperCAmelCase : Union[str, Any] = timesteps[i + 1] _UpperCAmelCase : str = scheduler.previous_timestep(a_ ) _UpperCAmelCase : List[str] = prev_t.item() self.assertEqual(a_ ,a_ ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**a_ ) _UpperCAmelCase : int = [100, 87, 50, 51, 0] with self.assertRaises(a_ ,msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=a_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**a_ ) _UpperCAmelCase : Any = [100, 87, 50, 1, 0] _UpperCAmelCase : Any = len(a_ ) with self.assertRaises(a_ ,msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=a_ ,timesteps=a_ ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Dict = self.scheduler_classes[0] _UpperCAmelCase : Tuple = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**a_ ) _UpperCAmelCase : Union[str, Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( a_ ,msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" ,): scheduler.set_timesteps(timesteps=a_ )
215
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def snake_case_ ( lowerCAmelCase_ )-> typing.Counter[int]: '''simple docstring''' _UpperCAmelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase_ , max_perimeter + 1 ): _UpperCAmelCase : List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def snake_case_ ( lowerCAmelCase_ = 1000 )-> int: '''simple docstring''' _UpperCAmelCase : int = pythagorean_triple(lowerCAmelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
215
1
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( __a : List[str] ) -> str: """simple docstring""" return getitem, k def __UpperCAmelCase ( __a : int ,__a : List[Any] ) -> Optional[int]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( __a : Any ) -> Optional[Any]: """simple docstring""" return delitem, k def __UpperCAmelCase ( __a : Any ,__a : List[str] ,*__a : Any ) -> Dict: """simple docstring""" try: return fun(__a ,*__a ), None except Exception as e: return None, e a__ = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) a__ = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] a__ = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] a__ = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( '''operations''' ,( pytest.param(_add_items ,id='''add items''' ), pytest.param(_overwrite_items ,id='''overwrite items''' ), pytest.param(_delete_items ,id='''delete items''' ), pytest.param(_access_absent_items ,id='''access absent items''' ), pytest.param(_add_with_resize_up ,id='''add with resize up''' ), pytest.param(_add_with_resize_down ,id='''add with resize down''' ), ) ,) def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : str = HashMap(initial_block_size=4 ) _a : Union[str, Any] = {} for _, (fun, *args) in enumerate(__a ): _a : List[Any] = _run_operation(__a ,__a ,*__a ) _a : List[Any] = _run_operation(__a ,__a ,*__a ) assert my_res == py_res assert str(__a ) == str(__a ) assert set(__a ) == set(__a ) assert len(__a ) == len(__a ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" def is_public(__a : str ) -> bool: return not name.startswith('''_''' ) _a : List[Any] = {name for name in dir({} ) if is_public(__a )} _a : Tuple = {name for name in dir(HashMap() ) if is_public(__a )} assert dict_public_names > hash_public_names
352
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __UpperCAmelCase ( __a : np.ndarray ,__a : Optional[str] ,__a : Optional[str] ) -> List[Any]: """simple docstring""" _a : str = to_pil_image(__a ) _a , _a : Optional[Any] = pil_image.size _a : Tuple = pytesseract.image_to_data(__a ,lang=__a ,output_type='''dict''' ,config=__a ) _a , _a , _a , _a , _a : List[str] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _a : Dict = [idx for idx, word in enumerate(__a ) if not word.strip()] _a : str = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : str = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] _a : Union[str, Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : int = [] for x, y, w, h in zip(__a ,__a ,__a ,__a ): _a : List[str] = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes _a : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a ,__a ,__a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ) -> None: super().__init__(**_a ) _a : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _a : Union[str, Any] = get_size_dict(_a ) _a : int = do_resize _a : Optional[int] = size _a : str = resample _a : str = do_rescale _a : Any = rescale_value _a : Optional[Any] = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD _a : List[Any] = apply_ocr _a : Optional[int] = ocr_lang _a : Tuple = tesseract_config def __lowercase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ) -> np.ndarray: _a : Any = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[int] = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : Any = get_size_dict(_a ) _a : List[str] = resample if resample is not None else self.resample _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Any = apply_ocr if apply_ocr is not None else self.apply_ocr _a : int = ocr_lang if ocr_lang is not None else self.ocr_lang _a : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) _a : str = [] _a : str = [] for image in images: _a , _a : Union[str, Any] = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: _a : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] _a : List[str] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: _a : Optional[int] = words_batch _a : List[Any] = boxes_batch return data
15
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class lowerCAmelCase__ ( lowercase__ ): '''simple docstring''' __UpperCamelCase = """dpr""" def __init__( self : Dict , lowercase_ : Tuple=30522 , lowercase_ : Optional[int]=768 , lowercase_ : Any=12 , lowercase_ : Optional[Any]=12 , lowercase_ : Dict=3072 , lowercase_ : Optional[int]="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[int]=0.02 , lowercase_ : Tuple=1e-12 , lowercase_ : List[str]=0 , lowercase_ : Optional[int]="absolute" , lowercase_ : int = 0 , **lowercase_ : Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=_A , **_A) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Union[str, Any] = projection_dim SCREAMING_SNAKE_CASE_ : int = position_embedding_type
91
