code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json'''} __snake_case = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __snake_case = {'''mgp-str''': 27} class lowercase__ ( _a ): A__ : Optional[Any] =VOCAB_FILES_NAMES A__ : Optional[int] =PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int="[GO]" , UpperCAmelCase_ : Union[str, Any]="[GO]" , UpperCAmelCase_ : Tuple="[s]" , UpperCAmelCase_ : Any="[GO]" , **UpperCAmelCase_ : Optional[int] ): super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE__ = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.vocab.items()} @property def A_ ( self : Optional[Any] ): return len(self.vocab ) def A_ ( self : int ): return dict(self.vocab , **self.added_tokens_encoder ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE__ = [] for s in text: char_tokens.extend(__lowerCamelCase ) return char_tokens def A_ ( self : int , UpperCAmelCase_ : List[Any] ): return self.vocab.get(__lowerCamelCase , self.vocab.get(self.unk_token ) ) def A_ ( self : str , UpperCAmelCase_ : List[Any] ): return self.decoder.get(__lowerCamelCase ) def A_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(__lowerCamelCase ) ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(__lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + '\n' ) return (vocab_file,)
176
import re import string import numpy as np import datasets UpperCAmelCase_ : Dict = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' UpperCAmelCase_ : Any = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' UpperCAmelCase_ : Tuple = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def _A ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _A ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase :str = np.array([re.sub(__lowerCamelCase , """""" , __lowerCamelCase ) for x in predictions] ) UpperCamelCase :Tuple = np.array([re.sub(__lowerCamelCase , """""" , __lowerCamelCase ) for x in references] ) else: UpperCamelCase :Any = np.asarray(__lowerCamelCase ) UpperCamelCase :str = np.asarray(__lowerCamelCase ) if ignore_case: UpperCamelCase :Tuple = np.char.lower(__lowerCamelCase ) UpperCamelCase :Any = np.char.lower(__lowerCamelCase ) if ignore_punctuation: UpperCamelCase :Optional[int] = string.punctuation.maketrans("""""" , """""" , string.punctuation ) UpperCamelCase :Optional[Any] = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :List[str] = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) if ignore_numbers: UpperCamelCase :Tuple = string.digits.maketrans("""""" , """""" , string.digits ) UpperCamelCase :Dict = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :Tuple = np.char.translate(__lowerCamelCase , table=__lowerCamelCase ) UpperCamelCase :int = predictions == references return {"exact_match": np.mean(__lowerCamelCase ) * 100}
38
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : Any = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Any: """simple docstring""" __lowerCAmelCase : str = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Any: """simple docstring""" __lowerCAmelCase : Dict = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( self: Dict) -> int: """simple docstring""" __lowerCAmelCase : str = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" __lowerCAmelCase : int = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] __lowerCAmelCase : Optional[int] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> int: """simple docstring""" __lowerCAmelCase : int = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] __lowerCAmelCase : str = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[int] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] __lowerCAmelCase : int = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" __lowerCAmelCase : int = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase : Optional[Any] = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( self: str) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] __lowerCAmelCase : List[str] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( self: int) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] __lowerCAmelCase : List[Any] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase)) def _SCREAMING_SNAKE_CASE ( self: Any) -> str: """simple docstring""" __lowerCAmelCase : List[str] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] __lowerCAmelCase : Optional[int] = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase))
367
"""simple docstring""" from __future__ import annotations from math import gcd def _lowercase ( __snake_case ,__snake_case = 2 ,__snake_case = 1 ,__snake_case = 3 ,) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("The input value cannot be less than 2" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__snake_case ,__snake_case ,__snake_case ) -> int: return (pow(__snake_case ,2 ) + step) % modulus for _ in range(__snake_case ): # These track the position within the cycle detection logic. __lowerCAmelCase : Union[str, Any] = seed __lowerCAmelCase : Optional[Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __lowerCAmelCase : Tuple = rand_fn(__snake_case ,__snake_case ,__snake_case ) __lowerCAmelCase : Any = rand_fn(__snake_case ,__snake_case ,__snake_case ) __lowerCAmelCase : List[Any] = rand_fn(__snake_case ,__snake_case ,__snake_case ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __lowerCAmelCase : List[Any] = gcd(hare - tortoise ,__snake_case ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __lowerCAmelCase : str = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __snake_case : Any = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) __snake_case : List[str] = parser.parse_args() __snake_case : List[Any] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"""{args.num} is probably prime""") else: __snake_case : Any = args.num // divisor print(F"""{args.num} = {divisor} * {quotient}""")
58
0
import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
189
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = DiTPipeline __UpperCAmelCase : Tuple = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCAmelCase : Any = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } __UpperCAmelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCAmelCase : Optional[int] = False def __snake_case ( self : Optional[int] ) -> str: torch.manual_seed(0 ) __snake_case : Dict = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=lowerCamelCase , ) __snake_case : Union[str, Any] = AutoencoderKL() __snake_case : int = DDIMScheduler() __snake_case : Tuple = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def __snake_case ( self : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Tuple=0 ) -> int: if str(lowerCamelCase ).startswith("mps" ): __snake_case : str = torch.manual_seed(lowerCamelCase ) else: __snake_case : Dict = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : Optional[Any] = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __snake_case ( self : str ) -> List[str]: __snake_case : Tuple = "cpu" __snake_case : int = self.get_dummy_components() __snake_case : str = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : Tuple = self.get_dummy_inputs(lowerCamelCase ) __snake_case : Optional[Any] = pipe(**lowerCamelCase ).images __snake_case : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __snake_case : int = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) __snake_case : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1E-3 ) def __snake_case ( self : List[str] ) -> Tuple: self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __snake_case ( self : Tuple ) -> str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : List[Any] ) -> Any: __snake_case : Any = torch.manual_seed(0 ) __snake_case : List[Any] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __snake_case : Optional[int] = ["vase", "umbrella", "white shark", "white wolf"] __snake_case : Optional[Any] = pipe.get_label_ids(lowerCamelCase ) __snake_case : List[Any] = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): __snake_case : int = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __snake_case ( self : Union[str, Any] ) -> int: __snake_case : Any = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __snake_case : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __snake_case : Tuple = ["vase", "umbrella"] __snake_case : List[str] = pipe.get_label_ids(lowerCamelCase ) __snake_case : Tuple = torch.manual_seed(0 ) __snake_case : str = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): __snake_case : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
123
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=1_0 , __lowerCamelCase=3 , __lowerCamelCase=2 , __lowerCamelCase=2 , __lowerCamelCase=2 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=1_0 , __lowerCamelCase=0.02 , __lowerCamelCase=0.9 , __lowerCamelCase=None , ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = parent _SCREAMING_SNAKE_CASE : Optional[Any] = batch_size _SCREAMING_SNAKE_CASE : List[Any] = image_size _SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels _SCREAMING_SNAKE_CASE : Dict = patch_size _SCREAMING_SNAKE_CASE : int = tubelet_size _SCREAMING_SNAKE_CASE : str = num_frames _SCREAMING_SNAKE_CASE : Optional[Any] = is_training _SCREAMING_SNAKE_CASE : Optional[int] = use_labels _SCREAMING_SNAKE_CASE : Optional[int] = hidden_size _SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers _SCREAMING_SNAKE_CASE : Tuple = num_attention_heads _SCREAMING_SNAKE_CASE : List[str] = intermediate_size _SCREAMING_SNAKE_CASE : Dict = hidden_act _SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size _SCREAMING_SNAKE_CASE : List[str] = initializer_range _SCREAMING_SNAKE_CASE : Dict = mask_ratio _SCREAMING_SNAKE_CASE : Any = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _SCREAMING_SNAKE_CASE : List[Any] = (image_size // patch_size) ** 2 _SCREAMING_SNAKE_CASE : Union[str, Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _SCREAMING_SNAKE_CASE : Dict = int(mask_ratio * self.seq_length ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ) -> Optional[Any]: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : Tuple = VideoMAEModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : str = VideoMAEForPreTraining(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _SCREAMING_SNAKE_CASE : Optional[Any] = torch.ones((self.num_masks,) ) _SCREAMING_SNAKE_CASE : Dict = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _SCREAMING_SNAKE_CASE : Dict = mask.expand(self.batch_size , -1 ).bool() _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , __lowerCamelCase ) # model only returns predictions for masked patches _SCREAMING_SNAKE_CASE : List[str] = mask.sum().item() _SCREAMING_SNAKE_CASE : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __snake_case = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = VideoMAEModelTester(self ) _SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[Any] = copy.deepcopy(__lowerCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _SCREAMING_SNAKE_CASE : int = torch.ones((self.model_tester.num_masks,) ) _SCREAMING_SNAKE_CASE : Dict = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _SCREAMING_SNAKE_CASE : str = mask.expand(self.model_tester.batch_size , -1 ).bool() _SCREAMING_SNAKE_CASE : List[Any] = bool_masked_pos.to(__lowerCamelCase ) if return_labels: if model_class in [ *get_values(__lowerCamelCase ), ]: _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def UpperCamelCase_ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def UpperCamelCase_ ( self ) -> str: pass def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> List[Any]: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : Optional[Any] = VideoMAEModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase_ ( self ) -> str: if not self.has_attentions: pass else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Dict = True for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.seq_length - self.model_tester.num_masks _SCREAMING_SNAKE_CASE : Optional[int] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : List[Any] = True _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[int] = True _SCREAMING_SNAKE_CASE : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Dict = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Dict = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _SCREAMING_SNAKE_CASE : Dict = len(__lowerCamelCase ) # Check attention is always last and order is fine _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : Optional[Any] = True _SCREAMING_SNAKE_CASE : str = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : str = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase_ ( self ) -> int: def check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.model_tester.seq_length - self.model_tester.num_masks _SCREAMING_SNAKE_CASE : Tuple = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : int = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE : Dict = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase_ ( self ) -> str: pass def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) _SCREAMING_SNAKE_CASE : List[str] = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : str = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor _SCREAMING_SNAKE_CASE : Optional[Any] = prepare_video() _SCREAMING_SNAKE_CASE : List[str] = image_processor(__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE : Tuple = model(**__lowerCamelCase ) # verify the logits _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.3669, -0.0688, -0.2421] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = self.default_image_processor _SCREAMING_SNAKE_CASE : List[Any] = prepare_video() _SCREAMING_SNAKE_CASE : Optional[int] = image_processor(__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # add boolean mask, indicating which patches to mask _SCREAMING_SNAKE_CASE : List[Any] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__lowerCamelCase ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE : str = model(**__lowerCamelCase ) # verify the logits _SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) _SCREAMING_SNAKE_CASE : Any = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=__lowerCamelCase ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0.5142] , device=__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCamelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _SCREAMING_SNAKE_CASE : List[Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=__lowerCamelCase ).to( __lowerCamelCase ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : str = model(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = torch.tensor(torch.tensor([0.6469] ) , device=__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCamelCase , atol=1E-4 ) )
325
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Any: _SCREAMING_SNAKE_CASE : str = parent _SCREAMING_SNAKE_CASE : List[Any] = 1_3 _SCREAMING_SNAKE_CASE : List[str] = 7 _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : int = True _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : int = 9_9 _SCREAMING_SNAKE_CASE : str = 3_8_4 _SCREAMING_SNAKE_CASE : List[Any] = 2 _SCREAMING_SNAKE_CASE : Dict = 4 _SCREAMING_SNAKE_CASE : Dict = 3_7 _SCREAMING_SNAKE_CASE : Union[str, Any] = "gelu" _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : List[Any] = 5_1_2 _SCREAMING_SNAKE_CASE : Tuple = 1_6 _SCREAMING_SNAKE_CASE : Dict = 2 _SCREAMING_SNAKE_CASE : Any = 0.02 _SCREAMING_SNAKE_CASE : Any = 3 _SCREAMING_SNAKE_CASE : List[str] = 4 _SCREAMING_SNAKE_CASE : List[Any] = 1_2_8 _SCREAMING_SNAKE_CASE : Optional[int] = 2 _SCREAMING_SNAKE_CASE : int = 9 _SCREAMING_SNAKE_CASE : List[str] = 1 _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : List[Any] = None _SCREAMING_SNAKE_CASE : Union[str, Any] = None _SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _SCREAMING_SNAKE_CASE : str = [input_ids, input_mask] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = TFConvBertForMaskedLM(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.num_labels _SCREAMING_SNAKE_CASE : str = TFConvBertForSequenceClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices _SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForMultipleChoice(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = self.num_labels _SCREAMING_SNAKE_CASE : Tuple = TFConvBertForTokenClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertForQuestionAnswering(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __snake_case = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = TFConvBertModelTester(self ) _SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True if hasattr(__lowerCamelCase , "use_cache" ): _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = len(model(__lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase , "saved_model" , "1" ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.models.load_model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : List[Any] = outputs["encoder_hidden_states"] _SCREAMING_SNAKE_CASE : Union[str, Any] = outputs["encoder_attentions"] else: _SCREAMING_SNAKE_CASE : List[str] = outputs["hidden_states"] _SCREAMING_SNAKE_CASE : Dict = outputs["attentions"] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase ) def check_decoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = len(__lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) _SCREAMING_SNAKE_CASE : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Optional[int] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) _SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = [1, 6, 7_6_8] self.assertEqual(output.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 )
325
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _a = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _a = [0, 25, 50] _a = [25, 50, 75] _a = fuzz.membership.trimf(X, abca) _a = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _a = np.ones(75) _a = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _a = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _a = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _a = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _a = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _a = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _a = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _a = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _a = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
39
from __future__ import annotations from collections.abc import Generator def __SCREAMING_SNAKE_CASE (): snake_case_ = {} snake_case_ = 2 while True: snake_case_ = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: snake_case_ = factor + prime while x in factor_map: x += factor snake_case_ = factor else: snake_case_ = prime yield prime prime += 1 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1E10 ): snake_case_ = sieve() snake_case_ = 1 while True: snake_case_ = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
8
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> float: if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(lowercase ,lowercase ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate snake_case : str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly snake_case : Any = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
176
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
176
1
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def __a ( __lowerCamelCase ): if num <= 0: raise ValueError("math domain error" ) return quad(__lowerCamelCase, 0, __lowerCamelCase, args=(__lowerCamelCase) )[0] def __a ( __lowerCamelCase, __lowerCamelCase ): return math.pow(__lowerCamelCase, z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
61
"""simple docstring""" from __future__ import annotations def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ : str = set(__lowerCamelCase ), [start] while stack: UpperCAmelCase_ : Any = stack.pop() explored.add(__lowerCamelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__lowerCamelCase ) return explored _a = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
61
1
"""simple docstring""" def UpperCAmelCase ( a_ = 1000 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1 ) ) if __name__ == "__main__": print(solution())
363
"""simple docstring""" def UpperCAmelCase ( a_, a_ ): '''simple docstring''' while b: lowerCamelCase , lowerCamelCase : Tuple = b, a % b return a def UpperCAmelCase ( a_, a_ ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(a_, a % b ) def UpperCAmelCase ( ): '''simple docstring''' print(F"""euclidean_gcd(3, 5) = {euclidean_gcd(3, 5 )}""" ) print(F"""euclidean_gcd(5, 3) = {euclidean_gcd(5, 3 )}""" ) print(F"""euclidean_gcd(1, 3) = {euclidean_gcd(1, 3 )}""" ) print(F"""euclidean_gcd(3, 6) = {euclidean_gcd(3, 6 )}""" ) print(F"""euclidean_gcd(6, 3) = {euclidean_gcd(6, 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3, 5 )}""" ) print(F"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5, 3 )}""" ) print(F"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1, 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3, 6 )}""" ) print(F"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6, 3 )}""" ) if __name__ == "__main__": main()
205
0
'''simple docstring''' class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple , A : Any , A : str , A : Union[str, Any] ): _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Any = graph self._normalize_graph(A , A ) _UpperCAmelCase : List[str] = len(A ) _UpperCAmelCase : Tuple = None def _A ( self : Any , A : List[Any] , A : str ): if sources is int: _UpperCAmelCase : List[Any] = [sources] if sinks is int: _UpperCAmelCase : List[Any] = [sinks] if len(A ) == 0 or len(A ) == 0: return _UpperCAmelCase : str = sources[0] _UpperCAmelCase : Union[str, Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(A ) > 1 or len(A ) > 1: _UpperCAmelCase : Dict = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _UpperCAmelCase : str = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _UpperCAmelCase : Optional[Any] = max_input_flow _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _UpperCAmelCase : Dict = max_input_flow _UpperCAmelCase : List[Any] = size - 1 def _A ( self : Union[str, Any] ): if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _A ( self : Tuple , A : Dict ): _UpperCAmelCase : str = algorithm(self ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , A : str ): _UpperCAmelCase : Optional[int] = flow_network _UpperCAmelCase : Any = flow_network.verticesCount _UpperCAmelCase : List[str] = flow_network.sourceIndex _UpperCAmelCase : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _UpperCAmelCase : Any = flow_network.graph _UpperCAmelCase : Union[str, Any] = False def _A ( self : List[str] ): if not self.executed: self._algorithm() _UpperCAmelCase : int = True def _A ( self : List[Any] ): pass class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Optional[int] , A : Union[str, Any] ): super().__init__(A ) # use this to save your result _UpperCAmelCase : Any = -1 def _A ( self : Union[str, Any] ): if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Tuple , A : int ): super().__init__(A ) _UpperCAmelCase : List[str] = [[0] * self.verticies_count for i in range(self.verticies_count )] _UpperCAmelCase : Union[str, Any] = [0] * self.verticies_count _UpperCAmelCase : int = [0] * self.verticies_count def _A ( self : Dict ): _UpperCAmelCase : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _UpperCAmelCase : Optional[int] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _UpperCAmelCase : Any = 0 while i < len(A ): _UpperCAmelCase : int = vertices_list[i] _UpperCAmelCase : int = self.heights[vertex_index] self.process_vertex(A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A ) ) _UpperCAmelCase : Union[str, Any] = 0 else: i += 1 _UpperCAmelCase : List[Any] = sum(self.preflow[self.source_index] ) def _A ( self : Union[str, Any] , A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A , A ) self.relabel(A ) def _A ( self : int , A : Dict , A : List[str] ): _UpperCAmelCase : int = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _A ( self : Optional[int] , A : Union[str, Any] ): _UpperCAmelCase : str = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _UpperCAmelCase : Tuple = self.heights[to_index] if min_height is not None: _UpperCAmelCase : Optional[Any] = min_height + 1 if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = [0] __SCREAMING_SNAKE_CASE : Union[str, Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __SCREAMING_SNAKE_CASE : List[Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __SCREAMING_SNAKE_CASE : Union[str, Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __SCREAMING_SNAKE_CASE : Optional[Any] = flow_network.find_maximum_flow() print(F'maximum flow is {maximum_flow}')
31
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = { '''nielsr/canine-s''': 2_048, } # Unicode defines 1,114,112 total “codepoints” _A = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _A = 0 _A = 0xe0_00 _A = 0xe0_01 _A = 0xe0_02 _A = 0xe0_03 _A = 0xe0_04 # Maps special codepoints to human-readable names. _A = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _A = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A ( __UpperCAmelCase ): __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=False, UpperCamelCase__=2048, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else bos_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else eos_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else sep_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else cls_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else mask_token super().__init__( bos_token=UpperCamelCase__, eos_token=UpperCamelCase__, sep_token=UpperCamelCase__, cls_token=UpperCamelCase__, pad_token=UpperCamelCase__, mask_token=UpperCamelCase__, add_prefix_space=UpperCamelCase__, model_max_length=UpperCamelCase__, **UpperCamelCase__, ) # Creates a mapping for looking up the IDs of special symbols. lowerCAmelCase_ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCAmelCase_ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCAmelCase_ = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCAmelCase_ = UNICODE_VOCAB_SIZE lowerCAmelCase_ = len(self._special_codepoints ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._unicode_vocab_size def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return list(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" try: return ord(UpperCamelCase__ ) except TypeError: raise ValueError(f"invalid token: '{token}'" ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase__ ) except TypeError: raise ValueError(f"invalid id: {index}" ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return "".join(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__, token_ids_a=UpperCamelCase__, already_has_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = [1] + ([0] * len(UpperCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase__ )) + [1] return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" return ()
278
0
'''simple docstring''' from string import ascii_uppercase _lowercase : Any = {char: i for i, char in enumerate(ascii_uppercase)} _lowercase : Union[str, Any] = dict(enumerate(ascii_uppercase)) def lowerCamelCase__ ( A : str , A : str ): '''simple docstring''' UpperCAmelCase = len(A ) UpperCAmelCase = 0 while True: if x == i: UpperCAmelCase = 0 if len(A ) == len(A ): break key += key[i] i += 1 return key def lowerCamelCase__ ( A : str , A : str ): '''simple docstring''' UpperCAmelCase = '''''' UpperCAmelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: UpperCAmelCase = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def lowerCamelCase__ ( A : str , A : str ): '''simple docstring''' UpperCAmelCase = '''''' UpperCAmelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: UpperCAmelCase = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''THE GERMAN ATTACK''' UpperCAmelCase = '''SECRET''' UpperCAmelCase = generate_key(A , A ) UpperCAmelCase = cipher_text(A , A ) print(f"""Encrypted Text = {s}""" ) print(f"""Original Text = {original_text(A , A )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
91
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[Any] = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Union[str, Any] = "openai-gpt" __magic_name__ : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , lowerCAmelCase : Optional[Any]=40478 , lowerCAmelCase : str=512 , lowerCAmelCase : List[Any]=768 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : int=12 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Tuple=1E-5 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[int]="cls_index" , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=True , lowerCAmelCase : int=0.1 , **lowerCAmelCase : Optional[int] , )-> str: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = afn UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = summary_type UpperCAmelCase = summary_use_proj UpperCAmelCase = summary_activation UpperCAmelCase = summary_first_dropout UpperCAmelCase = summary_proj_to_labels super().__init__(**lowerCAmelCase )
91
1
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : List[str] , A__ : str ): '''simple docstring''' lowerCAmelCase_ : List[str] = RemBertConfig.from_json_file(A__ ) print("""Building PyTorch model from configuration: {}""".format(str(A__ ) ) ) lowerCAmelCase_ : Optional[Any] = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print("""Save PyTorch model to {}""".format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A : List[str] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
120
'''simple docstring''' def UpperCamelCase_ ( A__ : int = 1_00 ): '''simple docstring''' lowerCAmelCase_ : int = set() lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = n + 1 # maximum limit for a in range(2 , A__ ): for b in range(2 , A__ ): lowerCAmelCase_ : str = a**b # calculates the current power collect_powers.add(A__ ) # adds the result to the set return len(A__ ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
120
1
'''simple docstring''' import argparse import os import re import packaging.version lowerCAmelCase_ : int = 'examples/' lowerCAmelCase_ : Optional[int] = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowerCAmelCase_ : Dict = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowerCAmelCase_ : Any = 'README.md' def _lowerCamelCase ( lowercase : str , lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Optional[Any]: with open(lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: _a = f.read() _a , _a = REPLACE_PATTERNS[pattern] _a = replace.replace("VERSION" , lowercase ) _a = re_pattern.sub(lowercase , lowercase ) with open(lowercase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(lowercase ) def _lowerCamelCase ( lowercase : int ) -> Optional[int]: for folder, directories, fnames in os.walk(lowercase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(lowercase , lowercase ) , lowercase , pattern="examples" ) def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Any=False ) -> str: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase , lowercase , lowercase ) if not patch: update_version_in_examples(lowercase ) def _lowerCamelCase ( ) -> Dict: _a = "🤗 Transformers currently provides the following architectures" _a = "1. Want to contribute a new model?" with open(lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: _a = f.readlines() # Find the start of the list. _a = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): _a = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(lowercase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowercase ) def _lowerCamelCase ( ) -> int: with open(REPLACE_FILES["init"] , "r" ) as f: _a = f.read() _a = REPLACE_PATTERNS["init"][0].search(lowercase ).groups()[0] return packaging.version.parse(lowercase ) def _lowerCamelCase ( lowercase : Dict=False ) -> Optional[int]: _a = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: _a = default_version.base_version elif patch: _a = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: _a = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. _a = input(F'Which version are you releasing? [{default_version}]' ) if len(lowercase ) == 0: _a = default_version print(F'Updating version to {version}.' ) global_version_update(lowercase , patch=lowercase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def _lowerCamelCase ( ) -> Dict: _a = get_version() _a = F'{current_version.major}.{current_version.minor + 1}.0.dev0' _a = current_version.base_version # Check with the user we got that right. _a = input(F'Which version are we developing now? [{dev_version}]' ) if len(lowercase ) == 0: _a = dev_version print(F'Updating version to {version}.' ) global_version_update(lowercase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowerCAmelCase_ : List[str] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
346
'''simple docstring''' from random import randint, random def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : int , lowercase : bool = False , lowercase : bool = False , lowercase : int = 5 , ) -> list: _a = [[-1] * number_of_cells] # Create a highway without any car _a = 0 _a = max(lowercase , 0 ) while i < number_of_cells: _a = ( randint(0 , lowercase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _lowerCamelCase ( lowercase : list , lowercase : int ) -> int: _a = 0 _a = highway_now[car_index + 1 :] for cell in range(len(lowercase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowercase , -1 ) def _lowerCamelCase ( lowercase : list , lowercase : float , lowercase : int ) -> list: _a = len(lowercase ) # Beforce calculations, the highway is empty _a = [-1] * number_of_cells for car_index in range(lowercase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _a = min(highway_now[car_index] + 1 , lowercase ) # Number of empty cell before the next car _a = get_distance(lowercase , lowercase ) - 1 # We can't have the car causing an accident _a = min(next_highway[car_index] , lowercase ) if random() < probability: # Randomly, a driver will slow down _a = max(next_highway[car_index] - 1 , 0 ) return next_highway def _lowerCamelCase ( lowercase : list , lowercase : int , lowercase : float , lowercase : int ) -> list: _a = len(highway[0] ) for i in range(lowercase ): _a = update(highway[i] , lowercase , lowercase ) _a = [-1] * number_of_cells for car_index in range(lowercase ): _a = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _a = (car_index + speed) % number_of_cells # Commit the change of position _a = speed highway.append(lowercase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
346
1
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Union[str, Any]: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Tuple = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: lowerCamelCase__ : Union[str, Any] = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: lowerCamelCase__ : Any = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): lowerCamelCase__ : int = [element for element in set_a if element in set_b] if alternative_union: lowerCamelCase__ : int = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: lowerCamelCase__ : Dict = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = {"""a""", """b""", """c""", """d""", """e"""} _UpperCAmelCase : Tuple = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
50
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } _UpperCAmelCase : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Tuple="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[Any] = do_lower_case lowerCamelCase__ : str = strip_accents lowerCamelCase__ : Optional[Any] = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : str = do_lower_case def A_ ( self : Optional[int] , UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase__ : Optional[int] = text lowerCamelCase__ : Dict = kwargs.pop('text_pair' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = kwargs.pop('return_tensors' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: lowerCamelCase__ : Tuple = batch_text_pair[idx] else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Any = encoded_candidates.get('input_ids' ) lowerCamelCase__ : Union[str, Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase__ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) lowerCamelCase__ : int = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ) -> List[str]: lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
1
'''simple docstring''' import string from math import logaa def a_ ( __snake_case : str , __snake_case : str ) -> int: """simple docstring""" lowerCamelCase_ =document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) lowerCamelCase_ =document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def a_ ( __snake_case : str , __snake_case : str ) -> tuple[int, int]: """simple docstring""" lowerCamelCase_ =corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase_ =corpus_without_punctuation.split('''\n''' ) lowerCamelCase_ =term.lower() return (len([doc for doc in docs if term in doc] ), len(a__ )) def a_ ( __snake_case : int , __snake_case : int , __snake_case : Dict=False ) -> float: """simple docstring""" if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def a_ ( __snake_case : int , __snake_case : int ) -> float: """simple docstring""" return round(tf * idf , 3 )
359
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
0
"""simple docstring""" def _A ( UpperCamelCase_ : int) -> bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
17
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule SCREAMING_SNAKE_CASE_ : str = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys SCREAMING_SNAKE_CASE_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
364
