code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''open-llama''' def __init__( self : Tuple , __UpperCAmelCase : Optional[int]=100000 , __UpperCAmelCase : Any=4096 , __UpperCAmelCase : Union[str, Any]=11008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[Any]="silu" , __UpperCAmelCase : Tuple=2048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Dict=1E-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Any=0 , __UpperCAmelCase : Optional[Any]=1 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[Any]=None , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = intermediate_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = initializer_range _A = rms_norm_eps _A = use_cache _A = kwargs.pop( "use_memorry_efficient_attention" , __UpperCAmelCase ) _A = hidden_dropout_prob _A = attention_dropout_prob _A = use_stable_embedding _A = shared_input_output_embedding _A = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) _A = self.rope_scaling.get("type" , __UpperCAmelCase ) _A = self.rope_scaling.get("factor" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
79
'''simple docstring''' def __lowercase ( __lowercase , __lowercase , __lowercase=False ) -> Union[str, Any]: '''simple docstring''' if isinstance(__lowercase , __lowercase ) and isinstance(__lowercase , __lowercase ): _A = len(set_a.intersection(__lowercase ) ) if alternative_union: _A = len(__lowercase ) + len(__lowercase ) else: _A = len(set_a.union(__lowercase ) ) return intersection / union if isinstance(__lowercase , (list, tuple) ) and isinstance(__lowercase , (list, tuple) ): _A = [element for element in set_a if element in set_b] if alternative_union: _A = len(__lowercase ) + len(__lowercase ) return len(__lowercase ) / union else: _A = set_a + [element for element in set_b if element not in set_a] return len(__lowercase ) / len(__lowercase ) return len(__lowercase ) / len(__lowercase ) return None if __name__ == "__main__": lowerCamelCase_ = {'''a''', '''b''', '''c''', '''d''', '''e'''} lowerCamelCase_ = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
79
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCAmelCase_ (_lowerCAmelCase : Dict ): """simple docstring""" __UpperCamelCase : List[Any] = tmp_path / "file.csv" __UpperCamelCase : Dict = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(lowerCAmelCase__ , "w" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def UpperCAmelCase_ (_lowerCAmelCase : List[Any] ): """simple docstring""" __UpperCamelCase : Tuple = tmp_path / "malformed_file.csv" __UpperCamelCase : List[str] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(lowerCAmelCase__ , "w" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def UpperCAmelCase_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ): """simple docstring""" __UpperCamelCase : Optional[int] = tmp_path / "csv_with_image.csv" __UpperCamelCase : List[str] = textwrap.dedent( F'''\\n image\n {image_file}\n ''' ) with open(lowerCAmelCase__ , "w" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def UpperCAmelCase_ (_lowerCAmelCase : List[Any] ): """simple docstring""" __UpperCamelCase : Any = tmp_path / "csv_with_label.csv" __UpperCamelCase : str = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(lowerCAmelCase__ , "w" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def UpperCAmelCase_ (_lowerCAmelCase : Tuple ): """simple docstring""" __UpperCamelCase : Optional[int] = tmp_path / "csv_with_int_list.csv" __UpperCamelCase : Tuple = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(lowerCAmelCase__ , "w" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) def UpperCAmelCase_ (_lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : str ): """simple docstring""" __UpperCamelCase : List[str] = Csv() __UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCAmelCase__ , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(lowerCAmelCase__ ) in record.message for record in caplog.records ) @require_pil def UpperCAmelCase_ (_lowerCAmelCase : List[str] ): """simple docstring""" with open(lowerCAmelCase__ , encoding="utf-8" ) as f: __UpperCamelCase : Optional[int] = f.read().splitlines()[1] __UpperCamelCase : List[str] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) __UpperCamelCase : Optional[int] = csv._generate_tables([[csv_file_with_image]] ) __UpperCamelCase : List[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() __UpperCamelCase : Optional[int] = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCAmelCase_ (_lowerCAmelCase : Dict ): """simple docstring""" with open(lowerCAmelCase__ , encoding="utf-8" ) as f: __UpperCamelCase : Union[str, Any] = f.read().splitlines()[1:] __UpperCamelCase : List[str] = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) __UpperCamelCase : List[Any] = csv._generate_tables([[csv_file_with_label]] ) __UpperCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() __UpperCamelCase : Optional[Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(lowerCAmelCase__ ) for label in labels] def UpperCAmelCase_ (_lowerCAmelCase : Tuple ): """simple docstring""" __UpperCamelCase : Tuple = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(lowerCAmelCase__ ) for i in x.split()]} ) __UpperCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) __UpperCamelCase : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) __UpperCamelCase : List[str] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
360
from __future__ import annotations from fractions import Fraction def UpperCAmelCase_ (_lowerCAmelCase : int , _lowerCAmelCase : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase_ (_lowerCAmelCase : int ): __UpperCamelCase : Optional[Any] = [] __UpperCamelCase : Optional[Any] = 11 __UpperCamelCase : List[str] = int("1" + "0" * digit_len ) for num in range(_lowerCAmelCase , _lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCAmelCase , _lowerCAmelCase ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __UpperCamelCase : Tuple = 10 return solutions def UpperCAmelCase_ (_lowerCAmelCase : int = 2 ): __UpperCamelCase : Optional[Any] = 1.0 for fraction in fraction_list(_lowerCAmelCase ): __UpperCamelCase : Union[str, Any] = Fraction(_lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
171
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __snake_case : str =logging.getLogger(__name__) def lowerCAmelCase__ ( lowerCamelCase_ : torch.nn.Module ,lowerCamelCase_ : BnbQuantizationConfig ,lowerCamelCase_ : Union[str, os.PathLike] = None ,lowerCamelCase_ : Optional[Dict[str, Union[int, str, torch.device]]] = None ,lowerCamelCase_ : Optional[List[str]] = None ,lowerCamelCase_ : Optional[Dict[Union[int, str], Union[int, str]]] = None ,lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None ,lowerCamelCase_ : bool = False ,): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = bnb_quantization_config.load_in_abit lowerCAmelCase__ : List[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''') if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''') lowerCAmelCase__ : int = [] # custom device map if isinstance(lowerCamelCase_ ,lowerCamelCase_) and len(device_map.keys()) > 1: lowerCAmelCase__ : int = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase__ : List[Any] = get_keys_to_not_convert(lowerCamelCase_) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCamelCase_) lowerCAmelCase__ : List[str] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCamelCase_) # compatibility with peft lowerCAmelCase__ : Optional[Any] = load_in_abit lowerCAmelCase__ : List[str] = load_in_abit lowerCAmelCase__ : str = get_parameter_device(lowerCamelCase_) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''') lowerCAmelCase__ : Union[str, Any] = replace_with_bnb_layers(lowerCamelCase_ ,lowerCamelCase_ ,modules_to_not_convert=lowerCamelCase_) # convert param to the right dtype lowerCAmelCase__ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase__ : Union[str, Any] = name.replace('''.weight''' ,'''''').replace('''.bias''' ,'''''') lowerCAmelCase__ : Dict = getattr(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(lowerCamelCase_): param.to(lowerCamelCase_) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''') logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''') return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """) else: with init_empty_weights(): lowerCAmelCase__ : str = replace_with_bnb_layers( lowerCamelCase_ ,lowerCamelCase_ ,modules_to_not_convert=lowerCamelCase_) lowerCAmelCase__ : List[Any] = get_quantized_model_device_map( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,max_memory=lowerCamelCase_ ,no_split_module_classes=lowerCamelCase_ ,) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase__ : Dict = True lowerCAmelCase__ : str = any(x in list(device_map.values()) for x in ['''cpu''', '''disk''']) load_checkpoint_in_model( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,dtype=bnb_quantization_config.torch_dtype ,offload_folder=lowerCamelCase_ ,offload_state_dict=lowerCamelCase_ ,keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules ,offload_abit_bnb=load_in_abit and offload ,) return dispatch_model(lowerCamelCase_ ,device_map=lowerCamelCase_ ,offload_dir=lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : Dict=None ,lowerCamelCase_ : int=None ,lowerCamelCase_ : str=None): '''simple docstring''' if device_map is None: if torch.cuda.is_available(): lowerCAmelCase__ : int = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''') logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''') if isinstance(lowerCamelCase_ ,lowerCamelCase_): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''') lowerCAmelCase__ : str = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : Union[str, Any] = special_dtypes lowerCAmelCase__ : Optional[int] = no_split_module_classes lowerCAmelCase__ : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase__ : Dict = get_balanced_memory( lowerCamelCase_ ,low_zero=(device_map == '''balanced_low_0''') ,max_memory=lowerCamelCase_ ,**lowerCamelCase_ ,) lowerCAmelCase__ : Tuple = max_memory lowerCAmelCase__ : Dict = infer_auto_device_map(lowerCamelCase_ ,**lowerCamelCase_) if isinstance(lowerCamelCase_ ,lowerCamelCase_): # check if don't have any quantized module on the cpu lowerCAmelCase__ : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase__ : Dict = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''') else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''') del device_map_without_some_modules return device_map def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : Dict ,lowerCamelCase_ : Tuple=None ,lowerCamelCase_ : int=None): '''simple docstring''' if modules_to_not_convert is None: lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Dict = _replace_with_bnb_layers( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''') return model def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Any ,lowerCamelCase_ : List[str]=None ,lowerCamelCase_ : Optional[Any]=None ,): '''simple docstring''' lowerCAmelCase__ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase__ : Tuple = [] current_key_name.append(lowerCamelCase_) if isinstance(lowerCamelCase_ ,nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase__ : int = '''.'''.join(lowerCamelCase_) lowerCAmelCase__ : Tuple = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase__ : List[str] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase__ : int = bnb.nn.LinearabitLt( module.in_features ,module.out_features ,module.bias is not None ,has_fpaa_weights=lowerCamelCase_ ,threshold=bnb_quantization_config.llm_inta_threshold ,) elif bnb_quantization_config.load_in_abit: lowerCAmelCase__ : Optional[int] = bnb.nn.Linearabit( module.in_features ,module.out_features ,module.bias is not None ,bnb_quantization_config.bnb_abit_compute_dtype ,compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant ,quant_type=bnb_quantization_config.bnb_abit_quant_type ,) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''') lowerCAmelCase__ : List[Any] = module.weight.data if module.bias is not None: lowerCAmelCase__ : List[str] = module.bias.data bnb_module.requires_grad_(lowerCamelCase_) setattr(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : Dict = True if len(list(module.children())) > 0: lowerCAmelCase__ : Tuple = _replace_with_bnb_layers( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : Tuple = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def lowerCAmelCase__ ( lowerCamelCase_ : List[Any]): '''simple docstring''' with init_empty_weights(): lowerCAmelCase__ : Dict = deepcopy(lowerCamelCase_) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase__ : str = find_tied_parameters(lowerCamelCase_) # For compatibility with Accelerate < 0.18 if isinstance(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : List[str] = sum(list(tied_params.values()) ,[]) + list(tied_params.keys()) else: lowerCAmelCase__ : int = sum(lowerCamelCase_ ,[]) lowerCAmelCase__ : Union[str, Any] = len(lowerCamelCase_) > 0 # Check if it is a base model lowerCAmelCase__ : str = False if hasattr(lowerCamelCase_ ,'''base_model_prefix'''): lowerCAmelCase__ : int = not hasattr(lowerCamelCase_ ,model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase__ : Tuple = list(model.named_children()) lowerCAmelCase__ : str = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase__ : Dict = set(lowerCamelCase_) - set(lowerCamelCase_) lowerCAmelCase__ : List[Any] = list(set(lowerCamelCase_)) + list(lowerCamelCase_) # remove ".weight" from the keys lowerCAmelCase__ : int = ['''.weight''', '''.bias'''] lowerCAmelCase__ : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase__ : int = name.replace(lowerCamelCase_ ,'''''') filtered_module_names.append(lowerCamelCase_) return filtered_module_names def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int]): '''simple docstring''' for m in model.modules(): if isinstance(lowerCamelCase_ ,bnb.nn.Linearabit): return True return False def lowerCAmelCase__ ( lowerCamelCase_ : nn.Module): '''simple docstring''' return next(parameter.parameters()).device def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : Any ,lowerCamelCase_ : Any ,lowerCamelCase_ : Dict ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : List[Any]): '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(lowerCamelCase_ ,lowerCamelCase_ ,0 ,dtype=lowerCamelCase_ ,value=lowerCamelCase_) lowerCAmelCase__ : Optional[int] = param_name lowerCAmelCase__ : str = model if "." in tensor_name: lowerCAmelCase__ : List[Any] = tensor_name.split('''.''') for split in splits[:-1]: lowerCAmelCase__ : Dict = getattr(lowerCamelCase_ ,lowerCamelCase_) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""") lowerCAmelCase__ : Optional[int] = new_module lowerCAmelCase__ : List[str] = splits[-1] # offload weights lowerCAmelCase__ : Any = False offload_weight(module._parameters[tensor_name] ,lowerCamelCase_ ,lowerCamelCase_ ,index=lowerCamelCase_) if hasattr(module._parameters[tensor_name] ,'''SCB'''): offload_weight( module._parameters[tensor_name].SCB ,param_name.replace('''weight''' ,'''SCB''') ,lowerCamelCase_ ,index=lowerCamelCase_ ,) else: offload_weight(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,index=lowerCamelCase_) offload_weight(lowerCamelCase_ ,param_name.replace('''weight''' ,'''SCB''') ,lowerCamelCase_ ,index=lowerCamelCase_) set_module_tensor_to_device(lowerCamelCase_ ,lowerCamelCase_ ,'''meta''' ,dtype=lowerCamelCase_ ,value=torch.empty(*param.size()))