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowercase__ ( __SCREAMING_SNAKE_CASE ): lowercase__ = """glpn""" def __init__( self : Any ,lowerCamelCase__ : Optional[int]=3 ,lowerCamelCase__ : Tuple=4 ,lowerCamelCase__ : Optional[Any]=[2, 2, 2, 2] ,lowerCamelCase__ : int=[8, 4, 2, 1] ,lowerCamelCase__ : Union[str, Any]=[32, 64, 160, 256] ,lowerCamelCase__ : Dict=[7, 3, 3, 3] ,lowerCamelCase__ : Union[str, Any]=[4, 2, 2, 2] ,lowerCamelCase__ : List[Any]=[1, 2, 5, 8] ,lowerCamelCase__ : Tuple=[4, 4, 4, 4] ,lowerCamelCase__ : Dict="gelu" ,lowerCamelCase__ : str=0.0 ,lowerCamelCase__ : int=0.0 ,lowerCamelCase__ : Optional[int]=0.0_2 ,lowerCamelCase__ : Union[str, Any]=0.1 ,lowerCamelCase__ : str=1E-6 ,lowerCamelCase__ : Optional[Any]=64 ,lowerCamelCase__ : List[str]=10 ,lowerCamelCase__ : Dict=-1 ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' super().__init__(**UpperCamelCase__ ) _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = num_encoder_blocks _UpperCamelCase : Optional[Any] = depths _UpperCamelCase : List[Any] = sr_ratios _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = patch_sizes _UpperCamelCase : str = strides _UpperCamelCase : Dict = mlp_ratios _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : List[Any] = hidden_act _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : Optional[Any] = drop_path_rate _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : List[str] = decoder_hidden_size _UpperCamelCase : Dict = max_depth _UpperCamelCase : Any = head_in_index
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : List[Any] = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowercase__ ( lowercase ): lowercase__ = """xlm-roberta-xl""" def __init__( self : Optional[int] ,lowerCamelCase__ : Optional[Any]=250880 ,lowerCamelCase__ : Tuple=2560 ,lowerCamelCase__ : Union[str, Any]=36 ,lowerCamelCase__ : List[str]=32 ,lowerCamelCase__ : Optional[Any]=10240 ,lowerCamelCase__ : Tuple="gelu" ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : Optional[int]=514 ,lowerCamelCase__ : List[str]=1 ,lowerCamelCase__ : Dict=0.0_2 ,lowerCamelCase__ : Any=1E-05 ,lowerCamelCase__ : Union[str, Any]=1 ,lowerCamelCase__ : str=0 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : Union[str, Any]="absolute" ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : List[str]=None ,**lowerCamelCase__ : Dict ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Optional[int] = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : Optional[int] = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : List[Any] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : Optional[int] = layer_norm_eps _UpperCamelCase : Optional[int] = position_embedding_type _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : Optional[Any] = classifier_dropout class lowercase__ ( lowercase ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
236
0
'''simple docstring''' # Function to print upper half of diamond (pyramid) def lowercase ( __magic_name__ ): '''simple docstring''' for i in range(0 , __magic_name__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def lowercase ( __magic_name__ ): '''simple docstring''' for i in range(__magic_name__ , 0 , -1 ): for _ in range(__magic_name__ , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def lowercase ( __magic_name__ ): '''simple docstring''' if n <= 0: print(" ... .... nothing printing :(" ) return floyd(__magic_name__ ) # upper half reverse_floyd(__magic_name__ ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") a : int = 1 while K: a : Tuple = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) a : str = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
311
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig a : Optional[Any] = logging.get_logger(__name__) a : Tuple = "T5Config" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = jnp.zeros_like(__magic_name__ ) UpperCAmelCase : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCAmelCase : str = shifted_input_ids.at[:, 0].set(__magic_name__ ) UpperCAmelCase : Any = jnp.where(shifted_input_ids == -100 , __magic_name__ , __magic_name__ ) return shifted_input_ids class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "mt5" SCREAMING_SNAKE_CASE__ : Dict = MTaConfig class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "mt5" SCREAMING_SNAKE_CASE__ : str = MTaConfig class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = "mt5" SCREAMING_SNAKE_CASE__ : str = MTaConfig
311
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase__ ( datasets.BeamBasedBuilder): '''simple docstring''' def _lowerCamelCase ( self :int ) -> Union[str, Any]: return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=_a , ) def _lowerCamelCase ( self :Tuple , a :Optional[Any] , a :int ) -> Union[str, Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def _lowerCamelCase ( self :Dict , a :Any , a :str ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_a ) class lowerCamelCase__ ( datasets.BeamBasedBuilder): '''simple docstring''' def _lowerCamelCase ( self :Union[str, Any] ) -> Dict: return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=_a , ) def _lowerCamelCase ( self :Any , a :Optional[int] , a :Any ) -> List[str]: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def _lowerCamelCase ( self :Optional[Any] , a :int , a :List[str] ) -> Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_a ) def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"])] def _SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"])] class lowerCamelCase__ ( _a): '''simple docstring''' @require_beam def _lowerCamelCase ( self :Any ) -> str: __UpperCamelCase : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : Optional[int] = DummyBeamDataset(cache_dir=_a , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_a , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) __UpperCamelCase : Any = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _a ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _a ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_a , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def _lowerCamelCase ( self :int ) -> str: import apache_beam as beam __UpperCamelCase : List[Any] = beam.io.parquetio.WriteToParquet __UpperCamelCase : List[Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : Optional[int] = DummyBeamDataset(cache_dir=_a , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: __UpperCamelCase : int = partial(_a , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _a , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( _a , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) __UpperCamelCase : Union[str, Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _a ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _a ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(_a , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def _lowerCamelCase ( self :Union[str, Any] ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : Union[str, Any] = DummyBeamDataset(cache_dir=_a ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _lowerCamelCase ( self :Optional[Any] ) -> List[Any]: __UpperCamelCase : Dict = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : Optional[Any] = NestedBeamDataset(cache_dir=_a , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_a , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) __UpperCamelCase : int = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _a ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _a ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_a , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
370
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase : Any = 16 lowercase : Optional[int] = 32 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Accelerator , _lowerCamelCase : int = 16) -> int: '''simple docstring''' __UpperCamelCase : Any = AutoTokenizer.from_pretrained("bert-base-cased") __UpperCamelCase : Optional[Any] = load_dataset("glue" , "mrpc") def tokenize_function(_lowerCamelCase : Dict): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase : List[str] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase : Optional[int] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase : List[str] = tokenized_datasets.rename_column("label" , "labels") def collate_fn(_lowerCamelCase : Union[str, Any]): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase : Dict = 8 else: __UpperCamelCase : Optional[Any] = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. __UpperCamelCase : Optional[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase) __UpperCamelCase : int = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any]) -> str: '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase) == "1": __UpperCamelCase : List[str] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir) else: __UpperCamelCase : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase : List[str] = config["lr"] __UpperCamelCase : Optional[Any] = int(config["num_epochs"]) __UpperCamelCase : List[Any] = int(config["seed"]) __UpperCamelCase : Any = int(config["batch_size"]) set_seed(_lowerCamelCase) __UpperCamelCase , __UpperCamelCase : List[Any] = get_dataloaders(_lowerCamelCase , _lowerCamelCase) __UpperCamelCase : List[str] = evaluate.load("glue" , "mrpc") # If the batch size is too big we use gradient accumulation __UpperCamelCase : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase : List[Any] = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase : Union[str, Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase : str = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase : Optional[int] = model.to(accelerator.device) # Instantiate optimizer __UpperCamelCase : List[str] = AdamW(params=model.parameters() , lr=_lowerCamelCase) # Instantiate scheduler __UpperCamelCase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase : Dict = os.path.split(_lowerCamelCase)[-1].split(".")[0] accelerator.init_trackers(_lowerCamelCase , _lowerCamelCase) # Now we train the model for epoch in range(_lowerCamelCase): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase : Tuple = 0 for step, batch in enumerate(_lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) __UpperCamelCase : Dict = model(**_lowerCamelCase) __UpperCamelCase : Any = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase : List[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device) with torch.no_grad(): __UpperCamelCase : Union[str, Any] = model(**_lowerCamelCase) __UpperCamelCase : str = outputs.logits.argmax(dim=-1) __UpperCamelCase , __UpperCamelCase : Dict = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) __UpperCamelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , _lowerCamelCase) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCamelCase), "epoch": epoch, } , step=_lowerCamelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : str = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU.") parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_lowerCamelCase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) __UpperCamelCase : Union[str, Any] = parser.parse_args() __UpperCamelCase : str = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
151
0
'''simple docstring''' from math import sqrt def snake_case_ (_a : Optional[Any] = 1_0_0_0_0_0_0 ): UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 4_2 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(snake_case__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
34
import unittest import numpy as np def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ) -> np.ndarray: lowerCAmelCase = np.shape(snake_case__ ) lowerCAmelCase = np.shape(snake_case__ ) lowerCAmelCase = np.shape(snake_case__ ) if shape_a[0] != shape_b[0]: lowerCAmelCase = ( '''Expected the same number of rows for A and B. ''' f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(snake_case__ ) if shape_b[1] != shape_c[1]: lowerCAmelCase = ( '''Expected the same number of columns for B and C. ''' f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(snake_case__ ) lowerCAmelCase = pseudo_inv if a_inv is None: try: lowerCAmelCase = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1], [6, 3]] ) lowerCAmelCase = schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.block([[a, b], [b.T, c]] ) lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , det_a * det_s ) def SCREAMING_SNAKE_CASE_ ( self ) ->None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
338
0