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a : """simple docstring""" def __init__( self: Any , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any]=13 , UpperCamelCase: str=10 , UpperCamelCase: Dict=3 , UpperCamelCase: Any=2 , UpperCamelCase: str=2 , UpperCamelCase: Any=2 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Any=True , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[int]=5 , UpperCamelCase: Tuple=4 , UpperCamelCase: Optional[int]=37 , UpperCamelCase: Dict="gelu" , UpperCamelCase: Optional[int]=0.1 , UpperCamelCase: Dict=0.1 , UpperCamelCase: Union[str, Any]=10 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: str=0.9 , UpperCamelCase: Any=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = patch_size A__ = tubelet_size A__ = num_frames A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = mask_ratio A__ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame A__ = (image_size // patch_size) ** 2 A__ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos A__ = int(mask_ratio * self.seq_length ) def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Any , UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: Tuple ): """simple docstring""" A__ = VideoMAEModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] ): """simple docstring""" A__ = VideoMAEForPreTraining(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A__ = torch.ones((self.num_masks,) ) A__ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) A__ = mask.expand(self.batch_size , -1 ).bool() A__ = model(UpperCamelCase , UpperCamelCase ) # model only returns predictions for masked patches A__ = mask.sum().item() A__ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) UpperCAmelCase = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = VideoMAEModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self: str , UpperCamelCase: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: Union[str, Any]=False ): """simple docstring""" A__ = copy.deepcopy(UpperCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A__ = torch.ones((self.model_tester.num_masks,) ) A__ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) A__ = mask.expand(self.model_tester.batch_size , -1 ).bool() A__ = bool_masked_pos.to(UpperCamelCase ) if return_labels: if model_class in [ *get_values(UpperCamelCase ), ]: A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase ) return inputs_dict def UpperCamelCase ( self: List[str] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def UpperCamelCase ( self: Dict ): """simple docstring""" pass def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) @slow def UpperCamelCase ( self: Tuple ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = VideoMAEModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def UpperCamelCase ( self: Tuple ): """simple docstring""" if not self.has_attentions: pass else: A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = self.model_tester.seq_length - self.model_tester.num_masks A__ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) A__ = True A__ = False A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ = len(UpperCamelCase ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase: Tuple , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] ): A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) A__ = self.model_tester.seq_length - self.model_tester.num_masks A__ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" pass def _snake_case ( ): A__ = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) A__ = np.load(UpperCAmelCase_ ) return list(UpperCAmelCase_ ) @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase ( self: Tuple ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( UpperCamelCase ) A__ = self.default_image_processor A__ = prepare_video() A__ = image_processor(UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): A__ = model(**UpperCamelCase ) # verify the logits A__ = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) A__ = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(UpperCamelCase ) A__ = self.default_image_processor A__ = prepare_video() A__ = image_processor(UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # add boolean mask, indicating which patches to mask A__ = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) A__ = torch.load(UpperCamelCase ) # forward pass with torch.no_grad(): A__ = model(**UpperCamelCase ) # verify the logits A__ = torch.Size([1, 14_08, 15_36] ) A__ = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=UpperCamelCase ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) A__ = torch.tensor([0.5_142] , device=UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) A__ = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=UpperCamelCase ).to( UpperCamelCase ) with torch.no_grad(): A__ = model(**UpperCamelCase ) A__ = torch.tensor(torch.tensor([0.6_469] ) , device=UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase , atol=1e-4 ) )
69
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase__: str = logging.get_logger(__name__) UpperCamelCase__: List[Any] = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """detr""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Tuple , __snake_case : Any=True , __snake_case : int=None , __snake_case : Dict=3 , __snake_case : Optional[Any]=100 , __snake_case : str=6 , __snake_case : Tuple=2048 , __snake_case : int=8 , __snake_case : List[Any]=6 , __snake_case : Optional[int]=2048 , __snake_case : Tuple=8 , __snake_case : Tuple=0.0 , __snake_case : Union[str, Any]=0.0 , __snake_case : str=True , __snake_case : Tuple="relu" , __snake_case : Optional[Any]=256 , __snake_case : Optional[Any]=0.1 , __snake_case : Dict=0.0 , __snake_case : Any=0.0 , __snake_case : Union[str, Any]=0.02 , __snake_case : Tuple=1.0 , __snake_case : Optional[int]=False , __snake_case : Union[str, Any]="sine" , __snake_case : Optional[Any]="resnet50" , __snake_case : str=True , __snake_case : List[Any]=False , __snake_case : Tuple=1 , __snake_case : Union[str, Any]=5 , __snake_case : Optional[int]=2 , __snake_case : int=1 , __snake_case : Optional[int]=1 , __snake_case : Union[str, Any]=5 , __snake_case : Any=2 , __snake_case : Optional[int]=0.1 , **__snake_case : Any , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__snake_case , __snake_case ): UpperCAmelCase : Union[str, Any] = backbone_config.get('''model_type''' ) UpperCAmelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : int = config_class.from_dict(__snake_case ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = None, None, None UpperCAmelCase : Optional[Any] = use_timm_backbone UpperCAmelCase : Union[str, Any] = backbone_config UpperCAmelCase : List[str] = num_channels UpperCAmelCase : Optional[Any] = num_queries UpperCAmelCase : str = d_model UpperCAmelCase : List[Any] = encoder_ffn_dim UpperCAmelCase : Tuple = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : List[Any] = decoder_ffn_dim UpperCAmelCase : List[Any] = decoder_layers UpperCAmelCase : List[str] = decoder_attention_heads UpperCAmelCase : List[str] = dropout UpperCAmelCase : Union[str, Any] = attention_dropout UpperCAmelCase : int = activation_dropout UpperCAmelCase : Union[str, Any] = activation_function UpperCAmelCase : Any = init_std UpperCAmelCase : List[str] = init_xavier_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : Optional[int] = decoder_layerdrop UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : Tuple = auxiliary_loss UpperCAmelCase : Union[str, Any] = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : Optional[int] = use_pretrained_backbone UpperCAmelCase : Optional[Any] = dilation # Hungarian matcher UpperCAmelCase : Optional[int] = class_cost UpperCAmelCase : Optional[int] = bbox_cost UpperCAmelCase : Tuple = giou_cost # Loss coefficients UpperCAmelCase : List[str] = mask_loss_coefficient UpperCAmelCase : Union[str, Any] = dice_loss_coefficient UpperCAmelCase : Optional[Any] = bbox_loss_coefficient UpperCAmelCase : Tuple = giou_loss_coefficient UpperCAmelCase : Dict = eos_coefficient super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def A ( self : Optional[Any] ) -> int: return self.encoder_attention_heads @property def A ( self : int ) -> int: return self.d_model @classmethod def A ( cls : List[Any] , __snake_case : PretrainedConfig , **__snake_case : str ) -> str: return cls(backbone_config=__snake_case , **__snake_case ) def A ( self : Union[str, Any] ) -> Dict[str, any]: UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : int = self.__class__.model_type return output class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = version.parse("""1.11""" ) @property def A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def A ( self : List[str] ) -> float: return 1E-5 @property def A ( self : str ) -> int: return 12
23
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : Optional[Any] ): lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = BlipImageProcessor() lowerCAmelCase = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCAmelCase = BlipProcessor(lowerCAmelCase , lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowercase ( self : Optional[Any] , **lowerCAmelCase : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).tokenizer def __lowercase ( self : List[Any] , **lowerCAmelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).image_processor def __lowercase ( self : Dict ): shutil.rmtree(self.tmpdirname ) def __lowercase ( self : str ): lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self : List[str] ): lowerCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0 ) lowerCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(lowerCAmelCase , return_tensors="""np""" ) lowerCAmelCase = processor(images=lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=lowerCAmelCase ) lowerCAmelCase = tokenizer(lowerCAmelCase , return_token_type_ids=lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase ): processor() def __lowercase ( self : List[Any] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(lowerCAmelCase ) lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
155
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _snake_case ( _a ): lowerCAmelCase :Dict = """unispeech""" def __init__( self , _lowerCamelCase=32 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase="group" , _lowerCamelCase="gelu" , _lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase=False , _lowerCamelCase=128 , _lowerCamelCase=16 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.05 , _lowerCamelCase=10 , _lowerCamelCase=2 , _lowerCamelCase=0.0 , _lowerCamelCase=10 , _lowerCamelCase=0 , _lowerCamelCase=320 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=100 , _lowerCamelCase=256 , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase="mean" , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=256 , _lowerCamelCase=80 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=0.5 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = feat_extract_norm UpperCAmelCase__ : Dict = feat_extract_activation UpperCAmelCase__ : List[str] = list(_lowerCamelCase) UpperCAmelCase__ : List[str] = list(_lowerCamelCase) UpperCAmelCase__ : Any = list(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = conv_bias UpperCAmelCase__ : List[Any] = num_conv_pos_embeddings UpperCAmelCase__ : Dict = num_conv_pos_embedding_groups UpperCAmelCase__ : Any = len(self.conv_dim) UpperCAmelCase__ : Any = num_hidden_layers UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : Optional[Any] = hidden_dropout UpperCAmelCase__ : Optional[Any] = attention_dropout UpperCAmelCase__ : str = activation_dropout UpperCAmelCase__ : List[str] = feat_proj_dropout UpperCAmelCase__ : int = final_dropout UpperCAmelCase__ : Optional[int] = layerdrop UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Optional[int] = num_ctc_classes UpperCAmelCase__ : List[str] = vocab_size UpperCAmelCase__ : Optional[Any] = do_stable_layer_norm UpperCAmelCase__ : List[str] = use_weighted_layer_sum UpperCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ : str = apply_spec_augment UpperCAmelCase__ : Tuple = mask_time_prob UpperCAmelCase__ : Dict = mask_time_length UpperCAmelCase__ : Tuple = mask_time_min_masks UpperCAmelCase__ : List[Any] = mask_feature_prob UpperCAmelCase__ : Tuple = mask_feature_length UpperCAmelCase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase__ : List[Any] = num_codevectors_per_group UpperCAmelCase__ : Optional[int] = num_codevector_groups UpperCAmelCase__ : str = contrastive_logits_temperature UpperCAmelCase__ : Tuple = feat_quantizer_dropout UpperCAmelCase__ : Dict = num_negatives UpperCAmelCase__ : Dict = codevector_dim UpperCAmelCase__ : Union[str, Any] = proj_codevector_dim UpperCAmelCase__ : int = diversity_loss_weight # ctc loss UpperCAmelCase__ : Union[str, Any] = ctc_loss_reduction UpperCAmelCase__ : Optional[Any] = ctc_zero_infinity # pretraining loss UpperCAmelCase__ : str = replace_prob @property def snake_case__ ( self): return functools.reduce(operator.mul , self.conv_stride , 1)
368
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _snake_case ( a__ ): lowerCAmelCase :torch.FloatTensor class _snake_case ( a__ , a__ ): @register_to_config def __init__( self , _lowerCamelCase = 3 , _lowerCamelCase = 3 , _lowerCamelCase = ("DownEncoderBlock2D",) , _lowerCamelCase = ("UpDecoderBlock2D",) , _lowerCamelCase = (64,) , _lowerCamelCase = 1 , _lowerCamelCase = "silu" , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 256 , _lowerCamelCase = 32 , _lowerCamelCase = None , _lowerCamelCase = 0.18215 , _lowerCamelCase = "group" , ): super().__init__() # pass init params to Encoder UpperCAmelCase__ : str = Encoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , down_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , double_z=_lowerCamelCase , ) UpperCAmelCase__ : Optional[Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCAmelCase__ : Any = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1) UpperCAmelCase__ : Optional[int] = VectorQuantizer(_lowerCamelCase , _lowerCamelCase , beta=0.25 , remap=_lowerCamelCase , sane_index_shape=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1) # pass init params to Decoder UpperCAmelCase__ : str = Decoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , up_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , norm_type=_lowerCamelCase , ) @apply_forward_hook def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = True): UpperCAmelCase__ : Union[str, Any] = self.encoder(_lowerCamelCase) UpperCAmelCase__ : str = self.quant_conv(_lowerCamelCase) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCamelCase) @apply_forward_hook def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = True): # also go through quantization layer if not force_not_quantize: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.quantize(_lowerCamelCase) else: UpperCAmelCase__ : Union[str, Any] = h UpperCAmelCase__ : Any = self.post_quant_conv(_lowerCamelCase) UpperCAmelCase__ : Any = self.decoder(_lowerCamelCase , quant if self.config.norm_type == """spatial""" else None) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = True): UpperCAmelCase__ : Dict = sample UpperCAmelCase__ : Dict = self.encode(_lowerCamelCase).latents UpperCAmelCase__ : List[str] = self.decode(_lowerCamelCase).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase)
283
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase ( A_ )-> int: '''simple docstring''' a : Any = filter(lambda A_ : p.requires_grad , model.parameters() ) a : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __lowercase = logging.getLogger(__name__) def lowercase ( A_ , A_ )-> Dict: '''simple docstring''' if metric == "rouge2": a : Union[str, Any] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": a : Any = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": a : Optional[int] = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": a : Optional[Any] = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) a : Union[str, Any] = ModelCheckpoint( dirpath=A_ , filename=A_ , monitor=F'''val_{metric}''' , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowercase ( A_ , A_ )-> List[str]: '''simple docstring''' return EarlyStopping( monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=A_ , verbose=A_ , ) class _A ( pl.Callback ): """simple docstring""" def __snake_case ( self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : int): a : Optional[Any] = {f'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(__UpperCAmelCase) @rank_zero_only def __snake_case ( self : Tuple , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule , __UpperCAmelCase : str , __UpperCAmelCase : Any=True): logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''') a : Dict = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]}) # Log results a : Optional[Any] = Path(pl_module.hparams.output_dir) if type_path == "test": a : str = od / "test_results.txt" a : str = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. a : str = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' a : List[Any] = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__UpperCAmelCase) generations_file.parent.mkdir(exist_ok=__UpperCAmelCase) with open(__UpperCAmelCase , "a+") as writer: for key in sorted(__UpperCAmelCase): if key in ["log", "progress_bar", "preds"]: continue a : List[str] = metrics[key] if isinstance(__UpperCAmelCase , torch.Tensor): a : str = val.item() a : Dict = f'''{key}: {val:.6f}\n''' writer.write(__UpperCAmelCase) if not save_generations: return if "preds" in metrics: a : Any = "\n".join(metrics["preds"]) generations_file.open("w+").write(__UpperCAmelCase) @rank_zero_only def __snake_case ( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict): try: a : Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: a : Any = pl_module.model.num_parameters() a : Dict = count_trainable_parameters(__UpperCAmelCase) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6}) @rank_zero_only def __snake_case ( self : str , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule): save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(__UpperCAmelCase , __UpperCAmelCase , "test") @rank_zero_only def __snake_case ( self : Dict , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : Union[str, Any]): save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
40
from __future__ import annotations from functools import lru_cache from math import ceil __lowerCamelCase : str = 100 __lowerCamelCase : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) __lowerCamelCase : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def A_ ( _lowerCAmelCase ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} UpperCamelCase : set[int] = set() UpperCamelCase : int UpperCamelCase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A_ ( _lowerCAmelCase = 5000 ) -> int | None: for number_to_partition in range(1 , _lowerCAmelCase ): if len(partition(_lowerCAmelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"""{solution() = }""")
52
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) UpperCAmelCase__ = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE__ ) == len(set(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": UpperCAmelCase_ = input('Enter a string ').strip() UpperCAmelCase_ = is_isogram(input_str) print(f"{input_str} is {'an' if isogram else 'not an'} isogram.")
61
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ), len(grid[0] ) if ( min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) UpperCAmelCase__ = 0 count += depth_first_search(SCREAMING_SNAKE_CASE__ , row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , row - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , col - 1 , SCREAMING_SNAKE_CASE__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
61
1
from math import ceil def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str: """simple docstring""" A : Union[str, Any] = list(range(0 , _lowerCAmelCase ) ) A : Union[str, Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check A : Any = [] for i in device_map_blocks: if device_map_blocks.count(_lowerCAmelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_lowerCAmelCase ) # Missing blocks A : Union[str, Any] = [i for i in blocks if i not in device_map_blocks] A : List[str] = [i for i in device_map_blocks if i not in blocks] if len(_lowerCAmelCase ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(_lowerCAmelCase ) ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: """simple docstring""" A : List[Any] = list(range(_lowerCAmelCase ) ) A : Union[str, Any] = int(ceil(n_layers / len(_lowerCAmelCase ) ) ) A : Union[str, Any] = [layers[i : i + n_blocks] for i in range(0 , _lowerCAmelCase , _lowerCAmelCase )] return dict(zip(_lowerCAmelCase , _lowerCAmelCase ) )
116
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class SCREAMING_SNAKE_CASE__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = 1.0, lowerCamelCase__ = None, ): super().__init__() A : Union[str, Any] = initial_learning_rate A : List[Any] = warmup_steps A : int = power A : Optional[int] = decay_schedule_fn A : int = name def __call__( self, lowerCamelCase__ ): with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. A : str = tf.cast(lowerCamelCase__, tf.floataa ) A : List[Any] = tf.cast(self.warmup_steps, tf.floataa ) A : Dict = global_step_float / warmup_steps_float A : Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCamelCase__, self.power ) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps ), name=lowerCamelCase__, ) def _lowerCAmelCase ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 0.9 , _lowerCAmelCase = 0.999 , _lowerCAmelCase = 1e-8 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = None , ) -> Union[str, Any]: """simple docstring""" A : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_lowerCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_lowerCAmelCase , ) if num_warmup_steps: A : Dict = WarmUp( initial_learning_rate=_lowerCAmelCase , decay_schedule_fn=_lowerCAmelCase , warmup_steps=_lowerCAmelCase , ) if weight_decay_rate > 0.0: A : str = AdamWeightDecay( learning_rate=_lowerCAmelCase , weight_decay_rate=_lowerCAmelCase , beta_a=_lowerCAmelCase , beta_a=_lowerCAmelCase , epsilon=_lowerCAmelCase , clipnorm=_lowerCAmelCase , global_clipnorm=_lowerCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=_lowerCAmelCase , ) else: A : Optional[int] = tf.keras.optimizers.Adam( learning_rate=_lowerCAmelCase , beta_a=_lowerCAmelCase , beta_a=_lowerCAmelCase , epsilon=_lowerCAmelCase , clipnorm=_lowerCAmelCase , global_clipnorm=_lowerCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__ = 0.001, lowerCamelCase__ = 0.9, lowerCamelCase__ = 0.999, lowerCamelCase__ = 1e-7, lowerCamelCase__ = False, lowerCamelCase__ = 0.0, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = "AdamWeightDecay", **lowerCamelCase__, ): super().__init__(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) A : int = weight_decay_rate A : Any = include_in_weight_decay A : Dict = exclude_from_weight_decay @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__ ): A : Tuple = {"""WarmUp""": WarmUp} return super(lowerCamelCase__, cls ).from_config(lowerCamelCase__, custom_objects=lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): super(lowerCamelCase__, self )._prepare_local(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) A : List[str] = tf.constant( self.weight_decay_rate, name="""adam_weight_decay_rate""" ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""], use_locking=self._use_locking, ) return tf.no_op() def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=None, **lowerCamelCase__ ): A , A : Dict = list(zip(*lowerCamelCase__ ) ) return super(lowerCamelCase__, self ).apply_gradients(zip(lowerCamelCase__, lowerCamelCase__ ), name=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} A : Union[str, Any] = apply_state or {} A : Optional[int] = apply_state.get((var_device, var_dtype) ) if coefficients is None: A : Dict = self._fallback_apply_state(lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A , A : str = self._get_lr(var.device, var.dtype.base_dtype, lowerCamelCase__ ) A : Any = self._decay_weights_op(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__, self )._resource_apply_dense(lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A , A : Tuple = self._get_lr(var.device, var.dtype.base_dtype, lowerCamelCase__ ) A : Optional[Any] = self._decay_weights_op(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__, self )._resource_apply_sparse(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Dict = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _lowerCAmelCase ( self, lowerCamelCase__ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCamelCase__, lowerCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCamelCase__, lowerCamelCase__ ) is not None: return False return True class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self ): A : List[str] = [] A : List[str] = None @property def _lowerCAmelCase ( self ): if self._accum_steps is None: A : str = tf.Variable( tf.constant(0, dtype=tf.intaa ), trainable=lowerCamelCase__, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) return self._accum_steps.value() @property def _lowerCAmelCase ( self ): if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self, lowerCamelCase__ ): if not self._gradients: A : int = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCamelCase__ ), trainable=lowerCamelCase__, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCamelCase__ ) != len(self._gradients ): raise ValueError(f'''Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase__ )}''' ) for accum_gradient, gradient in zip(self._gradients, lowerCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCamelCase__ ) self._accum_steps.assign_add(1 ) def _lowerCAmelCase ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCamelCase__ ) )
116
1
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCAmelCase = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCAmelCase = logging.get_logger(__name__) class __magic_name__ ( __UpperCAmelCase ): __A : List[Any] = "maskformer" __A : str = {"hidden_size": "mask_feature_size"} __A : Dict = ["resnet", "swin"] __A : Tuple = ["detr"] def __init__( self : Dict , snake_case__ : int = 2_5_6 , snake_case__ : int = 2_5_6 , snake_case__ : float = 0.1 , snake_case__ : bool = False , snake_case__ : Optional[Dict] = None , snake_case__ : Optional[Dict] = None , snake_case__ : float = 0.02 , snake_case__ : float = 1.0 , snake_case__ : float = 1.0 , snake_case__ : float = 1.0 , snake_case__ : float = 20.0 , snake_case__ : Optional[bool] = None , **snake_case__ : Tuple , ): '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase :Tuple = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(snake_case__ , snake_case__ ): lowercase :Optional[Any] = backbone_config.pop('''model_type''' ) lowercase :List[str] = CONFIG_MAPPING[backbone_model_type] lowercase :Union[str, Any] = config_class.from_dict(snake_case__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase :Any = DetrConfig() else: # verify that the decoder is supported lowercase :Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(snake_case__ , snake_case__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {','.join(self.decoders_supported )}""" ) if isinstance(snake_case__ , snake_case__ ): lowercase :int = CONFIG_MAPPING[decoder_type] lowercase :int = config_class.from_dict(snake_case__ ) lowercase :Tuple = backbone_config lowercase :Tuple = decoder_config # main feature dimension for the model lowercase :List[Any] = fpn_feature_size lowercase :List[Any] = mask_feature_size # initializer lowercase :Union[str, Any] = init_std lowercase :Any = init_xavier_std # Hungarian matcher && loss lowercase :Any = cross_entropy_weight lowercase :int = dice_weight lowercase :Union[str, Any] = mask_weight lowercase :Tuple = use_auxiliary_loss lowercase :Union[str, Any] = no_object_weight lowercase :List[str] = output_auxiliary_logits lowercase :Dict = self.decoder_config.encoder_attention_heads lowercase :int = self.decoder_config.num_hidden_layers super().__init__(**snake_case__ ) @classmethod def __snake_case ( cls : Tuple , snake_case__ : PretrainedConfig , snake_case__ : PretrainedConfig , **snake_case__ : Union[str, Any] ): '''simple docstring''' return cls( backbone_config=snake_case__ , decoder_config=snake_case__ , **snake_case__ , ) def __snake_case ( self : int ): '''simple docstring''' lowercase :str = copy.deepcopy(self.__dict__ ) lowercase :Tuple = self.backbone_config.to_dict() lowercase :Any = self.decoder_config.to_dict() lowercase :List[str] = self.__class__.model_type return output
172
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : Tuple = KandinskyVaaPipeline __A : Any = [ "image_embeds", "negative_image_embeds", ] __A : Tuple = ["image_embeds", "negative_image_embeds"] __A : Tuple = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __A : Union[str, Any] = False @property def __snake_case ( self : str ): '''simple docstring''' return 3_2 @property def __snake_case ( self : Any ): '''simple docstring''' return 3_2 @property def __snake_case ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def __snake_case ( self : Any ): '''simple docstring''' return self.time_input_dim * 4 @property def __snake_case ( self : Optional[int] ): '''simple docstring''' return 1_0_0 @property def __snake_case ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase :Optional[Any] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase :int = UNetaDConditionModel(**snake_case__ ) return model @property def __snake_case ( self : Dict ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __snake_case ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase :Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Optional[Any] = self.dummy_unet lowercase :List[Any] = self.dummy_movq lowercase :Optional[Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case__ , ) lowercase :str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __snake_case ( self : str , snake_case__ : Any , snake_case__ : str=0 ): '''simple docstring''' lowercase :Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase :Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) if str(snake_case__ ).startswith('''mps''' ): lowercase :Optional[int] = torch.manual_seed(snake_case__ ) else: lowercase :Any = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase :List[Any] = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[Any] = '''cpu''' lowercase :Tuple = self.get_dummy_components() lowercase :Any = self.pipeline_class(**snake_case__ ) lowercase :List[str] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase :Optional[Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowercase :str = output.images lowercase :Dict = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowercase :Any = image[0, -3:, -3:, -1] lowercase :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase :List[Any] = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Any ): '''simple docstring''' lowercase :Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) lowercase :int = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowercase :Tuple = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowercase :str = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowercase :int = '''red cat, 4k photo''' lowercase :str = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowercase , lowercase :Union[str, Any] = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase :Tuple = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowercase :List[Any] = pipeline( image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=1_0_0 , output_type='''np''' , ) lowercase :Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
172
1
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a , __a , __a=1024 , __a=1024 , __a=3.6 ): '''simple docstring''' __a : List[str] = tokenizer __a : List[Any] = tokenizer.bos_token_id __a : Tuple = dataset __a : Optional[int] = seq_length __a : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self ): '''simple docstring''' __a : Optional[Any] = iter(self.dataset ) __a : Optional[int] = True while more_examples: __a , __a : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__a )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __a : str = False break __a : Optional[int] = tokenizer(__a , truncation=__a )['input_ids'] __a : str = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__a ) , self.seq_length ): __a : int = all_token_ids[i : i + self.seq_length] if len(__a ) == self.seq_length: yield torch.tensor(__a ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : List[Any] = {'streaming': True} __a : int = load_dataset(args.dataset_name , split='train' , **_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = ConstantLengthDataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , seq_length=args.seq_length ) __a : Optional[Any] = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=args.batch_size ) return eval_dataloader def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): model.eval() __a : Any = [] for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): with torch.no_grad(): __a : str = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) __a : int = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_SCREAMING_SNAKE_CASE ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __a : Union[str, Any] = torch.mean(torch.cat(_SCREAMING_SNAKE_CASE ) ) try: __a : int = torch.exp(_SCREAMING_SNAKE_CASE ) except OverflowError: __a : str = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator __lowercase : List[Any] = Accelerator() # Parse configuration __lowercase : Optional[int] = HfArgumentParser(EvaluationArguments) __lowercase : int = parser.parse_args() set_seed(args.seed) # Logging __lowercase : str = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer __lowercase : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt) __lowercase : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader __lowercase : List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. __lowercase , __lowercase : Any = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') __lowercase , __lowercase : List[str] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
27
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : int = int(number**0.5 ) return number == sq * sq def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): __a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __a : int = x_den * y_den * z_den __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 35 ): __a : set = set() __a : int __a : Fraction = Fraction(0 ) __a : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __a : Union[str, Any] = x_num * y_den + x_den * y_num __a : Optional[Any] = x_den * y_den __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __a : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : List[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Any = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Optional[int] = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[Any] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 __a : int = x_num * y_num __a : Optional[Any] = x_den * y_num + x_num * y_den __a : Tuple = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : List[Any] = x_num * x_num * y_num * y_num __a : List[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : Optional[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Union[str, Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[str] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
27
1
"""simple docstring""" import cmath import math def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): lowercase_ : str = math.radians(__SCREAMING_SNAKE_CASE ) lowercase_ : int = math.radians(__SCREAMING_SNAKE_CASE ) # Convert voltage and current to rectangular form lowercase_ : Optional[int] = cmath.rect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = cmath.rect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES a__ : Optional[Any] =logging.get_logger(__name__) a__ : str =OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) a__ : Any =OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) a__ : Union[str, Any] =OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) a__ : Optional[int] =OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) a__ : Any =OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) a__ : Any =OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) a__ : List[str] =OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) a__ : Optional[int] =OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) a__ : Optional[int] =OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) a__ : int =OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) a__ : List[Any] =OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) a__ : List[str] =OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) a__ : str =OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) a__ : int =OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) a__ : Optional[int] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) a__ : Tuple =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) a__ : str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) a__ : Optional[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) a__ : Tuple =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) a__ : Optional[int] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) a__ : Union[str, Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) a__ : List[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) a__ : List[str] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) a__ : Optional[int] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) a__ : Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) a__ : str =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) a__ : List[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) a__ : Union[str, Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] =FLAX_MODEL_MAPPING a__ : List[Any] =auto_class_update(FlaxAutoModel) class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] =FLAX_MODEL_FOR_PRETRAINING_MAPPING a__ : List[Any] =auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =FLAX_MODEL_FOR_CAUSAL_LM_MAPPING a__ : Optional[int] =auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =FLAX_MODEL_FOR_MASKED_LM_MAPPING a__ : Tuple =auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a__ : Any =auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ : int =auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING a__ : Any =auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a__ : Optional[Any] =auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING a__ : Tuple =auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int =FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING a__ : Optional[int] =auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a__ : Optional[Any] =auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING a__ : Union[str, Any] =auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class snake_case ( _BaseAutoModelClass ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING a__ : Tuple =auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
53
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __lowerCAmelCase = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __lowerCAmelCase = '''base_with_context''' def snake_case_ ( snake_case , snake_case ) -> int: lowercase__: Tuple = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) lowercase__: Optional[int] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__: List[str] = weights[f'layers_{lyr_num}'] lowercase__: List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowercase__: Any = ly_weight['attention'] lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case_ ( snake_case , snake_case ) -> List[str]: lowercase__: str = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) lowercase__: Dict = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__: str = weights[f'layers_{lyr_num}'] lowercase__: Optional[Any] = ly_weight['attention'] lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: Tuple = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case_ ( snake_case , snake_case ) -> Any: lowercase__: int = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) lowercase__: Dict = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowercase__: Optional[Any] = weights[f'layers_{lyr_num}'] lowercase__: Any = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) lowercase__: List[str] = ly_weight['self_attention'] lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: Tuple = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: int = ly_weight['MultiHeadDotProductAttention_0'] lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Optional[Any] = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) lowercase__: Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def snake_case_ ( snake_case ) -> Any: lowercase__: int = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowercase__: Tuple = jnp.tree_util.tree_map(onp.array , snake_case ) lowercase__: List[str] = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] lowercase__: List[Any] = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) lowercase__: Optional[Any] = inference.parse_training_gin_file(snake_case , snake_case ) lowercase__: str = inference.InferenceModel(args.checkpoint_path , snake_case ) lowercase__: Dict = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) lowercase__: List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowercase__: Dict = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowercase__: Optional[Any] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowercase__: Dict = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , snake_case ) lowercase__: int = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , snake_case ) lowercase__: Optional[int] = load_decoder(ta_checkpoint['target']['decoder'] , snake_case ) lowercase__: int = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) lowercase__: List[Any] = SpectrogramDiffusionPipeline( notes_encoder=snake_case , continuous_encoder=snake_case , decoder=snake_case , scheduler=snake_case , melgan=snake_case , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) __lowerCAmelCase = parser.parse_args() main(args)
288