129
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _a ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(SCREAMING_SNAKE_CASE , '''_dynamo''' ): return False return isinstance(SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" UpperCamelCase__ : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase__ : Optional[int] = is_compiled_module(SCREAMING_SNAKE_CASE ) if is_compiled: UpperCamelCase__ : Optional[int] = model UpperCamelCase__ : Optional[Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[int] = model.module if not keep_fpaa_wrapper: UpperCamelCase__ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE , '''forward''' ) UpperCamelCase__ : Optional[Any] = model.__dict__.pop('''_original_forward''' , SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(SCREAMING_SNAKE_CASE , '''__wrapped__''' ): UpperCamelCase__ : Optional[int] = forward.__wrapped__ if forward == original_forward: break UpperCamelCase__ : Optional[Any] = forward if getattr(SCREAMING_SNAKE_CASE , '''_converted_to_transformer_engine''' , SCREAMING_SNAKE_CASE ): convert_model(SCREAMING_SNAKE_CASE , to_transformer_engine=SCREAMING_SNAKE_CASE ) if is_compiled: UpperCamelCase__ : Tuple = model UpperCamelCase__ : Tuple = compiled_model return model def _a ( ): """simple docstring""" PartialState().wait_for_everyone() def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @contextmanager def _a ( **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for key, value in kwargs.items(): UpperCamelCase__ : Dict = str(SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if not hasattr(SCREAMING_SNAKE_CASE , '''__qualname__''' ) and not hasattr(SCREAMING_SNAKE_CASE , '''__name__''' ): UpperCamelCase__ : str = getattr(SCREAMING_SNAKE_CASE , '''__class__''' , SCREAMING_SNAKE_CASE ) if hasattr(SCREAMING_SNAKE_CASE , '''__qualname__''' ): return obj.__qualname__ if hasattr(SCREAMING_SNAKE_CASE , '''__name__''' ): return obj.__name__ return str(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" for key, value in source.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[Any] = destination.setdefault(SCREAMING_SNAKE_CASE , {} ) merge_dicts(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : List[Any] = value return destination def _a ( SCREAMING_SNAKE_CASE : int = None ): """simple docstring""" if port is None: UpperCamelCase__ : Union[str, Any] = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
146
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __A ( a ): __A = """char""" __A = """bpe""" __A = """wp""" UpperCAmelCase__ : Union[str, Any] =(DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __A ( a ): __A = ["""image_processor""", """char_tokenizer"""] __A = """ViTImageProcessor""" __A = """MgpstrTokenizer""" def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ ): lowerCamelCase =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase_ , ) lowerCamelCase =kwargs.pop("""feature_extractor""" ) lowerCamelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) lowerCamelCase =tokenizer lowerCamelCase =AutoTokenizer.from_pretrained("""gpt2""" ) lowerCamelCase =AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ ): if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: lowerCamelCase =self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None: lowerCamelCase =self.char_tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase =encodings["""input_ids"""] return inputs def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase , lowerCamelCase , lowerCamelCase =sequences lowerCamelCase =char_preds.size(0 ) lowerCamelCase , lowerCamelCase =self._decode_helper(UpperCAmelCase_ , """char""" ) lowerCamelCase , lowerCamelCase =self._decode_helper(UpperCAmelCase_ , """bpe""" ) lowerCamelCase , lowerCamelCase =self._decode_helper(UpperCAmelCase_ , """wp""" ) lowerCamelCase =[] lowerCamelCase =[] for i in range(UpperCAmelCase_ ): lowerCamelCase =[char_scores[i], bpe_scores[i], wp_scores[i]] lowerCamelCase =[char_strs[i], bpe_strs[i], wp_strs[i]] lowerCamelCase =scores.index(max(UpperCAmelCase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCamelCase ={} lowerCamelCase =final_strs lowerCamelCase =final_scores lowerCamelCase =char_strs lowerCamelCase =bpe_strs lowerCamelCase =wp_strs return out def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): if format == DecodeType.CHARACTER: lowerCamelCase =self.char_decode lowerCamelCase =1 lowerCamelCase ="""[s]""" elif format == DecodeType.BPE: lowerCamelCase =self.bpe_decode lowerCamelCase =2 lowerCamelCase ="""#""" elif format == DecodeType.WORDPIECE: lowerCamelCase =self.wp_decode lowerCamelCase =102 lowerCamelCase ="""[SEP]""" else: raise ValueError(f"""Format {format} is not supported.""" ) lowerCamelCase , lowerCamelCase =[], [] lowerCamelCase =pred_logits.size(0 ) lowerCamelCase =pred_logits.size(1 ) lowerCamelCase , lowerCamelCase =pred_logits.topk(1 , dim=-1 , largest=UpperCAmelCase_ , sorted=UpperCAmelCase_ ) lowerCamelCase =preds_index.view(-1 , UpperCAmelCase_ )[:, 1:] lowerCamelCase =decoder(UpperCAmelCase_ ) lowerCamelCase , lowerCamelCase =torch.nn.functional.softmax(UpperCAmelCase_ , dim=2 ).max(dim=2 ) lowerCamelCase =preds_max_prob[:, 1:] for index in range(UpperCAmelCase_ ): lowerCamelCase =preds_str[index].find(UpperCAmelCase_ ) lowerCamelCase =preds_str[index][:pred_eos] lowerCamelCase =preds_index[index].cpu().tolist() lowerCamelCase =pred_index.index(UpperCAmelCase_ ) if eos_token in pred_index else -1 lowerCamelCase =preds_max_prob[index][: pred_eos_index + 1] lowerCamelCase =pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCAmelCase_ ) conf_scores.append(UpperCAmelCase_ ) return dec_strs, conf_scores def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =[seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(UpperCAmelCase_ )] return decode_strs def _snake_case ( self , UpperCAmelCase_ ): return self.bpe_tokenizer.batch_decode(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =[seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(UpperCAmelCase_ )] return decode_strs
262
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _lowercase ( _UpperCAmelCase ) -> str: lowerCamelCase =[] for line in lines: lowerCamelCase =re.sub(r"""#.*""" , """""" , _UpperCAmelCase ) # remove comments if line: filtered_lines.append(_UpperCAmelCase ) lowerCamelCase ="""\n""".join(_UpperCAmelCase ) # Make a hash from all this code lowerCamelCase =full_str.encode("""utf-8""" ) return shaaaa(_UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase__ : str ={ '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase__ : Tuple ={ '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase__ : Optional[Any] ={'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name UpperCAmelCase__ : Dict[str, List[str]] ={} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
262
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = KandinskyInpaintPipeline __UpperCamelCase = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] __UpperCamelCase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] __UpperCamelCase = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __UpperCamelCase = False @property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return 100 @property def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''') return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE_ : Any = MultilingualCLIP(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = text_encoder.eval() return text_encoder @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDConditionModel(**lowercase_) return model @property def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[int] = VQModel(**self.dummy_movq_kwargs) return model def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_unet SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE_ : List[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowercase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : int=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase_)).to(lowercase_) SCREAMING_SNAKE_CASE_ : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowercase_) # create init_image SCREAMING_SNAKE_CASE_ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase_)).to(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1)[0] SCREAMING_SNAKE_CASE_ : Optional[int] = Image.fromarray(np.uinta(lowercase_)).convert('''RGB''').resize((256, 256)) # create mask SCREAMING_SNAKE_CASE_ : List[Any] = np.ones((64, 64) , dtype=np.floataa) SCREAMING_SNAKE_CASE_ : Any = 0 if str(lowercase_).startswith('''mps'''): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(lowercase_) else: SCREAMING_SNAKE_CASE_ : int = torch.Generator(device=lowercase_).manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : int = self.pipeline_class(**lowercase_) SCREAMING_SNAKE_CASE_ : str = pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**self.get_dummy_inputs(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : str = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}') assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ : str = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''') SCREAMING_SNAKE_CASE_ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') SCREAMING_SNAKE_CASE_ : Tuple = np.ones((768, 768) , dtype=np.floataa) SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Tuple = '''a hat''' SCREAMING_SNAKE_CASE_ : List[str] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa) pipe_prior.to(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE_ : List[str] = pipeline.to(lowercase_) pipeline.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Generator(device='''cpu''').manual_seed(0) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE_ : str = pipeline( lowercase_ , image=lowercase_ , mask_image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase_ , lowercase_)
91
"""simple docstring""" from __future__ import annotations class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : int = 0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE_ : List[str] = '''''' for ch in content: ans += chr(ord(lowercase_) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE_ : List[Any] = '''''' for ch in content: ans += chr(ord(lowercase_) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) try: with open(lowercase_) as fin, open('''encrypt.out''' , '''w+''') as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowercase_ , lowercase_)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) try: with open(lowercase_) as fin, open('''decrypt.out''' , '''w+''') as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowercase_ , lowercase_)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
91
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __SCREAMING_SNAKE_CASE : Optional[int] = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __SCREAMING_SNAKE_CASE : Dict = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __A (datasets.Metric): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int = CHRF.CHAR_ORDER , UpperCAmelCase_ : int = CHRF.WORD_ORDER , UpperCAmelCase_ : int = CHRF.BETA , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , ) ->Tuple: """simple docstring""" snake_case_ = len(references[0] ) if any(len(UpperCAmelCase_ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) snake_case_ = [[refs[i] for refs in references] for i in range(UpperCAmelCase_ )] snake_case_ = CHRF(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = sb_chrf.corpus_score(UpperCAmelCase_ , UpperCAmelCase_ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