from __future__ import annotations import time import numpy as np lowercase : Optional[Any] = [8, 5, 9, 7] lowercase : Union[str, Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowercase : Optional[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __snake_case : def __init__( self ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = claim_vector lowercase : Union[str, Any] = allocated_resources_table lowercase : Dict = maximum_claim_table def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return {self.__need().index(snake_case ): i for i in self.__need()} def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Any = self.__need() lowercase : List[str] = self.__allocated_resources_table lowercase : int = self.__available_resources() lowercase : int = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: lowercase : List[str] = False for each_need in need_list: lowercase : Optional[Any] = True for index, need in enumerate(snake_case ): if need > available_resources[index]: lowercase : Optional[Any] = False break if execution: lowercase : Optional[Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowercase : Union[str, Any] = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(snake_case ) # update available/freed resources stack lowercase : Dict = np.array(snake_case ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(snake_case ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(snake_case ) + 1}" + """ """.join(f"{it:>8}" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(snake_case ) + 1}" + """ """.join(f"{it:>8}" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(snake_case ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
359
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase : Tuple = """<<<<<<< This should probably be modified because it mentions: """ lowercase : Any = """======= >>>>>>> """ lowercase : List[str] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] lowercase : Any = [ # (pattern, replacement) # Order is important here for some replacements (R"""tfds\.core""", R"""datasets"""), (R"""tf\.io\.gfile\.GFile""", R"""open"""), (R"""tf\.([\w\d]+)""", R"""datasets.Value('\1')"""), (R"""tfds\.features\.Text\(\)""", R"""datasets.Value('string')"""), (R"""tfds\.features\.Text\(""", R"""datasets.Value('string'),"""), (R"""features\s*=\s*tfds.features.FeaturesDict\(""", R"""features=datasets.Features("""), (R"""tfds\.features\.FeaturesDict\(""", R"""dict("""), (R"""The TensorFlow Datasets Authors""", R"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (R"""tfds\.""", R"""datasets."""), (R"""dl_manager\.manual_dir""", R"""self.config.data_dir"""), (R"""self\.builder_config""", R"""self.config"""), ] def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __snake_case ( lowerCAmelCase ): @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' lowercase : str = parser.add_parser( """convert""" ,help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" ,) train_parser.add_argument( """--tfds_path""" ,type=snake_case ,required=snake_case ,help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" ,) train_parser.add_argument( """--datasets_directory""" ,type=snake_case ,required=snake_case ,help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=snake_case ) def __init__( self ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : Optional[Any] = get_logger("""datasets-cli/converting""" ) lowercase : Optional[int] = tfds_path lowercase : Dict = datasets_directory def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if os.path.isdir(self._tfds_path ): lowercase : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase : Tuple = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) lowercase : Optional[int] = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) lowercase : List[Any] = [] lowercase : Optional[int] = [] lowercase : Dict = {} if os.path.isdir(self._tfds_path ): lowercase : int = os.listdir(snake_case ) else: lowercase : List[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) lowercase : List[Any] = os.path.join(snake_case ,snake_case ) lowercase : List[str] = os.path.join(snake_case ,snake_case ) if not os.path.isfile(snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(snake_case ,encoding="""utf-8""" ) as f: lowercase : str = f.readlines() lowercase : Union[str, Any] = [] lowercase : Optional[Any] = False lowercase : Optional[Any] = False lowercase : Optional[int] = [] for line in lines: lowercase : int = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase : Union[str, Any] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here lowercase : List[Any] = """""" continue elif "from absl import logging" in out_line: lowercase : Optional[int] = """from datasets import logging\n""" elif "getLogger" in out_line: lowercase : Any = out_line.replace("""getLogger""" ,"""get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase : Optional[Any] = True lowercase : Optional[Any] = list(filter(lambda snake_case : e in out_line ,snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case ) + """\n""" ) out_lines.append(snake_case ) out_lines.append(snake_case ) continue else: for pattern, replacement in TO_CONVERT: lowercase : Union[str, Any] = re.sub(snake_case ,snake_case ,snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase : Dict = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" ,snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) lowercase : Optional[int] = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase : Any = True out_lines.append(snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase : Union[str, Any] = f_name.replace(""".py""" ,"""""" ) lowercase : Optional[Any] = os.path.join(snake_case ,snake_case ) lowercase : List[str] = os.path.join(snake_case ,snake_case ) os.makedirs(snake_case ,exist_ok=snake_case ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case ) if needs_manual_update: with_manual_update.append(snake_case ) with open(snake_case ,"""w""" ,encoding="""utf-8""" ) as f: f.writelines(snake_case ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: lowercase : Optional[int] = os.path.basename(snake_case ) lowercase : int = imports_to_builder_map[f_name.replace(""".py""" ,"""""" )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(snake_case ,snake_case ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
285
0
'''simple docstring''' lowercase_ = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowercase_ = [{"type": "code", "content": INSTALL_CONTENT}] lowercase_ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