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( _A , _A=False ): '''simple docstring''' try: snake_case_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case_ = default else: # KEY is set, convert it to True or False. try: snake_case_ = strtobool(_A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value lowercase__ : Dict = parse_flag_from_env("RUN_SLOW", default=False) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skip("Test was skipped" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , "test is slow" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(_A ) def lowerCamelCase__ ( _A=None , _A=None ): '''simple docstring''' if test_case is None: return partial(_A , version=_A ) return unittest.skipUnless(is_torch_version(">=" , _A ) , f"test requires torch version >= {version}" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(_A ) lowercase__ : List[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( _A ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_A ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = True @classmethod def snake_case__ ( cls : List[Any] ): """simple docstring""" snake_case_ = tempfile.mkdtemp() @classmethod def snake_case__ ( cls : List[str] ): """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def snake_case__ ( self : List[Any] ): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__lowercase ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : str ): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : Union[str, Any] , __lowercase : Union[mock.Mock, List[mock.Mock]] ): """simple docstring""" snake_case_ = mocks if isinstance(__lowercase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = AcceleratorState() snake_case_ = tensor[None].clone().to(state.device ) snake_case_ = gather(_A ).cpu() snake_case_ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _A ): return False return True class UpperCAmelCase : '''simple docstring''' def __init__( self : str , __lowercase : str , __lowercase : int , __lowercase : Dict ): """simple docstring""" snake_case_ = returncode snake_case_ = stdout snake_case_ = stderr async def lowerCamelCase__ ( _A , _A ): '''simple docstring''' while True: snake_case_ = await stream.readline() if line: callback(_A ) else: break async def lowerCamelCase__ ( _A , _A=None , _A=None , _A=None , _A=False , _A=False ): '''simple docstring''' if echo: print("\nRunning: " , " ".join(_A ) ) snake_case_ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case_ = [] snake_case_ = [] def tee(_A , _A , _A , _A="" ): snake_case_ = line.decode("utf-8" ).rstrip() sink.append(_A ) if not quiet: print(_A , _A , file=_A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label="stderr:" ) ) ), ] , timeout=_A , ) return _RunOutput(await p.wait() , _A , _A ) def lowerCamelCase__ ( _A , _A=None , _A=None , _A=180 , _A=False , _A=True ): '''simple docstring''' snake_case_ = asyncio.get_event_loop() snake_case_ = loop.run_until_complete( _stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) ) snake_case_ = " ".join(_A ) if result.returncode > 0: snake_case_ = "\n".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' pass def lowerCamelCase__ ( _A , _A=False ): '''simple docstring''' try: snake_case_ = subprocess.check_output(_A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_A , "decode" ): snake_case_ = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"Command `{' '.join(_A )}` failed with the following error:\n\n{e.output.decode()}" ) from e
187
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'''add_prefix_space''': True} lowerCAmelCase_ = False def snake_case__ ( self : List[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] snake_case_ = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) snake_case_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case_ = {"unk_token": "<unk>"} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowercase ) ) def snake_case__ ( self : Union[str, Any] , **__lowercase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def snake_case__ ( self : Optional[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def snake_case__ ( self : Optional[int] , __lowercase : List[str] ): """simple docstring""" snake_case_ = "lower newer" snake_case_ = "lower newer" return input_text, output_text def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ = "lower newer" snake_case_ = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] snake_case_ = tokenizer.tokenize(__lowercase , add_prefix_space=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def snake_case__ ( self : Optional[int] ): """simple docstring""" if not self.test_rust_tokenizer: return snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer(add_prefix_space=__lowercase ) snake_case_ = "lower newer" # Testing tokenization snake_case_ = tokenizer.tokenize(__lowercase , add_prefix_space=__lowercase ) snake_case_ = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Testing conversion to ids without special tokens snake_case_ = tokenizer.encode(__lowercase , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) snake_case_ = rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Testing conversion to ids with special tokens snake_case_ = self.get_rust_tokenizer(add_prefix_space=__lowercase ) snake_case_ = tokenizer.encode(__lowercase , add_prefix_space=__lowercase ) snake_case_ = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Testing the unknown token snake_case_ = tokens + [rust_tokenizer.unk_token] snake_case_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def snake_case__ ( self : Any , *__lowercase : Union[str, Any] , **__lowercase : Tuple ): """simple docstring""" pass def snake_case__ ( self : int , __lowercase : str=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case_ = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) # Simple input snake_case_ = "This is a simple input" snake_case_ = ["This is a simple input 1", "This is a simple input 2"] snake_case_ = ("This is a simple input", "This is a pair") snake_case_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="max_length" ) # Simple input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="max_length" ) # Simple input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="max_length" , ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="max_length" ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="max_length" ) # Pair input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="max_length" , ) def snake_case__ ( self : str ): """simple docstring""" snake_case_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input snake_case_ = "This is a simple input" snake_case_ = ["This is a simple input looooooooong", "This is a simple input"] snake_case_ = ("This is a simple input", "This is a pair") snake_case_ = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] snake_case_ = tokenizer.pad_token_id snake_case_ = tokenizer(__lowercase , padding="max_length" , max_length=30 , return_tensors="np" ) snake_case_ = tokenizer(__lowercase , padding=__lowercase , truncate=__lowercase , return_tensors="np" ) snake_case_ = tokenizer(*__lowercase , padding="max_length" , max_length=60 , return_tensors="np" ) snake_case_ = tokenizer(__lowercase , padding=__lowercase , truncate=__lowercase , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = "$$$" snake_case_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowercase , add_bos_token=__lowercase ) snake_case_ = "This is a simple input" snake_case_ = ["This is a simple input 1", "This is a simple input 2"] snake_case_ = tokenizer.bos_token_id snake_case_ = tokenizer(__lowercase ) snake_case_ = tokenizer(__lowercase ) self.assertEqual(out_s.input_ids[0] , __lowercase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) snake_case_ = tokenizer.decode(out_s.input_ids ) snake_case_ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowercase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) snake_case_ = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" snake_case_ = "\nif len_a > len_b: result = a\nelse: result = b" snake_case_ = tokenizer.encode(__lowercase ) snake_case_ = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] snake_case_ = tokenizer.decode(__lowercase , truncate_before_pattern=__lowercase ) self.assertEqual(__lowercase , __lowercase ) def snake_case__ ( self : Dict ): """simple docstring""" pass
187
1
"""simple docstring""" UpperCAmelCase_ : Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _A () -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = input('''Enter message: ''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = input('''Enter key [alphanumeric]: ''' ) SCREAMING_SNAKE_CASE_ : int = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '''encrypt''' SCREAMING_SNAKE_CASE_ : List[str] = encrypt_message(__a , __a ) elif mode.lower().startswith('''d''' ): SCREAMING_SNAKE_CASE_ : Tuple = '''decrypt''' SCREAMING_SNAKE_CASE_ : Dict = decrypt_message(__a , __a ) print(f'\n{mode.title()}ed message:' ) print(__a ) def _A (__a , __a ) -> str: """simple docstring""" return translate_message(__a , __a , '''encrypt''' ) def _A (__a , __a ) -> str: """simple docstring""" return translate_message(__a , __a , '''decrypt''' ) def _A (__a , __a , __a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Dict = key.upper() for symbol in message: SCREAMING_SNAKE_CASE_ : Union[str, Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): SCREAMING_SNAKE_CASE_ : int = 0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
318
"""simple docstring""" from collections import defaultdict def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip() SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip() # Remove whitespace SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__a ) != len(__a ): return False # Default values for count should be 0 SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a ) # For each character in input strings, # increment count in the corresponding for i in range(len(__a ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ : Any = input("""Enter the first string """).strip() UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip() UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
318
1
import math def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(snake_case ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
82
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return x + 2 class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Any ) -> Any: __SCREAMING_SNAKE_CASE = "x = 3" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result == 3 self.assertDictEqual(UpperCAmelCase__ , {"x": 3} ) __SCREAMING_SNAKE_CASE = "x = y" __SCREAMING_SNAKE_CASE = {"y": 5} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 5, "y": 5} ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: __SCREAMING_SNAKE_CASE = "y = add_two(x)" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = "x = 3" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result == 3 self.assertDictEqual(UpperCAmelCase__ , {"x": 3} ) def UpperCAmelCase_ ( self : str ) -> Any: __SCREAMING_SNAKE_CASE = "test_dict = {'x': x, 'y': add_two(x)}" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 5} ) self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = "x = 3\ny = 5" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 5} ) def UpperCAmelCase_ ( self : Any ) -> Any: __SCREAMING_SNAKE_CASE = "text = f'This is x: {x}.'" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "text": "This is x: 3."} ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = "if x <= 3:\n y = 2\nelse:\n y = 5" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 2} ) __SCREAMING_SNAKE_CASE = {"x": 8} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 8, "y": 5} ) def UpperCAmelCase_ ( self : Tuple ) -> str: __SCREAMING_SNAKE_CASE = "test_list = [x, add_two(x)]" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , [3, 5] ) self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_list": [3, 5]} ) def UpperCAmelCase_ ( self : Any ) -> int: __SCREAMING_SNAKE_CASE = "y = x" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {} , state=UpperCAmelCase__ ) assert result == 3 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "y": 3} ) def UpperCAmelCase_ ( self : Tuple ) -> int: __SCREAMING_SNAKE_CASE = "test_list = [x, add_two(x)]\ntest_list[1]" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_list": [3, 5]} ) __SCREAMING_SNAKE_CASE = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" __SCREAMING_SNAKE_CASE = {"x": 3} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"add_two": add_two} , state=UpperCAmelCase__ ) assert result == 5 self.assertDictEqual(UpperCAmelCase__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = "x = 0\nfor i in range(3):\n x = i" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(UpperCAmelCase__ , {"range": range} , state=UpperCAmelCase__ ) assert result == 2 self.assertDictEqual(UpperCAmelCase__ , {"x": 2, "i": 2} )
54
0
'''simple docstring''' import math import sys def _lowercase ( __A ): '''simple docstring''' if number != int(__A ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 __UpperCamelCase = [-1] * (number + 1) __UpperCamelCase = 0 for i in range(1 ,number + 1 ): __UpperCamelCase = sys.maxsize __UpperCamelCase = int(math.sqrt(__A ) ) for j in range(1 ,root + 1 ): __UpperCamelCase = 1 + answers[i - (j**2)] __UpperCamelCase = min(__A ,__A ) __UpperCamelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
243
'''simple docstring''' import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _lowercase ( __A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = s.rsplit(__A ,__A ) return new.join(__A ) def _lowercase ( __A ): '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = {} __UpperCamelCase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f"{group_key}." ,f"{group_key}.group." ) if "res_path" in key: __UpperCamelCase = key.replace("""res_path.""" ,"""res_path.path.""" ) if key.endswith(""".w""" ): __UpperCamelCase = rreplace(__A ,""".w""" ,""".weight""" ,1 ) if key.endswith(""".b""" ): __UpperCamelCase = rreplace(__A ,""".b""" ,""".bias""" ,1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def _lowercase ( __A ,__A ,__A=None ,__A=True ): '''simple docstring''' from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(__A ): __UpperCamelCase = torch.load(__A ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(__A ) if isinstance(__A ,__A ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(__A ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(__A ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(__A ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(__A ) hf_model.load_state_dict(__A ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(__A ) __UpperCamelCase = count_parameters(__A ) assert torch.allclose(__A ,__A ,atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__A ) else: return hf_state_dict if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a__ : Dict = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
243
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = FlaxAutoencoderKL @property def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(A , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def a__ (self ) -> List[str]: """simple docstring""" _a = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } _a = self.dummy_input return init_dict, inputs_dict
211
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[Any] = 'MCTCTFeatureExtractor' __lowerCamelCase : Optional[Any] = 'AutoTokenizer' def __init__(self , A , A ) -> Dict: """simple docstring""" super().__init__(A , A ) _a = self.feature_extractor _a = False def __call__(self , *A , **A ) -> Optional[int]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*A , **A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _a = kwargs.pop('''raw_speech''' ) else: _a = kwargs.pop('''audio''' , A ) _a = kwargs.pop('''sampling_rate''' , A ) _a = kwargs.pop('''text''' , A ) if len(A ) > 0: _a = args[0] _a = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _a = self.feature_extractor(A , *A , sampling_rate=A , **A ) if text is not None: _a = self.tokenizer(A , **A ) if text is None: return inputs elif audio is None: return encodings else: _a = encodings['''input_ids'''] return inputs def a__ (self , *A , **A ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*A , **A ) def a__ (self , *A , **A ) -> Tuple: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*A , **A ) _a = kwargs.pop('''input_features''' , A ) _a = kwargs.pop('''labels''' , A ) if len(A ) > 0: _a = args[0] _a = args[1:] if input_features is not None: _a = self.feature_extractor.pad(A , *A , **A ) if labels is not None: _a = self.tokenizer.pad(A , **A ) if labels is None: return input_features elif input_features is None: return labels else: _a = labels['''input_ids'''] return input_features def a__ (self , *A , **A ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*A , **A ) @contextmanager def a__ (self ) -> Dict: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _a = True _a = self.tokenizer yield _a = self.feature_extractor _a = False
211
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def _A ( snake_case ) -> np.ndarray: _lowercase : List[str] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def _A ( snake_case ) -> np.ndarray: return (gray > 1_27) & (gray <= 2_55) def _A ( snake_case , snake_case ) -> np.ndarray: _lowercase : Dict = np.zeros_like(snake_case ) _lowercase : Union[str, Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image _lowercase : str = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): _lowercase : Dict = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() _lowercase : List[Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image _snake_case = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' _snake_case = np.array(Image.open(lena_path)) # kernel to be applied _snake_case = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _snake_case = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _snake_case = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
359
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _snake_case = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class a__ ( unittest.TestCase ): def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = True , ): """simple docstring""" _lowercase : str = [file for file in os.listdir(_UpperCamelCase ) if os.path.isfile(os.path.join(_UpperCamelCase , _UpperCamelCase ) )] if identifier is not None: _lowercase : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_UpperCamelCase , _UpperCamelCase ): for n_ in n_identifier: _lowercase : Dict = [file for file in files if n_ not in file] else: _lowercase : Optional[Any] = [file for file in files if n_identifier not in file] _lowercase : Dict = ignore_files or [] ignore_files.append("__init__.py" ) _lowercase : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , _UpperCamelCase ) if only_modules: _lowercase : Optional[Any] = file.split("." )[0] try: _lowercase : Union[str, Any] = getattr(_UpperCamelCase , _UpperCamelCase ) _lowercase : Optional[int] = doctest.DocTestSuite(_UpperCamelCase ) _lowercase : Tuple = unittest.TextTestRunner().run(_UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: _lowercase : Optional[Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = Path("src/transformers" ) _lowercase : str = "modeling" _lowercase : Tuple = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(_UpperCamelCase , identifier=_UpperCamelCase , ignore_files=_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = Path("src/transformers" ) _lowercase : Any = "tokenization" self.analyze_directory(_UpperCamelCase , identifier=_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = Path("src/transformers" ) _lowercase : Optional[Any] = "configuration" self.analyze_directory(_UpperCamelCase , identifier=_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = Path("src/transformers" ) _lowercase : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(_UpperCamelCase , n_identifier=_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = Path("docs/source" ) _lowercase : int = ["favicon.ico"] self.analyze_directory(_UpperCamelCase , ignore_files=_UpperCamelCase , only_modules=_UpperCamelCase )
199
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) for i in range(length - 1 ): __SCREAMING_SNAKE_CASE = i for k in range(i + 1 , UpperCamelCase_ ): if collection[k] < collection[least]: __SCREAMING_SNAKE_CASE = k if least != i: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = (collection[i], collection[least]) return collection if __name__ == "__main__": __magic_name__ = input("Enter numbers separated by a comma:\n").strip() __magic_name__ = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
100
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _A : int = """CompVis/stable-diffusion-v1-1""" _A : Any = """CompVis/stable-diffusion-v1-2""" _A : Optional[int] = """CompVis/stable-diffusion-v1-3""" _A : Union[str, Any] = """CompVis/stable-diffusion-v1-4""" class a__ ( a_ ): def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a = True , ): super()._init_() lowercase : Optional[Any] = StableDiffusionPipeline.from_pretrained(_a ) lowercase : str = StableDiffusionPipeline.from_pretrained(_a ) lowercase : Dict = StableDiffusionPipeline.from_pretrained(_a ) lowercase : Union[str, Any] = StableDiffusionPipeline( vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , requires_safety_checker=_a , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __magic_name__ ( self ): return {k: getattr(self , _a ) for k in self.config.keys() if not k.startswith("_" )} def __magic_name__ ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __magic_name__ ( self ): self.enable_attention_slicing(_a ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): return self.pipea( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) @torch.no_grad() def __magic_name__ ( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): lowercase : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" self.to(_a ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 lowercase : List[Any] = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.2 lowercase : Any = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.3 lowercase : str = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get first result from Stable Diffusion Checkpoint v1.4 lowercase : Optional[int] = self.textaimg_sda_a( prompt=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , **_a , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
202
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case__ ( snake_case_ ): _snake_case : str = ["""image_processor""", """tokenizer"""] _snake_case : Optional[int] = """FlavaImageProcessor""" _snake_case : Any = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ): __a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) __a = kwargs.pop("feature_extractor" ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase , lowerCamelCase ) __a = self.image_processor def __call__( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = 0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = True , lowerCamelCase = None , **lowerCamelCase , ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __a = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) if images is not None: __a = self.image_processor( lowerCamelCase , return_image_mask=lowerCamelCase , return_codebook_pixels=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) if text is not None and images is not None: encoding.update(lowerCamelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def a__ ( self ): __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__ ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase , ) return self.image_processor_class @property def a__ ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase , ) return self.image_processor
268
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowerCamelCase( a ): __a = torch.exp(a ) __a = torch.sum(a , dim=1 ) # sum of exp(x_i) __a = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(a ) - B / A class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = config.output_attentions __a = config.output_hidden_states __a = nn.ModuleList([BertLayer(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = nn.ModuleList([BertHighway(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = [-1 for _ in range(config.num_hidden_layers )] def a__ ( self , lowerCamelCase ): if (type(lowerCamelCase ) is float) or (type(lowerCamelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __a = x else: __a = x def a__ ( self , lowerCamelCase ): __a = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a__ ( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): __a = () __a = () __a = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = layer_module( lowerCamelCase , lowerCamelCase , head_mask[i] , lowerCamelCase , lowerCamelCase ) __a = layer_outputs[0] if self.output_attentions: __a = all_attentions + (layer_outputs[1],) __a = (hidden_states,) if self.output_hidden_states: __a = current_outputs + (all_hidden_states,) if self.output_attentions: __a = current_outputs + (all_attentions,) __a = self.highway[i](lowerCamelCase ) # logits, pooled_output if not self.training: __a = highway_exit[0] __a = entropy(lowerCamelCase ) __a = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __a = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __a = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCamelCase , i + 1 ) else: __a = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = (hidden_states,) if self.output_hidden_states: __a = outputs + (all_hidden_states,) if self.output_attentions: __a = outputs + (all_attentions,) __a = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config __a = BertEmbeddings(lowerCamelCase ) __a = DeeBertEncoder(lowerCamelCase ) __a = BertPooler(lowerCamelCase ) self.init_weights() def a__ ( self ): self.encoder.init_highway_pooler(self.pooler ) def a__ ( self ): return self.embeddings.word_embeddings def a__ ( self , lowerCamelCase ): __a = value def a__ ( self , lowerCamelCase ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCamelCase ) @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __a = input_ids.size() elif inputs_embeds is not None: __a = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __a = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if encoder_attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if token_type_ids is None: __a = torch.zeros(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __a = self.get_extended_attention_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __a = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __a = encoder_attention_mask[:, None, None, :] __a = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __a = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __a = self.get_head_mask(lowerCamelCase , self.config.num_hidden_layers ) __a = self.embeddings( input_ids=lowerCamelCase , position_ids=lowerCamelCase , token_type_ids=lowerCamelCase , inputs_embeds=lowerCamelCase ) __a = self.encoder( lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) __a = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase ): __a = message __a = exit_layer # start from 1! class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = BertPooler(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , config.num_labels ) def a__ ( self , lowerCamelCase ): # Pooler __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) # "return" pooler_output # BertModel __a = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __a = bmodel_output[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config.num_labels __a = config.num_hidden_layers __a = DeeBertModel(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=-1 , lowerCamelCase=False , ): __a = self.num_layers try: __a = self.bert( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , position_ids=lowerCamelCase , head_mask=lowerCamelCase , inputs_embeds=lowerCamelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __a = outputs[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) __a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __a = e.message __a = e.exit_layer __a = outputs[0] if not self.training: __a = entropy(lowerCamelCase ) __a = [] __a = [] if labels is not None: if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __a = [] for highway_exit in outputs[-1]: __a = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCamelCase ) if train_highway: __a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __a = (loss,) + outputs if not self.training: __a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
268
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Any=30 , __UpperCAmelCase : List[str]=400 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Union[str, Any]=1 / 255 , __UpperCAmelCase : str=True , __UpperCAmelCase : Dict=[0.5, 0.5, 0.5] , __UpperCAmelCase : List[str]=[0.5, 0.5, 0.5] , __UpperCAmelCase : List[Any]=True , ): '''simple docstring''' _A = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean _A = image_std _A = do_pad def lowerCAmelCase ( self : Dict ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int=False ): '''simple docstring''' if not batched: _A = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size["shortest_edge"] * h / w ) _A = self.size["shortest_edge"] elif w > h: _A = self.size["shortest_edge"] _A = int(self.size["shortest_edge"] * w / h ) else: _A = self.size["shortest_edge"] _A = self.size["shortest_edge"] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] _A = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = DetrImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = DetrImageProcessingTester(self ) @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : str ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_rescale" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "rescale_factor" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "size" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_pad" ) ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCAmelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) _A = image_processing(__UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__UpperCAmelCase , return_tensors="pt" ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__UpperCAmelCase , return_tensors="pt" ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: _A = json.loads(f.read() ) _A = {"image_id": 39769, "annotations": target} # encode them _A = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" ) _A = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , return_tensors="pt" ) # verify pixel values _A = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , __UpperCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __UpperCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __UpperCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __UpperCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __UpperCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __UpperCAmelCase ) ) # verify orig_size _A = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __UpperCAmelCase ) ) # verify size _A = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __UpperCAmelCase ) ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: _A = json.loads(f.read() ) _A = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} _A = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them _A = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" ) _A = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , masks_path=__UpperCAmelCase , return_tensors="pt" ) # verify pixel values _A = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , __UpperCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __UpperCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __UpperCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __UpperCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __UpperCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __UpperCAmelCase ) ) # verify masks _A = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __UpperCAmelCase ) # verify orig_size _A = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __UpperCAmelCase ) ) # verify size _A = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __UpperCAmelCase ) )
79
"""simple docstring""" import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( ) -> Tuple: from torch.utils.cpp_extension import load A__ = Path(lowercase_ ).resolve().parent.parent.parent / "kernels" / "deformable_detr" A__ = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , lowercase_ , with_cuda=lowercase_ , extra_include_paths=[str(lowercase_ )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
247
0
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , _a : Dict , _a : List[str]=100 , _a : List[Any]=13 , _a : Optional[Any]=30 , _a : Any=2 , _a : List[str]=3 , _a : List[Any]=True , _a : str=True , _a : List[Any]=32 , _a : List[str]=5 , _a : str=4 , _a : Optional[int]=37 , _a : Optional[int]="gelu" , _a : Dict=0.1 , _a : int=0.1 , _a : List[str]=10 , _a : Tuple=0.02 , _a : List[Any]=3 , ): UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def A_ ( self : List[Any] ): UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , ) return config, pixel_values, labels def A_ ( self : Optional[int] , _a : str , _a : Union[str, Any] , _a : Any ): UpperCamelCase__ = FlaxBeitModel(config=_a ) UpperCamelCase__ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : int , _a : Optional[int] , _a : Optional[Any] , _a : List[Any] ): UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=_a ) UpperCamelCase__ = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def A_ ( self : Union[str, Any] , _a : str , _a : str , _a : Tuple ): UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=_a ) UpperCamelCase__ = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(_a ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(_a ) def A_ ( self : List[Any] ): UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __lowercase ( A, unittest.TestCase ): '''simple docstring''' _A : List[str] = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def A_ ( self : Union[str, Any] ): UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def A_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def A_ ( self : Optional[int] ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(_a ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def A_ ( self : List[str] ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(_a , _a ) UpperCamelCase__ = model_class(_a ) @jax.jit def model_jitted(_a : Any , **_a : Any ): return model(pixel_values=_a , **_a ) with self.subTest('''JIT Enabled''' ): UpperCamelCase__ = model_jitted(**_a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) def A_ ( self : int ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def A_ ( self : Any ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def A_ ( self : Union[str, Any] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def A_ ( self : List[Any] ): for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_a ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def A_ ( self : Optional[int] ): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def A_ ( self : Dict ): UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=_a , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=_a ) # forward pass UpperCamelCase__ = model(pixel_values=_a , bool_masked_pos=_a ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8_192) self.assertEqual(logits.shape , _a ) UpperCamelCase__ = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , _a , atol=1E-2 ) ) @slow def A_ ( self : Optional[int] ): UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=_a , return_tensors='''np''' ) # forward pass UpperCamelCase__ = model(**_a ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1_000) self.assertEqual(logits.shape , _a ) UpperCamelCase__ = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , _a , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , _a ) @slow def A_ ( self : Union[str, Any] ): UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=_a , return_tensors='''np''' ) # forward pass UpperCamelCase__ = model(**_a ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 21_841) self.assertEqual(logits.shape , _a ) UpperCamelCase__ = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , _a , atol=1E-4 ) ) UpperCamelCase__ = 2_396 self.assertEqual(logits.argmax(-1 ).item() , _a )
35
from __future__ import annotations lowercase = list[list[int]] # assigning initial values to the grid lowercase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowercase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase_ ( UpperCamelCase__ : Matrix, UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase_ ( UpperCamelCase__ : Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase_ ( UpperCamelCase__ : Matrix ): '''simple docstring''' if location := find_empty_location(UpperCamelCase__ ): UpperCamelCase__ , UpperCamelCase__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1, 10 ): if is_safe(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): UpperCamelCase__ = digit if sudoku(UpperCamelCase__ ) is not None: return grid UpperCamelCase__ = 0 return None def lowerCamelCase_ ( UpperCamelCase__ : Matrix ): '''simple docstring''' for row in grid: for cell in row: print(UpperCamelCase__, end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 2_0) print_solution(example_grid) print("""\nExample grid solution:""") lowercase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
35
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} _a : int = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } _a : Optional[Any] = { 'allenai/longformer-base-4096': 4_096, 'allenai/longformer-large-4096': 4_096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Optional[Any] = ( list(range(ord("""!""" ) ,ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) ,ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) ,ord("""ÿ""" ) + 1 ) ) ) _lowerCAmelCase : Dict = bs[:] _lowerCAmelCase : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase : List[Any] = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase ,_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Dict: _lowerCAmelCase : int = set() _lowerCAmelCase : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Tuple = char return pairs class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ["input_ids", "attention_mask"] def __init__( self , a__ , a__ , a__="replace" , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=False , **a__ , ): _lowerCAmelCase : Union[str, Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else bos_token _lowerCAmelCase : Optional[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else eos_token _lowerCAmelCase : List[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else sep_token _lowerCAmelCase : Optional[int] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else cls_token _lowerCAmelCase : List[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else unk_token _lowerCAmelCase : Dict = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Optional[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( errors=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , **a__ , ) with open(a__ , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase : List[Any] = json.load(a__ ) _lowerCAmelCase : int = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Dict = errors # how to handle errors in decoding _lowerCAmelCase : Any = bytes_to_unicode() _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(a__ , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase : Dict = merges_handle.read().split("""\n""" )[1:-1] _lowerCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : List[str] = {} _lowerCAmelCase : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase : int = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , a__ ): if token in self.cache: return self.cache[token] _lowerCAmelCase : Any = tuple(a__ ) _lowerCAmelCase : Tuple = get_pairs(a__ ) if not pairs: return token while True: _lowerCAmelCase : Optional[Any] = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : List[str] = 0 while i < len(a__ ): try: _lowerCAmelCase : str = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Tuple = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : List[Any] = tuple(a__ ) _lowerCAmelCase : Optional[int] = new_word if len(a__ ) == 1: break else: _lowerCAmelCase : Any = get_pairs(a__ ) _lowerCAmelCase : str = """ """.join(a__ ) _lowerCAmelCase : str = word return word def __A ( self , a__ ): _lowerCAmelCase : Tuple = [] for token in re.findall(self.pat , a__ ): _lowerCAmelCase : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a__ ).split(""" """ ) ) return bpe_tokens def __A ( self , a__ ): return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __A ( self , a__ ): return self.decoder.get(a__ ) def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = """""".join(a__ ) _lowerCAmelCase : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Tuple = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[str] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + """\n""" ) _lowerCAmelCase : Optional[int] = 0 with open(a__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase : List[str] = token_index writer.write(""" """.join(a__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] _lowerCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Dict = [self.sep_token_id] _lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , a__ , a__=False , **a__ ): _lowerCAmelCase : int = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a__ ) > 0 and not text[0].isspace()): _lowerCAmelCase : int = """ """ + text return (text, kwargs)