233
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
233
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : List[str] = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE__ = HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE__ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE__ = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
150
0
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __SCREAMING_SNAKE_CASE =Lock() def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__SCREAMING_SNAKE_CASE ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowercase_ : Union[str, Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowercase_ : Dict = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__SCREAMING_SNAKE_CASE ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowercase_ : Optional[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowercase_ : Optional[Any] = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # after all swaps are performed, send the values back to main result_pipe[1].send(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Optional[int] = [] lowercase_ : List[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowercase_ : Union[str, Any] = Pipe() lowercase_ : int = Pipe() process_array_.append( Process( target=__SCREAMING_SNAKE_CASE , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowercase_ : Any = temp_rs lowercase_ : Union[str, Any] = temp_rr for i in range(1 , len(__SCREAMING_SNAKE_CASE ) - 1 ): lowercase_ : Dict = Pipe() lowercase_ : Tuple = Pipe() process_array_.append( Process( target=__SCREAMING_SNAKE_CASE , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowercase_ : str = temp_rs lowercase_ : int = temp_rr process_array_.append( Process( target=__SCREAMING_SNAKE_CASE , args=( len(__SCREAMING_SNAKE_CASE ) - 1, arr[len(__SCREAMING_SNAKE_CASE ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__SCREAMING_SNAKE_CASE ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__SCREAMING_SNAKE_CASE ) ): lowercase_ : Any = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase__( ): lowercase_ : Optional[int] = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = odd_even_transposition(__SCREAMING_SNAKE_CASE ) print('Sorted List\n' ) print(*__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
321
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered") def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ): lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
321
1
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE = 1_000_000 ) -> int: snake_case_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _SCREAMING_SNAKE_CASE ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
347
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
347
1
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : List[Any]=18 , lowerCAmelCase_ : Union[str, Any]=30 , lowerCAmelCase_ : Union[str, Any]=4_00 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' A__ : Any =size if size is not None else {"""height""": 18, """width""": 18} A__ : List[Any] =parent A__ : Any =batch_size A__ : str =num_channels A__ : Dict =image_size A__ : int =min_resolution A__ : int =max_resolution A__ : Optional[Any] =do_resize A__ : str =size A__ : Optional[Any] =do_normalize A__ : Optional[int] =image_mean A__ : List[str] =image_std def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = DPTImageProcessor if is_vision_available() else None def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' A__ : Union[str, Any] =DPTImageProcessingTester(self ) @property def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Dict =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """size""" ) ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' A__ : str =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) A__ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' A__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input A__ : int =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A__ : Dict =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' A__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input A__ : Optional[int] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A__ : Optional[Any] =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' A__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input A__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A__ : Dict =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
361
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Any , lowerCAmelCase_ : float ) -> float: '''simple docstring''' return 0.0 def __lowerCamelCase ( __snake_case : np.ndarray, __snake_case : int ) -> tuple[int | float, int | float]: """simple docstring""" A__ : Tuple =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A__ : str =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowerCamelCase ( __snake_case : FilterType, __snake_case : int ) -> None: """simple docstring""" A__ : Any =512 A__ : int =[1] + [0] * (size - 1) A__ : int =[filter_type.process(__snake_case ) for item in inputs] A__ : Union[str, Any] =[0] * (samplerate - size) # zero-padding outputs += filler A__ : List[Any] =np.abs(np.fft.fft(__snake_case ) ) A__ : int =20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds A__ : Union[str, Any] =get_bounds(__snake_case, __snake_case ) plt.ylim(max([-80, bounds[0]] ), min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__snake_case ) plt.show() def __lowerCamelCase ( __snake_case : FilterType, __snake_case : int ) -> None: """simple docstring""" A__ : List[Any] =512 A__ : List[Any] =[1] + [0] * (size - 1) A__ : Dict =[filter_type.process(__snake_case ) for item in inputs] A__ : Union[str, Any] =[0] * (samplerate - size) # zero-padding outputs += filler A__ : str =np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi, 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__snake_case, -2 * pi ) ) plt.show()
136
0
'''simple docstring''' import string def a ( __a ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): UpperCamelCase__ :Optional[int] = '''''' for symbol in message: if symbol in string.ascii_uppercase: UpperCamelCase__ :Dict = string.ascii_uppercase.find(snake_case_ ) UpperCamelCase__ :List[Any] = num - key if num < 0: UpperCamelCase__ :Optional[Any] = num + len(string.ascii_uppercase ) UpperCamelCase__ :Optional[int] = translated + string.ascii_uppercase[num] else: UpperCamelCase__ :List[str] = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def a ( ) -> None: '''simple docstring''' UpperCamelCase__ :Any = input('''Encrypted message: ''' ) UpperCamelCase__ :int = message.upper() decrypt(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
97
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _A : str = logging.get_logger(__name__) _A : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def UpperCamelCase_ ( snake_case_ : Tuple ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __lowerCAmelCase = k.replace(snake_case_ , snake_case_ ) if k.startswith("""encoder""" ): __lowerCAmelCase = k.replace(""".attn""" , """.self_attn""" ) __lowerCAmelCase = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowerCAmelCase = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __lowerCAmelCase = k.replace("""norm1""" , """self_attn_layer_norm""" ) __lowerCAmelCase = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __lowerCAmelCase = k.replace("""norm3""" , """final_layer_norm""" ) return k def UpperCamelCase_ ( snake_case_ : List[str] ) -> Dict: '''simple docstring''' __lowerCAmelCase = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __lowerCAmelCase = sd.pop(snake_case_ ) __lowerCAmelCase = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __lowerCAmelCase = v _A : int = ['''START'''] @torch.no_grad() def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) __lowerCAmelCase = model["""model"""] __lowerCAmelCase = BlenderbotConfig.from_json_file(snake_case_ ) __lowerCAmelCase = BlenderbotForConditionalGeneration(snake_case_ ) __lowerCAmelCase = m.model.state_dict().keys() __lowerCAmelCase = [] __lowerCAmelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __lowerCAmelCase = rename_state_dict_key(snake_case_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __lowerCAmelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case_ ) m.model.load_state_dict(snake_case_ , strict=snake_case_ ) m.half() m.save_pretrained(snake_case_ ) if __name__ == "__main__": _A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) _A : Tuple = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
229
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowercase ( a__ : int = 8 ) -> str: _UpperCamelCase = ascii_letters + digits + punctuation return "".join(secrets.choice(a__ ) for _ in range(a__ ) ) def lowercase ( a__ : str , a__ : int ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(a__ ) _UpperCamelCase = i // 3 _UpperCamelCase = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _UpperCamelCase = ( chars_incl + random(a__ , quotient + remainder ) + random(a__ , a__ ) + random(a__ , a__ ) ) _UpperCamelCase = list(a__ ) shuffle(a__ ) return "".join(a__ ) # random is a generalised function for letters, characters and numbers def lowercase ( a__ : str , a__ : int ) -> str: return "".join(secrets.choice(a__ ) for _ in range(a__ ) ) def lowercase ( a__ : Any , a__ : Optional[Any] ) -> List[str]: pass # Put your code here... def lowercase ( a__ : str , a__ : Optional[int] ) -> Any: pass # Put your code here... def lowercase ( a__ : Optional[int] , a__ : str ) -> Optional[int]: pass # Put your code here... def lowercase ( a__ : str , a__ : int = 8 ) -> bool: if len(a__ ) < min_length: # Your Password must be at least 8 characters long return False _UpperCamelCase = any(char in ascii_uppercase for char in password ) _UpperCamelCase = any(char in ascii_lowercase for char in password ) _UpperCamelCase = any(char in digits for char in password ) _UpperCamelCase = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowercase ( ) -> int: _UpperCamelCase = int(input('''Please indicate the max length of your password: ''' ).strip() ) _UpperCamelCase = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(a__ ) ) print( '''Alternative Password generated:''' , alternative_password_generator(a__ , a__ ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
367
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowercase ( a__ : str ) -> int: _UpperCamelCase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _UpperCamelCase = [144, 192, 240] _UpperCamelCase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _UpperCamelCase = [96, 120, 144] _UpperCamelCase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _UpperCamelCase = [64, 80, 96] _UpperCamelCase = [16, 16, 24, 48, 64, 80, 320] _UpperCamelCase = 0.05 _UpperCamelCase = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _UpperCamelCase = 512 _UpperCamelCase = 16 _UpperCamelCase = 21 _UpperCamelCase = '''pascal-voc-id2label.json''' else: _UpperCamelCase = 1000 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) ) _UpperCamelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} return config def lowercase ( a__ : Union[str, Any] , a__ : Optional[int]=False ) -> int: for i in range(1 , 6 ): if F'''layer_{i}.''' in name: _UpperCamelCase = name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: _UpperCamelCase = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _UpperCamelCase = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _UpperCamelCase = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _UpperCamelCase = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _UpperCamelCase = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _UpperCamelCase = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _UpperCamelCase = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _UpperCamelCase = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _UpperCamelCase = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: _UpperCamelCase = name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: _UpperCamelCase = name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' ) if "expand_1x1" in name: _UpperCamelCase = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _UpperCamelCase = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _UpperCamelCase = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F'''.global_rep.{i}.weight''' in name: _UpperCamelCase = name.replace(F'''.global_rep.{i}.weight''' , '''.layernorm.weight''' ) if F'''.global_rep.{i}.bias''' in name: _UpperCamelCase = name.replace(F'''.global_rep.