211
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __A : '''simple docstring''' __lowerCamelCase : CommonSchedulerState # setable values __lowerCamelCase : jnp.ndarray __lowerCamelCase : jnp.ndarray __lowerCamelCase : Optional[int] = None @classmethod def a__ (cls , A , A , A ) -> str: """simple docstring""" return cls(common=A , init_noise_sigma=A , timesteps=A ) @dataclass class __A ( A ): '''simple docstring''' __lowerCamelCase : DDPMSchedulerState class __A ( A , A ): '''simple docstring''' __lowerCamelCase : Dict = [e.name for e in FlaxKarrasDiffusionSchedulers] __lowerCamelCase : jnp.dtype @property def a__ (self ) -> List[str]: """simple docstring""" return True @register_to_config def __init__(self , A = 1_000 , A = 0.0001 , A = 0.02 , A = "linear" , A = None , A = "fixed_small" , A = True , A = "epsilon" , A = jnp.floataa , ) -> Union[str, Any]: """simple docstring""" _a = dtype def a__ (self , A = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: _a = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _a = jnp.array(1.0 , dtype=self.dtype ) _a = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=A , init_noise_sigma=A , timesteps=A , ) def a__ (self , A , A , A = None ) -> jnp.ndarray: """simple docstring""" return sample def a__ (self , A , A , A = () ) -> DDPMSchedulerState: """simple docstring""" _a = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _a = (jnp.arange(0 , A ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=A , timesteps=A , ) def a__ (self , A , A , A=None , A=None ) -> int: """simple docstring""" _a = state.common.alphas_cumprod[t] _a = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _a = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _a = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _a = jnp.clip(A , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _a = jnp.log(jnp.clip(A , a_min=1E-20 ) ) elif variance_type == "fixed_large": _a = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _a = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _a = variance _a = state.common.betas[t] _a = (predicted_variance + 1) / 2 _a = frac * max_log + (1 - frac) * min_log return variance def a__ (self , A , A , A , A , A = None , A = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" _a = timestep if key is None: _a = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _a , _a = jnp.split(A , sample.shape[1] , axis=1 ) else: _a = None # 1. compute alphas, betas _a = state.common.alphas_cumprod[t] _a = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _a = 1 - alpha_prod_t _a = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _a = model_output elif self.config.prediction_type == "v_prediction": _a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _a = jnp.clip(A , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _a = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _a = jax.random.split(A , num=1 ) _a = jax.random.normal(A , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(A , A , predicted_variance=A ) ** 0.5) * noise _a = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _a = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=A , state=A ) def a__ (self , A , A , A , A , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , A , A , A ) def a__ (self , A , A , A , A , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , A , A , A ) def __len__(self ) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
211
1
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __lowercase = tuple[int, int] class _lowercase : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : set[int] , UpperCamelCase__ : Mapping[EdgeT, int] ) -> None: '''simple docstring''' __UpperCamelCase =vertices __UpperCamelCase ={ (min(UpperCamelCase__ ), max(UpperCamelCase__ )): weight for edge, weight in edges.items() } def UpperCAmelCase_ ( self : str , UpperCamelCase__ : EdgeT , UpperCamelCase__ : int ) -> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __UpperCamelCase =weight def UpperCAmelCase_ ( self : List[Any] ) -> Graph: '''simple docstring''' __UpperCamelCase =Graph({min(self.vertices )} , {} ) __UpperCamelCase =42 __UpperCamelCase =42 __UpperCamelCase =42 __UpperCamelCase =42 while len(subgraph.vertices ) < len(self.vertices ): __UpperCamelCase =max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __UpperCamelCase =edge __UpperCamelCase =weight subgraph.add_edge(UpperCamelCase__ , UpperCamelCase__ ) return subgraph def lowerCAmelCase (__UpperCamelCase : str = "p107_network.txt" ): """simple docstring""" __UpperCamelCase =os.path.abspath(os.path.dirname(__UpperCamelCase ) ) __UpperCamelCase =os.path.join(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase ={} __UpperCamelCase =42 __UpperCamelCase =42 __UpperCamelCase =42 with open(__UpperCamelCase ) as f: __UpperCamelCase =f.read().strip().split('''\n''' ) __UpperCamelCase =[line.split(''',''' ) for line in data] for edgea in range(1 , len(__UpperCamelCase ) ): for edgea in range(__UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": __UpperCamelCase =int(adjaceny_matrix[edgea][edgea] ) __UpperCamelCase =Graph(set(range(len(__UpperCamelCase ) ) ) , __UpperCamelCase ) __UpperCamelCase =graph.prims_algorithm() __UpperCamelCase =sum(graph.edges.values() ) __UpperCamelCase =sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
85
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] ): """simple docstring""" __UpperCamelCase =[0 for i in range(r + 1 )] # nc0 = 1 __UpperCamelCase =1 for i in range(1 , n + 1 ): # to compute current row from previous row. __UpperCamelCase =min(__UpperCamelCase , __UpperCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
85
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['DPTFeatureExtractor'] lowerCAmelCase = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = credit_card_number lowercase__ = 0 lowercase__ = len(SCREAMING_SNAKE_CASE ) - 2 for i in range(SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit lowercase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowercase__ = cc_number[:i] + str(SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(SCREAMING_SNAKE_CASE ) <= 16: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(SCREAMING_SNAKE_CASE ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(SCREAMING_SNAKE_CASE ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