44
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[str] = value __A : List[Any] = None __A : str = None class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = tree def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left) + self.depth_first_search(node.right) ) def __iter__( self): '''simple docstring''' yield self.depth_first_search(self.tree) if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' import argparse lowercase__ : Any = '''docs/source/_static/js/custom.js''' def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> str: with open(__snake_case , encoding='utf-8' , newline='\n' ) as f: __A : Optional[Any] = f.readlines() __A : List[str] = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __A : Tuple = f'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f' "v{version}": "v{version}",\n' with open(__snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__snake_case ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') lowercase__ : List[str] = parser.parse_args() update_custom_js(args.version)
190
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Dict = logging.get_logger(__name__) def _UpperCAmelCase ( a__ , a__=False): '''simple docstring''' a_ : Any = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''')) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''')) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''')) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''')) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''')) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''')) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''')) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''')) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''')) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''')) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" a_ : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ]) return rename_keys def _UpperCAmelCase ( a__ , a__ , a__=False): '''simple docstring''' for i in range(config.num_hidden_layers): if base_model: a_ : str = """""" else: a_ : str = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ : Union[str, Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''') a_ : Optional[int] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] a_ : str = in_proj_bias[: config.hidden_size] a_ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ : Dict = in_proj_weight[ -config.hidden_size :, : ] a_ : Optional[int] = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Optional[Any] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(a__ , a__) def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : int = dct.pop(a__) a_ : Dict = val def _UpperCAmelCase ( ): '''simple docstring''' a_ : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" a_ : Tuple = Image.open(requests.get(a__ , stream=a__).raw) return im @torch.no_grad() def _UpperCAmelCase ( a__ , a__ , a__=True): '''simple docstring''' a_ : str = ViTConfig() # patch_size if model_name[-1] == "8": a_ : Any = 8 # set labels if required if not base_model: a_ : Any = 1_0_0_0 a_ : Any = """huggingface/label-files""" a_ : List[Any] = """imagenet-1k-id2label.json""" a_ : Optional[int] = json.load(open(hf_hub_download(a__ , a__ , repo_type="""dataset""") , """r""")) a_ : Optional[Any] = {int(a__): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: a_ : Optional[int] = 3_8_4 a_ : List[Any] = 1_5_3_6 a_ : List[Any] = 1_2 a_ : str = 6 # load original model from torch hub a_ : Optional[Any] = torch.hub.load("""facebookresearch/dino:main""" , a__) original_model.eval() # load state_dict of original model, remove and rename some keys a_ : str = original_model.state_dict() if base_model: remove_classification_head_(a__) a_ : Union[str, Any] = create_rename_keys(a__ , base_model=a__) for src, dest in rename_keys: rename_key(a__ , a__ , a__) read_in_q_k_v(a__ , a__ , a__) # load HuggingFace model if base_model: a_ : Optional[Any] = ViTModel(a__ , add_pooling_layer=a__).eval() else: a_ : Any = ViTForImageClassification(a__).eval() model.load_state_dict(a__) # Check outputs on an image, prepared by ViTImageProcessor a_ : Union[str, Any] = ViTImageProcessor() a_ : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""") a_ : int = encoding["""pixel_values"""] a_ : Optional[int] = model(a__) if base_model: a_ : Tuple = original_model(a__) assert torch.allclose(a__ , outputs.last_hidden_state[:, 0, :] , atol=1e-1) else: a_ : List[str] = original_model(a__) assert logits.shape == outputs.logits.shape assert torch.allclose(a__ , outputs.logits , atol=1e-3) Path(a__).mkdir(exist_ok=a__) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''') model.save_pretrained(a__) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(a__) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) __snake_case : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
248
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __snake_case : Dict = logging.get_logger(__name__) class A__(a_ ): """simple docstring""" _A : Dict = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = 8 , **_lowercase , ) -> None: super().__init__(**_lowercase ) a_ : Tuple = do_rescale a_ : Dict = rescale_factor a_ : int = do_pad a_ : Optional[int] = pad_size def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase ) -> np.ndarray: return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None ) -> int: a_ , a_ : str = get_image_size(_lowercase ) a_ : Tuple = (old_height // size + 1) * size - old_height a_ : List[Any] = (old_width // size + 1) * size - old_width return pad(_lowercase , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> List[str]: a_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale a_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : Tuple = do_pad if do_pad is not None else self.do_pad a_ : Tuple = pad_size if pad_size is not None else self.pad_size a_ : Tuple = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. a_ : Tuple = [to_numpy_array(_lowercase ) for image in images] if do_rescale: a_ : Dict = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_pad: a_ : str = [self.pad(_lowercase , size=_lowercase ) for image in images] a_ : Optional[int] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] a_ : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
248
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ : List[Any] = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
141
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Any = KandinskyVaaImgaImgPipeline UpperCAmelCase__: Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCAmelCase__: str = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCAmelCase__: int = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__: Union[str, Any] = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 100 @property def __A ( self ): torch.manual_seed(0 ) A__ : Dict = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A__ : List[str] = UNetaDConditionModel(**A__ ) return model @property def __A ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self ): torch.manual_seed(0 ) A__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self ): A__ : Optional[int] = self.dummy_unet A__ : Dict = self.dummy_movq A__ : List[Any] = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } A__ : List[str] = DDIMScheduler(**A__ ) A__ : List[str] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __A ( self , A__ , A__=0 ): A__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A__ ) ).to(A__ ) A__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A__ ) # create init_image A__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(A__ ) ).to(A__ ) A__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : Dict = Image.fromarray(np.uinta(A__ ) ).convert("""RGB""" ).resize((256, 256) ) if str(A__ ).startswith("""mps""" ): A__ : Any = torch.manual_seed(A__ ) else: A__ : List[Any] = torch.Generator(device=A__ ).manual_seed(A__ ) A__ : Optional[int] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __A ( self ): A__ : str = """cpu""" A__ : Any = self.get_dummy_components() A__ : Union[str, Any] = self.pipeline_class(**A__ ) A__ : List[str] = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) A__ : Dict = pipe(**self.get_dummy_inputs(A__ ) ) A__ : Any = output.images A__ : List[str] = pipe( **self.get_dummy_inputs(A__ ) , return_dict=A__ , )[0] A__ : Optional[int] = image[0, -3:, -3:, -1] A__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : str = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): A__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) A__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) A__ : str = """A red cartoon frog, 4k""" A__ : int = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(A__ ) A__ : List[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) A__ : List[str] = pipeline.to(A__ ) pipeline.set_progress_bar_config(disable=A__ ) A__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ , A__ : Optional[Any] = pipe_prior( A__ , generator=A__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() A__ : str = pipeline( image=A__ , image_embeds=A__ , negative_image_embeds=A__ , generator=A__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) A__ : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A__ , A__ )
141
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Optional[Any] = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
182
import itertools import string from collections.abc import Generator, Iterable def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = iter(_lowercase ) while True: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(itertools.islice(_lowercase , _lowercase ) ) if not chunk: return yield chunk def A ( _lowercase ): SCREAMING_SNAKE_CASE : int = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE : List[str] = '''''' if len(_lowercase ) < 2: return dirty for i in range(len(_lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowercase ) & 1: clean += "X" return clean def A ( _lowercase ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) SCREAMING_SNAKE_CASE : Optional[Any] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE : List[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowercase ) return table def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = generate_table(_lowercase ) SCREAMING_SNAKE_CASE : Any = prepare_input(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowercase , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = divmod(table.index(_lowercase ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = divmod(table.index(_lowercase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = generate_table(_lowercase ) SCREAMING_SNAKE_CASE : List[Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowercase , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = divmod(table.index(_lowercase ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = divmod(table.index(_lowercase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
182
1
def lowerCAmelCase_ ( __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =len(snake_case_ ) while cur > 1: # Find the maximum number in arr UpperCAmelCase : Optional[int] =arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCAmelCase : Tuple =arr[mi::-1] + arr[mi + 1 : len(snake_case_ )] # Reverse whole list UpperCAmelCase : List[str] =arr[cur - 1 :: -1] + arr[cur : len(snake_case_ )] cur -= 1 return arr if __name__ == "__main__": __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
367
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __snake_case ( lowerCamelCase__ ): @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase : Tuple =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase : int =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase : Optional[int] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase : List[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase : List[Any] =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Optional[Any] ='''1''' UpperCAmelCase : List[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase : Any =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase : Union[str, Any] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase : Union[str, Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase : Any =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase : List[str] =self.get_env() UpperCAmelCase : Any =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' UpperCAmelCase : int =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' UpperCAmelCase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network UpperCAmelCase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase : Any =self.get_env() UpperCAmelCase : List[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network UpperCAmelCase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : int ='''1''' UpperCAmelCase : Optional[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict =''' from transformers import pipeline ''' UpperCAmelCase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' UpperCAmelCase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' UpperCAmelCase : Optional[int] =self.get_env() UpperCAmelCase : int ='''1''' UpperCAmelCase : Optional[int] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] UpperCAmelCase : List[str] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any =''' from transformers import AutoModel ''' UpperCAmelCase : Optional[Any] =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network UpperCAmelCase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase : Optional[int] =self.get_env() UpperCAmelCase : Optional[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Any ='''1''' UpperCAmelCase : Dict =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
78
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( snake_case_ : int , snake_case_ : int ) -> list[str]: '''simple docstring''' if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) __lowerCAmelCase = number_of_bytes // partitions __lowerCAmelCase = [] for i in range(snake_case_ ): __lowerCAmelCase = i * bytes_per_partition + 1 __lowerCAmelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
229
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowerCAmelCase = str(bin(snake_case_ ) )[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(snake_case_ ) )[2:] # remove the leading "0b" __lowerCAmelCase = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
229
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case_ ( unittest.TestCase ): def __init__( self : Dict , _snake_case : Tuple , _snake_case : str=7 , _snake_case : Optional[int]=3 , _snake_case : str=18 , _snake_case : Optional[Any]=30 , _snake_case : Any=400 , _snake_case : Dict=True , _snake_case : Optional[int]=None , _snake_case : Optional[int]=True , _snake_case : int=None , )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Tuple = size if size is not None else {"""shortest_edge""": 20} __lowerCAmelCase : List[str] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowerCAmelCase : Optional[Any] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : Optional[Any] = num_channels __lowerCAmelCase : List[str] = image_size __lowerCAmelCase : Optional[Any] = min_resolution __lowerCAmelCase : Union[str, Any] = max_resolution __lowerCAmelCase : Dict = do_resize __lowerCAmelCase : Optional[int] = size __lowerCAmelCase : Optional[Any] = do_center_crop __lowerCAmelCase : Optional[int] = crop_size def UpperCAmelCase__ ( self : Any )->str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = MobileNetVaImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : int )->List[str]: '''simple docstring''' __lowerCAmelCase : Tuple = MobileNetVaImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Tuple )->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Dict )->Any: '''simple docstring''' __lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowercase_ , """crop_size""" ) ) def UpperCAmelCase__ ( self : Tuple )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowerCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Union[str, Any] )->int: '''simple docstring''' pass def UpperCAmelCase__ ( self : Dict )->Tuple: '''simple docstring''' __lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input __lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase__ ( self : Any )->Tuple: '''simple docstring''' __lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input __lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase__ ( self : List[Any] )->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input __lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : int = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
369
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _UpperCAmelCase = 'bart' _UpperCAmelCase = True @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: if LOAD_DENSE_INDEX: __lowerCAmelCase : Dict = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase : str = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase : Tuple = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase : str = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase : str = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase : List[str] = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase : Optional[int] = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> Tuple: if LOAD_DENSE_INDEX: __lowerCAmelCase : List[str] = faiss.StandardGpuResources() __lowerCAmelCase : Optional[int] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase : Optional[int] = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase : int = faiss.IndexFlatIP(128 ) __lowerCAmelCase : Optional[int] = faiss.index_cpu_to_gpu(SCREAMING_SNAKE_CASE , 1 , SCREAMING_SNAKE_CASE ) wikiaab_gpu_index_flat.add(SCREAMING_SNAKE_CASE ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase : Dict = (None, None) __lowerCAmelCase : List[Any] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: __lowerCAmelCase : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase : int = elia["""train_eli5"""] __lowerCAmelCase : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase : List[Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(SCREAMING_SNAKE_CASE ) return (elia_train, eli5_train_q_index) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = load_indexes() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = load_models() _UpperCAmelCase , _UpperCAmelCase = load_train_data() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[str]=10 ) -> List[str]: __lowerCAmelCase : Optional[Any] = embed_questions_for_retrieval([question] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Dict = eli5_train_q_index.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = [elia_train[int(SCREAMING_SNAKE_CASE )] for i in I[0]] return nn_examples def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict="wiki40b" , SCREAMING_SNAKE_CASE :List[Any]="dense" , SCREAMING_SNAKE_CASE :List[str]=10 ) -> str: if source == "none": __lowerCAmelCase , __lowerCAmelCase : Any = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = query_qa_dense_index( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = query_es_index( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index_name="""english_wiki40b_snippets_100w""" , n_results=SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase : str = """question: {} context: {}""".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda SCREAMING_SNAKE_CASE : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda SCREAMING_SNAKE_CASE : None), } ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :int=64 , SCREAMING_SNAKE_CASE :int=256 , SCREAMING_SNAKE_CASE :Tuple=False , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :int=0.95 , SCREAMING_SNAKE_CASE :Any=0.8 ) -> str: with torch.no_grad(): __lowerCAmelCase : Any = qa_sas_generate( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_answers=1 , num_beams=SCREAMING_SNAKE_CASE , min_len=SCREAMING_SNAKE_CASE , max_len=SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , temp=SCREAMING_SNAKE_CASE , top_p=SCREAMING_SNAKE_CASE , top_k=SCREAMING_SNAKE_CASE , max_input_length=1_024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _UpperCAmelCase = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _UpperCAmelCase = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _UpperCAmelCase = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _UpperCAmelCase = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _UpperCAmelCase = st.sidebar.checkbox('Demo options') if demo_options: _UpperCAmelCase = st.sidebar.selectbox( '', action_list, index=3, ) _UpperCAmelCase = action_list.index(action_st) _UpperCAmelCase = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _UpperCAmelCase = show_type == 'Show full text of passages' else: _UpperCAmelCase = 3 _UpperCAmelCase = True _UpperCAmelCase = st.sidebar.checkbox('Retrieval options') if retrieval_options: _UpperCAmelCase = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _UpperCAmelCase = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _UpperCAmelCase = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _UpperCAmelCase = 'wiki40b' _UpperCAmelCase = 'dense' _UpperCAmelCase = 'beam' _UpperCAmelCase = 2 _UpperCAmelCase = 64 _UpperCAmelCase = 256 _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = st.sidebar.checkbox('Generation options') if generate_options: _UpperCAmelCase = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _UpperCAmelCase = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _UpperCAmelCase = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _UpperCAmelCase = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _UpperCAmelCase = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _UpperCAmelCase = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _UpperCAmelCase = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _UpperCAmelCase = None # start main text _UpperCAmelCase = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _UpperCAmelCase = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _UpperCAmelCase = st.text_input('Enter your question here:', '') else: _UpperCAmelCase = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _UpperCAmelCase , _UpperCAmelCase = make_support(question, source=wiki_source, method='dense', n_results=10) _UpperCAmelCase , _UpperCAmelCase = make_support(question, source=wiki_source, method='sparse', n_results=10) _UpperCAmelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _UpperCAmelCase = support_list[:10] _UpperCAmelCase = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _UpperCAmelCase , _UpperCAmelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _UpperCAmelCase , _UpperCAmelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _UpperCAmelCase = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _UpperCAmelCase = res[1].strip() if sec_titles == "": _UpperCAmelCase = '[{}]({})'.format(res[0], wiki_url) else: _UpperCAmelCase = sec_titles.split(' & ') _UpperCAmelCase = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _UpperCAmelCase = find_nearest_training(question) _UpperCAmelCase = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _UpperCAmelCase = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _UpperCAmelCase = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
232
0
"""simple docstring""" import functools from typing import Any def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->bool: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or len(lowercase_ ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(lowercase_ , lowercase_ ) or not all( isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie a_ = {} a_ = "WORD_KEEPER" for word in words: a_ = trie for c in word: if c not in trie_node: a_ = {} a_ = trie_node[c] a_ = True a_ = len(lowercase_ ) # Dynamic programming method @functools.cache def is_breakable(UpperCAmelCase ) -> bool: if index == len_string: return True a_ = trie for i in range(lowercase_ , lowercase_ ): a_ = trie_node.get(string[i] , lowercase_ ) if trie_node is None: return False if trie_node.get(lowercase_ , lowercase_ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
243
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ ( A_ ): lowercase__ = '''megatron-bert''' def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=29_056 , snake_case_ : int=1_024 , snake_case_ : Optional[int]=24 , snake_case_ : str=16 , snake_case_ : str=4_096 , snake_case_ : Tuple="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=512 , snake_case_ : Optional[int]=2 , snake_case_ : Dict=0.02 , snake_case_ : Optional[Any]=1e-12 , snake_case_ : Optional[Any]=0 , snake_case_ : int="absolute" , snake_case_ : List[str]=True , **snake_case_ : Tuple , ) -> int: '''simple docstring''' super().__init__(pad_token_id=snake_case_ , **snake_case_ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache
247
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.txt'} __UpperCAmelCase = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } __UpperCAmelCase = { 'openbmb/cpm-ant-10b': 1024, } def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = collections.OrderedDict() with open(__snake_case , 'r' , encoding='utf-8' ) as reader: UpperCAmelCase_ : List[Any] = reader.readlines() for index, token in enumerate(__snake_case ): UpperCAmelCase_ : List[Any] = token.rstrip('\n' ) UpperCAmelCase_ : Union[str, Any] = index return vocab class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase="<unk>" , _UpperCamelCase=2_0_0 ) -> Tuple: UpperCAmelCase_ : Any = vocab UpperCAmelCase_ : int = unk_token UpperCAmelCase_ : Optional[int] = max_input_chars_per_word def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = list(_UpperCamelCase ) if len(_UpperCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Dict = [] while start < len(_UpperCamelCase ): UpperCAmelCase_ : List[str] = len(_UpperCamelCase ) UpperCAmelCase_ : int = None while start < end: UpperCAmelCase_ : Union[str, Any] = ''.join(chars[start:end] ) if substr in self.vocab: UpperCAmelCase_ : Any = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = end return sub_tokens class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Dict = VOCAB_FILES_NAMES _snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Optional[Any] = ['''input_ids''', '''attention_mask'''] _snake_case : Any = False def __init__( self , _UpperCamelCase , _UpperCamelCase="<d>" , _UpperCamelCase="</d>" , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<unk>" , _UpperCamelCase="</n>" , _UpperCamelCase="</_>" , _UpperCamelCase="left" , **_UpperCamelCase , ) -> List[Any]: requires_backends(self , ['jieba'] ) super().__init__( bod_token=_UpperCamelCase , eod_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , unk_token=_UpperCamelCase , line_token=_UpperCamelCase , space_token=_UpperCamelCase , padding_side=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = bod_token UpperCAmelCase_ : Optional[Any] = eod_token UpperCAmelCase_ : List[str] = load_vocab(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = self.encoder[space_token] UpperCAmelCase_ : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCAmelCase_ : Dict = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCamelCase : x[1] ) ) UpperCAmelCase_ : List[str] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : int = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __UpperCAmelCase ( self ) -> int: return self.encoder[self.bod_token] @property def __UpperCAmelCase ( self ) -> Dict: return self.encoder[self.eod_token] @property def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.encoder["\n"] @property def __UpperCAmelCase ( self ) -> int: return len(self.encoder ) def __UpperCAmelCase ( self ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> int: UpperCAmelCase_ : Optional[Any] = [] for x in jieba.cut(_UpperCamelCase , cut_all=_UpperCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_UpperCamelCase ) ) return output_tokens def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Dict = [i for i in token_ids if i >= 0] UpperCAmelCase_ : str = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: return token in self.encoder def __UpperCAmelCase ( self , _UpperCamelCase ) -> str: return "".join(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> str: return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token ) ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: return self.decoder.get(_UpperCamelCase , self.unk_token ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Any = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: UpperCAmelCase_ : Dict = (filename_prefix + '-' if filename_prefix else '') + save_directory UpperCAmelCase_ : int = 0 if " " in self.encoder: UpperCAmelCase_ : Union[str, Any] = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: UpperCAmelCase_ : Optional[int] = self.encoder['\n'] del self.encoder["\n"] UpperCAmelCase_ : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCamelCase : x[1] ) ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!' ) UpperCAmelCase_ : Optional[int] = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) return [1] + ([0] * len(_UpperCamelCase ))
145
from __future__ import annotations def lowercase__ ( __snake_case : list[int] , __snake_case : int ): '''simple docstring''' if len(__snake_case ) < k or k < 0: raise ValueError('Invalid Input' ) UpperCAmelCase_ : int = sum(array[:k] ) for i in range(len(__snake_case ) - k ): UpperCAmelCase_ : List[Any] = current_sum - array[i] + array[i + k] UpperCAmelCase_ : List[Any] = max(__snake_case , __snake_case ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __UpperCAmelCase = [randint(-1000, 1000) for i in range(100)] __UpperCAmelCase = randint(0, 110) print(F'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
145
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _UpperCAmelCase = logging.get_logger(__name__) @dataclass class a ( UpperCAmelCase__ ): UpperCamelCase : Dict = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : str , **lowerCAmelCase : str ) -> List[str]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE_: int =deprecated_arg[3:] SCREAMING_SNAKE_CASE_: Optional[Any] =not kwargs.pop(lowerCAmelCase ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) SCREAMING_SNAKE_CASE_: str =kwargs.pop("""tpu_name""" , self.tpu_name ) SCREAMING_SNAKE_CASE_: Union[str, Any] =kwargs.pop("""device_idx""" , self.device_idx ) SCREAMING_SNAKE_CASE_: Optional[int] =kwargs.pop("""eager_mode""" , self.eager_mode ) SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**lowerCAmelCase ) UpperCamelCase : str = field( default=UpperCAmelCase__ , metadata={'help': 'Name of TPU'} , ) UpperCamelCase : int = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={'help': 'Benchmark models in eager model.'} ) UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def lowerCamelCase__ ( self : Dict ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) SCREAMING_SNAKE_CASE_: List[str] =None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE_: Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE_: Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE_: List[Any] =None return tpu @cached_property def lowerCamelCase__ ( self : str ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE_: int =tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) SCREAMING_SNAKE_CASE_: List[str] =tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU SCREAMING_SNAKE_CASE_: Tuple =tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def lowerCamelCase__ ( self : List[str] ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def lowerCamelCase__ ( self : List[Any] ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCamelCase__ ( self : Tuple ) -> bool: '''simple docstring''' return self.n_gpu > 0
173
"""simple docstring""" # Lint as: python3 import itertools import os import re _UpperCAmelCase = re.compile(r"""([A-Z]+)([A-Z][a-z])""") _UpperCAmelCase = re.compile(r"""([a-z\d])([A-Z])""") _UpperCAmelCase = re.compile(r"""(?<!_)_(?!_)""") _UpperCAmelCase = re.compile(r"""(_{2,})""") _UpperCAmelCase = r"""^\w+(\.\w+)*$""" _UpperCAmelCase = r"""<>:/\|?*""" def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =_uppercase_uppercase_re.sub(R"""\1_\2""" , lowercase ) SCREAMING_SNAKE_CASE_: str =_lowercase_uppercase_re.sub(R"""\1_\2""" , lowercase ) return name.lower() def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =_single_underscore_re.split(lowercase ) SCREAMING_SNAKE_CASE_: Any =[_multiple_underscores_re.split(lowercase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowercase ) if n != """""" ) def __magic_name__ ( lowercase ): if os.path.basename(lowercase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(lowercase ) def __magic_name__ ( lowercase , lowercase ): if os.path.basename(lowercase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , lowercase ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(lowercase )}-{split}''' def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None ): SCREAMING_SNAKE_CASE_: List[Any] =filename_prefix_for_split(lowercase , lowercase ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' SCREAMING_SNAKE_CASE_: Dict =os.path.join(lowercase , lowercase ) return f'''{filepath}*''' def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None ): SCREAMING_SNAKE_CASE_: List[Any] =filename_prefix_for_split(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: int =os.path.join(lowercase , lowercase ) if shard_lengths: SCREAMING_SNAKE_CASE_: Any =len(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =[f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(lowercase )] if filetype_suffix: SCREAMING_SNAKE_CASE_: Optional[int] =[filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: SCREAMING_SNAKE_CASE_: List[Any] =prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
173
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class a : def __init__( self : List[Any] , lowercase_ : int ): snake_case_ = value snake_case_ = None snake_case_ = None class a : def __init__( self : str , lowercase_ : Node ): snake_case_ = tree def A_ ( self : List[str] , lowercase_ : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
72
'''simple docstring''' import math from collections.abc import Callable def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> float: '''simple docstring''' snake_case_ = xa snake_case_ = xa while True: if x_n == x_na or function(__UpperCAmelCase ) == function(__UpperCAmelCase ): raise ZeroDivisionError('''float division by zero, could not find root''' ) snake_case_ = x_na - ( function(__UpperCAmelCase ) / ((function(__UpperCAmelCase ) - function(__UpperCAmelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na snake_case_ = x_na snake_case_ = x_na def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' return math.pow(__UpperCAmelCase, 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
72
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE :Optional[int] = 16 SCREAMING_SNAKE_CASE :int = 32 def UpperCAmelCase ( a_ , a_ = 1_6 ) -> str: """simple docstring""" __A = AutoTokenizer.from_pretrained("bert-base-cased" ) __A = load_dataset("glue" , "mrpc" ) def tokenize_function(a_ ): # max_length=None => use the model max length (it's actually the default) __A = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __A = datasets.map( a_ , batched=a_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __A = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(a_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __A = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __A = 1_6 elif accelerator.mixed_precision != "no": __A = 8 else: __A = None return tokenizer.pad( a_ , padding="longest" , max_length=a_ , pad_to_multiple_of=a_ , return_tensors="pt" , ) # Instantiate dataloaders. __A = DataLoader( tokenized_datasets["train"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) __A = DataLoader( tokenized_datasets["validation"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE :int = mocked_dataloaders # noqa: F811 def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , a_ ) == "1": __A = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __A = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: __A = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __A = config["lr"] __A = int(config["num_epochs"] ) __A = int(config["seed"] ) __A = int(config["batch_size"] ) set_seed(a_ ) __A , __A = get_dataloaders(a_ , a_ ) __A = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation __A = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __A = batch_size // MAX_GPU_BATCH_SIZE __A = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __A = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=a_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __A = model.to(accelerator.device ) # Instantiate optimizer __A = AdamW(params=model.parameters() , lr=a_ ) # Instantiate scheduler __A = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=1_0_0 , num_training_steps=(len(a_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __A , __A , __A , __A , __A = accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __A = os.path.split(a_ )[-1].split("." )[0] accelerator.init_trackers(a_ , a_ ) # Now we train the model for epoch in range(a_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __A = 0 for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __A = model(**a_ ) __A = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __A = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __A = model(**a_ ) __A = outputs.logits.argmax(dim=-1 ) __A , __A = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=a_ , references=a_ , ) __A = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , a_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(a_ ), "epoch": epoch, } , step=a_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCAmelCase ( ) -> Tuple: """simple docstring""" __A = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=a_ , default=a_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=a_ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) __A = parser.parse_args() __A = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(a_ , a_ ) if __name__ == "__main__": main()
15