{i}.bias''' , '''.layernorm.bias''' ) if ".global_rep." in name: _UpperCamelCase = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _UpperCamelCase = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _UpperCamelCase = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _UpperCamelCase = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _UpperCamelCase = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _UpperCamelCase = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _UpperCamelCase = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _UpperCamelCase = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _UpperCamelCase = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _UpperCamelCase = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _UpperCamelCase = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _UpperCamelCase = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _UpperCamelCase = '''mobilevit.''' + name return name def lowercase ( a__ : Union[str, Any] , a__ : List[Any] , a__ : Tuple=False ) -> Optional[Any]: if base_model: _UpperCamelCase = '''''' else: _UpperCamelCase = '''mobilevit.''' for key in orig_state_dict.copy().keys(): _UpperCamelCase = orig_state_dict.pop(a__ ) if key[:8] == "encoder.": _UpperCamelCase = key[8:] if "qkv" in key: _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_split[0][6:] ) - 1 _UpperCamelCase = int(key_split[3] ) _UpperCamelCase = model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' ) _UpperCamelCase = layer.transformer.layer[transformer_num].attention.attention.all_head_size _UpperCamelCase = ( F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: _UpperCamelCase = val[:dim, :] _UpperCamelCase = val[dim : dim * 2, :] _UpperCamelCase = val[-dim:, :] else: _UpperCamelCase = val[:dim] _UpperCamelCase = val[dim : dim * 2] _UpperCamelCase = val[-dim:] else: _UpperCamelCase = val return orig_state_dict def lowercase ( ) -> Dict: _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def lowercase ( a__ : Dict , a__ : Optional[int] , a__ : Any , a__ : Tuple=False ) -> Any: _UpperCamelCase = get_mobilevit_config(a__ ) # load original state_dict _UpperCamelCase = torch.load(a__ , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _UpperCamelCase = MobileViTForSemanticSegmentation(a__ ).eval() else: _UpperCamelCase = MobileViTForImageClassification(a__ ).eval() _UpperCamelCase = convert_state_dict(a__ , a__ ) model.load_state_dict(a__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _UpperCamelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _UpperCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _UpperCamelCase = model(**a__ ) _UpperCamelCase = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _UpperCamelCase = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _UpperCamelCase = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _UpperCamelCase = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] , a__ , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _UpperCamelCase = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": _UpperCamelCase = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": _UpperCamelCase = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] , a__ , atol=1e-4 ) Path(a__ ).mkdir(exist_ok=a__ ) print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if push_to_hub: _UpperCamelCase = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _UpperCamelCase = model_mapping[mobilevit_name] image_processor.push_to_hub(a__ , organization='''apple''' ) model.push_to_hub(a__ , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
54
0
from __future__ import annotations import numpy as np def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return np.maximum(0 , lowerCAmelCase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
101
def SCREAMING_SNAKE_CASE_ ( __A : list[int] , __A : str ) -> list[int]: """simple docstring""" a_ : Any = int(__A ) # Initialize Result a_ : Tuple = [] # Traverse through all denomination for denomination in reversed(__A ): # Find denominations while int(__A ) >= int(__A ): total_value -= int(__A ) answer.append(__A ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Union[str, Any] = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): UpperCAmelCase_ : List[Any] = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCAmelCase_ : str = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ : List[Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] UpperCAmelCase_ : str = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(F'Following is minimal change for {value}: ') UpperCAmelCase_ : Optional[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
32
0
from functools import lru_cache @lru_cache def a_ ( __lowercase : int ) -> int: if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
130
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Tuple = RobertaTokenizer _UpperCAmelCase : Dict = RobertaTokenizerFast _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Any = {"cls_token": "<s>"} def A ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowercase , range(len(lowercase ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) def A ( self : List[str] , **lowercase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : List[str] , **lowercase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Optional[Any] , lowercase : List[str] ): '''simple docstring''' _snake_case = 'lower newer' _snake_case = 'lower newer' return input_text, output_text def A ( self : str ): '''simple docstring''' _snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case = 'lower newer' _snake_case = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _snake_case = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.tokenizer_class.from_pretrained('roberta-base' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) _snake_case = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A ( self : int ): '''simple docstring''' _snake_case = self.get_tokenizer() _snake_case = 'Encode this sequence.' _snake_case = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens _snake_case = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space _snake_case = tokenizer.convert_tokens_to_ids(lowercase ) _snake_case = 'Encode <mask> sequence' _snake_case = 'Encode <mask>sequence' _snake_case = tokenizer.encode(lowercase ) _snake_case = encoded.index(lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) _snake_case = tokenizer.encode(lowercase ) _snake_case = encoded.index(lowercase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def A ( self : List[str] ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) _snake_case = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def A ( self : str ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['trim_offsets'] , lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _snake_case = f'''{text_of_1_token} {text_of_1_token}''' _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _snake_case = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
130
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: """simple docstring""" raise RuntimeError("""CUDA out of memory.""" ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Optional[Any] ): super().__init__() UpperCamelCase :Any = nn.Linear(3 , 4 ) UpperCamelCase :Optional[Any] = nn.BatchNormad(4 ) UpperCamelCase :Any = nn.Linear(4 , 5 ) def _A ( self : Any , __lowerCamelCase : str ): return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : int ): UpperCamelCase :Union[str, Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[str] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def _A ( self : Optional[Any] ): UpperCamelCase :Union[str, Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase :str = mock_training_loop_function("""hello""" ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def _A ( self : Tuple ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : List[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _A ( self : Optional[Any] ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _A ( self : Optional[int] ): @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def _A ( self : Optional[Any] ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : str ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def _A ( self : str ): UpperCamelCase :List[str] = torch.cuda.memory_allocated() UpperCamelCase :Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) UpperCamelCase :List[Any] = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
38
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Tuple = ShapEImgaImgPipeline snake_case__ : Optional[Any] = ["""image"""] snake_case__ : Union[str, Any] = ["""image"""] snake_case__ : Optional[Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] snake_case__ : List[str] = False @property def _A ( self : Any ): return 32 @property def _A ( self : Any ): return 32 @property def _A ( self : Optional[Any] ): return self.time_input_dim * 4 @property def _A ( self : Union[str, Any] ): return 8 @property def _A ( self : int ): torch.manual_seed(0 ) UpperCamelCase :Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCamelCase :Optional[int] = CLIPVisionModel(__lowerCamelCase ) return model @property def _A ( self : str ): UpperCamelCase :Optional[int] = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowerCamelCase , do_normalize=__lowerCamelCase , do_resize=__lowerCamelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def _A ( self : Tuple ): torch.manual_seed(0 ) UpperCamelCase :Dict = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCamelCase :int = PriorTransformer(**__lowerCamelCase ) return model @property def _A ( self : Optional[int] ): torch.manual_seed(0 ) UpperCamelCase :str = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCamelCase :List[str] = ShapERenderer(**__lowerCamelCase ) return model def _A ( self : str ): UpperCamelCase :int = self.dummy_prior UpperCamelCase :Any = self.dummy_image_encoder UpperCamelCase :Dict = self.dummy_image_processor UpperCamelCase :List[Any] = self.dummy_renderer UpperCamelCase :int = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_024 , prediction_type="""sample""" , use_karras_sigmas=__lowerCamelCase , clip_sample=__lowerCamelCase , clip_sample_range=1.0 , ) UpperCamelCase :Optional[Any] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def _A ( self : int , __lowerCamelCase : int , __lowerCamelCase : Any=0 ): UpperCamelCase :Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith("""mps""" ): UpperCamelCase :List[Any] = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase :Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Optional[Any] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _A ( self : List[str] ): UpperCamelCase :Dict = """cpu""" UpperCamelCase :List[Any] = self.get_dummy_components() UpperCamelCase :Optional[int] = self.pipeline_class(**__lowerCamelCase ) UpperCamelCase :int = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) UpperCamelCase :Dict = output.images[0] UpperCamelCase :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase :Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self : List[Any] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _A ( self : List[Any] ): UpperCamelCase :str = torch_device == """cpu""" UpperCamelCase :int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__lowerCamelCase , relax_max_difference=__lowerCamelCase , ) def _A ( self : List[Any] ): UpperCamelCase :List[Any] = self.get_dummy_components() UpperCamelCase :Optional[int] = self.pipeline_class(**__lowerCamelCase ) UpperCamelCase :List[Any] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Any = 1 UpperCamelCase :int = 2 UpperCamelCase :Union[str, Any] = self.get_dummy_inputs(__lowerCamelCase ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase :str = batch_size * [inputs[key]] UpperCamelCase :Optional[int] = pipe(**__lowerCamelCase , num_images_per_prompt=__lowerCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Any ): UpperCamelCase :Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) UpperCamelCase :Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) UpperCamelCase :Union[str, Any] = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) UpperCamelCase :List[str] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCamelCase :Optional[int] = pipe( __lowerCamelCase , generator=__lowerCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
38
1
from __future__ import annotations from math import ceil, floor, sqrt def A_ ( A__ = 200_0000 ) -> int: a__ : list[int] = [0] a__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target a__ : int = 0 # the area corresponding to the grid that gives the product closest to target a__ : int = 0 # an estimate of b, using the quadratic formula a__ : float # the largest integer less than b_estimate a__ : int # the largest integer less than b_estimate a__ : int # the triangle number corresponding to b_floor a__ : int # the triangle number corresponding to b_ceil a__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): a__ : Any = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 a__ : Optional[int] = floor(A__ ) a__ : Tuple = ceil(A__ ) a__ : Union[str, Any] = triangle_numbers[b_floor] a__ : Any = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): a__ : Optional[Any] = triangle_b_first_guess * triangle_a a__ : Optional[Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): a__ : List[str] = triangle_b_second_guess * triangle_a a__ : Dict = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
354