110
1
from timeit import timeit __UpperCamelCase : Dict = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : str = len(_lowercase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def A ( _lowercase ): SCREAMING_SNAKE_CASE : Tuple = len(_lowercase ) // 2 SCREAMING_SNAKE_CASE : List[str] = len(_lowercase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_lowercase ) ) def A ( _lowercase ): if len(_lowercase ) <= 2: return True if s[0] == s[len(_lowercase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def A ( _lowercase ): return s == s[::-1] def A ( _lowercase ): SCREAMING_SNAKE_CASE : Any = f"""all({name}(key) is value for key, value in test_data.items())""" SCREAMING_SNAKE_CASE : str = f"""from __main__ import test_data, {name}""" SCREAMING_SNAKE_CASE : List[Any] = 500_000 SCREAMING_SNAKE_CASE : List[Any] = timeit(stmt=_lowercase , setup=_lowercase , number=_lowercase ) print(f"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
258
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Tuple = {'vocab_file': 'vocab.txt'} __UpperCamelCase : Tuple = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __UpperCamelCase : Union[str, Any] = { 'facebook/esm2_t6_8M_UR50D': 1024, 'facebook/esm2_t12_35M_UR50D': 1024, } def A ( _lowercase ): with open(_lowercase , '''r''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Union[str, Any]="<cls>" , UpperCamelCase__ : Dict="<pad>" , UpperCamelCase__ : str="<mask>" , UpperCamelCase__ : Any="<eos>" , **UpperCamelCase__ : int , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_vocab_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE : List[Any] = {tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE : Union[str, Any] = unk_token SCREAMING_SNAKE_CASE : Any = cls_token SCREAMING_SNAKE_CASE : List[str] = pad_token SCREAMING_SNAKE_CASE : List[str] = mask_token SCREAMING_SNAKE_CASE : Any = eos_token SCREAMING_SNAKE_CASE : List[str] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __A ( self : Union[str, Any] , UpperCamelCase__ : int ): '''simple docstring''' return self._id_to_token.get(UpperCamelCase__ , self.unk_token ) def __A ( self : Dict , UpperCamelCase__ : str ): '''simple docstring''' return self._token_to_id.get(UpperCamelCase__ , self._token_to_id.get(self.unk_token ) ) def __A ( self : List[Any] , UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : List[Any] ): '''simple docstring''' return text.split() def __A ( self : List[str] , UpperCamelCase__ : Dict=False ): '''simple docstring''' return len(self._id_to_token ) def __A ( self : Optional[Any] ): '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __A ( self : Union[str, Any] , UpperCamelCase__ : str ): '''simple docstring''' return self._token_to_id.get(UpperCamelCase__ , self._token_to_id.get(self.unk_token ) ) def __A ( self : List[str] , UpperCamelCase__ : int ): '''simple docstring''' return self._id_to_token.get(UpperCamelCase__ , self.unk_token ) def __A ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [self.cls_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __A ( self : Union[str, Any] , UpperCamelCase__ : List , UpperCamelCase__ : Optional[List] = None , UpperCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE : List[str] = [1] + ([0] * len(UpperCamelCase__ )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCamelCase__ ) + [1] return mask def __A ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = os.path.join(UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __A ( self : Dict ): '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCamelCase__ ) def __A ( self : str , UpperCamelCase__ : Union[List[str], List[AddedToken]] , UpperCamelCase__ : bool = False ): '''simple docstring''' return super()._add_tokens(UpperCamelCase__ , special_tokens=UpperCamelCase__ )
258
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _snake_case = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _snake_case = [ord(letter) for letter in string.ascii_lowercase] _snake_case = {ord(char) for char in VALID_CHARS} _snake_case = ['''the''', '''be''', '''to''', '''of''', '''and''', '''in''', '''that''', '''have'''] def _UpperCamelCase ( snake_case__, snake_case__ ) -> str | None: __UpperCAmelCase : Union[str, Any] = "" __UpperCAmelCase : str = 42 __UpperCAmelCase : List[Any] = 42 __UpperCAmelCase : Optional[Any] = 42 for keychar, cipherchar in zip(cycle(UpperCamelCase_ ), UpperCamelCase_ ): __UpperCAmelCase : Any = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase_ ) return decoded def _UpperCamelCase ( snake_case__ ) -> list[str]: __UpperCAmelCase : Optional[Any] = [] for key in product(UpperCamelCase_, repeat=3 ): __UpperCAmelCase : int = try_key(UpperCamelCase_, UpperCamelCase_ ) if encoded is not None: possibles.append(UpperCamelCase_ ) return possibles def _UpperCamelCase ( snake_case__, snake_case__ ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def _UpperCamelCase ( snake_case__ = "p059_cipher.txt" ) -> int: __UpperCAmelCase : Dict = 42 __UpperCAmelCase : List[Any] = 42 __UpperCAmelCase : Tuple = 42 __UpperCAmelCase : int = 42 __UpperCAmelCase : List[str] = Path(UpperCamelCase_ ).parent.joinpath(UpperCamelCase_ ).read_text(encoding="utf-8" ) __UpperCAmelCase : Any = [int(UpperCamelCase_ ) for number in data.strip().split("," )] __UpperCAmelCase : List[Any] = filter_valid_chars(UpperCamelCase_ ) for common_word in COMMON_WORDS: __UpperCAmelCase : Union[str, Any] = filter_common_word(UpperCamelCase_, UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: break __UpperCAmelCase : Dict = possibles[0] return sum(ord(UpperCamelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
157
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
0
def _lowercase ( UpperCamelCase_ ) -> bool: '''simple docstring''' if num < 0: return False SCREAMING_SNAKE_CASE__ = num SCREAMING_SNAKE_CASE__ = 0 while num > 0: SCREAMING_SNAKE_CASE__ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
355