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE :str = 'RegNetConfig' # Base docstring SCREAMING_SNAKE_CASE :List[str] = 'facebook/regnet-y-040' SCREAMING_SNAKE_CASE :Union[str, Any] = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE :Optional[int] = 'facebook/regnet-y-040' SCREAMING_SNAKE_CASE :Any = 'tabby, tabby cat' SCREAMING_SNAKE_CASE :Optional[int] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ,A : int ,A : int = 3 ,A : int = 1 ,A : int = 1 ,A : Optional[str] = "relu" ,**A : Dict ,): super().__init__(**A ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __A = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __A = tf.keras.layers.ConvaD( filters=A ,kernel_size=A ,strides=A ,padding="VALID" ,groups=A ,use_bias=A ,name="convolution" ,) __A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" ) __A = ACTaFN[activation] if activation is not None else tf.identity def UpperCamelCase_ ( self : List[Any] ,A : Any ): __A = self.convolution(self.padding(A ) ) __A = self.normalization(A ) __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ,A : RegNetConfig ,**A : str ): super().__init__(**A ) __A = config.num_channels __A = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="embedder" ,) def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ): __A = shape_list(A )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __A = tf.transpose(A ,perm=(0, 2, 3, 1) ) __A = self.embedder(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[int] ,A : int ,A : int = 2 ,**A : Tuple ): super().__init__(**A ) __A = tf.keras.layers.ConvaD( filters=A ,kernel_size=1 ,strides=A ,use_bias=A ,name="convolution" ) __A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" ) def UpperCamelCase_ ( self : Union[str, Any] ,A : tf.Tensor ,A : bool = False ): return self.normalization(self.convolution(A ) ,training=A ) class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict ,A : int ,A : int ,**A : str ): super().__init__(**A ) __A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" ) __A = [ tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="relu" ,name="attention.0" ), tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="sigmoid" ,name="attention.2" ), ] def UpperCamelCase_ ( self : Dict ,A : List[Any] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __A = self.pooler(A ) for layer_module in self.attention: __A = layer_module(A ) __A = hidden_state * pooled return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : Optional[int] ): super().__init__(**A ) __A = in_channels != out_channels or stride != 1 __A = max(1 ,out_channels // config.groups_width ) __A = ( TFRegNetShortCut(A ,stride=A ,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" ,name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __A = [ TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ), TFRegNetConvLayer( A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ), TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.2" ), ] __A = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : int ,A : Optional[int] ): __A = hidden_state for layer_module in self.layers: __A = layer_module(A ) __A = self.shortcut(A ) hidden_state += residual __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : str ): super().__init__(**A ) __A = in_channels != out_channels or stride != 1 __A = max(1 ,out_channels // config.groups_width ) __A = ( TFRegNetShortCut(A ,stride=A ,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" ,name="shortcut" ) ) __A = [ TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ), TFRegNetConvLayer( A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ), TFRegNetSELayer(A ,reduced_channels=int(round(in_channels / 4 ) ) ,name="layer.2" ), TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.3" ), ] __A = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Dict ,A : Any ): __A = hidden_state for layer_module in self.layers: __A = layer_module(A ) __A = self.shortcut(A ) hidden_state += residual __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 2 ,A : int = 2 ,**A : Optional[int] ): super().__init__(**A ) __A = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __A = [ # downsampling is done in the first layer with stride of 2 layer(A ,A ,A ,stride=A ,name="layers.0" ), *[layer(A ,A ,A ,name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCamelCase_ ( self : Any ,A : List[str] ): for layer_module in self.layers: __A = layer_module(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any ,A : RegNetConfig ,**A : List[str] ): super().__init__(**A ) __A = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="stages.0" ,) ) __A = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(A ,A ,A ,depth=A ,name=f'''stages.{i+1}''' ) ) def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor ,A : bool = False ,A : bool = True ): __A = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __A = hidden_states + (hidden_state,) __A = stage_module(A ) if output_hidden_states: __A = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A ,hidden_states=A ) @keras_serializable class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' snake_case_ = RegNetConfig def __init__( self : int ,A : Optional[int] ,**A : Dict ): super().__init__(**A ) __A = config __A = TFRegNetEmbeddings(A ,name="embedder" ) __A = TFRegNetEncoder(A ,name="encoder" ) __A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" ) @unpack_inputs def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : bool = False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.embedder(A ,training=A ) __A = self.encoder( A ,output_hidden_states=A ,return_dict=A ,training=A ) __A = encoder_outputs[0] __A = self.pooler(A ) # Change to NCHW output format have uniformity in the modules __A = tf.transpose(A ,perm=(0, 3, 1, 2) ) __A = tf.transpose(A ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __A = tuple([tf.transpose(A ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A ,pooler_output=A ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = RegNetConfig snake_case_ = "regnet" snake_case_ = "pixel_values" @property def UpperCamelCase_ ( self : Optional[Any] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )} SCREAMING_SNAKE_CASE :Dict = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE :Dict = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , __SCREAMING_SNAKE_CASE , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,A : RegNetConfig ,*A : List[Any] ,**A : str ): super().__init__(A ,*A ,**A ) __A = TFRegNetMainLayer(A ,name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : int=False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.regnet( pixel_values=A ,output_hidden_states=A ,return_dict=A ,training=A ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] ,A : RegNetConfig ,*A : str ,**A : Tuple ): super().__init__(A ,*A ,**A ) __A = config.num_labels __A = TFRegNetMainLayer(A ,name="regnet" ) # classification head __A = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor = None ,A : tf.Tensor = None ,A : bool = None ,A : bool = None ,A : Union[str, Any]=False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.regnet( A ,output_hidden_states=A ,return_dict=A ,training=A ) __A = outputs.pooler_output if return_dict else outputs[1] __A = self.classifier[0](A ) __A = self.classifier[1](A ) __A = None if labels is None else self.hf_compute_loss(labels=A ,logits=A ) if not return_dict: __A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A ,logits=A ,hidden_states=outputs.hidden_states )
15
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''encodec''' def __init__( self , lowerCamelCase__=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCamelCase__=24_000 , lowerCamelCase__=1 , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=128 , lowerCamelCase__=32 , lowerCamelCase__=1 , lowerCamelCase__=[8, 5, 4, 2] , lowerCamelCase__="weight_norm" , lowerCamelCase__=7 , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__="reflect" , lowerCamelCase__=2 , lowerCamelCase__=2 , lowerCamelCase__=1.0 , lowerCamelCase__=1_024 , lowerCamelCase__=None , lowerCamelCase__=True , **lowerCamelCase__ , ) -> Any: '''simple docstring''' __lowerCamelCase = target_bandwidths __lowerCamelCase = sampling_rate __lowerCamelCase = audio_channels __lowerCamelCase = normalize __lowerCamelCase = chunk_length_s __lowerCamelCase = overlap __lowerCamelCase = hidden_size __lowerCamelCase = num_filters __lowerCamelCase = num_residual_layers __lowerCamelCase = upsampling_ratios __lowerCamelCase = norm_type __lowerCamelCase = kernel_size __lowerCamelCase = last_kernel_size __lowerCamelCase = residual_kernel_size __lowerCamelCase = dilation_growth_rate __lowerCamelCase = use_causal_conv __lowerCamelCase = pad_mode __lowerCamelCase = compress __lowerCamelCase = num_lstm_layers __lowerCamelCase = trim_right_ratio __lowerCamelCase = codebook_size __lowerCamelCase = codebook_dim if codebook_dim is not None else hidden_size __lowerCamelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCamelCase__ ) @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowercase_ ( self ) -> int: '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
348
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCamelCase = [3, 3, 3, 3] __lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCamelCase = [4, 4, 4, 4] __lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCamelCase = [3, 3, 3, 3] else: __lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCamelCase = 96 elif "small" in model_name: __lowerCamelCase = 96 elif "base" in model_name: __lowerCamelCase = 128 elif "large" in model_name: __lowerCamelCase = 192 elif "xlarge" in model_name: __lowerCamelCase = 256 elif "huge" in model_name: __lowerCamelCase = 352 # set label information __lowerCamelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowerCamelCase = 'imagenet-22k-id2label.json' else: __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: __lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowerCamelCase = 'encoder.' + name if "encoder.layers" in name: __lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowerCamelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowerCamelCase = 'layernorm.weight' if name == "norm.bias": __lowerCamelCase = 'layernorm.bias' if "head" in name: __lowerCamelCase = name.replace('head' , 'classifier' ) else: __lowerCamelCase = 'focalnet.' + name return name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict: """simple docstring""" __lowerCamelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowerCamelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val __lowerCamelCase = get_focalnet_config(UpperCamelCase__ ) __lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging A: Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : str = ['input_features', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=16000 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=25 , _SCREAMING_SNAKE_CASE="hamming_window" , _SCREAMING_SNAKE_CASE=3_2768.0 , _SCREAMING_SNAKE_CASE=0.97 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = feature_size UpperCAmelCase : str = sampling_rate UpperCAmelCase : List[str] = padding_value UpperCAmelCase : Dict = hop_length UpperCAmelCase : str = win_length UpperCAmelCase : int = frame_signal_scale UpperCAmelCase : Tuple = preemphasis_coeff UpperCAmelCase : Any = mel_floor UpperCAmelCase : Optional[int] = normalize_means UpperCAmelCase : Union[str, Any] = normalize_vars UpperCAmelCase : Optional[int] = win_function UpperCAmelCase : Optional[int] = return_attention_mask UpperCAmelCase : Optional[Any] = win_length * sampling_rate // 1000 UpperCAmelCase : List[Any] = hop_length * sampling_rate // 1000 UpperCAmelCase : Optional[int] = optimal_fft_length(self.sample_size ) UpperCAmelCase : List[Any] = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' if self.win_function == "hamming_window": UpperCAmelCase : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Any = window_function(window_length=self.sample_size , name=self.win_function ) UpperCAmelCase : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) UpperCAmelCase : Optional[int] = spectrogram( one_waveform * self.frame_signal_scale , window=_SCREAMING_SNAKE_CASE , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_SCREAMING_SNAKE_CASE , preemphasis=self.preemphasis_coeff , mel_filters=_SCREAMING_SNAKE_CASE , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' if self.normalize_means: UpperCAmelCase : str = x[:input_length].mean(axis=0 ) UpperCAmelCase : Optional[int] = np.subtract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.normalize_vars: UpperCAmelCase : Any = x[:input_length].std(axis=0 ) UpperCAmelCase : List[str] = np.divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: UpperCAmelCase : Dict = padding_value # make sure array is in float32 UpperCAmelCase : Dict = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[np.ndarray]: '''simple docstring''' UpperCAmelCase : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.padding_value ) for x, n in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCAmelCase : List[str] = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) UpperCAmelCase : Any = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase : str = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): UpperCAmelCase : List[Any] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase : Union[str, Any] = [raw_speech] # extract fbank features UpperCAmelCase : Optional[int] = [self._extract_mfsc_features(_SCREAMING_SNAKE_CASE ) for one_waveform in raw_speech] # convert into correct format for padding UpperCAmelCase : Optional[Any] = BatchFeature({"""input_features""": features} ) UpperCAmelCase : List[Any] = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # make sure list is in array format UpperCAmelCase : Union[str, Any] = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] UpperCAmelCase : Union[str, Any] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: UpperCAmelCase : Optional[Any] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCAmelCase : Union[str, Any] = ( np.array(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCAmelCase : Any = self.normalize( padded_inputs["""input_features"""] , attention_mask=_SCREAMING_SNAKE_CASE ) if return_tensors is not None: UpperCAmelCase : Optional[Any] = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs
109
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: Optional[int] = logging.get_logger(__name__) A: Optional[int] = torch.device("cpu") def _snake_case ( ): UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im def _snake_case ( UpperCamelCase : int ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : str ): UpperCAmelCase : int = dct.pop(UpperCamelCase ) UpperCAmelCase : Any = val def _snake_case ( UpperCamelCase : Union[str, Any] ): UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): UpperCAmelCase : Optional[Any] = k if ".pwconv" in k: UpperCAmelCase : int = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: UpperCAmelCase : Tuple = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: UpperCAmelCase : List[Any] = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: UpperCAmelCase : Any = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: UpperCAmelCase : int = k_new.split(""".""" ) if ls[2].isdigit(): UpperCAmelCase : List[Any] = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: UpperCAmelCase : Any = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _snake_case ( UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Optional[int] ): UpperCAmelCase : List[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase : Optional[Any] = 1000 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[str] = """imagenet-1k-id2label.json""" UpperCAmelCase : Dict = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase : Any = [3, 3, 6, 4] UpperCAmelCase : List[str] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCAmelCase : Dict = [3, 3, 9, 6] UpperCAmelCase : Union[str, Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase : int = [4, 3, 10, 5] UpperCAmelCase : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase : Union[str, Any] = [4, 4, 12, 6] UpperCAmelCase : List[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" , check_hash=UpperCamelCase ) else: UpperCAmelCase : Any = torch.load(UpperCamelCase , map_location="""cpu""" ) UpperCAmelCase : Optional[Any] = checkpoint UpperCAmelCase : Dict = create_rename_keys(UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # load HuggingFace model UpperCAmelCase : List[Any] = SwiftFormerForImageClassification(UpperCamelCase ).eval() hf_model.load_state_dict(UpperCamelCase ) # prepare test inputs UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) UpperCAmelCase : Optional[int] = processor(images=UpperCamelCase , return_tensors="""pt""" ) # compare outputs from both models UpperCAmelCase : Optional[int] = get_expected_output(UpperCamelCase ) UpperCAmelCase : List[str] = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , UpperCamelCase , atol=1e-3 ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") A: str = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
109
1
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Dict = ['''onnx'''] def __init__( self : Tuple , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Tuple): requires_backends(self , ["onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Optional[Any]): requires_backends(cls , ["onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : List[Any]): requires_backends(cls , ["onnx"])
127
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = ['''pixel_values'''] def __init__( self : List[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Tuple , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = size if size is not None else {"height": 384, "width": 384} SCREAMING_SNAKE_CASE_: Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = do_resize SCREAMING_SNAKE_CASE_: Dict = size SCREAMING_SNAKE_CASE_: int = resample SCREAMING_SNAKE_CASE_: str = do_rescale SCREAMING_SNAKE_CASE_: str = rescale_factor SCREAMING_SNAKE_CASE_: Optional[Any] = do_normalize SCREAMING_SNAKE_CASE_: Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_: List[str] = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_: Optional[int] = do_convert_rgb def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") SCREAMING_SNAKE_CASE_: int = (size["height"], size["width"]) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, float] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[Any] , ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[Any] , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : Dict , ): SCREAMING_SNAKE_CASE_: Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: Optional[int] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_: Any = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_: Optional[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_: Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_: Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_: str = size if size is not None else self.size SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_: List[Any] = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: List[Any] = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: int = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_: Optional[Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_: List[str] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: str = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: List[str] = BatchFeature(data={"pixel_values": images} , tensor_type=lowerCAmelCase__) return encoded_outputs
127
1
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowercase_ ( _lowerCamelCase: Optional[Any] ) -> List[str]: '''simple docstring''' __lowerCamelCase : Tuple = args.pruning_method __lowerCamelCase : int = args.threshold __lowerCamelCase : List[str] = args.model_name_or_path.rstrip("/" ) __lowerCamelCase : Union[str, Any] = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) __lowerCamelCase : List[Any] = torch.load(os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ) __lowerCamelCase : Optional[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __lowerCamelCase : List[Any] = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: __lowerCamelCase : Any = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: __lowerCamelCase : Optional[Any] = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": __lowerCamelCase : Dict = MagnitudeBinarizer.apply(inputs=_lowerCamelCase , threshold=_lowerCamelCase ) __lowerCamelCase : Optional[int] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue __lowerCamelCase : Dict = name[:-6] __lowerCamelCase : int = model[F"""{prefix_}mask_scores"""] __lowerCamelCase : Union[str, Any] = TopKBinarizer.apply(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Union[str, Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __lowerCamelCase : str = name[:-6] __lowerCamelCase : List[Any] = model[F"""{prefix_}mask_scores"""] __lowerCamelCase : str = ThresholdBinarizer.apply(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Any = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue __lowerCamelCase : int = name[:-6] __lowerCamelCase : List[str] = model[F"""{prefix_}mask_scores"""] __lowerCamelCase , __lowerCamelCase : Any = -0.1, 1.1 __lowerCamelCase : List[str] = torch.sigmoid(_lowerCamelCase ) __lowerCamelCase : List[Any] = s * (r - l) + l __lowerCamelCase : List[str] = s_bar.clamp(min=0.0 , max=1.0 ) __lowerCamelCase : Any = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: __lowerCamelCase : str = os.path.join( os.path.dirname(_lowerCamelCase ) , F"""bertarized_{os.path.basename(_lowerCamelCase )}""" ) if not os.path.isdir(_lowerCamelCase ): shutil.copytree(_lowerCamelCase , _lowerCamelCase ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) __A = parser.parse_args() main(args)
135
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _snake_case ( a__ ): snake_case__ = 42 class _snake_case ( a__ , a__ ): @register_to_config def __init__( self : List[Any] , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 3 , UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase : Tuple[int] = (64,) , UpperCAmelCase : int = 1 , UpperCAmelCase : str = "silu" , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 256 , UpperCAmelCase : int = 32 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : float = 0.1_8_2_1_5 , UpperCAmelCase : str = "group" , ): super().__init__() # pass init params to Encoder __lowerCamelCase : Tuple = Encoder( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , down_block_types=UpperCAmelCase , block_out_channels=UpperCAmelCase , layers_per_block=UpperCAmelCase , act_fn=UpperCAmelCase , norm_num_groups=UpperCAmelCase , double_z=UpperCAmelCase , ) __lowerCamelCase : Optional[Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels __lowerCamelCase : List[str] = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) __lowerCamelCase : List[Any] = VectorQuantizer(UpperCAmelCase , UpperCAmelCase , beta=0.2_5 , remap=UpperCAmelCase , sane_index_shape=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) # pass init params to Decoder __lowerCamelCase : int = Decoder( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , up_block_types=UpperCAmelCase , block_out_channels=UpperCAmelCase , layers_per_block=UpperCAmelCase , act_fn=UpperCAmelCase , norm_num_groups=UpperCAmelCase , norm_type=UpperCAmelCase , ) @apply_forward_hook def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True ): __lowerCamelCase : List[Any] = self.encoder(UpperCAmelCase ) __lowerCamelCase : int = self.quant_conv(UpperCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase ) @apply_forward_hook def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True ): # also go through quantization layer if not force_not_quantize: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = self.quantize(UpperCAmelCase ) else: __lowerCamelCase : Optional[Any] = h __lowerCamelCase : int = self.post_quant_conv(UpperCAmelCase ) __lowerCamelCase : str = self.decoder(UpperCAmelCase , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True ): __lowerCamelCase : Dict = sample __lowerCamelCase : Optional[Any] = self.encode(UpperCAmelCase ).latents __lowerCamelCase : Optional[Any] = self.decode(UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase )
135
1
from functools import lru_cache @lru_cache def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> int: if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
232
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[int] ) -> int: if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) __lowerCAmelCase : int = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products __lowerCAmelCase : List[str] = numbers[i] if number < 0: __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = min_till_now, max_till_now __lowerCAmelCase : Optional[int] = max(SCREAMING_SNAKE_CASE , max_till_now * number ) __lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now __lowerCAmelCase : List[str] = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_prod
232
1
import mpmath # for roots of unity import numpy as np class _lowercase : '''simple docstring''' def __init__( self , snake_case__=None , snake_case__=None ): '''simple docstring''' UpperCamelCase_ = list(poly_a or [0] )[:] UpperCamelCase_ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCamelCase_ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCamelCase_ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCamelCase_ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCamelCase_ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product UpperCamelCase_ = self.__multiply() def _lowerCamelCase ( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(snake_case__ ) <= 1: return dft[0] # UpperCamelCase_ = self.c_max_length // 2 while next_ncol > 0: UpperCamelCase_ = [[] for i in range(snake_case__ )] UpperCamelCase_ = self.root**next_ncol # First half of next step UpperCamelCase_ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(snake_case__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCamelCase_ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(snake_case__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCamelCase_ = new_dft UpperCamelCase_ = next_ncol // 2 return dft[0] def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.__dft("A" ) UpperCamelCase_ = self.__dft("B" ) UpperCamelCase_ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCamelCase_ = 2 while next_ncol <= self.c_max_length: UpperCamelCase_ = [[] for i in range(snake_case__ )] UpperCamelCase_ = self.root ** (next_ncol // 2) UpperCamelCase_ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCamelCase_ = new_inverse_c next_ncol *= 2 # Unpack UpperCamelCase_ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): '''simple docstring''' UpperCamelCase_ = "A = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCamelCase_ = "B = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCamelCase_ = "A*B = " + " + ".join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return F"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
128
def _lowerCAmelCase (_lowerCAmelCase): if n_term == "": return [] UpperCamelCase_ = [] for temp in range(int(_lowerCAmelCase)): series.append(f"""1/{temp + 1}""" if series else "1") return series if __name__ == "__main__": UpperCAmelCase : Optional[int] =input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
128
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : int , snake_case__ : str=3 , snake_case__ : List[str]=3_2 , snake_case__ : int=3 , snake_case__ : Dict=1_0 , snake_case__ : str=[1_0, 2_0, 3_0, 4_0] , snake_case__ : Optional[Any]=[1, 1, 2, 1] , snake_case__ : List[str]=True , snake_case__ : Dict=True , snake_case__ : Optional[int]="relu" , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=None , ): '''simple docstring''' UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : List[Any] = embeddings_size UpperCAmelCase__ : Union[str, Any] = hidden_sizes UpperCAmelCase__ : Any = depths UpperCAmelCase__ : Tuple = is_training UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : List[str] = num_labels UpperCAmelCase__ : Any = scope UpperCAmelCase__ : Any = len(snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Dict = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def __a ( self : Union[str, Any] ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __a ( self : Any , snake_case__ : Tuple , snake_case__ : int , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : str = RegNetModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Optional[Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __a ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.num_labels UpperCAmelCase__ : List[Any] = RegNetForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = config_and_inputs UpperCAmelCase__ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(RegNetModel, RegNetForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = RegNetModelTester(self ) UpperCAmelCase__ : Dict = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def __a ( self : Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self : Any ): '''simple docstring''' return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def __a ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def __a ( self : str ): '''simple docstring''' pass def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[str] = [*signature.parameters.keys()] UpperCAmelCase__ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(config=snake_case__ ) for name, module in model.named_modules(): if isinstance(snake_case__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def __a ( self : Optional[int] ): '''simple docstring''' def check_hidden_states_output(snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ): UpperCAmelCase__ : Tuple = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase__ : Dict = layer_type UpperCAmelCase__ : Tuple = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def __a ( self : str ): '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[int] = RegNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> List[str]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : List[Any] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Dict = model(**snake_case__ ) # verify the logits UpperCAmelCase__ : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase__ : Dict = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
298
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCAmelCase__ : Dict = TypeVar('KEY') UpperCAmelCase__ : Dict = TypeVar('VAL') @dataclass(frozen=SCREAMING_SNAKE_CASE__ , slots=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( Generic[KEY, VAL] ): '''simple docstring''' __UpperCamelCase : KEY __UpperCamelCase : VAL class UpperCAmelCase ( _Item ): '''simple docstring''' def __init__( self : Optional[int] ): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __bool__( self : List[str] ): """simple docstring""" return False UpperCAmelCase__ : Tuple = _DeletedItem() class UpperCAmelCase ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : float = 0.75 ): """simple docstring""" _A: Tuple = initial_block_size _A: list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _A: Optional[Any] = capacity_factor _A: Optional[Any] = 0 def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : KEY ): """simple docstring""" return hash(lowerCAmelCase_ ) % len(self._buckets ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : int ): """simple docstring""" return (ind + 1) % len(self._buckets ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : KEY , lowerCAmelCase_ : VAL ): """simple docstring""" _A: Optional[int] = self._buckets[ind] if not stored: _A: Tuple = _Item(lowerCAmelCase_ , lowerCAmelCase_ ) self._len += 1 return True elif stored.key == key: _A: Optional[int] = _Item(lowerCAmelCase_ , lowerCAmelCase_ ) return True else: return False def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Tuple = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False _A: List[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int ): """simple docstring""" _A: Optional[int] = self._buckets _A: Dict = [None] * new_size _A: Optional[Any] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def __magic_name__ ( self : str , lowerCAmelCase_ : KEY ): """simple docstring""" _A: List[str] = self._get_bucket_index(lowerCAmelCase_ ) for _ in range(len(self._buckets ) ): yield ind _A: List[Any] = self._get_next_ind(lowerCAmelCase_ ) def __magic_name__ ( self : int , lowerCAmelCase_ : KEY , lowerCAmelCase_ : VAL ): """simple docstring""" for ind in self._iterate_buckets(lowerCAmelCase_ ): if self._try_set(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): break def __setitem__( self : List[str] , lowerCAmelCase_ : KEY , lowerCAmelCase_ : VAL ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(lowerCAmelCase_ , lowerCAmelCase_ ) def __delitem__( self : Union[str, Any] , lowerCAmelCase_ : KEY ): """simple docstring""" for ind in self._iterate_buckets(lowerCAmelCase_ ): _A: List[Any] = self._buckets[ind] if item is None: raise KeyError(lowerCAmelCase_ ) if item is _deleted: continue if item.key == key: _A: Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : List[str] , lowerCAmelCase_ : KEY ): """simple docstring""" for ind in self._iterate_buckets(lowerCAmelCase_ ): _A: Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCAmelCase_ ) def __len__( self : Union[str, Any] ): """simple docstring""" return self._len def __iter__( self : Dict ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : List[Any] ): """simple docstring""" _A: Optional[Any] = ''' ,'''.join( F"""{item.key}: {item.val}""" for item in self._buckets if item ) return F"""HashMap({val_string})"""
121
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __UpperCamelCase : str = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) __UpperCamelCase : ClassVar[Features] = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) __UpperCamelCase : str = "question" __UpperCamelCase : str = "context" __UpperCamelCase : str = "answers" @property def __magic_name__ ( self : List[str] ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
121
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Optional[int] = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys a__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
195
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : str = IFInpaintingSuperResolutionPipeline snake_case__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"}) snake_case__ : Dict = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=0 ) -> List[str]: if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase_ ( self : str ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase_ ( self : str ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: self._test_save_load_local() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
195
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class A__ ( metaclass=_lowerCamelCase): A_ : Any = ['onnx'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): requires_backends(self , ['onnx'] ) @classmethod def __lowerCamelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): requires_backends(cls , ['onnx'] ) @classmethod def __lowerCamelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): requires_backends(cls , ['onnx'] )
86
def A_ ( a ): """simple docstring""" return "".join(chr(ord(a ) - 3_2 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
253
0
from __future__ import annotations def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [True] * limit SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : int = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE : Optional[Any] = i * 2 while index < limit: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = index + i SCREAMING_SNAKE_CASE : int = [2] for i in range(3 , lowercase , 2 ): if is_prime[i]: primes.append(lowercase ) return primes def lowerCamelCase__ ( lowercase = 1000000 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = prime_sieve(lowercase ) SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : List[Any] = 0 for i in range(len(lowercase ) ): for j in range(i + length , len(lowercase ) ): SCREAMING_SNAKE_CASE : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: SCREAMING_SNAKE_CASE : Dict = j - i SCREAMING_SNAKE_CASE : str = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
319
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = """▁""" snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } snake_case = { """google/pegasus-xsum""": 512, } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PegasusTokenizer UpperCamelCase_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="<mask_2>" , UpperCAmelCase_ : Optional[int]="<mask_1>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=103 , **UpperCAmelCase_ : Optional[int] , ): SCREAMING_SNAKE_CASE : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError( f'''additional_special_tokens should be of type {type(UpperCAmelCase_ )}, but is''' f''' {type(UpperCAmelCase_ )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(UpperCAmelCase_ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) SCREAMING_SNAKE_CASE : int = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True def _A ( self : Optional[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _A ( self : int , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
319
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or number < 0: raise ValueError('Input must be a non-negative integer' ) A__ = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
7
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCamelCase__ ( a = True , *a , **a ) -> Optional[Any]: if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) _A: Optional[Any] = False if main_process_only: _A: Union[str, Any] = PartialState().local_process_index == 0 return _tqdm(*a , **a , disable=a )
121
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__: Dict = logging.get_logger(__name__) a__: Tuple = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''detr''' __SCREAMING_SNAKE_CASE = ['''past_key_values'''] __SCREAMING_SNAKE_CASE = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self,__lowerCamelCase=True,__lowerCamelCase=None,__lowerCamelCase=3,__lowerCamelCase=100,__lowerCamelCase=6,__lowerCamelCase=2048,__lowerCamelCase=8,__lowerCamelCase=6,__lowerCamelCase=2048,__lowerCamelCase=8,__lowerCamelCase=0.0,__lowerCamelCase=0.0,__lowerCamelCase=True,__lowerCamelCase="relu",__lowerCamelCase=256,__lowerCamelCase=0.1,__lowerCamelCase=0.0,__lowerCamelCase=0.0,__lowerCamelCase=0.02,__lowerCamelCase=1.0,__lowerCamelCase=False,__lowerCamelCase="sine",__lowerCamelCase="resnet50",__lowerCamelCase=True,__lowerCamelCase=False,__lowerCamelCase=1,__lowerCamelCase=5,__lowerCamelCase=2,__lowerCamelCase=1,__lowerCamelCase=1,__lowerCamelCase=5,__lowerCamelCase=2,__lowerCamelCase=0.1,**__lowerCamelCase,): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__lowerCamelCase,__lowerCamelCase ): A__ = backbone_config.get('''model_type''' ) A__ = CONFIG_MAPPING[backbone_model_type] A__ = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None A__ , A__ , A__ = None, None, None A__ = use_timm_backbone A__ = backbone_config A__ = num_channels A__ = num_queries A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = init_xavier_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = encoder_layers A__ = auxiliary_loss A__ = position_embedding_type A__ = backbone A__ = use_pretrained_backbone A__ = dilation # Hungarian matcher A__ = class_cost A__ = bbox_cost A__ = giou_cost # Loss coefficients A__ = mask_loss_coefficient A__ = dice_loss_coefficient A__ = bbox_loss_coefficient A__ = giou_loss_coefficient A__ = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase,**__lowerCamelCase ) @property def UpperCamelCase ( self ): return self.encoder_attention_heads @property def UpperCamelCase ( self ): return self.d_model @classmethod def UpperCamelCase ( cls,__lowerCamelCase,**__lowerCamelCase ): return cls(backbone_config=__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self ): A__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A__ = self.backbone_config.to_dict() A__ = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = version.parse('''1.11''' ) @property def UpperCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCamelCase ( self ): return 1E-5 @property def UpperCamelCase ( self ): return 12
39
a__: dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } a__: dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : str , UpperCamelCase__ : str )->float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: A__ = ( f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n" f"Valid values are: {', '.join(UpperCamelCase__ )}" ) raise ValueError(UpperCamelCase__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
39