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def A_ ( A__ ) -> Dict: if isinstance(A__ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : """simple docstring""" def __lowercase ( self , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' pass def __lowercase ( self) -> Dict: '''simple docstring''' pass def __lowercase ( self) -> Dict: '''simple docstring''' pass def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> List[Any]: '''simple docstring''' a__ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase , lowercase) a__ : Any = TFVisionTextDualEncoderModel(lowercase) a__ : Dict = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> List[Any]: '''simple docstring''' a__ , a__ : List[Any] = self.get_vision_text_model(lowercase , lowercase) a__ : List[str] = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : Dict = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Tuple: '''simple docstring''' a__ , a__ : Any = self.get_vision_text_model(lowercase , lowercase) a__ : Tuple = {'vision_model': vision_model, 'text_model': text_model} a__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase) a__ : Any = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Optional[Any]: '''simple docstring''' a__ , a__ : int = self.get_vision_text_model(lowercase , lowercase) a__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : Optional[Any] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) a__ : int = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase) a__ : str = TFVisionTextDualEncoderModel.from_pretrained(lowercase) a__ : List[str] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) a__ : str = after_output[0].numpy() a__ : str = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowercase , 1e-5) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Optional[int]: '''simple docstring''' a__ , a__ : Optional[Any] = self.get_vision_text_model(lowercase , lowercase) a__ : Dict = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : Optional[int] = model( input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase , output_attentions=lowercase) a__ : List[str] = output.vision_model_output.attentions self.assertEqual(len(lowercase) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[Any] = to_atuple(vision_model.config.image_size) a__ : Dict = to_atuple(vision_model.config.patch_size) a__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a__ : List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) a__ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' a__ : str = np.abs((a - b)).max() self.assertLessEqual(lowercase , lowercase , F'Difference between torch and flax is {diff} (>= {tol}).') def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : int = self.prepare_config_and_inputs() self.check_save_load(**lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ : Union[str, Any] = self.get_pretrained_model_and_inputs() a__ : Optional[int] = model_a(**lowercase) a__ : int = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase) a__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_pretrained(lowercase) a__ : int = model_a(**lowercase) a__ : str = after_outputs[0].numpy() a__ : List[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowercase , 1e-5) @require_tf class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert') a__ : str = 13 a__ : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) a__ : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) a__ : Optional[int] = random_attention_mask([batch_size, 4]) a__ : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__ : Optional[Any] = TFViTModel(lowercase , name='vision_model') a__ : Tuple = TFBertModel(lowercase , name='text_model') return vision_model, text_model def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = TFViTModelTester(self) a__ : int = TFBertModelTester(self) a__ : Optional[Any] = vit_model_tester.prepare_config_and_inputs() a__ : Any = bert_model_tester.prepare_config_and_inputs() a__ , a__ , a__ : Optional[int] = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta') a__ : Union[str, Any] = 13 a__ : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) a__ : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) a__ : Any = random_attention_mask([batch_size, 4]) a__ : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Optional[Any]: '''simple docstring''' a__ , a__ : List[Any] = self.get_vision_text_model(lowercase , lowercase) a__ : Any = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : int = model( input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase , output_attentions=lowercase) a__ : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(lowercase) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) a__ : Optional[int] = to_atuple(vision_model.config.image_size) a__ : str = to_atuple(vision_model.config.patch_size) a__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a__ : List[str] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) a__ : List[Any] = output.text_model_output.attentions self.assertEqual(len(lowercase) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowercase ( self , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : List[str] = TFDeiTModel(lowercase , name='vision_model') a__ : Optional[int] = TFRobertaModel(lowercase , name='text_model') return vision_model, text_model def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[int] = TFDeiTModelTester(self) a__ : str = TFRobertaModelTester(self) a__ : str = vit_model_tester.prepare_config_and_inputs() a__ : Dict = bert_model_tester.prepare_config_and_inputs() a__ , a__ , a__ : Any = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Any: '''simple docstring''' a__ : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert') a__ : Optional[int] = 13 a__ : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) a__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) a__ : str = random_attention_mask([batch_size, 4]) a__ : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase ( self , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : str = TFCLIPVisionModel(lowercase , name='vision_model') a__ : str = TFBertModel(lowercase , name='text_model') return vision_model, text_model def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : List[str] = TFCLIPVisionModelTester(self) a__ : Dict = TFBertModelTester(self) a__ : Optional[Any] = clip_model_tester.prepare_config_and_inputs() a__ : List[Any] = bert_model_tester.prepare_config_and_inputs() a__ , a__ : Union[str, Any] = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=lowercase) a__ : str = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') a__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') a__ : Optional[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=lowercase , padding=lowercase , return_tensors='np') a__ : int = model(**lowercase) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) a__ : List[str] = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowercase , atol=1e-3))
225
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase = 6008_5147_5143 ): '''simple docstring''' try: __lowerCAmelCase = int(_UpperCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) __lowerCAmelCase = 2 __lowerCAmelCase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __lowerCAmelCase = i while n % i == 0: __lowerCAmelCase = n // i i += 1 return int(_UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
57
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self , snake_case__ , snake_case__=12 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=0 , snake_case__=None , ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : List[Any] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Union[str, Any] =use_input_mask UpperCAmelCase : Tuple =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : Tuple =hidden_size UpperCAmelCase : Dict =projection_dim UpperCAmelCase : Optional[int] =num_hidden_layers UpperCAmelCase : Dict =num_attention_heads UpperCAmelCase : int =intermediate_size UpperCAmelCase : Any =dropout UpperCAmelCase : Union[str, Any] =attention_dropout UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : str =scope UpperCAmelCase : str =bos_token_id def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : int =None if self.use_input_mask: UpperCAmelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase : Optional[int] =input_mask.numpy() UpperCAmelCase , UpperCAmelCase : List[Any] =input_mask.shape UpperCAmelCase : Optional[Any] =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : List[Any] =1 UpperCAmelCase : Tuple =0 UpperCAmelCase : List[Any] =self.get_config() return config, input_ids, tf.convert_to_tensor(snake_case__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =TFBlipTextModel(config=snake_case__ ) UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ ) UpperCAmelCase : str =model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =config_and_inputs UpperCAmelCase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else () __lowerCamelCase : Dict = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Dict = False def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str =BlipTextModelTester(self ) UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] =TFBlipTextModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__=True ) -> Any: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
348
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class UpperCAmelCase_ ( snake_case_ ): lowerCamelCase : str = '''data2vec-text''' def __init__( self : int , UpperCAmelCase__ : Optional[Any]=3_0_5_2_2 , UpperCAmelCase__ : List[str]=7_6_8 , UpperCAmelCase__ : Tuple=1_2 , UpperCAmelCase__ : Optional[Any]=1_2 , UpperCAmelCase__ : Optional[int]=3_0_7_2 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : int=5_1_2 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : int=1E-12 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any="absolute" , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Optional[int]=None , **UpperCAmelCase__ : Tuple , ) -> Optional[int]: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( snake_case_ ): @property def __UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
353
'''simple docstring''' def a_ ( ): lowerCAmelCase = [] lowerCAmelCase = 1 while len(lowerCamelCase ) < 1e6: constant.append(str(lowerCamelCase ) ) i += 1 lowerCAmelCase = ''.join(lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self) ->Union[str, Any]: torch.manual_seed(0) a_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.dummy_uncond_unet a_ = KarrasVeScheduler() a_ = KarrasVePipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = torch.manual_seed(0) a_ = pipe(num_inference_steps=2 , generator=__UpperCAmelCase , output_type="numpy").images a_ = torch.manual_seed(0) a_ = pipe(num_inference_steps=2 , generator=__UpperCAmelCase , output_type="numpy" , return_dict=__UpperCAmelCase)[0] a_ = image[0, -3:, -3:, -1] a_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = "google/ncsnpp-celebahq-256" a_ = UNetaDModel.from_pretrained(__UpperCAmelCase) a_ = KarrasVeScheduler() a_ = KarrasVePipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = torch.manual_seed(0) a_ = pipe(num_inference_steps=20 , generator=__UpperCAmelCase , output_type="numpy").images a_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) a_ = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
243
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->list[int]: """simple docstring""" if length <= 0 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(UpperCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
243
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowercase : int = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: try: with open(UpperCAmelCase__ , """rb""" ) as flax_state_f: lowercase_ : Union[str, Any] = from_bytes(UpperCAmelCase__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCAmelCase__ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] ) -> Dict: try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights lowercase_ : str = flatten_dict(jax.tree_util.tree_map(lambda UpperCAmelCase__ : x.dtype == jnp.bfloataa , UpperCAmelCase__ ) ).values() if any(UpperCAmelCase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) lowercase_ : List[str] = jax.tree_util.tree_map( lambda UpperCAmelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCAmelCase__ ) lowercase_ : str = """""" lowercase_ : Dict = flatten_dict(UpperCAmelCase__ , sep=""".""" ) lowercase_ : Tuple = pt_model.state_dict() # keep track of unexpected & missing keys lowercase_ : Tuple = [] lowercase_ : str = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase_ : Dict = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] lowercase_ : Tuple = jnp.transpose(UpperCAmelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase_ : List[Any] = flax_key_tuple_array[:-1] + ["""weight"""] lowercase_ : List[str] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCAmelCase__ ): lowercase_ : Dict = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) lowercase_ : Tuple = """.""".join(UpperCAmelCase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict lowercase_ : Any = np.asarray(UpperCAmelCase__ ) if not isinstance(UpperCAmelCase__ , np.ndarray ) else flax_tensor lowercase_ : Optional[Any] = torch.from_numpy(UpperCAmelCase__ ) # remove from missing keys missing_keys.remove(UpperCAmelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCAmelCase__ ) pt_model.load_state_dict(UpperCAmelCase__ ) # re-transform missing_keys to list lowercase_ : str = list(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(UpperCAmelCase__ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) return pt_model
371