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case = 25_60_47 __snake_case = 25_61_45 @require_sentencepiece @require_tokenizers class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : int =NllbTokenizer A__ : Optional[int] =NllbTokenizerFast A__ : Union[str, Any] =True A__ : Dict =True A__ : Tuple ={} def A_ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = NllbTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = NllbTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = tokenizer_r.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE__ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ = tokenizer_r.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ = tokenizer_r.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ = tokenizer_r.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) @require_torch def A_ ( self : Tuple ): if not self.test_seqaseq: return SCREAMING_SNAKE_CASE__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. SCREAMING_SNAKE_CASE__ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE__ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: SCREAMING_SNAKE_CASE__ = tokenizer.prepare_seqaseq_batch( src_texts=UpperCAmelCase_ , tgt_texts=UpperCAmelCase_ , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified SCREAMING_SNAKE_CASE__ = tokenizer.prepare_seqaseq_batch( UpperCAmelCase_ , tgt_texts=UpperCAmelCase_ , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) SCREAMING_SNAKE_CASE__ = tokenizer.prepare_seqaseq_batch( src_texts=UpperCAmelCase_ , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , UpperCAmelCase_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def A_ ( self : List[Any] ): pass def A_ ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE__ = [AddedToken('<special>' , lstrip=UpperCAmelCase_ )] SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_r.encode('Hey this is a <special> token' ) SCREAMING_SNAKE_CASE__ = tokenizer_r.encode('<special>' , add_special_tokens=UpperCAmelCase_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained( UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.encode('Hey this is a <special> token' ) SCREAMING_SNAKE_CASE__ = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): A__ : List[Any] ="""facebook/nllb-200-distilled-600M""" A__ : Tuple =[ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] A__ : Optional[Any] =[ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] A__ : Optional[int] =[ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def A_ ( cls : Tuple ): SCREAMING_SNAKE_CASE__ = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) SCREAMING_SNAKE_CASE__ = 1 return cls def A_ ( self : int ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 256057 ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) def A_ ( self : Dict ): self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) # fmt: off SCREAMING_SNAKE_CASE__ = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [256203, 3] ) def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = NllbTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase_ ) @require_torch def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) SCREAMING_SNAKE_CASE__ = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = self.tokenizer(self.src_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=3 , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=10 , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ = targets['input_ids'] SCREAMING_SNAKE_CASE__ = shift_tokens_right( UpperCAmelCase_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , { # A, test, EOS, en_XX 'input_ids': [[256047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 256057, } , ) @require_torch def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
169
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) _UpperCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCAmelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
39
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = ["""image_processor""", """tokenizer"""] __UpperCamelCase = """LayoutLMv2ImageProcessor""" __UpperCamelCase = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self :Any , lowercase_ :int=None , lowercase_ :Union[str, Any]=None , **lowercase_ :Optional[Any] ) -> Dict: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) UpperCAmelCase = kwargs.pop('feature_extractor' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self :str , lowercase_ :Optional[int] , lowercase_ :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ :Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase_ :Union[List[List[int]], List[List[List[int]]]] = None , lowercase_ :Optional[Union[List[int], List[List[int]]]] = None , lowercase_ :bool = True , lowercase_ :Union[bool, str, PaddingStrategy] = False , lowercase_ :Union[bool, str, TruncationStrategy] = None , lowercase_ :Optional[int] = None , lowercase_ :int = 0 , lowercase_ :Optional[int] = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[bool] = None , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = True , lowercase_ :Optional[Union[str, TensorType]] = None , **lowercase_ :Any , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor UpperCAmelCase = self.image_processor(images=lowercase_ , return_tensors=lowercase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase = features['words'] UpperCAmelCase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel values UpperCAmelCase = features.pop('pixel_values' ) if return_overflowing_tokens is True: UpperCAmelCase = self.get_overflowing_images(lowercase_ , encoded_inputs['overflow_to_sample_mapping'] ) UpperCAmelCase = images return encoded_inputs def UpperCAmelCase__ ( self :Dict , lowercase_ :List[Any] , lowercase_ :Any ) -> Optional[Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(lowercase_ )} and {len(lowercase_ )}""" ) return images_with_overflow def UpperCAmelCase__ ( self :Any , *lowercase_ :int , **lowercase_ :Tuple ) -> Tuple: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Any , *lowercase_ :List[Any] , **lowercase_ :Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCAmelCase__ ( self :int ) -> Optional[int]: return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase__ ( self :int ) -> Dict: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
78
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
from maths.prime_factors import prime_factors def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" if not isinstance(_UpperCamelCase, _UpperCamelCase ): lowercase : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(_UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