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE = TF_MODEL_FOR_MASKED_LM_MAPPING def __magic_name__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) __a =unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 3_8015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 2_5506, 'token_str': ' accuser'}, ] , ) __a =unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 3_8015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 2_5506, 'token_str': ' accuser', }, ] , ) __a =unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 1_3606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) __a =unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 3_5676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 1_6416, 'token_str': 'ELS'}, ] , ) __a =unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 3_5676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 1_6416, 'token_str': 'ELS'}, ] , ) __a =unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 1_3606, 'token_str': ' Clara'}, ] , ) __a =unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 3_5676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 1_6416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 3_5676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 1_6416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() __a =pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__snake_case , __snake_case ) @slow @require_torch def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(__snake_case ) @slow @require_tf def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(__snake_case ) def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' __a =unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(__snake_case ) , [ {'sequence': 'My name is John', 'score': 0.008, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.007, 'token': 1573, 'token_str': ' Chris'}, ] , ) __a =unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(__snake_case ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.251, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.214, 'token': 1_2790, 'token_str': ' Lyon', }, ] , ) __a =unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case ) , [ {'sequence': 'My name is Patrick', 'score': 0.005, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.000, 'token': 1_3606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.000, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) __a =None __a =None self.run_pipeline_test(__snake_case , [] ) @require_tf def __magic_name__ ( self ) -> str: '''simple docstring''' __a =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) __a =None __a =None self.run_pipeline_test(__snake_case , [] ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) __a =FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) __a =[ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __magic_name__ ( self , __snake_case , __snake_case ) -> int: '''simple docstring''' __a =fill_masker.tokenizer __a =fill_masker.model __a =fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __snake_case , [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] , ) __a =fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __snake_case , [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] , ) __a =fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __snake_case , [ [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ], [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ], ] , ) with self.assertRaises(__snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__snake_case ): fill_masker('This is' ) self.run_test_top_k(__snake_case , __snake_case ) self.run_test_targets(__snake_case , __snake_case ) self.run_test_top_k_targets(__snake_case , __snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(__snake_case , __snake_case ) self.fill_mask_with_multiple_masks(__snake_case , __snake_case ) def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =tokenizer.get_vocab() __a =sorted(vocab.keys() )[:2] # Pipeline argument __a =FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , targets=__snake_case ) __a =fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __snake_case , [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] , ) __a ={vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , __snake_case ) __a =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(__snake_case ) ) # Call argument __a =FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) __a =fill_masker(f'This is a {tokenizer.mask_token}' , targets=__snake_case ) self.assertEqual( __snake_case , [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] , ) __a ={vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , __snake_case ) __a =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(__snake_case ) ) # Score equivalence __a =fill_masker(f'This is a {tokenizer.mask_token}' , targets=__snake_case ) __a =[top_mask['token_str'] for top_mask in outputs] __a =[top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ) == set(__snake_case ): __a =fill_masker(f'This is a {tokenizer.mask_token}' , targets=__snake_case ) __a =[top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) # Raises with invalid with self.assertRaises(__snake_case ): __a =fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__snake_case ): __a =fill_masker(f'This is a {tokenizer.mask_token}' , targets=[''] ) with self.assertRaises(__snake_case ): __a =fill_masker(f'This is a {tokenizer.mask_token}' , targets='' ) def __magic_name__ ( self , __snake_case , __snake_case ) -> int: '''simple docstring''' __a =FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , top_k=2 ) __a =fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __snake_case , [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] , ) __a =FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) __a =fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __snake_case , [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ] , ) self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case ) -> Any: '''simple docstring''' __a =tokenizer.get_vocab() __a =FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) # top_k=2, ntargets=3 __a =sorted(vocab.keys() )[:3] __a =fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results __a =[el['token_str'] for el in sorted(__snake_case , key=lambda __snake_case : x["score"] , reverse=__snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ).issubset(__snake_case ): __a =fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case ) -> Any: '''simple docstring''' __a =FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) __a =tokenizer.get_vocab() # String duplicates + id duplicates __a =sorted(vocab.keys() )[:3] __a =[targets[0], targets[1], targets[0], targets[2], targets[1]] __a =fill_masker(f'My name is {tokenizer.mask_token}' , targets=__snake_case , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__snake_case ) , 3 ) def __magic_name__ ( self , __snake_case , __snake_case ) -> Any: '''simple docstring''' __a =FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) __a =fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __snake_case , [ [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ], [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ], [ {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, {'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )}, ], ] , )
218
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowerCAmelCase : Optional[Any] = False class __magic_name__ ( unittest.TestCase ): pass @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a =torch.manual_seed(0 ) __a =pipe( image=__snake_case , generator=__snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __a =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
218
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : str = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "informer" _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self: Tuple , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[int] = None , UpperCamelCase: str = "student_t" , UpperCamelCase: str = "nll" , UpperCamelCase: int = 1 , UpperCamelCase: List[int] = None , UpperCamelCase: Optional[Union[str, bool]] = "mean" , UpperCamelCase: int = 0 , UpperCamelCase: int = 0 , UpperCamelCase: int = 0 , UpperCamelCase: int = 0 , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: int = 64 , UpperCamelCase: int = 32 , UpperCamelCase: int = 32 , UpperCamelCase: int = 2 , UpperCamelCase: int = 2 , UpperCamelCase: int = 2 , UpperCamelCase: int = 2 , UpperCamelCase: bool = True , UpperCamelCase: str = "gelu" , UpperCamelCase: float = 0.05 , UpperCamelCase: float = 0.1 , UpperCamelCase: float = 0.1 , UpperCamelCase: float = 0.1 , UpperCamelCase: float = 0.1 , UpperCamelCase: int = 1_00 , UpperCamelCase: float = 0.02 , UpperCamelCase: int=True , UpperCamelCase: str = "prob" , UpperCamelCase: int = 5 , UpperCamelCase: bool = True , **UpperCamelCase: Optional[int] , ) -> Union[str, Any]: # time series specific configuration snake_case__ = prediction_length snake_case__ = context_length or prediction_length snake_case__ = distribution_output snake_case__ = loss snake_case__ = input_size snake_case__ = num_time_features snake_case__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case__ = scaling snake_case__ = num_dynamic_real_features snake_case__ = num_static_real_features snake_case__ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) snake_case__ = cardinality else: snake_case__ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) snake_case__ = embedding_dimension else: snake_case__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case__ = num_parallel_samples # Transformer architecture configuration snake_case__ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case__ = d_model snake_case__ = encoder_attention_heads snake_case__ = decoder_attention_heads snake_case__ = encoder_ffn_dim snake_case__ = decoder_ffn_dim snake_case__ = encoder_layers snake_case__ = decoder_layers snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = encoder_layerdrop snake_case__ = decoder_layerdrop snake_case__ = activation_function snake_case__ = init_std snake_case__ = use_cache # Informer snake_case__ = attention_type snake_case__ = sampling_factor snake_case__ = distil super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def lowerCAmelCase_ ( self: Optional[Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
307
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE: def __init__( self: Dict ) -> None: snake_case__ = [2, 1, 2, -1] snake_case__ = [1, 2, 3, 4] def lowerCAmelCase_ ( self: List[str] ) -> list[float]: snake_case__ = len(self.first_signal ) snake_case__ = len(self.second_signal ) snake_case__ = max(UpperCamelCase , UpperCamelCase ) # create a zero matrix of max_length x max_length snake_case__ = [[0] * max_length for i in range(UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase ): snake_case__ = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase ) for j, item in enumerate(UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal snake_case__ = np.matmul(np.transpose(UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
307
1
def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" __A = 0 __A = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
124
def UpperCAmelCase ( ) -> list[list[int]]: """simple docstring""" return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] SCREAMING_SNAKE_CASE :List[str] = generate_large_matrix() SCREAMING_SNAKE_CASE :str = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase ( a_ ) -> None: """simple docstring""" assert all(row == sorted(a_ , reverse=a_ ) for row in grid ) assert all(list(a_ ) == sorted(a_ , reverse=a_ ) for col in zip(*a_ ) ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(a_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __A = (left + right) // 2 __A = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __A = mid + 1 else: __A = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(grid[0] ) for i in range(len(a_ ) ): __A = find_negative_index(grid[i][:bound] ) total += bound return (len(a_ ) * len(grid[0] )) - total def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 for row in grid: for i, number in enumerate(a_ ): if number < 0: total += len(a_ ) - i break return total def UpperCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print("Running benchmarks" ) __A = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __A = timeit(F'''{func}(grid=grid)''' , setup=a_ , number=5_0_0 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
124
1
from timeit import timeit def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) __UpperCamelCase :str = 0 while number: number &= number - 1 result += 1 return result def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) __UpperCamelCase :Optional[Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowerCamelCase ( ): '''simple docstring''' def do_benchmark(SCREAMING_SNAKE_CASE ) -> None: __UpperCamelCase :List[str] = '''import __main__ as z''' print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(SCREAMING_SNAKE_CASE ) = }""" ) __UpperCamelCase :Optional[int] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=SCREAMING_SNAKE_CASE ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(SCREAMING_SNAKE_CASE ) = }""" ) __UpperCamelCase :Union[str, Any] = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=SCREAMING_SNAKE_CASE , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :int = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :Union[str, Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } SCREAMING_SNAKE_CASE :int = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = [] def __init__( self : Any ,A : List[str] ,A : str="<unk>" ,A : int="<s>" ,A : Union[str, Any]="</s>" ,A : List[str]="<pad>" ,A : int="[SEP]" ,A : Optional[Any]="[MASK]" ,A : Tuple="[CLS]" ,A : Optional[Dict[str, Any]] = None ,**A : Any ,): __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sep_token=A ,mask_token=A ,cls_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCamelCase_ ( self : List[str] ): return self.sp_model.get_piece_size() def UpperCamelCase_ ( self : Optional[Any] ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : str ,A : Optional[Any] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : List[str] ,A : Tuple ): return self.sp_model.piece_to_id(A ) def UpperCamelCase_ ( self : List[Any] ,A : Tuple ): __A = self.sp_model.IdToPiece(A ) return token def UpperCamelCase_ ( self : List[Any] ,A : int ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : bool = False ,A : bool = None ,A : bool = True ,**A : Union[str, Any] ,): __A = kwargs.pop("use_source_tokenizer" ,A ) __A = self.convert_ids_to_tokens(A ,skip_special_tokens=A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __A = [] __A = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) __A = [] sub_texts.append(A ) else: current_sub_text.append(A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __A = re.sub(R" (\[(MASK|SEP)\])" ,R"\1" ," ".join(A ) ) else: __A = "".join(A ) __A = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __A = self.clean_up_tokenization(A ) return clean_text else: return text def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
15
0
_A = "Alexander Joslin" import operator as op from .stack import Stack def lowercase_ ( A__ ): """simple docstring""" snake_case = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} snake_case = Stack() snake_case = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(A__ ) ) elif i in operators: # RULE 2 operator_stack.push(A__ ) elif i == ")": # RULE 4 snake_case = operator_stack.peek() operator_stack.pop() snake_case = operand_stack.peek() operand_stack.pop() snake_case = operand_stack.peek() operand_stack.pop() snake_case = operators[opr](A__ , A__ ) operand_stack.push(A__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _A = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
356
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def lowercase_ ( A__ , A__ ) -> int: """simple docstring""" snake_case = RobertaPreLayerNormConfig.from_pretrained( A__ , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict snake_case = torch.load(hf_hub_download(repo_id=A__ , filename="pytorch_model.bin" ) ) snake_case = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): snake_case = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue snake_case = tensor_value snake_case = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=A__ , config=A__ , state_dict=A__ ) model.save_pretrained(A__ ) # convert tokenizer snake_case = AutoTokenizer.from_pretrained(A__ ) tokenizer.save_pretrained(A__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _A = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
137
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase__ = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } UpperCamelCase__ = {"""facebook/blenderbot-3B""": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _a ( ): __lowerCAmelCase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowerCAmelCase = bs[:] __lowerCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE_ ) cs.append(2**8 + n ) n += 1 __lowerCAmelCase = [chr(SCREAMING_SNAKE_CASE_ ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): __lowerCAmelCase = set() __lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase = char return pairs class a__ ( snake_case__ ): _a : str = VOCAB_FILES_NAMES _a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , _A , _A , _A="replace" , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=False , **_A , ): """simple docstring""" __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( errors=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , **_A , ) with open(_A , encoding="utf-8" ) as vocab_handle: __lowerCAmelCase = json.load(_A ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} __lowerCAmelCase = errors # how to handle errors in decoding __lowerCAmelCase = bytes_to_unicode() __lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(_A , encoding="utf-8" ) as merges_handle: __lowerCAmelCase = merges_handle.read().split("\n" )[1:-1] __lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCAmelCase = dict(zip(_A , range(len(_A ) ) ) ) __lowerCAmelCase = {} __lowerCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCAmelCase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return len(self.encoder ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if token in self.cache: return self.cache[token] __lowerCAmelCase = tuple(_A ) __lowerCAmelCase = get_pairs(_A ) if not pairs: return token while True: __lowerCAmelCase = min(_A , key=lambda _A : self.bpe_ranks.get(_A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase , __lowerCAmelCase = bigram __lowerCAmelCase = [] __lowerCAmelCase = 0 while i < len(_A ): try: __lowerCAmelCase = word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase = tuple(_A ) __lowerCAmelCase = new_word if len(_A ) == 1: break else: __lowerCAmelCase = get_pairs(_A ) __lowerCAmelCase = " ".join(_A ) __lowerCAmelCase = word return word def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = [] for token in re.findall(self.pat , _A ): __lowerCAmelCase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.decoder.get(_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = "".join(_A ) __lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + "\n" ) __lowerCAmelCase = 0 with open(_A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowerCAmelCase = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __SCREAMING_SNAKE_CASE( self , _A , _A = None , _A = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __SCREAMING_SNAKE_CASE( self , _A , _A=False , **_A ): """simple docstring""" __lowerCAmelCase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): __lowerCAmelCase = " " + text return (text, kwargs) def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(_A ) __lowerCAmelCase = " ".join(_A ) __lowerCAmelCase = self.encode(_A ) if len(_A ) > self.model_max_length: __lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
92
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar a_ : Any = TypeVar("T") class a ( Generic[T] ): def __init__( self , __magic_name__ , __magic_name__ ) -> None: _a = None _a = len(__magic_name__ ) _a = [any_type for _ in range(self.N )] + arr _a = fnc self.build() def __UpperCAmelCase ( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: p += self.N _a = v while p > 1: _a = p // 2 _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> T | None: # noqa: E741 _a , _a = l + self.N, r + self.N _a = None while l <= r: if l % 2 == 1: _a = self.st[l] if res is None else self.fn(__magic_name__ , self.st[l] ) if r % 2 == 0: _a = self.st[r] if res is None else self.fn(__magic_name__ , self.st[r] ) _a , _a = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce a_ : Union[str, Any] = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] a_ : str = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } a_ : Dict = SegmentTree(test_array, min) a_ : Optional[int] = SegmentTree(test_array, max) a_ : int = SegmentTree(test_array, lambda a, b: a + b) def _A () -> None: '''simple docstring''' for i in range(len(lowerCAmelCase__ ) ): for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): _a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) _a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) _a = reduce(lambda lowerCAmelCase__ , lowerCAmelCase__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert max_range == max_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert sum_range == sum_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) test_all_segments() for index, value in test_updates.items(): a_ : Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
168
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __a , unittest.TestCase ): snake_case : Dict = LEDTokenizer snake_case : List[str] = LEDTokenizerFast snake_case : Any = True def snake_case_ (self ): super().setUp() _UpperCAmelCase : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _UpperCAmelCase : Optional[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCAmelCase : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _UpperCAmelCase : int = {"""unk_token""": """<unk>"""} _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase__ ) ) def snake_case_ (self , **lowerCAmelCase__ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def snake_case_ (self , **lowerCAmelCase__ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ ): return "lower newer", "lower newer" @cached_property def snake_case_ (self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def snake_case_ (self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def snake_case_ (self ): _UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _UpperCAmelCase : Dict = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : List[Any] = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def snake_case_ (self ): _UpperCAmelCase : Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) self.assertIn("""input_ids""" , lowerCAmelCase__ ) self.assertIn("""attention_mask""" , lowerCAmelCase__ ) self.assertNotIn("""labels""" , lowerCAmelCase__ ) self.assertNotIn("""decoder_attention_mask""" , lowerCAmelCase__ ) @require_torch def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : str = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) @require_torch def snake_case_ (self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Union[str, Any] = tokenizer( ["""I am a small frog""" * 1_0_2_4, """I am a small frog"""] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""] _UpperCAmelCase : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Any = tokenizer(lowerCAmelCase__ , return_tensors="""pt""" ) _UpperCAmelCase : Optional[Any] = tokenizer(text_target=lowerCAmelCase__ , return_tensors="""pt""" ) _UpperCAmelCase : int = inputs["""input_ids"""] _UpperCAmelCase : Union[str, Any] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case_ (self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Union[str, Any] = ["""Summary of the text.""", """Another summary."""] _UpperCAmelCase : Dict = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _UpperCAmelCase : str = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ ) _UpperCAmelCase : str = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["""input_ids"""]] _UpperCAmelCase : Union[str, Any] = tokenizer.pad(lowerCAmelCase__ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , lowerCAmelCase__ ) def snake_case_ (self ): pass def snake_case_ (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : str = """A, <mask> AllenNLP sentence.""" _UpperCAmelCase : Any = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) _UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowerCAmelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
352
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ ): super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__(self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 5_0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , lowerCAmelCase__ ): _UpperCAmelCase : str = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _UpperCAmelCase : int = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(lowerCAmelCase__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _UpperCAmelCase : Optional[Any] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase : str = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : List[str] = self.scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , eta=lowerCAmelCase__ , use_clipped_model_output=lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample _UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
170
0
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCamelCase__ : Optional[int] = set() # Replace all the whitespace in our sentence UpperCamelCase__ : Dict = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__UpperCAmelCase ) == 26 def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCamelCase__ : List[str] = [False] * 26 for char in input_str: if char.islower(): UpperCamelCase__ : List[Any] = True elif char.isupper(): UpperCamelCase__ : Dict = True return all(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def SCREAMING_SNAKE_CASE ( ) -> None: from timeit import timeit UpperCamelCase__ : List[Any] = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=__UpperCAmelCase ) ) print(timeit("is_pangram_faster()" , setup=__UpperCAmelCase ) ) print(timeit("is_pangram_fastest()" , setup=__UpperCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
189
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "speech_to_text" lowercase_ = ["past_key_values"] lowercase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Tuple , _lowerCAmelCase : List[Any]=10_000 , _lowerCAmelCase : List[Any]=12 , _lowerCAmelCase : Union[str, Any]=2_048 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Union[str, Any]=6 , _lowerCAmelCase : Optional[int]=2_048 , _lowerCAmelCase : Optional[Any]=4 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : int="relu" , _lowerCAmelCase : Union[str, Any]=256 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : str=0 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Union[str, Any]=6_000 , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Optional[Any]=(5, 5) , _lowerCAmelCase : str=1_024 , _lowerCAmelCase : str=80 , _lowerCAmelCase : Tuple=1 , **_lowerCAmelCase : Any , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ = max_source_positions SCREAMING_SNAKE_CASE_ = max_target_positions SCREAMING_SNAKE_CASE_ = num_conv_layers SCREAMING_SNAKE_CASE_ = list(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = conv_channels SCREAMING_SNAKE_CASE_ = input_feat_per_channel SCREAMING_SNAKE_CASE_ = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
225
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : List[str] = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[int] = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
293
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __UpperCAmelCase : Any = random.Random() def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None) -> Any: if rng is None: __snake_case: Dict = global_rng __snake_case: str = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , A : List[str] , A : List[Any]=7 , A : Optional[int]=400 , A : List[Any]=2_000 , A : Dict=2_048 , A : Tuple=128 , A : List[Any]=1 , A : Tuple=512 , A : str=30 , A : Optional[Any]=44_100 , ): __snake_case: Dict = parent __snake_case: Optional[Any] = batch_size __snake_case: Optional[int] = min_seq_length __snake_case: Optional[Any] = max_seq_length __snake_case: List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case: Any = spectrogram_length __snake_case: Any = feature_size __snake_case: Union[str, Any] = num_audio_channels __snake_case: Any = hop_length __snake_case: List[str] = chunk_length __snake_case: Any = sampling_rate def UpperCAmelCase__ ( self : List[Any] ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCAmelCase__ ( self : List[str] , A : str=False , A : int=False ): def _flatten(A : Dict ): return list(itertools.chain(*A ) ) if equal_length: __snake_case: List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __snake_case: int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case: Tuple = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = TvltFeatureExtractor def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: str = TvltFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : int ): __snake_case: Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A , """spectrogram_length""" ) ) self.assertTrue(hasattr(A , """feature_size""" ) ) self.assertTrue(hasattr(A , """num_audio_channels""" ) ) self.assertTrue(hasattr(A , """hop_length""" ) ) self.assertTrue(hasattr(A , """chunk_length""" ) ) self.assertTrue(hasattr(A , """sampling_rate""" ) ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case: Tuple = feat_extract_first.save_pretrained(A )[0] check_json_file_has_correct_format(A ) __snake_case: int = self.feature_extraction_class.from_pretrained(A ) __snake_case: List[str] = feat_extract_first.to_dict() __snake_case: str = feat_extract_second.to_dict() __snake_case: List[Any] = dict_first.pop("""mel_filters""" ) __snake_case: str = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case: str = os.path.join(A , """feat_extract.json""" ) feat_extract_first.to_json_file(A ) __snake_case: List[Any] = self.feature_extraction_class.from_json_file(A ) __snake_case: Dict = feat_extract_first.to_dict() __snake_case: Any = feat_extract_second.to_dict() __snake_case: int = dict_first.pop("""mel_filters""" ) __snake_case: int = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def UpperCAmelCase__ ( self : Any ): # Initialize feature_extractor __snake_case: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __snake_case: Dict = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __snake_case: str = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input __snake_case: int = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __snake_case: Optional[int] = feature_extractor(A , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __snake_case: Union[str, Any] = feature_extractor( A , return_tensors="""np""" , sampling_rate=44_100 , mask_audio=A ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __snake_case: Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] __snake_case: Union[str, Any] = np.asarray(A ) __snake_case: List[Any] = feature_extractor(A , return_tensors="""np""" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCAmelCase__ ( self : Union[str, Any] , A : List[str] ): __snake_case: Tuple = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __snake_case: List[Any] = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Dict = self._load_datasamples(1 ) __snake_case: Optional[int] = TvltFeatureExtractor() __snake_case: Optional[Any] = feature_extractor(A , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __snake_case: str = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A , atol=1E-4 ) )
293
1
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowercase__ ( snake_case_ :str , snake_case_ :str = "cpu" , snake_case_ :Union[str, None] = None ): __UpperCAmelCase = torch.load(snake_case_ , map_location=snake_case_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(snake_case_ , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) __UpperCAmelCase = v.half() if save_path is None: # overwrite src_path __UpperCAmelCase = src_path torch.save(snake_case_ , snake_case_ ) if __name__ == "__main__": fire.Fire(convert)
332
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Dict = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "swinv2" a__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , _lowercase : List[Any]=2_24 , _lowercase : int=4 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[int]=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : str=7 , _lowercase : Union[str, Any]=4.0 , _lowercase : List[str]=True , _lowercase : List[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=False , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-5 , _lowercase : Tuple=32 , **_lowercase : Optional[int] , ): super().__init__(**_lowercase ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) __UpperCAmelCase = (0, 0, 0, 0)
332
1
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase :Optional[int] = get_logger(__name__) class _lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] , _A : Tuple = None ) -> Dict: __magic_name__ : Any = ( os.path.join(SCREAMING_SNAKE_CASE_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __magic_name__ : List[Any] = Extractor def __lowerCAmelCase ( self : str , _A : List[str] ) -> Union[str, Any]: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __magic_name__ : Tuple = os.path.abspath(SCREAMING_SNAKE_CASE_ ) return os.path.join(self.extract_dir , hash_url_to_filename(SCREAMING_SNAKE_CASE_ ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Optional[int] , _A : List[Any] ) -> Any: return force_extract or ( not os.path.isfile(SCREAMING_SNAKE_CASE_ ) and not (os.path.isdir(SCREAMING_SNAKE_CASE_ ) and os.listdir(SCREAMING_SNAKE_CASE_ )) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Any , _A : Optional[int] = False ) -> List[Any]: __magic_name__ : Any = self.extractor.infer_extractor_format(SCREAMING_SNAKE_CASE_ ) if not extractor_format: return input_path __magic_name__ : Any = self._get_output_path(SCREAMING_SNAKE_CASE_ ) if self._do_extract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.extractor.extract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output_path class _lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' @classmethod @abstractmethod def __lowerCAmelCase ( cls : Optional[int] , _A : List[str] , **_A : Optional[int] ) -> List[str]: ... @staticmethod @abstractmethod def __lowerCAmelCase ( _A : Optional[int] , _A : List[Any] ) -> Union[str, Any]: ... class _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' A_ : List[bytes] = [] @staticmethod def __lowerCAmelCase ( _A : Any , _A : Optional[Any] ) -> Tuple: with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as f: return f.read(SCREAMING_SNAKE_CASE_ ) @classmethod def __lowerCAmelCase ( cls : str , _A : str , _A : List[Any] = b"" ) -> Union[str, Any]: if not magic_number: __magic_name__ : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) for cls_magic_number in cls.magic_numbers ) try: __magic_name__ : List[Any] = cls.read_magic_number(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except OSError: return False return any(magic_number.startswith(SCREAMING_SNAKE_CASE_ ) for cls_magic_number in cls.magic_numbers ) class _lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' @classmethod def __lowerCAmelCase ( cls : Optional[Any] , _A : Union[str, Any] , **_A : List[Any] ) -> Optional[int]: return tarfile.is_tarfile(SCREAMING_SNAKE_CASE_ ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Union[str, Any] ) -> str: def resolved(_A : Tuple ) -> str: return os.path.realpath(os.path.abspath(SCREAMING_SNAKE_CASE_ ) ) def badpath(_A : Dict , _A : List[str] ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ).startswith(SCREAMING_SNAKE_CASE_ ) def badlink(_A : Optional[int] , _A : Dict ) -> bool: # Links are interpreted relative to the directory containing the link __magic_name__ : Any = resolved(os.path.join(SCREAMING_SNAKE_CASE_ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=SCREAMING_SNAKE_CASE_ ) __magic_name__ : List[str] = resolved(SCREAMING_SNAKE_CASE_ ) for finfo in members: if badpath(finfo.name , SCREAMING_SNAKE_CASE_ ): logger.error(F'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): logger.error(F'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): logger.error(F'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def __lowerCAmelCase ( _A : Optional[Any] , _A : Union[str, Any] ) -> List[str]: os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) __magic_name__ : List[Any] = tarfile.open(SCREAMING_SNAKE_CASE_ ) tar_file.extractall(SCREAMING_SNAKE_CASE_ , members=TarExtractor.safemembers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) tar_file.close() class _lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' A_ : List[Any] = [b'\x1F\x8B'] @staticmethod def __lowerCAmelCase ( _A : int , _A : Any ) -> Union[str, Any]: with gzip.open(SCREAMING_SNAKE_CASE_ , 'rb' ) as gzip_file: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class _lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' A_ : Tuple = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , _A : List[str] , _A : List[str] = b"" ) -> List[str]: if super().is_extractable(SCREAMING_SNAKE_CASE_ , magic_number=SCREAMING_SNAKE_CASE_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as fp: __magic_name__ : Tuple = _EndRecData(SCREAMING_SNAKE_CASE_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __magic_name__ : Tuple = fp.read(SCREAMING_SNAKE_CASE_ ) # CD is where we expect it to be if len(SCREAMING_SNAKE_CASE_ ) == sizeCentralDir: __magic_name__ : int = struct.unpack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __lowerCAmelCase ( _A : Union[str, Any] , _A : List[Any] ) -> Dict: os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ , 'r' ) as zip_file: zip_file.extractall(SCREAMING_SNAKE_CASE_ ) zip_file.close() class _lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' A_ : Optional[Any] = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : int ) -> Tuple: with lzma.open(SCREAMING_SNAKE_CASE_ ) as compressed_file: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class _lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' A_ : List[str] = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[int] ) -> Union[str, Any]: if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) __magic_name__ : Dict = rarfile.RarFile(SCREAMING_SNAKE_CASE_ ) rf.extractall(SCREAMING_SNAKE_CASE_ ) rf.close() class _lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' A_ : List[str] = [b'\x28\xb5\x2F\xFD'] @staticmethod def __lowerCAmelCase ( _A : List[Any] , _A : List[Any] ) -> Any: if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd __magic_name__ : List[str] = zstd.ZstdDecompressor() with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as ifh, open(SCREAMING_SNAKE_CASE_ , 'wb' ) as ofh: dctx.copy_stream(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class _lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' A_ : Any = [b'\x42\x5A\x68'] @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : int ) -> List[Any]: with bza.open(SCREAMING_SNAKE_CASE_ , 'rb' ) as compressed_file: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class _lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' A_ : str = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def __lowerCAmelCase ( _A : Optional[Any] , _A : Optional[Any] ) -> Optional[Any]: if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with pyazr.SevenZipFile(SCREAMING_SNAKE_CASE_ , 'r' ) as archive: archive.extractall(SCREAMING_SNAKE_CASE_ ) class _lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' A_ : Dict = [b'\x04\x22\x4D\x18'] @staticmethod def __lowerCAmelCase ( _A : int , _A : int ) -> Tuple: if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(SCREAMING_SNAKE_CASE_ , 'rb' ) as compressed_file: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class _lowerCamelCase : '''simple docstring''' A_ : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __lowerCAmelCase ( cls : Any ) -> Union[str, Any]: return max( len(SCREAMING_SNAKE_CASE_ ) for extractor in cls.extractors.values() if issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __lowerCAmelCase ( _A : Union[str, Any] , _A : Any ) -> str: try: return MagicNumberBaseExtractor.read_magic_number(SCREAMING_SNAKE_CASE_ , magic_number_length=SCREAMING_SNAKE_CASE_ ) except OSError: return b"" @classmethod def __lowerCAmelCase ( cls : Dict , _A : Optional[int] , _A : int = False ) -> Tuple: warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=SCREAMING_SNAKE_CASE_ , ) __magic_name__ : Tuple = cls.infer_extractor_format(SCREAMING_SNAKE_CASE_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __lowerCAmelCase ( cls : Tuple , _A : Tuple ) -> Dict: # <Added version="2.4.0"/> __magic_name__ : Union[str, Any] = cls._get_magic_number_max_length() __magic_name__ : str = cls._read_magic_number(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(SCREAMING_SNAKE_CASE_ , magic_number=SCREAMING_SNAKE_CASE_ ): return extractor_format @classmethod def __lowerCAmelCase ( cls : str , _A : Union[str, Any] , _A : int , _A : Dict = None , _A : Optional[Any] = "deprecated" , ) -> Optional[Any]: os.makedirs(os.path.dirname(SCREAMING_SNAKE_CASE_ ) , exist_ok=SCREAMING_SNAKE_CASE_ ) # Prevent parallel extractions __magic_name__ : List[Any] = str(Path(SCREAMING_SNAKE_CASE_ ).with_suffix('.lock' ) ) with FileLock(SCREAMING_SNAKE_CASE_ ): shutil.rmtree(SCREAMING_SNAKE_CASE_ , ignore_errors=SCREAMING_SNAKE_CASE_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=SCREAMING_SNAKE_CASE_ , ) __magic_name__ : Union[str, Any] = extractor if extractor != """deprecated""" else extractor_format else: __magic_name__ : str = cls.extractors[extractor_format] return extractor.extract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=SCREAMING_SNAKE_CASE_ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(SCREAMING_SNAKE_CASE_ ): return extractor.extract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :str = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