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Optional[int] = KandinskyVaaPriorPipeline _UpperCAmelCase : str = ["prompt"] _UpperCAmelCase : int = ["prompt", "negative_prompt"] _UpperCAmelCase : List[Any] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] _UpperCAmelCase : Tuple = False @property def __lowerCamelCase ( self : Optional[Any] ) ->Any: return 3_2 @property def __lowerCamelCase ( self : List[str] ) ->List[str]: return 3_2 @property def __lowerCamelCase ( self : str ) ->Dict: return self.time_input_dim @property def __lowerCamelCase ( self : Any ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCamelCase ( self : Union[str, Any] ) ->str: return 1_0_0 @property def __lowerCamelCase ( self : int ) ->Union[str, Any]: lowerCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCamelCase ( self : Union[str, Any] ) ->str: torch.manual_seed(0 ) lowerCamelCase__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(A ) @property def __lowerCamelCase ( self : int ) ->List[str]: torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_2, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } lowerCamelCase__ : Optional[int] = PriorTransformer(**A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowerCamelCase__ : Dict = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __lowerCamelCase ( self : Tuple ) ->Tuple: torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowerCamelCase__ : Union[str, Any] = CLIPVisionModelWithProjection(A ) return model @property def __lowerCamelCase ( self : Dict ) ->List[Any]: lowerCamelCase__ : Tuple = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=A , do_normalize=A , do_resize=A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=2_2_4 , ) return image_processor def __lowerCamelCase ( self : Union[str, Any] ) ->Any: lowerCamelCase__ : str = self.dummy_prior lowerCamelCase__ : int = self.dummy_image_encoder lowerCamelCase__ : List[Any] = self.dummy_text_encoder lowerCamelCase__ : Tuple = self.dummy_tokenizer lowerCamelCase__ : Optional[int] = self.dummy_image_processor lowerCamelCase__ : Dict = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_0_0_0 , clip_sample=A , clip_sample_range=10.0 , ) lowerCamelCase__ : Optional[Any] = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __lowerCamelCase ( self : Union[str, Any] , A : Any , A : Any=0 ) ->int: if str(A ).startswith('''mps''' ): lowerCamelCase__ : Optional[int] = torch.manual_seed(A ) else: lowerCamelCase__ : Any = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase__ : Any = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __lowerCamelCase ( self : Any ) ->Dict: lowerCamelCase__ : int = '''cpu''' lowerCamelCase__ : Any = self.get_dummy_components() lowerCamelCase__ : str = self.pipeline_class(**A ) lowerCamelCase__ : Dict = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase__ : Union[str, Any] = pipe(**self.get_dummy_inputs(A ) ) lowerCamelCase__ : Optional[Any] = output.image_embeds lowerCamelCase__ : Any = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] lowerCamelCase__ : Tuple = image[0, -1_0:] lowerCamelCase__ : Any = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowerCamelCase__ : Any = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __lowerCamelCase ( self : Optional[int] ) ->List[Any]: lowerCamelCase__ : Dict = torch_device == '''cpu''' lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = False self._test_inference_batch_single_identical( test_max_difference=A , relax_max_difference=A , test_mean_pixel_difference=A , ) @skip_mps def __lowerCamelCase ( self : int ) ->List[str]: lowerCamelCase__ : Optional[int] = torch_device == '''cpu''' lowerCamelCase__ : Any = False self._test_attention_slicing_forward_pass( test_max_difference=A , test_mean_pixel_difference=A , )
142
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def __lowerCamelCase ( *A : Dict , **A : Optional[int] ) ->Dict: pass @is_pipeline_test @require_vision @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): _UpperCAmelCase : Optional[int] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __lowerCamelCase ( self : Any , A : List[str] , A : Tuple , A : List[str] ) ->List[Any]: lowerCamelCase__ : List[str] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCamelCase__ : Union[str, Any] = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def __lowerCamelCase ( self : List[Any] , A : Optional[int] , A : Tuple ) ->Optional[Any]: lowerCamelCase__ : str = object_detector(examples[0] , threshold=0.0 ) lowerCamelCase__ : Union[str, Any] = len(A ) self.assertGreater(A , 0 ) self.assertEqual( A , [ { '''score''': ANY(A ), '''label''': ANY(A ), '''box''': {'''xmin''': ANY(A ), '''ymin''': ANY(A ), '''xmax''': ANY(A ), '''ymax''': ANY(A )}, } for i in range(A ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def __lowerCamelCase ( self : Dict ) ->List[Any]: pass @require_torch def __lowerCamelCase ( self : Optional[Any] ) ->List[Any]: lowerCamelCase__ : Optional[int] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCamelCase__ : List[Any] = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, ] , ) lowerCamelCase__ : str = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, ] ] , ) @require_torch @slow def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[Any]: lowerCamelCase__ : Tuple = pipeline('''zero-shot-object-detection''' ) lowerCamelCase__ : str = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ] , ) lowerCamelCase__ : List[Any] = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ], [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def __lowerCamelCase ( self : int ) ->Union[str, Any]: pass @require_torch @slow def __lowerCamelCase ( self : Optional[int] ) ->Optional[int]: lowerCamelCase__ : Optional[Any] = 0.2 lowerCamelCase__ : List[Any] = pipeline('''zero-shot-object-detection''' ) lowerCamelCase__ : Any = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=A , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, ] , ) @require_torch @slow def __lowerCamelCase ( self : Any ) ->str: lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : Union[str, Any] = pipeline('''zero-shot-object-detection''' ) lowerCamelCase__ : List[str] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=A , ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, ] , )
142
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
297
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
1
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) SCREAMING_SNAKE_CASE_: int =str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_: Any =str(bin(lowerCamelCase_ ) )[2:] SCREAMING_SNAKE_CASE_: List[Any] =max(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase_ ) , b_binary.zfill(lowerCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
173
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_( ) -> Optional[int]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import collections import os import re from pathlib import Path snake_case__ : int = '''src/transformers''' # Matches is_xxx_available() snake_case__ : Tuple = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : Any = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Any = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Optional[int] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Optional[int] = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Any = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : str = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : str = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : List[str] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : List[str] = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : Any = f.readlines() lowerCAmelCase : List[Any] = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : Optional[Any] = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : List[str] = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Optional[Any] = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : Dict = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : str = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : Dict = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : str = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Union[str, Any] = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Union[str, Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : str = lines[line_index] lowerCAmelCase : Any = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : List[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Tuple = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Any , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : int ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : str = [] for key in import_dict_objects.keys(): lowerCAmelCase : Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : str = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Union[str, Any] = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : Tuple = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : Tuple = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Union[str, Any] = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : Optional[Any] = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Any = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : int = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : List[Any] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : List[str] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : int = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import lowerCAmelCase : Optional[Any] = direct_transformers_import(_snake_case ) lowerCAmelCase : int = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: lowerCAmelCase : List[Any] = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) lowerCAmelCase : List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: lowerCAmelCase : Optional[int] = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , *, UpperCamelCase__ = 4 , UpperCamelCase__ = 768 , UpperCamelCase__ , UpperCamelCase__ , ) -> Union[str, Any]: super().__init__() lowerCamelCase : List[str] = nn.Parameter(torch.zeros(UpperCamelCase__ ) ) # parameters for additional clip time embeddings lowerCamelCase : Any = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Any = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) # parameters for encoder hidden states lowerCamelCase : Dict = clip_extra_context_tokens lowerCamelCase : Tuple = nn.Linear( UpperCamelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) lowerCamelCase : str = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Dict = nn.LayerNorm(UpperCamelCase__ ) def _lowercase ( self , *, UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings lowerCamelCase : Union[str, Any] = image_embeddings.shape[0] lowerCamelCase : Optional[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) lowerCamelCase : Optional[Any] = classifier_free_guidance_embeddings.expand( UpperCamelCase__ , -1 ) lowerCamelCase : Any = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] lowerCamelCase : Union[str, Any] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... lowerCamelCase : str = self.embedding_proj(UpperCamelCase__ ) lowerCamelCase : str = self.clip_image_embeddings_project_to_time_embeddings(UpperCamelCase__ ) lowerCamelCase : Any = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" lowerCamelCase : str = self.clip_extra_context_tokens_proj(UpperCamelCase__ ) lowerCamelCase : Any = clip_extra_context_tokens.reshape(UpperCamelCase__ , -1 , self.clip_extra_context_tokens ) lowerCamelCase : Optional[int] = clip_extra_context_tokens.permute(0 , 2 , 1 ) lowerCamelCase : Optional[Any] = self.encoder_hidden_states_proj(UpperCamelCase__ ) lowerCamelCase : List[str] = self.text_encoder_hidden_states_norm(UpperCamelCase__ ) lowerCamelCase : Optional[int] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
48
"""simple docstring""" from math import pow, sqrt def lowerCamelCase__ ( *_lowerCamelCase : float ) -> bool: lowerCamelCase_ = len(_lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
183
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" snake_case__ = CycleDiffusionPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } snake_case__ = PipelineTesterMixin.required_optional_params - {"""latents"""} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Dict ) -> Any: torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1_000 , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowerCAmelCase__ = CLIPTextModel(_a ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Union[str, Any]: lowerCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase__ = image / 2 + 0.5 if str(_a ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(_a ) else: lowerCAmelCase__ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase__ = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def a ( self : List[str] ) -> List[Any]: lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = CycleDiffusionPipeline(**_a ) lowerCAmelCase__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase__ = self.get_dummy_inputs(_a ) lowerCAmelCase__ = pipe(**_a ) lowerCAmelCase__ = output.images lowerCAmelCase__ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def a ( self : Any ) -> Union[str, Any]: lowerCAmelCase__ = self.get_dummy_components() for name, module in components.items(): if hasattr(_a , "half" ): lowerCAmelCase__ = module.half() lowerCAmelCase__ = CycleDiffusionPipeline(**_a ) lowerCAmelCase__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase__ = self.get_dummy_inputs(_a ) lowerCAmelCase__ = pipe(**_a ) lowerCAmelCase__ = output.images lowerCAmelCase__ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def a ( self : List[Any] ) -> int: return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def a ( self : List[Any] ) -> Any: return super().test_inference_batch_single_identical() @skip_mps def a ( self : Optional[Any] ) -> Optional[Any]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : List[str] ) -> Union[str, Any]: return super().test_save_load_optional_components() @skip_mps def a ( self : List[str] ) -> List[str]: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Any ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> Any: lowerCAmelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) lowerCAmelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) lowerCAmelCase__ = init_image.resize((512, 512) ) lowerCAmelCase__ = """CompVis/stable-diffusion-v1-4""" lowerCAmelCase__ = DDIMScheduler.from_pretrained(_a , subfolder="scheduler" ) lowerCAmelCase__ = CycleDiffusionPipeline.from_pretrained( _a , scheduler=_a , safety_checker=_a , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() lowerCAmelCase__ = """A black colored car""" lowerCAmelCase__ = """A blue colored car""" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=_a , source_prompt=_a , image=_a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_a , output_type="np" , ) lowerCAmelCase__ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) lowerCAmelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) lowerCAmelCase__ = init_image.resize((512, 512) ) lowerCAmelCase__ = """CompVis/stable-diffusion-v1-4""" lowerCAmelCase__ = DDIMScheduler.from_pretrained(_a , subfolder="scheduler" ) lowerCAmelCase__ = CycleDiffusionPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() lowerCAmelCase__ = """A black colored car""" lowerCAmelCase__ = """A blue colored car""" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=_a , source_prompt=_a , image=_a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_a , output_type="np" , ) lowerCAmelCase__ = output.images assert np.abs(image - expected_image ).max() < 2e-2