173
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __A : List[str] = 0 __A : List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __A : Tuple = tuple[int, int] class __A : def __init__( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Node | None , ): lowerCAmelCase : Union[str, Any] = pos_x lowerCAmelCase : Dict = pos_y lowerCAmelCase : Dict = (pos_y, pos_x) lowerCAmelCase : List[str] = goal_x lowerCAmelCase : List[str] = goal_y lowerCAmelCase : int = g_cost lowerCAmelCase : str = parent lowerCAmelCase : str = self.calculate_heuristic() lowerCAmelCase : int = self.g_cost + self.h_cost def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = self.pos_x - self.goal_x lowerCAmelCase : int = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(UpperCAmelCase_ ) + abs(UpperCAmelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Tuple , UpperCAmelCase_ : Node ): return self.f_cost < other.f_cost class __A : def __init__( self : Tuple , UpperCAmelCase_ : TPosition , UpperCAmelCase_ : TPosition ): lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCAmelCase_ ) lowerCAmelCase : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , UpperCAmelCase_ ) lowerCAmelCase : Any = [self.start] lowerCAmelCase : list[Node] = [] lowerCAmelCase : Tuple = False def lowercase__ ( self : Any ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase : Union[str, Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(UpperCAmelCase_ ) self.closed_nodes.append(UpperCAmelCase_ ) lowerCAmelCase : Dict = self.get_successors(UpperCAmelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCAmelCase_ ) else: # retrieve the best current path lowerCAmelCase : str = self.open_nodes.pop(self.open_nodes.index(UpperCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCAmelCase_ ) else: self.open_nodes.append(UpperCAmelCase_ ) return [self.start.pos] def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Node ): lowerCAmelCase : Optional[Any] = [] for action in delta: lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] lowerCAmelCase : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCAmelCase_ , UpperCAmelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCAmelCase_ , ) ) return successors def lowercase__ ( self : Dict , UpperCAmelCase_ : Node | None ): lowerCAmelCase : int = node lowerCAmelCase : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase : List[str] = current_node.parent path.reverse() return path class __A : def __init__( self : int , UpperCAmelCase_ : TPosition , UpperCAmelCase_ : TPosition ): lowerCAmelCase : List[str] = AStar(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[str] = AStar(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Tuple = False def lowercase__ ( self : Union[str, Any] ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowerCAmelCase : Optional[int] = self.fwd_astar.open_nodes.pop(0 ) lowerCAmelCase : Any = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( UpperCAmelCase_ , UpperCAmelCase_ ) self.fwd_astar.closed_nodes.append(UpperCAmelCase_ ) self.bwd_astar.closed_nodes.append(UpperCAmelCase_ ) lowerCAmelCase : str = current_bwd_node lowerCAmelCase : List[Any] = current_fwd_node lowerCAmelCase : List[str] = { self.fwd_astar: self.fwd_astar.get_successors(UpperCAmelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(UpperCAmelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(UpperCAmelCase_ ) else: # retrieve the best current path lowerCAmelCase : int = astar.open_nodes.pop( astar.open_nodes.index(UpperCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(UpperCAmelCase_ ) else: astar.open_nodes.append(UpperCAmelCase_ ) return [self.fwd_astar.start.pos] def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Node , UpperCAmelCase_ : Node ): lowerCAmelCase : List[str] = self.fwd_astar.retrace_path(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(UpperCAmelCase_ ) bwd_path.pop() bwd_path.reverse() lowerCAmelCase : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __A : Optional[int] = (0, 0) __A : int = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __A : Optional[Any] = time.time() __A : List[Any] = AStar(init, goal) __A : List[str] = a_star.search() __A : Union[str, Any] = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') __A : Union[str, Any] = time.time() __A : Dict = BidirectionalAStar(init, goal) __A : List[Any] = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
138
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : List[Any] = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = "ctrl" lowerCAmelCase_ : Optional[Any] = ["past_key_values"] lowerCAmelCase_ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any , UpperCAmelCase_ : int=246534 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Any=1280 , UpperCAmelCase_ : int=8192 , UpperCAmelCase_ : int=48 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=1E-6 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=True , **UpperCAmelCase_ : int , ): lowerCAmelCase : int = vocab_size lowerCAmelCase : int = n_positions lowerCAmelCase : Optional[Any] = n_embd lowerCAmelCase : Optional[Any] = n_layer lowerCAmelCase : List[str] = n_head lowerCAmelCase : Union[str, Any] = dff lowerCAmelCase : Dict = resid_pdrop lowerCAmelCase : List[Any] = embd_pdrop lowerCAmelCase : List[Any] = layer_norm_epsilon lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Union[str, Any] = use_cache super().__init__(**UpperCAmelCase_ )
138
1
"""simple docstring""" from __future__ import annotations import requests def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Dict = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(A_ ).json() def __SCREAMING_SNAKE_CASE ( A_ = 10 ): lowerCAmelCase__ : int = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' lowerCAmelCase__ : Optional[int] = requests.get(A_ ).json()[:max_stories] return [get_hackernews_story(A_ ) for story_id in story_ids] def __SCREAMING_SNAKE_CASE ( A_ = 10 ): lowerCAmelCase__ : Tuple = hackernews_top_stories(A_ ) return "\n".join('''* [{title}]({url})'''.format(**A_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
74
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
74
1