275
0
"""simple docstring""" import datasets lowercase__ : Any = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowercase__ : str = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowercase__ : Tuple = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def __lowercase ( _a , _a ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _UpperCAmelCase ( datasets.Metric): def _snake_case ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def _snake_case ( self : str , lowercase_ : str , lowercase_ : Optional[Any] ): return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
264
"""simple docstring""" import numpy as np def __lowercase ( _a ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
264
1
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = cva.getAffineTransform(UpperCamelCase_ , UpperCamelCase_ ) return cva.warpAffine(UpperCamelCase_ , UpperCamelCase_ , (rows, cols) ) if __name__ == "__main__": # read original image __magic_name__ = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __magic_name__ = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __magic_name__, __magic_name__ = gray_img.shape # set different points to rotate image __magic_name__ = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __magic_name__ = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __magic_name__ = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __magic_name__ = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __magic_name__ = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __magic_name__ = plt.figure(1) __magic_name__ = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
255
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis __SCREAMING_SNAKE_CASE = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __SCREAMING_SNAKE_CASE = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCamelCase_ , 1 ): if n < _p: # then we have our last prime to check __SCREAMING_SNAKE_CASE = primes[:idx] break __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __SCREAMING_SNAKE_CASE = False for r in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = pow(UpperCamelCase_ , d * 2**r , UpperCamelCase_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __SCREAMING_SNAKE_CASE = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _lowerCAmelCase ( ): assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
255
1
"""simple docstring""" import operator as op def lowercase ( A_ )-> Any: '''simple docstring''' a : Tuple = [] a : int = lambda A_ , A_ : int(x / y ) # noqa: E731 integer division operation a : Tuple = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(A_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(A_ ) , sep=" | " ) else: a : str = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(A_ ) , sep=" | " ) a : str = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(A_ ) , sep=" | " ) stack.append( str(opr[x](int(A_ ) , int(A_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(A_ ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": __lowercase = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
40
"""simple docstring""" import datasets _a = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ _a = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ _a = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase( datasets.Metric ): def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32'''), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32'''), }) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' return {"accuracy": simple_accuracy(__a , __a)}
194
0
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase : List[str] = logging.get_logger("transformers.models.encodec") lowercase : int = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } lowercase : str = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } lowercase : Tuple = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } lowercase : Dict = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } lowercase : Tuple = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } lowercase : List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase : str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase : Any = [] lowercase : Optional[Any] = [] def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A ) -> Tuple: for attribute in key.split('.' ): _snake_case = getattr(__A , __A ) if weight_type is not None: _snake_case = getattr(__A , __A ).shape else: _snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _snake_case = value elif weight_type == "weight_g": _snake_case = value elif weight_type == "weight_v": _snake_case = value elif weight_type == "bias": _snake_case = value elif weight_type == "running_mean": _snake_case = value elif weight_type == "running_var": _snake_case = value elif weight_type == "num_batches_tracked": _snake_case = value elif weight_type == "weight_ih_l0": _snake_case = value elif weight_type == "weight_hh_l0": _snake_case = value elif weight_type == "bias_ih_l0": _snake_case = value elif weight_type == "bias_hh_l0": _snake_case = value elif weight_type == "weight_ih_l1": _snake_case = value elif weight_type == "weight_hh_l1": _snake_case = value elif weight_type == "bias_ih_l1": _snake_case = value elif weight_type == "bias_hh_l1": _snake_case = value else: _snake_case = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Optional[Any]: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _snake_case , _snake_case = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Any: _snake_case = [] if model_name == "encodec_24khz" or "encodec_32khz": _snake_case = MAPPING_24K elif model_name == "encodec_48khz": _snake_case = MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(__A , __A ): logger.info(F'{name} was ignored' ) continue _snake_case = False for key, mapped_key in MAPPING.items(): if "*" in key: _snake_case , _snake_case = key.split('.*.' ) if prefix in name and suffix in name: _snake_case = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue _snake_case = True if "*" in mapped_key: _snake_case = name.split(__A )[0].split('.' )[-2] _snake_case = mapped_key.replace('*' , __A ) if "weight_g" in name: _snake_case = 'weight_g' elif "weight_v" in name: _snake_case = 'weight_v' elif "weight_ih_l0" in name: _snake_case = 'weight_ih_l0' elif "weight_hh_l0" in name: _snake_case = 'weight_hh_l0' elif "bias_ih_l0" in name: _snake_case = 'bias_ih_l0' elif "bias_hh_l0" in name: _snake_case = 'bias_hh_l0' elif "weight_ih_l1" in name: _snake_case = 'weight_ih_l1' elif "weight_hh_l1" in name: _snake_case = 'weight_hh_l1' elif "bias_ih_l1" in name: _snake_case = 'bias_ih_l1' elif "bias_hh_l1" in name: _snake_case = 'bias_hh_l1' elif "bias" in name: _snake_case = 'bias' elif "weight" in name: _snake_case = 'weight' elif "running_mean" in name: _snake_case = 'running_mean' elif "running_var" in name: _snake_case = 'running_var' elif "num_batches_tracked" in name: _snake_case = 'num_batches_tracked' else: _snake_case = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A=None , __A=None , ) -> Dict: if config_path is not None: _snake_case = EncodecConfig.from_pretrained(__A ) else: _snake_case = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _snake_case = [8, 5, 4, 4] _snake_case = [2.2] _snake_case = 64 _snake_case = 32_000 _snake_case = 2_048 _snake_case = False _snake_case = False _snake_case = False elif model_name == "encodec_48khz": _snake_case = [8, 5, 4, 2] _snake_case = [3.0, 6.0, 1_2.0, 2_4.0] _snake_case = 48_000 _snake_case = 2 _snake_case = False _snake_case = 'time_group_norm' _snake_case = True _snake_case = 1.0 _snake_case = 0.0_1 else: raise ValueError(F'Unknown model name: {model_name}' ) _snake_case = EncodecModel(__A ) _snake_case = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__A ) _snake_case = torch.load(__A ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _snake_case = original_checkpoint['best_state'] recursively_load_weights(__A , __A , __A ) model.save_pretrained(__A ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__A ) model.push_to_hub(__A ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase : Union[str, Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
160
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase : Any = logging.get_logger(__name__) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=None , lowerCAmelCase_=None ): """simple docstring""" if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) _snake_case = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: _snake_case = text def lowerCamelCase ( self ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" self.generated_responses.append(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): """simple docstring""" _snake_case = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _snake_case = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( _lowerCamelCase , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowerCamelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCAmelCase_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , lowerCAmelCase_ , lowerCAmelCase_=0 , **lowerCAmelCase_ ): """simple docstring""" _snake_case = super().__call__(lowerCAmelCase_ , num_workers=lowerCAmelCase_ , **lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=32 ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _snake_case = self.tokenizer._build_conversation_input_ids(lowerCAmelCase_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(lowerCAmelCase_ ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=10 , **lowerCAmelCase_ ): """simple docstring""" _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) _snake_case = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs['attention_mask'][:, -trim:] _snake_case = model_inputs.pop('conversation' ) _snake_case = max_length _snake_case = self.model.generate(**lowerCAmelCase_ , **lowerCAmelCase_ ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=True ): """simple docstring""" _snake_case = model_outputs['output_ids'] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) _snake_case = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(lowerCAmelCase_ ) return conversation def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
160
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A_ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ort.SessionOptions() lowercase = False return options def SCREAMING_SNAKE_CASE__ ( self ): lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowercase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = '''A red cat sitting on a park bench''' lowercase = np.random.RandomState(0 ) lowercase = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='np' , ) lowercase = output.images lowercase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowercase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) lowercase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = '''A red cat sitting on a park bench''' lowercase = np.random.RandomState(0 ) lowercase = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='np' , ) lowercase = output.images lowercase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
195
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self , snake_case__ , snake_case__=12 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=0 , snake_case__=None , ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : List[Any] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Union[str, Any] =use_input_mask UpperCAmelCase : Tuple =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : Tuple =hidden_size UpperCAmelCase : Dict =projection_dim UpperCAmelCase : Optional[int] =num_hidden_layers UpperCAmelCase : Dict =num_attention_heads UpperCAmelCase : int =intermediate_size UpperCAmelCase : Any =dropout UpperCAmelCase : Union[str, Any] =attention_dropout UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : str =scope UpperCAmelCase : str =bos_token_id def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : int =None if self.use_input_mask: UpperCAmelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase : Optional[int] =input_mask.numpy() UpperCAmelCase , UpperCAmelCase : List[Any] =input_mask.shape UpperCAmelCase : Optional[Any] =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : List[Any] =1 UpperCAmelCase : Tuple =0 UpperCAmelCase : List[Any] =self.get_config() return config, input_ids, tf.convert_to_tensor(snake_case__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =TFBlipTextModel(config=snake_case__ ) UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ ) UpperCAmelCase : str =model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =config_and_inputs UpperCAmelCase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else () __lowerCamelCase : Dict = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Dict = False def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str =BlipTextModelTester(self ) UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] =TFBlipTextModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__=True ) -> Any: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
348
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase : Any = tempfile.mkdtemp() # fmt: off __lowercase : Union[str, Any] = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __lowercase : Optional[int] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Optional[Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __lowercase : Optional[Any] = {"""unk_token""": """<unk>"""} __lowercase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) __lowercase : Any = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __lowercase : List[str] = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__a , __a ) def lowerCAmelCase ( self : Optional[Any] , **__a : Union[str, Any] ) -> List[str]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : str ) -> Optional[Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **__a ) def lowerCAmelCase ( self : int , **__a : List[Any] ) -> Optional[Any]: """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase : List[Any] = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = self.get_tokenizer() __lowercase : Union[str, Any] = self.get_rust_tokenizer() __lowercase : List[str] = self.get_image_processor() __lowercase : str = OwlViTProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) __lowercase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) __lowercase : Optional[Any] = OwlViTProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) __lowercase : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase : Optional[Any] = self.get_image_processor(do_normalize=__a ) __lowercase : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_image_processor() __lowercase : str = self.get_tokenizer() __lowercase : Any = OwlViTProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Any = self.prepare_image_inputs() __lowercase : Union[str, Any] = image_processor(__a , return_tensors="""np""" ) __lowercase : str = processor(images=__a , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = self.get_image_processor() __lowercase : Dict = self.get_tokenizer() __lowercase : Tuple = OwlViTProcessor(tokenizer=__a , image_processor=__a ) __lowercase : int = """lower newer""" __lowercase : Optional[Any] = processor(text=__a , return_tensors="""np""" ) __lowercase : Optional[int] = tokenizer(__a , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_image_processor() __lowercase : Dict = self.get_tokenizer() __lowercase : Any = OwlViTProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Any = """lower newer""" __lowercase : List[str] = self.prepare_image_inputs() __lowercase : Dict = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : Optional[int] = """google/owlvit-base-patch32""" __lowercase : Dict = OwlViTProcessor.from_pretrained(__a ) __lowercase : str = ["""cat""", """nasa badge"""] __lowercase : int = processor(text=__a ) __lowercase : Any = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : int = """google/owlvit-base-patch32""" __lowercase : Union[str, Any] = OwlViTProcessor.from_pretrained(__a ) __lowercase : Dict = [["""cat""", """nasa badge"""], ["""person"""]] __lowercase : List[str] = processor(text=__a ) __lowercase : int = 16 __lowercase : Tuple = len(__a ) __lowercase : List[Any] = max([len(__a ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[str] = """google/owlvit-base-patch32""" __lowercase : List[str] = OwlViTProcessor.from_pretrained(__a ) __lowercase : Optional[int] = ["""cat""", """nasa badge"""] __lowercase : List[str] = processor(text=__a ) __lowercase : Optional[int] = 16 __lowercase : str = inputs["""input_ids"""] __lowercase : Optional[int] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_image_processor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : List[Any] = OwlViTProcessor(tokenizer=__a , image_processor=__a ) __lowercase : str = self.prepare_image_inputs() __lowercase : Dict = self.prepare_image_inputs() __lowercase : Any = processor(images=__a , query_images=__a ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_image_processor() __lowercase : str = self.get_tokenizer() __lowercase : List[str] = OwlViTProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase : Optional[int] = processor.batch_decode(__a ) __lowercase : Any = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a )
351
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ ) -> Any: __UpperCamelCase =parent def _a ( self ) -> Optional[Any]: return {} def _UpperCAmelCase ( ): __UpperCamelCase ='<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' __UpperCamelCase ='\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = MarkupLMFeatureExtractor if is_bsa_available() else None def _a ( self ) -> str: __UpperCamelCase =MarkupLMFeatureExtractionTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def _a ( self ) -> Tuple: # Initialize feature_extractor __UpperCamelCase =self.feature_extraction_class() # Test not batched input __UpperCamelCase =get_html_strings()[0] __UpperCamelCase =feature_extractor(A_ ) # fmt: off __UpperCamelCase =[['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] __UpperCamelCase =[['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , A_ ) self.assertEqual(encoding.xpaths , A_ ) # Test batched __UpperCamelCase =get_html_strings() __UpperCamelCase =feature_extractor(A_ ) # fmt: off __UpperCamelCase =expected_nodes + [['My First Heading', 'My first paragraph.']] __UpperCamelCase =expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , A_ ) self.assertEqual(encoding.xpaths , A_ )
62
from typing import TYPE_CHECKING from ...utils import _LazyModule _A = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase__ = logging.get_logger(__name__) lowercase__ = {'vocab_file': 'spiece.model'} lowercase__ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } lowercase__ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) lowercase__ = 0 lowercase__ = 1 lowercase__ = 2 lowercase__ = 3 lowercase__ = 4 class __snake_case ( __lowerCAmelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = """left""" def __init__( self , lowercase , lowercase=False , lowercase=True , lowercase=False , lowercase="<s>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<sep>" , lowercase="<pad>" , lowercase="<cls>" , lowercase="<mask>" , lowercase=["<eop>", "<eod>"] , lowercase = None , **lowercase , ) -> None: '''simple docstring''' a__: List[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else mask_token a__: Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase , remove_space=lowercase , keep_accents=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) a__: Tuple = 3 a__: List[Any] = do_lower_case a__: List[str] = remove_space a__: Optional[Any] = keep_accents a__: Optional[int] = vocab_file a__: Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowercase) @property def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' return len(self.sp_model) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Dict = {self.convert_ids_to_tokens(lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> int: '''simple docstring''' a__: Optional[int] = self.__dict__.copy() a__: List[Any] = None return state def __setstate__( self , lowercase) -> Optional[int]: '''simple docstring''' a__: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): a__: Dict = {} a__: int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def lowerCamelCase_ ( self , lowercase) -> str: '''simple docstring''' if self.remove_space: a__: Optional[int] = ' '.join(inputs.strip().split()) else: a__: int = inputs a__: List[Any] = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: a__: Optional[int] = unicodedata.normalize('NFKD' , lowercase) a__: Union[str, Any] = ''.join([c for c in outputs if not unicodedata.combining(lowercase)]) if self.do_lower_case: a__: int = outputs.lower() return outputs def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' a__: Any = self.preprocess_text(lowercase) a__: Optional[int] = self.sp_model.encode(lowercase , out_type=lowercase) a__: List[str] = [] for piece in pieces: if len(lowercase) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): a__: Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: a__: List[str] = cur_pieces[1:] else: a__: Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowercase) else: new_pieces.append(lowercase) return new_pieces def lowerCamelCase_ ( self , lowercase) -> Optional[int]: '''simple docstring''' return self.sp_model.PieceToId(lowercase) def lowerCamelCase_ ( self , lowercase) -> Optional[int]: '''simple docstring''' return self.sp_model.IdToPiece(lowercase) def lowerCamelCase_ ( self , lowercase) -> Union[str, Any]: '''simple docstring''' a__: List[str] = ''.join(lowercase).replace(lowercase , ' ').strip() return out_string def lowerCamelCase_ ( self , lowercase , lowercase = False , lowercase = None , lowercase = True , **lowercase , ) -> str: '''simple docstring''' a__: Dict = kwargs.pop('use_source_tokenizer' , lowercase) a__: Dict = self.convert_ids_to_tokens(lowercase , skip_special_tokens=lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 a__: str = [] a__: List[str] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase)) a__: Tuple = [] sub_texts.append(lowercase) else: current_sub_text.append(lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens a__: Any = ''.join(lowercase) a__: str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: a__: Dict = self.clean_up_tokenization(lowercase) return clean_text else: return text def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__: Optional[Any] = [self.sep_token_id] a__: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCamelCase_ ( self , lowercase , lowercase = None , lowercase = False) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase) if token_ids_a is not None: return ([0] * len(lowercase)) + [1] + ([0] * len(lowercase)) + [1, 1] return ([0] * len(lowercase)) + [1, 1] def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__: Any = [self.sep_token_id] a__: int = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def lowerCamelCase_ ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return a__: List[str] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase) elif not os.path.isfile(self.vocab_file): with open(lowercase , 'wb') as fi: a__: Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase) return (out_vocab_file,)
203
"""simple docstring""" from __future__ import annotations class __snake_case : def __init__( self , lowercase=None) -> Optional[Any]: '''simple docstring''' a__: int = data a__: str = None def __repr__( self) -> List[str]: '''simple docstring''' a__: Optional[Any] = [] a__: Union[str, Any] = self while temp: string_rep.append(f'{temp.data}') a__: Tuple = temp.next return "->".join(lowercase) def __a ( _SCREAMING_SNAKE_CASE ) ->str: if not elements_list: raise Exception('The Elements List is empty' ) a__: Any = Node(elements_list[0] ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): a__: Optional[Any] = Node(elements_list[i] ) a__: Tuple = current.next return head def __a ( _SCREAMING_SNAKE_CASE ) ->None: if head_node is not None and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __a ( ) ->Optional[Any]: from doctest import testmod testmod() a__: Tuple = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(_SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
203
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image.size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE__ = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) SCREAMING_SNAKE_CASE__ = np.array(snake_case__ ).astype(np.floataa ) / 2_55.0 SCREAMING_SNAKE_CASE__ = image[None].transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(snake_case__ ) return 2.0 * image - 1.0 class lowerCamelCase (A__ ): def __init__( self : List[Any] , __UpperCAmelCase : VQModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Optional[int]: super().__init__() self.register_modules(vqvae=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self : Union[str, Any] , __UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : Optional[int] = 1_0_0 , __UpperCAmelCase : Optional[float] = 0.0 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(__UpperCAmelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = 1 elif isinstance(__UpperCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__UpperCAmelCase )}""" ) if isinstance(__UpperCAmelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = preprocess(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image SCREAMING_SNAKE_CASE__ = (batch_size, self.unet.config.in_channels // 2, height, width) SCREAMING_SNAKE_CASE__ = next(self.unet.parameters() ).dtype SCREAMING_SNAKE_CASE__ = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = image.to(device=self.device , dtype=__UpperCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(__UpperCAmelCase , device=self.device ) SCREAMING_SNAKE_CASE__ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE__ = {} if accepts_eta: SCREAMING_SNAKE_CASE__ = eta for t in self.progress_bar(__UpperCAmelCase ): # concat latents and low resolution image in the channel dimension. SCREAMING_SNAKE_CASE__ = torch.cat([latents, image] , dim=1 ) SCREAMING_SNAKE_CASE__ = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) # predict the noise residual SCREAMING_SNAKE_CASE__ = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample # decode the image latents with the VQVAE SCREAMING_SNAKE_CASE__ = self.vqvae.decode(__UpperCAmelCase ).sample SCREAMING_SNAKE_CASE__ = torch.clamp(__UpperCAmelCase , -1.0 , 1.0 ) SCREAMING_SNAKE_CASE__ = image / 2 + 0.5 SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
165
"""simple docstring""" def A ( snake_case__ = 50 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
165
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[Any] = '''gpt_neo''' SCREAMING_SNAKE_CASE_ : str = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ : Optional[int] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self ,SCREAMING_SNAKE_CASE__=5_02_57 ,SCREAMING_SNAKE_CASE__=20_48 ,SCREAMING_SNAKE_CASE__=20_48 ,SCREAMING_SNAKE_CASE__=24 ,SCREAMING_SNAKE_CASE__=[[["global", "local"], 12]] ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=2_56 ,SCREAMING_SNAKE_CASE__="gelu_new" ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=1E-5 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=5_02_56 ,SCREAMING_SNAKE_CASE__=5_02_56 ,**SCREAMING_SNAKE_CASE__ ,) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = vocab_size __SCREAMING_SNAKE_CASE :List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE :int = hidden_size __SCREAMING_SNAKE_CASE :Optional[int] = num_layers __SCREAMING_SNAKE_CASE :List[str] = num_heads __SCREAMING_SNAKE_CASE :Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE :str = window_size __SCREAMING_SNAKE_CASE :Dict = activation_function __SCREAMING_SNAKE_CASE :Tuple = resid_dropout __SCREAMING_SNAKE_CASE :str = embed_dropout __SCREAMING_SNAKE_CASE :str = attention_dropout __SCREAMING_SNAKE_CASE :Tuple = classifier_dropout __SCREAMING_SNAKE_CASE :Tuple = layer_norm_epsilon __SCREAMING_SNAKE_CASE :List[Any] = initializer_range __SCREAMING_SNAKE_CASE :Dict = use_cache __SCREAMING_SNAKE_CASE :Optional[Any] = bos_token_id __SCREAMING_SNAKE_CASE :List[str] = eos_token_id __SCREAMING_SNAKE_CASE :List[Any] = attention_types __SCREAMING_SNAKE_CASE :Union[str, Any] = self.expand_attention_types_params(SCREAMING_SNAKE_CASE__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __lowerCamelCase ( a_ : List[Any] , a_ : str , a_ : List[str] , a_ : Tuple ) -> List[Any]: import torch __SCREAMING_SNAKE_CASE :str = input.size() __SCREAMING_SNAKE_CASE :int = len(a_ ) __SCREAMING_SNAKE_CASE :Tuple = shape[dimension] __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.arange(0 , a_ , a_ ) __SCREAMING_SNAKE_CASE :int = torch.div(sizedim - size , a_ , rounding_mode='''floor''' ) + 1 __SCREAMING_SNAKE_CASE :Any = torch.arange(a_ ) + low_indices[:min_length][:, None] __SCREAMING_SNAKE_CASE :List[str] = [slice(a_ )] * rank __SCREAMING_SNAKE_CASE :List[Any] = indices __SCREAMING_SNAKE_CASE :str = input[s] __SCREAMING_SNAKE_CASE :Tuple = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(a_ ) def __lowerCamelCase ( a_ : str , a_ : Union[str, Any] ) -> Any: import torch __SCREAMING_SNAKE_CASE :Dict = torch.arange(1 , a_ ) __SCREAMING_SNAKE_CASE :List[str] = torch.remainder(a_ , a_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = remainders == 0 __SCREAMING_SNAKE_CASE :Any = candidates[divisor_indices] __SCREAMING_SNAKE_CASE :Dict = torch.max(a_ ) return largest_divisor, torch.div(a_ , a_ , rounding_mode='''floor''' ) class _SCREAMING_SNAKE_CASE( A ): @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ ,direction='''inputs''' ) __SCREAMING_SNAKE_CASE :Dict = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __SCREAMING_SNAKE_CASE :Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return self._config.num_heads def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = super(SCREAMING_SNAKE_CASE__ ,self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ,seq_length=SCREAMING_SNAKE_CASE__ ,is_pair=SCREAMING_SNAKE_CASE__ ,framework=SCREAMING_SNAKE_CASE__ ) # We need to order the input in the way they appears in the forward() __SCREAMING_SNAKE_CASE :Optional[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __SCREAMING_SNAKE_CASE :Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE :Optional[int] = seqlen + 2 __SCREAMING_SNAKE_CASE :Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __SCREAMING_SNAKE_CASE :int = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(self.num_layers ) ] __SCREAMING_SNAKE_CASE :str = common_inputs['''attention_mask'''] if self.use_past: __SCREAMING_SNAKE_CASE :Tuple = ordered_inputs['''attention_mask'''].dtype __SCREAMING_SNAKE_CASE :Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__ )] ,dim=1 ) return ordered_inputs @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return 13
359
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} lowerCamelCase_ = [ { "type": "header", "text": { "type": "plain_text", "text": f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', "emoji": True, }, } ] lowerCamelCase_ = 0 for log in Path().glob("*.log"): lowerCamelCase_ = 0 with open(log, "r") as f: for line in f: lowerCamelCase_ = json.loads(line) if line.get("nodeid", "") != "": lowerCamelCase_ = line["nodeid"] if line.get("duration", None) is not None: lowerCamelCase_ = f'{line["duration"]:.4f}' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase_ = [] log.unlink() lowerCamelCase_ = "" lowerCamelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase_ = [] lowerCamelCase_ = {} for test in failed_tests: lowerCamelCase_ = test[0].split("::") lowerCamelCase_ = data[0].split("/")[-1] if data[0] not in filesafailed: lowerCamelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase_ = [test[0] for test in failed_table] lowerCamelCase_ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase_ = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: lowerCamelCase_ = "Too many failed tests, please see the full report in the Action results." lowerCamelCase_ = len(err) + 1_0 lowerCamelCase_ = message[: 3_0_0_0 - offset] + f'\n...\n```\n{err}' print(f'### {message}') else: lowerCamelCase_ = "No failed tests! 🤗" print(f'## {message}') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient lowerCamelCase_ = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": lowerCamelCase_ = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) lowerCamelCase_ = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) lowerCamelCase_ = { "type": "context", "elements": [ { "type": "plain_text", "text": f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) lowerCamelCase_ = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) lowerCamelCase_ = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase_ = "" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase_ = row[0] else: lowerCamelCase_ = "" lowerCamelCase_ = { "type": "section", "text": { "type": "mrkdwn", "text": f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
239
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( __lowercase : list[int] ) -> bool: '''simple docstring''' return len(set(__lowercase ) ) == len(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
22
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase_ ( __lowercase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = image.size _UpperCAmelCase , _UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _UpperCAmelCase = np.array(__lowercase ).astype(np.floataa ) / 255.0 _UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase = torch.from_numpy(__lowercase ) return 2.0 * image - 1.0 class A_ ( lowerCAmelCase_ ): def __init__( self : Optional[Any] , snake_case_ : VQModel , snake_case_ : UNetaDModel , snake_case_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=snake_case_ , unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self : Any , snake_case_ : Union[torch.Tensor, PIL.Image.Image] = None , snake_case_ : Optional[int] = 1 , snake_case_ : Optional[int] = 1_0_0 , snake_case_ : Optional[float] = 0.0 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case_ )}' ) if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = preprocess(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) _UpperCAmelCase = next(self.unet.parameters() ).dtype _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) _UpperCAmelCase = image.to(device=self.device , dtype=snake_case_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case_ , device=self.device ) _UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for t in self.progress_bar(snake_case_ ): # concat latents and low resolution image in the channel dimension. _UpperCAmelCase = torch.cat([latents, image] , dim=1 ) _UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual _UpperCAmelCase = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # decode the image latents with the VQVAE _UpperCAmelCase = self.vqvae.decode(snake_case_ ).sample _UpperCAmelCase = torch.clamp(snake_case_ , -1.0 , 1.0 ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
22
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self : Tuple ): _UpperCAmelCase : List[str] = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) _UpperCAmelCase : int = tokenizer("Hello there" , return_tensors="np" ).input_ids _UpperCAmelCase : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids _UpperCAmelCase : List[Any] = shift_tokens_right(A , model.config.pad_token_id , model.config.decoder_start_token_id ) _UpperCAmelCase : Dict = model(A , decoder_input_ids=A ).logits _UpperCAmelCase : Optional[Any] = optax.softmax_cross_entropy(A , onehot(A , logits.shape[-1] ) ).mean() _UpperCAmelCase : Optional[Any] = -(labels.shape[-1] * loss.item()) _UpperCAmelCase : Dict = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
202
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : int = 'owlvit_text_model' def __init__( self : int , A : int=4_9_4_0_8 , A : Optional[Any]=5_1_2 , A : Optional[Any]=2_0_4_8 , A : str=1_2 , A : int=8 , A : Tuple=1_6 , A : List[Any]="quick_gelu" , A : Tuple=1e-5 , A : Union[str, Any]=0.0 , A : List[Any]=0.02 , A : str=1.0 , A : str=0 , A : List[str]=4_9_4_0_6 , A : str=4_9_4_0_7 , **A : Optional[Any] , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : List[str] = attention_dropout _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : List[Any] = initializer_factor @classmethod def snake_case_ ( cls : Any , A : Union[str, os.PathLike] , **A : Dict ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : List[str] = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = 'owlvit_vision_model' def __init__( self : Union[str, Any] , A : Optional[int]=7_6_8 , A : int=3_0_7_2 , A : List[str]=1_2 , A : List[str]=1_2 , A : Optional[int]=3 , A : Optional[int]=7_6_8 , A : str=3_2 , A : Tuple="quick_gelu" , A : Dict=1e-5 , A : Optional[int]=0.0 , A : List[Any]=0.02 , A : str=1.0 , **A : Tuple , ): super().__init__(**A ) _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Any = attention_dropout _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Tuple = initializer_factor @classmethod def snake_case_ ( cls : Optional[int] , A : Union[str, os.PathLike] , **A : int ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : Dict = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = 'owlvit' __SCREAMING_SNAKE_CASE : Optional[Any] = True def __init__( self : Optional[Any] , A : Dict=None , A : Tuple=None , A : Optional[Any]=5_1_2 , A : Optional[Any]=2.6_592 , A : int=True , **A : Tuple , ): super().__init__(**A ) if text_config is None: _UpperCAmelCase : List[Any] = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: _UpperCAmelCase : Tuple = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) _UpperCAmelCase : str = OwlViTTextConfig(**A ) _UpperCAmelCase : int = OwlViTVisionConfig(**A ) _UpperCAmelCase : Optional[Any] = projection_dim _UpperCAmelCase : str = logit_scale_init_value _UpperCAmelCase : Optional[Any] = return_dict _UpperCAmelCase : str = 1.0 @classmethod def snake_case_ ( cls : Dict , A : Union[str, os.PathLike] , **A : Any ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : str = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) @classmethod def snake_case_ ( cls : Optional[int] , A : Dict , A : Dict , **A : Optional[Any] ): _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : int = text_config _UpperCAmelCase : Dict = vision_config return cls.from_dict(A , **A ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.text_config.to_dict() _UpperCAmelCase : Optional[int] = self.vision_config.to_dict() _UpperCAmelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _UpperCamelCase ): @property def snake_case_ ( self : List[str] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def snake_case_ ( self : Optional[int] ): return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def snake_case_ ( self : str ): return 1e-4 def snake_case_ ( self : str , A : "ProcessorMixin" , A : int = -1 , A : int = -1 , A : Optional["TensorType"] = None , ): _UpperCAmelCase : Optional[Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) _UpperCAmelCase : Union[str, Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def snake_case_ ( self : List[Any] ): return 1_4