362
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = 'PoolFormerConfig' # Base docstring UpperCamelCase = 'sail/poolformer_s12' UpperCamelCase = [1, 512, 7, 7] # Image classification docstring UpperCamelCase = 'sail/poolformer_s12' UpperCamelCase = 'tabby, tabby cat' UpperCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : bool = False ): """simple docstring""" if drop_prob == 0.0 or not training: return input lowerCAmelCase__ = 1 - drop_prob lowerCAmelCase__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowerCAmelCase__ = keep_prob + torch.rand(lowerCAmelCase_ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize lowerCAmelCase__ = input.div(lowerCAmelCase_ ) * random_tensor return output class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[float] = None ) -> None: super().__init__() lowerCAmelCase__ = drop_prob def a ( self : str , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def a ( self : Optional[Any] ) -> str: return "p={}".format(self.drop_prob ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=None ) -> Optional[Any]: super().__init__() lowerCAmelCase__ = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) lowerCAmelCase__ = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) lowerCAmelCase__ = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) lowerCAmelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def a ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: lowerCAmelCase__ = self.projection(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class __lowerCamelCase ( nn.GroupNorm ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Any ) -> Dict: super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: super().__init__() lowerCAmelCase__ = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def a ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: super().__init__() lowerCAmelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) lowerCAmelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) lowerCAmelCase__ = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = ACTaFN[config.hidden_act] else: lowerCAmelCase__ = config.hidden_act def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: lowerCAmelCase__ = self.conva(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.act_fn(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.drop(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conva(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: super().__init__() lowerCAmelCase__ = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets lowerCAmelCase__ = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() lowerCAmelCase__ = config.use_layer_scale if config.use_layer_scale: lowerCAmelCase__ = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> int: if self.use_layer_scale: lowerCAmelCase__ = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowerCAmelCase__ = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = () lowerCAmelCase__ = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowerCAmelCase__ = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = (output,) + outputs return outputs else: lowerCAmelCase__ = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection lowerCAmelCase__ = pooling_output + hidden_states lowerCAmelCase__ = () # Second residual connection inside the PoolFormerOutput block lowerCAmelCase__ = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) lowerCAmelCase__ = hidden_states + layer_output lowerCAmelCase__ = (output,) + outputs return outputs class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: super().__init__() lowerCAmelCase__ = config # stochastic depth decay rule lowerCAmelCase__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowerCAmelCase__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowerCAmelCase__ = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks lowerCAmelCase__ = [] lowerCAmelCase__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowerCAmelCase__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : List[str]=True ) -> Dict: lowerCAmelCase__ = () if output_hidden_states else None lowerCAmelCase__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowerCAmelCase__ , lowerCAmelCase__ = layers # Get patch embeddings from hidden_states lowerCAmelCase__ = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = blk(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = layer_outputs[0] if output_hidden_states: lowerCAmelCase__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = PoolFormerConfig snake_case__ = "poolformer" snake_case__ = "pixel_values" snake_case__ = True def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def a ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> Tuple: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = value UpperCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: super().__init__(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = config lowerCAmelCase__ = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def a ( self : Optional[int] ) -> Optional[Any]: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) lowerCAmelCase__ = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: super().__init__() lowerCAmelCase__ = nn.Linear(config.hidden_size , config.hidden_size ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: lowerCAmelCase__ = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: super().__init__(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm lowerCAmelCase__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowerCAmelCase__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = outputs[0] lowerCAmelCase__ = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) lowerCAmelCase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ = "single_label_classification" else: lowerCAmelCase__ = "multi_label_classification" if self.config.problem_type == "regression": lowerCAmelCase__ = MSELoss() if self.num_labels == 1: lowerCAmelCase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase__ = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ = CrossEntropyLoss() lowerCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ = BCEWithLogitsLoss() lowerCAmelCase__ = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
221
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Any = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
32
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[int] = '''convbert''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : Dict=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Any=1E-12 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=9 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : Dict=None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Any: super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : Tuple = vocab_size a_ : List[str] = hidden_size a_ : List[str] = num_hidden_layers a_ : Dict = num_attention_heads a_ : Optional[int] = intermediate_size a_ : int = hidden_act a_ : Dict = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : str = max_position_embeddings a_ : List[str] = type_vocab_size a_ : List[str] = initializer_range a_ : Tuple = layer_norm_eps a_ : Optional[int] = embedding_size a_ : List[Any] = head_ratio a_ : List[Any] = conv_kernel_size a_ : Tuple = num_groups a_ : Tuple = classifier_dropout class SCREAMING_SNAKE_CASE__ ( lowercase__ ): @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a_ : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
32
1
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = tokenizer('This is me' , return_tensors='pt' ) lowerCAmelCase = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowerCAmelCase = model.generate(**UpperCAmelCase__ ) lowerCAmelCase = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase__ ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowerCAmelCase = model_reloaded.generate(**UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : Dict ) -> str: lowerCAmelCase = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCAmelCase__ ): model.save_pretrained(UpperCAmelCase__ ) lowerCAmelCase = model.reverse_bettertransformer() model.save_pretrained(UpperCAmelCase__ )
55
'''simple docstring''' def a_ ( lowerCamelCase : list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if b == 0: return 1 if (b % 2) == 0: return actual_power(__lowerCamelCase , int(b / 2 ) ) * actual_power(__lowerCamelCase , int(b / 2 ) ) else: return a * actual_power(__lowerCamelCase , int(b / 2 ) ) * actual_power(__lowerCamelCase , int(b / 2 ) ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if b < 0: return 1 / actual_power(__lowerCamelCase , __lowerCamelCase ) return actual_power(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": print(power(-2, -3))
19
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int , __lowerCamelCase : Optional[int] = None , ): snake_case : int = {} if train_file is not None: snake_case : List[Any] = [train_file] if eval_file is not None: snake_case : Optional[int] = [eval_file] if test_file is not None: snake_case : Any = [test_file] snake_case : int = datasets.load_dataset("csv" , data_files=__lowerCamelCase ) snake_case : str = list(ds[list(files.keys() )[0]].features.keys() ) snake_case : int = features_name.pop(__lowerCamelCase ) snake_case : str = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case : str = {label: i for i, label in enumerate(__lowerCamelCase )} snake_case : List[Any] = tokenizer.model_input_names snake_case : List[Any] = {} if len(__lowerCamelCase ) == 1: for k in files.keys(): snake_case : Tuple = ds[k].map( lambda __lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) , batched=__lowerCamelCase , ) elif len(__lowerCamelCase ) == 2: for k in files.keys(): snake_case : List[Any] = ds[k].map( lambda __lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) , batched=__lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case : Dict = {k: v for k, v in ex.items() if k in input_names} snake_case : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case : str = {k: v for k, v in ex.items() if k in input_names} snake_case : Any = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case : str = {k: v for k, v in ex.items() if k in input_names} snake_case : List[str] = labelaid[ex[label_name]] yield (d, label) snake_case : int = ( tf.data.Dataset.from_generator( __lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case : Tuple = ( tf.data.Dataset.from_generator( __lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case : List[str] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case : Optional[int] = ( tf.data.Dataset.from_generator( __lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case : str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCamelCase = logging.getLogger(__name__) @dataclass class UpperCAmelCase : A__ : int = field(metadata={"help": "Which column contains the label"} ) A__ : str = field(default=A_ ,metadata={"help": "The path of the training file"} ) A__ : Optional[str] = field(default=A_ ,metadata={"help": "The path of the development file"} ) A__ : Optional[str] = field(default=A_ ,metadata={"help": "The path of the test file"} ) A__ : int = field( default=1_28 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) A__ : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class UpperCAmelCase : A__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A__ : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A__ : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A__ : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. A__ : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) def UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case , snake_case , snake_case : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case , snake_case , snake_case , snake_case : Tuple = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__lowerCamelCase ) , labelaid=__lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case : int = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__lowerCamelCase : EvalPrediction ) -> Dict: snake_case : Optional[int] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case : int = TFTrainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case : Any = trainer.evaluate() snake_case : List[Any] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(__lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(__lowerCamelCase ) return results if __name__ == "__main__": main()