202
1
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path A : str = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def _lowerCamelCase ( _UpperCamelCase=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=lowerCAmelCase__ ) ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =None __UpperCAmelCase : List[str] =None def snake_case ( self , __a , __a ): with TemporaryDirectory() as tmp_dir: __lowerCAmelCase = dataset_module_factory(__a , cache_dir=__a ) __lowerCAmelCase = import_main_class(dataset_module.module_path , dataset=__a ) __lowerCAmelCase = builder_cls( cache_dir=__a , config_name=__a , hash=dataset_module.hash , ) __lowerCAmelCase = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__a ).replace(os.sep , "/" ), config.DATASET_INFO_FILENAME, ] ) __lowerCAmelCase = cached_path(__a , cache_dir=__a ) self.assertTrue(os.path.exists(__a ) ) @pytest.mark.integration def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" __lowerCAmelCase = dataset_module_factory("wikipedia" , cache_dir=_UpperCamelCase ) __lowerCAmelCase = import_main_class(dataset_module.module_path ) __lowerCAmelCase = builder_cls( cache_dir=_UpperCamelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __lowerCAmelCase = None builder_instance.download_and_prepare() __lowerCAmelCase = builder_instance.as_dataset() assert ds @pytest.mark.integration def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = dataset_module_factory("wikipedia" , cache_dir=_UpperCamelCase ) __lowerCAmelCase = import_main_class(dataset_module.module_path , dataset=_UpperCamelCase ) __lowerCAmelCase = builder_cls( cache_dir=_UpperCamelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) __lowerCAmelCase = builder_instance.as_streaming_dataset() assert ds assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert "train" in ds assert isinstance(ds["train"] , _UpperCamelCase ) assert next(iter(ds["train"] ) )
57
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' _UpperCAmelCase = multiprocessing.Manager() _UpperCAmelCase = manager.list() _UpperCAmelCase = multiprocessing.Process(target=_UpperCAmelCase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def A ( _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _UpperCAmelCase = shutil.rmtree _UpperCAmelCase = os.rmdir _UpperCAmelCase = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _UpperCAmelCase = {} with swallow_io(): with time_limit(_UpperCAmelCase ): exec(_UpperCAmelCase , _UpperCAmelCase ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F"failed: {e}" ) # Needed for cleaning up. _UpperCAmelCase = rmtree _UpperCAmelCase = rmdir _UpperCAmelCase = chdir @contextlib.contextmanager def A ( _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' def signal_handler(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , _UpperCAmelCase ) signal.signal(signal.SIGALRM , _UpperCAmelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def A ( ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = WriteOnlyStringIO() with contextlib.redirect_stdout(_UpperCAmelCase ): with contextlib.redirect_stderr(_UpperCAmelCase ): with redirect_stdin(_UpperCAmelCase ): yield @contextlib.contextmanager def A ( ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(_UpperCAmelCase ): yield dirname class __lowerCAmelCase ( A ): pass class __lowerCAmelCase ( io.StringIO ): def _lowerCamelCase ( self : Tuple , *A : str , **A : Any) -> Any: """simple docstring""" raise OSError def _lowerCamelCase ( self : List[str] , *A : Optional[Any] , **A : Optional[Any]) -> Optional[int]: """simple docstring""" raise OSError def _lowerCamelCase ( self : str , *A : List[str] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" raise OSError def _lowerCamelCase ( self : Union[str, Any] , *A : Optional[Any] , **A : List[str]) -> Optional[int]: """simple docstring""" return False class __lowerCAmelCase ( contextlib._RedirectStream ): # type: ignore UpperCamelCase = '''stdin''' @contextlib.contextmanager def A ( _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if root == ".": yield return _UpperCAmelCase = os.getcwd() os.chdir(_UpperCAmelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str]=None ) -> Any: '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _UpperCAmelCase = None _UpperCAmelCase = None import os _UpperCAmelCase = '1' _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None import shutil _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None import subprocess _UpperCAmelCase = None # type: ignore _UpperCAmelCase = None import sys _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None
339
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __A, __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = StableDiffusionInstructPixaPixPipeline lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self ) -> Any: torch.manual_seed(0 ) A_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A_ : int = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) torch.manual_seed(0 ) A_ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : List[Any] = CLIPTextModel(_lowerCamelCase ) A_ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=0 ) -> Union[str, Any]: A_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) A_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : int = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert("""RGB""" ) if str(_lowerCamelCase ).startswith("""mps""" ): A_ : List[Any] = torch.manual_seed(_lowerCamelCase ) else: A_ : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) A_ : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def UpperCAmelCase_ ( self ) -> str: A_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : List[Any] = self.get_dummy_components() A_ : Any = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) A_ : Union[str, Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : int = self.get_dummy_inputs(_lowerCamelCase ) A_ : Optional[Any] = sd_pipe(**_lowerCamelCase ).images A_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ : Optional[int] = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Tuple = self.get_dummy_components() A_ : List[Any] = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) A_ : Any = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : int = self.get_dummy_inputs(_lowerCamelCase ) A_ : Tuple = """french fries""" A_ : Optional[int] = sd_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase ) A_ : Optional[Any] = output.images A_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ : Optional[Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase_ ( self ) -> List[str]: A_ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Optional[Any] = self.get_dummy_components() A_ : List[Any] = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) A_ : Union[str, Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : Tuple = self.get_dummy_inputs(_lowerCamelCase ) A_ : Optional[Any] = [inputs["""prompt"""]] * 2 A_ : Optional[Any] = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 A_ : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) A_ : Any = image / 2 + 0.5 A_ : Tuple = image.permute(0 , 3 , 1 , 2 ) A_ : List[str] = image.repeat(2 , 1 , 1 , 1 ) A_ : Optional[Any] = sd_pipe(**_lowerCamelCase ).images A_ : Tuple = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A_ : str = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Union[str, Any] = self.get_dummy_components() A_ : Tuple = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) A_ : str = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) A_ : int = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : Optional[Any] = self.get_dummy_inputs(_lowerCamelCase ) A_ : Union[str, Any] = sd_pipe(**_lowerCamelCase ).images A_ : Tuple = image[0, -3:, -3:, -1] A_ : Optional[int] = [round(_lowerCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(_lowerCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A_ : Optional[int] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.get_dummy_components() A_ : Tuple = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) A_ : Union[str, Any] = VaeImageProcessor(do_resize=_lowerCamelCase , do_normalize=_lowerCamelCase ) A_ : str = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : List[str] = pipe(**self.get_dummy_inputs_by_type(_lowerCamelCase , input_image_type="""pt""" ) )[0] A_ : List[str] = components["""vae"""] A_ : str = self.get_dummy_inputs_by_type(_lowerCamelCase , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A_ : str = vae.encode(inputs[image_param] ).latent_dist.mode() A_ : Any = pipe(**_lowerCamelCase )[0] A_ : Dict = np.abs(out - out_latents_inputs ).max() self.assertLess(_lowerCamelCase , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self , _lowerCamelCase=0 ) -> Tuple: A_ : List[str] = torch.manual_seed(_lowerCamelCase ) A_ : str = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) A_ : Union[str, Any] = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase_ ( self ) -> int: A_ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() A_ : List[Any] = self.get_inputs() A_ : Union[str, Any] = pipe(**_lowerCamelCase ).images A_ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ : List[str] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_lowerCamelCase ) A_ : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() A_ : int = self.get_inputs() A_ : Dict = pipe(**_lowerCamelCase ).images A_ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ : List[str] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_lowerCamelCase ) A_ : Dict = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() A_ : List[Any] = self.get_inputs() A_ : List[Any] = pipe(**_lowerCamelCase ).images A_ : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ : str = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase_ ( self ) -> Tuple: A_ : Union[str, Any] = 0 def callback_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> None: A_ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A_ : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A_ : Union[str, Any] = latents[0, -3:, -3:, -1] A_ : Dict = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A_ : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A_ : Tuple = latents[0, -3:, -3:, -1] A_ : Any = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A_ : int = False A_ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) A_ : Optional[Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() A_ : int = self.get_inputs() pipe(**_lowerCamelCase , callback=_lowerCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase_ ( self ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) A_ : Any = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A_ : str = self.get_inputs() A_ : Union[str, Any] = pipe(**_lowerCamelCase ) A_ : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def UpperCAmelCase_ ( self ) -> Any: A_ : List[str] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A_ : List[str] = inputs["""image"""].resize((504, 504) ) A_ : Tuple = """timbrooks/instruct-pix2pix""" A_ : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( _lowerCamelCase , safety_checker=_lowerCamelCase , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() A_ : Optional[int] = pipe(**_lowerCamelCase ) A_ : List[str] = output.images[0] A_ : Tuple = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) A_ : int = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
164
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> Dict: super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = 50 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ) -> Union[Tuple, ImagePipelineOutput]: A_ : str = self.unet.config.sample_size A_ : Optional[int] = (batch_size, 3, img_size, img_size) A_ : Any = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) A_ : Dict = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper A_ : Optional[Any] = self.scheduler.schedule[t] A_ : Union[str, Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat A_ , A_ : List[Any] = self.scheduler.add_noise_to_input(_lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : List[str] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev A_ : List[Any] = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : int = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample A_ : Any = self.scheduler.step_correct( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , step_output.prev_sample , step_output["""derivative"""] , ) A_ : Tuple = step_output.prev_sample A_ : Union[str, Any] = (sample / 2 + 0.5).clamp(0 , 1 ) A_ : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ : Dict = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
164
1
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=UpperCamelCase_ ): _a = ['''onnx'''] def __init__( self : str , *A_ : Dict , **A_ : Union[str, Any]): requires_backends(self , ['''onnx''']) @classmethod def UpperCAmelCase__ ( cls : Optional[int] , *A_ : List[str] , **A_ : Optional[Any]): requires_backends(cls , ['''onnx''']) @classmethod def UpperCAmelCase__ ( cls : List[Any] , *A_ : Dict , **A_ : List[str]): requires_backends(cls , ['''onnx'''])
103
'''simple docstring''' from __future__ import annotations import requests def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(snake_case ).json() def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" snake_case_ = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = hackernews_top_stories(snake_case ) return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
85
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 2_0_4_8, } class UpperCAmelCase (__lowerCamelCase ): """simple docstring""" _UpperCAmelCase :Tuple = VOCAB_FILES_NAMES _UpperCAmelCase :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__: str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space: lowercase__: Optional[Any] = getattr(UpperCamelCase_ , pre_tok_state.pop('''type''' ) ) lowercase__: List[str] = add_prefix_space lowercase__: Dict = pre_tok_class(**UpperCamelCase_ ) lowercase__: Optional[Any] = add_prefix_space def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Tuple = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) + [self.eos_token_id] ) if len(UpperCamelCase_ ) > self.model_max_length: lowercase__: str = input_ids[-self.model_max_length :] return input_ids
356
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = CTRLTokenizer _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__: Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__: Any = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[int] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__: Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _snake_case ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Optional[int] = '''adapt react readapt apt''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Optional[int] = '''adapt react readapt apt''' lowercase__: Any = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__: Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = tokens + [tokenizer.unk_token] lowercase__: str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
2
0
__A : int = '''Alexander Joslin''' import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[Any] = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCAmelCase : Stack[int] = Stack() lowerCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_UpperCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(_UpperCAmelCase ) elif i == ")": # RULE 4 lowerCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() lowerCAmelCase : Optional[Any] = operand_stack.peek() operand_stack.pop() lowerCAmelCase : Any = operand_stack.peek() operand_stack.pop() lowerCAmelCase : List[Any] = operators[opr](_UpperCAmelCase, _UpperCAmelCase ) operand_stack.push(_UpperCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Optional[int] = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(F'{equation} = {dijkstras_two_stack_algorithm(equation)}')
138
from torch import nn def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
138
1
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' if n_term == "": return [] UpperCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(f"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": _lowercase : Optional[int] = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
363
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCamelCase__ ( A : str="" ): '''simple docstring''' UpperCAmelCase = tempfile.mkdtemp() return os.path.join(A , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> int: """simple docstring""" UpperCAmelCase = torch.rand(12 , dtype=torch.floataa ) - 0.5 UpperCAmelCase = AgentAudio(lowerCAmelCase ) UpperCAmelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCAmelCase ) ) # Ensure that the file contains the same value as the original tensor UpperCAmelCase , UpperCAmelCase = sf.read(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , torch.tensor(lowerCAmelCase ) , atol=1E-4 ) ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = torch.rand(12 , dtype=torch.floataa ) - 0.5 UpperCAmelCase = get_new_path(suffix='''.wav''' ) sf.write(lowerCAmelCase , lowerCAmelCase , 16000 ) UpperCAmelCase = AgentAudio(lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowerCAmelCase ) @require_vision @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> Any: """simple docstring""" UpperCAmelCase = torch.randint(0 , 256 , (64, 64, 3) ) UpperCAmelCase = AgentImage(lowerCAmelCase ) UpperCAmelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase ) ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' UpperCAmelCase = Image.open(lowerCAmelCase ) UpperCAmelCase = AgentImage(lowerCAmelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' UpperCAmelCase = Image.open(lowerCAmelCase ) UpperCAmelCase = AgentImage(lowerCAmelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase ) ) class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = '''Hey!''' UpperCAmelCase = AgentText(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , agent_type.to_string() ) self.assertEqual(lowerCAmelCase , agent_type.to_raw() ) self.assertEqual(lowerCAmelCase , lowerCAmelCase )
91
0
import os def _a ( SCREAMING_SNAKE_CASE : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(UpperCAmelCase__ ) , UpperCAmelCase__ ) ) as input_file: UpperCamelCase__ : str = [ [int(UpperCAmelCase__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] UpperCamelCase__ : Optional[Any] = len(UpperCAmelCase__ ) UpperCamelCase__ : Any = len(matrix[0] ) UpperCamelCase__ : Union[str, Any] = [[-1 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): UpperCamelCase__ : int = matrix[i][0] for j in range(1 , UpperCAmelCase__ ): for i in range(UpperCAmelCase__ ): UpperCamelCase__ : Union[str, Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCAmelCase__ ): UpperCamelCase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): UpperCamelCase__ : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"{solution() = }")
146
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
239
0
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class A_ ( lowerCAmelCase_ ): def lowercase ( self : Dict ): _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = 8 # DPR tok _UpperCAmelCase = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCAmelCase = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _UpperCAmelCase = os.path.join(snake_case_ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok _UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _UpperCAmelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCAmelCase = {"unk_token": "<unk>"} _UpperCAmelCase = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _UpperCAmelCase = os.path.join(snake_case_ , BART_VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase = os.path.join(snake_case_ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case_ ) ) def lowercase ( self : Dict ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def lowercase ( self : Dict ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def lowercase ( self : str ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowercase ( self : int ): _UpperCAmelCase = os.path.join(self.tmpdirname , "rag_tokenizer" ) _UpperCAmelCase = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _UpperCAmelCase = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(snake_case_ ) rag_tokenizer.save_pretrained(snake_case_ ) _UpperCAmelCase = RagTokenizer.from_pretrained(snake_case_ , config=snake_case_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , snake_case_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , snake_case_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowercase ( self : Any ): _UpperCAmelCase = RagTokenizer.from_pretrained("facebook/rag-token-nq" ) _UpperCAmelCase = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] _UpperCAmelCase = tokenizer(snake_case_ ) self.assertIsNotNone(snake_case_ ) @slow def lowercase ( self : Optional[Any] ): _UpperCAmelCase = RagTokenizer.from_pretrained("facebook/rag-sequence-nq" ) _UpperCAmelCase = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] _UpperCAmelCase = tokenizer(snake_case_ ) self.assertIsNotNone(snake_case_ )
156
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : list ) -> list: '''simple docstring''' for i in range(len(__lowercase ) - 1 , 0 , -1 ): _UpperCAmelCase = False for j in range(__lowercase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _UpperCAmelCase , _UpperCAmelCase = unsorted[j - 1], unsorted[j] _UpperCAmelCase = True for j in range(__lowercase ): if unsorted[j] > unsorted[j + 1]: _UpperCAmelCase , _UpperCAmelCase = unsorted[j + 1], unsorted[j] _UpperCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE :List[str] = input('''Enter numbers separated by a comma:\n''').strip() __SCREAMING_SNAKE_CASE :Any = [int(item) for item in user_input.split(''',''')] print(F"{cocktail_shaker_sort(unsorted) = }")
156
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __snake_case = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def a ( __a , __a , __a , __a , __a ) -> Dict: '''simple docstring''' for attribute in key.split('''.''' ): UpperCamelCase__ :int = getattr(__a , __a ) if weight_type is not None: UpperCamelCase__ :Tuple = getattr(__a , __a ).shape else: UpperCamelCase__ :Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase__ :str = value elif weight_type == "weight_g": UpperCamelCase__ :int = value elif weight_type == "weight_v": UpperCamelCase__ :List[str] = value elif weight_type == "bias": UpperCamelCase__ :Union[str, Any] = value else: UpperCamelCase__ :Dict = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def a ( __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Tuple = [] UpperCamelCase__ :str = fairseq_model.state_dict() UpperCamelCase__ :List[Any] = hf_model.feature_extractor UpperCamelCase__ :Dict = hf_model.adapter for name, value in fairseq_dict.items(): UpperCamelCase__ :Tuple = False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == '''group''' , ) UpperCamelCase__ :Any = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__a , __a , __a , __a ) UpperCamelCase__ :List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCamelCase__ :Tuple = True if "*" in mapped_key: UpperCamelCase__ :Any = name.split(__a )[0].split('''.''' )[-2] UpperCamelCase__ :Optional[Any] = mapped_key.replace('''*''' , __a ) if "weight_g" in name: UpperCamelCase__ :List[Any] = '''weight_g''' elif "weight_v" in name: UpperCamelCase__ :Optional[Any] = '''weight_v''' elif "bias" in name: UpperCamelCase__ :Tuple = '''bias''' elif "weight" in name: UpperCamelCase__ :Optional[Any] = '''weight''' else: UpperCamelCase__ :str = None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f'''Unused weights: {unused_weights}''' ) def a ( __a , __a , __a , __a , __a ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ :int = full_name.split('''conv_layers.''' )[-1] UpperCamelCase__ :str = name.split('''.''' ) UpperCamelCase__ :int = int(items[0] ) UpperCamelCase__ :Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase__ :Any = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase__ :List[Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCamelCase__ :Any = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase__ :int = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__a ) def a ( __a , __a , __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :Tuple = full_name.split('''adaptor.''' )[-1] UpperCamelCase__ :int = name.split('''.''' ) if items[1].isdigit(): UpperCamelCase__ :List[str] = int(items[1] ) else: UpperCamelCase__ :List[Any] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' UpperCamelCase__ :List[str] = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' UpperCamelCase__ :int = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' UpperCamelCase__ :Optional[Any] = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' UpperCamelCase__ :List[str] = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__a , __a ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' UpperCamelCase__ :Dict = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' UpperCamelCase__ :str = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__a ) def a ( __a ) -> Any: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Any = emb.weight.shape UpperCamelCase__ :int = nn.Linear(__a , __a , bias=__a ) UpperCamelCase__ :Dict = emb.weight.data return lin_layer @torch.no_grad() def a ( __a , __a , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :str = WavaVecaConfig.from_pretrained( __a , add_adapter=__a , adapter_stride=__a , adapter_kernel_size=__a , use_auth_token=__a , output_hidden_size=__a , ) UpperCamelCase__ :Dict = MBartConfig.from_pretrained(__a ) # load model UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) UpperCamelCase__ :List[str] = model[0].eval() # load feature extractor UpperCamelCase__ :Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(__a , use_auth_token=__a ) # set weights for wav2vec2 encoder UpperCamelCase__ :List[str] = WavaVecaModel(__a ) recursively_load_weights_wavaveca(model.encoder , __a ) # load decoder weights UpperCamelCase__ :Tuple = MBartForCausalLM(__a ) UpperCamelCase__ , UpperCamelCase__ :int = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__a ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) UpperCamelCase__ :str = SpeechEncoderDecoderModel(encoder=__a , decoder=__a ) UpperCamelCase__ :Tuple = False UpperCamelCase__ :List[Any] = MBartaaTokenizer(__a ) tokenizer.save_pretrained(__a ) UpperCamelCase__ :Dict = hf_wavavec.config.to_dict() UpperCamelCase__ :Optional[int] = tokenizer.pad_token_id UpperCamelCase__ :Tuple = tokenizer.bos_token_id UpperCamelCase__ :Union[str, Any] = tokenizer.eos_token_id UpperCamelCase__ :Any = '''mbart50''' UpperCamelCase__ :Optional[Any] = '''wav2vec2''' UpperCamelCase__ :List[Any] = tokenizer.eos_token_id UpperCamelCase__ :Optional[int] = 250004 UpperCamelCase__ :Tuple = tokenizer.eos_token_id UpperCamelCase__ :int = SpeechEncoderDecoderConfig.from_dict(__a ) hf_wavavec.save_pretrained(__a ) feature_extractor.save_pretrained(__a ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=250004, type=int, help='''`decoder_start_token_id` of model config''') __snake_case = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
97
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _a : str= logging.get_logger(__name__) _a : str= {"vocab_file": "spiece.model"} _a : Tuple= { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } _a : int= { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) _a : Optional[int]= 0 _a : str= 1 _a : Tuple= 2 _a : str= 3 _a : Optional[Any]= 4 class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : str = """left""" def __init__(self : List[Any] , _A : List[str] , _A : int=False , _A : Tuple=True , _A : Optional[Any]=False , _A : List[Any]="<s>" , _A : Dict="</s>" , _A : str="<unk>" , _A : Optional[Any]="<sep>" , _A : Optional[Any]="<pad>" , _A : Optional[Any]="<cls>" , _A : Dict="<mask>" , _A : List[Any]=["<eop>", "<eod>"] , _A : Optional[Dict[str, Any]] = None , **_A : List[str] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __snake_case : str = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else mask_token __snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __snake_case : Tuple = 3 __snake_case : Optional[int] = do_lower_case __snake_case : Union[str, Any] = remove_space __snake_case : Dict = keep_accents __snake_case : str = vocab_file __snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_A) @property def _lowercase (self : Dict) -> List[str]: return len(self.sp_model) def _lowercase (self : Dict) -> Union[str, Any]: __snake_case : str = {self.convert_ids_to_tokens(_A): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self : Union[str, Any]) -> List[str]: __snake_case : Optional[Any] = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__(self : Union[str, Any] , _A : Optional[Any]) -> str: __snake_case : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __snake_case : List[Any] = {} __snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowercase (self : Any , _A : Tuple) -> List[str]: if self.remove_space: __snake_case : List[Any] = ' '.join(inputs.strip().split()) else: __snake_case : Tuple = inputs __snake_case : int = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __snake_case : str = unicodedata.normalize('NFKD' , _A) __snake_case : Tuple = ''.join([c for c in outputs if not unicodedata.combining(_A)]) if self.do_lower_case: __snake_case : Union[str, Any] = outputs.lower() return outputs def _lowercase (self : List[Any] , _A : str) -> List[str]: __snake_case : int = self.preprocess_text(_A) __snake_case : Dict = self.sp_model.encode(_A , out_type=_A) __snake_case : Union[str, Any] = [] for piece in pieces: if len(_A) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __snake_case : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __snake_case : List[str] = cur_pieces[1:] else: __snake_case : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_A) else: new_pieces.append(_A) return new_pieces def _lowercase (self : Union[str, Any] , _A : Union[str, Any]) -> Any: return self.sp_model.PieceToId(_A) def _lowercase (self : Tuple , _A : str) -> Optional[int]: return self.sp_model.IdToPiece(_A) def _lowercase (self : List[str] , _A : Dict) -> List[Any]: __snake_case : str = ''.join(_A).replace(_A , ' ').strip() return out_string def _lowercase (self : Dict , _A : List[int] , _A : bool = False , _A : bool = None , _A : bool = True , **_A : str , ) -> str: __snake_case : Tuple = kwargs.pop('use_source_tokenizer' , _A) __snake_case : Tuple = self.convert_ids_to_tokens(_A , skip_special_tokens=_A) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __snake_case : List[str] = [] __snake_case : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A)) __snake_case : List[Any] = [] sub_texts.append(_A) else: current_sub_text.append(_A) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __snake_case : Optional[int] = ''.join(_A) __snake_case : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __snake_case : str = self.clean_up_tokenization(_A) return clean_text else: return text def _lowercase (self : Dict , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : int = [self.sep_token_id] __snake_case : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase (self : List[str] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A) if token_ids_a is not None: return ([0] * len(_A)) + [1] + ([0] * len(_A)) + [1, 1] return ([0] * len(_A)) + [1, 1] def _lowercase (self : Dict , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[int] = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowercase (self : Tuple , _A : str , _A : Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_A): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __snake_case : str = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_A) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _A) elif not os.path.isfile(self.vocab_file): with open(_A , 'wb') as fi: __snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(_A) return (out_vocab_file,)
172
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 _UpperCAmelCase = 1 for i in range(1 ,n + 1 ): # to compute current row from previous row. _UpperCAmelCase = min(a__ ,a__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
369
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
0
def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase_ : Tuple = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : Union[str, Any] = str(bin(__snake_case ) )[2:] # remove the leading "0b" UpperCAmelCase_ : List[Any] = max(len(__snake_case ) , len(__snake_case ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(__snake_case ) , b_binary.zfill(__snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
29
import os # Precomputes a list of the 100 first triangular numbers __UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = os.path.dirname(os.path.realpath(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , 'words.txt' ) UpperCAmelCase_ : Union[str, Any] = '' with open(__snake_case ) as f: UpperCAmelCase_ : List[Any] = f.readline() UpperCAmelCase_ : Optional[int] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCAmelCase_ : Optional[int] = [ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
29
1
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Dict , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : Any = LxmertConfig.from_json_file(__UpperCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ : Optional[Any] = LxmertForPreTraining(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
356
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Union[str, Any] = 1 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = None ): '''simple docstring''' self.set_timesteps(snake_case_ ) # standard deviation of the initial noise distribution UpperCAmelCase_ : Union[str, Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCAmelCase_ : int = 4 # running values UpperCAmelCase_ : str = [] def _UpperCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = num_inference_steps UpperCAmelCase_ : int = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCAmelCase_ : Tuple = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCAmelCase_ : Optional[int] = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCAmelCase_ : Tuple = torch.sin(steps * math.pi / 2 ) ** 2 UpperCAmelCase_ : Dict = (1.0 - self.betas**2) ** 0.5 UpperCAmelCase_ : str = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCAmelCase_ : str = timesteps.to(snake_case_ ) UpperCAmelCase_ : Any = [] def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) UpperCAmelCase_ : Any = (self.timesteps == timestep).nonzero().item() UpperCAmelCase_ : Optional[Any] = timestep_index + 1 UpperCAmelCase_ : Dict = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(snake_case_ ) if len(self.ets ) == 1: UpperCAmelCase_ : Tuple = self.ets[-1] elif len(self.ets ) == 2: UpperCAmelCase_ : Any = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCAmelCase_ : List[str] = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: UpperCAmelCase_ : Union[str, Any] = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) UpperCAmelCase_ : Union[str, Any] = self._get_prev_sample(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def _UpperCamelCase ( self , snake_case_ , *snake_case_ , **snake_case_ ): '''simple docstring''' return sample def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = self.alphas[timestep_index] UpperCAmelCase_ : Union[str, Any] = self.betas[timestep_index] UpperCAmelCase_ : Any = self.alphas[prev_timestep_index] UpperCAmelCase_ : Dict = self.betas[prev_timestep_index] UpperCAmelCase_ : List[Any] = (sample - sigma * ets) / max(snake_case_ , 1E-8 ) UpperCAmelCase_ : Tuple = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
274
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : List[str] = 9, 14 # noqa: F841 UpperCAmelCase_ : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase_ : int = defaultdict(__snake_case ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase_ : List[Any] = mst(__snake_case ) UpperCAmelCase_ : Any = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase_ : str = tuple(answer[:2] ) UpperCAmelCase_ : Union[str, Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
29
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCamelCase : Any = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCamelCase : str = re.compile(R'([a-z\d])([A-Z])') lowerCamelCase : Optional[int] = re.compile(R'(?<!_)_(?!_)') lowerCamelCase : List[Any] = re.compile(R'(_{2,})') lowerCamelCase : str = R'^\w+(\.\w+)*$' lowerCamelCase : Dict = R'<>:/\|?*' def _SCREAMING_SNAKE_CASE (A ) -> Any: """simple docstring""" lowercase__ = _uppercase_uppercase_re.sub(R'''\1_\2''' , A ) lowercase__ = _lowercase_uppercase_re.sub(R'''\1_\2''' , A ) return name.lower() def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = _single_underscore_re.split(A ) lowercase__ = [_multiple_underscores_re.split(A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A ) if n != '''''' ) def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" if os.path.basename(A ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(A )}-{split}" def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> List[str]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase__ = os.path.join(A , A ) return f"{filepath}*" def _SCREAMING_SNAKE_CASE (A , A , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" lowercase__ = filename_prefix_for_split(A , A ) lowercase__ = os.path.join(A , A ) if shard_lengths: lowercase__ = len(A ) lowercase__ = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A )] if filetype_suffix: lowercase__ = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase__ = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
2
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase__ : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCamelCase__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
350
import math def __lowerCamelCase ( ) -> None: """simple docstring""" A__ = input("""Enter message: """ ) A__ = int(input(F'Enter key [2-{len(__a ) - 1}]: ' ) ) A__ = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): A__ = encrypt_message(__a , __a ) elif mode.lower().startswith("""d""" ): A__ = decrypt_message(__a , __a ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'Output:\n{text + "|"}' ) def __lowerCamelCase ( __a :int , __a :str ) -> str: """simple docstring""" A__ = [""""""] * key for col in range(__a ): A__ = col while pointer < len(__a ): cipher_text[col] += message[pointer] pointer += key return "".join(__a ) def __lowerCamelCase ( __a :int , __a :str ) -> str: """simple docstring""" A__ = math.ceil(len(__a ) / key ) A__ = key A__ = (num_cols * num_rows) - len(__a ) A__ = [""""""] * num_cols A__ = 0 A__ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): A__ = 0 row += 1 return "".join(__a ) if __name__ == "__main__": import doctest doctest.testmod() main()
276
0