59
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowercase : Union[str, Any] ="0.12" # assumed parallelism: 8 if is_torch_available(): import torch def lowerCAmelCase_ ( _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any]=None) -> Any: """simple docstring""" if rng is None: a__ : Tuple = random.Random() a__ : str = 1 for dim in shape: total_dims *= dim a__ : Dict = [] for _ in range(_lowercase): values.append(rng.randint(0 , vocab_size - 1)) a__ : int = np.array(_lowercase , dtype=jnp.intaa).reshape(_lowercase) return output def lowerCAmelCase_ ( _lowercase : int , _lowercase : int=None) -> int: """simple docstring""" a__ : Dict = ids_tensor(_lowercase , vocab_size=2 , rng=_lowercase) # make sure that at least one token is attended to for each batch a__ : Union[str, Any] = 1 return attn_mask @require_flax class snake_case__ : """simple docstring""" __lowerCAmelCase :Any = None __lowerCAmelCase :int = () def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 a__ : Optional[int] = 2 a__ : str = inputs["""input_ids"""].shape[-1] // 2 a__ : Dict = inputs["""input_ids"""][:max_batch_size, :sequence_length] a__ : int = jnp.ones_like(__lowercase ) a__ : Any = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens a__ : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` a__ : Dict = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : List[str] = self._get_input_ids_and_config() a__ : List[str] = False a__ : Optional[int] = max_length a__ : List[Any] = 0 for model_class in self.all_generative_model_classes: a__ : Optional[int] = model_class(__lowercase ) a__ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning a__ : int = getattr(__lowercase , __lowercase ) a__ : Any = pt_model_class(__lowercase ).eval() a__ : Union[str, Any] = load_flax_weights_in_pytorch_model(__lowercase , flax_model.params ) a__ : Optional[Any] = flax_model.generate(__lowercase ).sequences a__ : List[str] = pt_model.generate(torch.tensor(__lowercase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: a__ : Tuple = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : List[Any] = self._get_input_ids_and_config() a__ : str = False a__ : Dict = max_length for model_class in self.all_generative_model_classes: a__ : str = model_class(__lowercase ) a__ : Dict = model.generate(__lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowercase ) a__ : str = jit(model.generate ) a__ : Optional[Any] = jit_generate(__lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : List[str] = self._get_input_ids_and_config() a__ : Any = True a__ : int = max_length for model_class in self.all_generative_model_classes: a__ : Optional[Any] = model_class(__lowercase ) a__ : List[Any] = model.generate(__lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowercase ) a__ : List[Any] = jit(model.generate ) a__ : int = jit_generate(__lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Optional[int] = self._get_input_ids_and_config() a__ : Union[str, Any] = False a__ : int = max_length a__ : Any = 2 for model_class in self.all_generative_model_classes: a__ : int = model_class(__lowercase ) a__ : Tuple = model.generate(__lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowercase ) a__ : Dict = jit(model.generate ) a__ : Tuple = jit_generate(__lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Optional[int] = self._get_input_ids_and_config() a__ : Union[str, Any] = False a__ : Tuple = max_length a__ : int = 2 a__ : Dict = 2 for model_class in self.all_generative_model_classes: a__ : Union[str, Any] = model_class(__lowercase ) a__ : List[Any] = model.generate(__lowercase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : List[str] = self._get_input_ids_and_config() a__ : str = True a__ : Tuple = max_length a__ : Optional[Any] = 0.8 a__ : Any = 1_0 a__ : List[Any] = 0.3 a__ : List[str] = 1 a__ : Optional[int] = 8 a__ : List[str] = 9 for model_class in self.all_generative_model_classes: a__ : Optional[int] = model_class(__lowercase ) a__ : Any = model.generate(__lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowercase ) a__ : Optional[int] = jit(model.generate ) a__ : int = jit_generate(__lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Dict = self._get_input_ids_and_config() a__ : List[str] = max_length a__ : Tuple = 1 a__ : Optional[int] = 8 a__ : Any = 9 for model_class in self.all_generative_model_classes: a__ : List[Any] = model_class(__lowercase ) a__ : Any = model.generate(__lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowercase ) a__ : Optional[Any] = jit(model.generate ) a__ : Tuple = jit_generate(__lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : int = self._get_input_ids_and_config() a__ : Tuple = max_length a__ : List[Any] = 2 a__ : Optional[Any] = 1 a__ : List[str] = 8 a__ : Tuple = 9 for model_class in self.all_generative_model_classes: a__ : str = model_class(__lowercase ) a__ : Tuple = model.generate(__lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowercase ) a__ : Any = jit(model.generate ) a__ : Optional[int] = jit_generate(__lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : str = self._get_input_ids_and_config() # pad attention mask on the left a__ : str = attention_mask.at[(0, 0)].set(0 ) a__ : Optional[Any] = False a__ : int = max_length for model_class in self.all_generative_model_classes: a__ : Union[str, Any] = model_class(__lowercase ) a__ : List[Any] = model.generate(__lowercase , attention_mask=__lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowercase ) a__ : List[str] = jit(model.generate ) a__ : Optional[int] = jit_generate(__lowercase , attention_mask=__lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : List[str] = self._get_input_ids_and_config() # pad attention mask on the left a__ : Union[str, Any] = attention_mask.at[(0, 0)].set(0 ) a__ : Dict = True a__ : Dict = max_length for model_class in self.all_generative_model_classes: a__ : Dict = model_class(__lowercase ) a__ : Dict = model.generate(__lowercase , attention_mask=__lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowercase ) a__ : List[str] = jit(model.generate ) a__ : Union[str, Any] = jit_generate(__lowercase , attention_mask=__lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : Dict = self._get_input_ids_and_config() # pad attention mask on the left a__ : int = attention_mask.at[(0, 0)].set(0 ) a__ : Any = 2 a__ : int = max_length for model_class in self.all_generative_model_classes: a__ : List[Any] = model_class(__lowercase ) a__ : Union[str, Any] = model.generate(__lowercase , attention_mask=__lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowercase ) a__ : Any = jit(model.generate ) a__ : List[str] = jit_generate(__lowercase , attention_mask=__lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) a__ : Optional[int] = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) a__ : List[Any] = """Hello world""" a__ : Dict = tokenizer(__lowercase , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowercase , """do_samples""" ): model.generate(__lowercase , do_samples=__lowercase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowercase , """foo""" ): a__ : Any = {"""foo""": """bar"""} model.generate(__lowercase , **__lowercase )
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase : List[Any] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int =["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowercase : Tuple =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
266
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Dict = {'vocab_file': 'vocab.txt'} UpperCAmelCase_ : Optional[int] = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } UpperCAmelCase_ : Tuple = { 'openbmb/cpm-ant-10b': 1024, } def SCREAMING_SNAKE_CASE_ ( __A : Tuple ) -> Tuple: """simple docstring""" a_ : Union[str, Any] = collections.OrderedDict() with open(__A , 'r' , encoding='utf-8' ) as reader: a_ : int = reader.readlines() for index, token in enumerate(__A ): a_ : Union[str, Any] = token.rstrip('\n' ) a_ : Union[str, Any] = index return vocab class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_0_0 ) -> List[str]: a_ : List[Any] = vocab a_ : Tuple = unk_token a_ : Tuple = max_input_chars_per_word def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: a_ : Any = list(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > self.max_input_chars_per_word: return [self.unk_token] a_ : Tuple = 0 a_ : Union[str, Any] = [] while start < len(SCREAMING_SNAKE_CASE__ ): a_ : List[Any] = len(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = None while start < end: a_ : Dict = ''.join(chars[start:end] ) if substr in self.vocab: a_ : int = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = end return sub_tokens class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : str = ['''input_ids''', '''attention_mask'''] snake_case__ : Union[str, Any] = False def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict="<d>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="</d>" , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE__ : Tuple="<pad>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : str="</n>" , SCREAMING_SNAKE_CASE__ : Any="</_>" , SCREAMING_SNAKE_CASE__ : Tuple="left" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Union[str, Any]: requires_backends(self , ['jieba'] ) super().__init__( bod_token=SCREAMING_SNAKE_CASE__ , eod_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , line_token=SCREAMING_SNAKE_CASE__ , space_token=SCREAMING_SNAKE_CASE__ , padding_side=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : Tuple = bod_token a_ : str = eod_token a_ : Optional[int] = load_vocab(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.encoder[space_token] a_ : Any = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] a_ : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda SCREAMING_SNAKE_CASE__ : x[1] ) ) a_ : List[Any] = {v: k for k, v in self.encoder.items()} a_ : str = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.encoder[self.bod_token] @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: return self.encoder[self.eod_token] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: return self.encoder["\n"] @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: a_ : Union[str, Any] = [] for x in jieba.cut(SCREAMING_SNAKE_CASE__ , cut_all=SCREAMING_SNAKE_CASE__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) ) return output_tokens def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: a_ : Optional[Any] = [i for i in token_ids if i >= 0] a_ : int = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: return token in self.encoder def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return "".join(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if os.path.isdir(SCREAMING_SNAKE_CASE__ ): a_ : str = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: a_ : str = (filename_prefix + '-' if filename_prefix else '') + save_directory a_ : int = 0 if " " in self.encoder: a_ : List[str] = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: a_ : Union[str, Any] = self.encoder['\n'] del self.encoder["\n"] a_ : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda SCREAMING_SNAKE_CASE__ : x[1] ) ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) a_ : Optional[Any] = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : List[int] = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
32
"""simple docstring""" UpperCamelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCamelCase_ = ['a', 'b', 'c', 'd', 'e'] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" a_ = start # add current to visited visited.append(UpperCAmelCase ) a_ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: a_ = topological_sort(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # if all neighbors visited add current to sort sort.append(UpperCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(UpperCAmelCase ) != len(UpperCAmelCase ): for vertice in vertices: if vertice not in visited: a_ = topological_sort(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # return sort return sort if __name__ == "__main__": UpperCamelCase_ = topological_sort('a', [], []) print(sort)
243
0
'''simple docstring''' import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __A =get_logger(__name__) __A =Path(__file__).parent / 'model_card_template.md' __A =uuida().hex __A =os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __A =os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __A =HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _UpperCamelCase ( UpperCamelCase__ = None ): UpperCAmelCase__ : List[Any] = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): ua += "; " + user_agent return ua def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ): if token is None: UpperCAmelCase__ : List[str] = HfFolder.get_token() if organization is None: UpperCAmelCase__ : Dict = whoami(UpperCamelCase__ )["""name"""] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(UpperCamelCase__ , """local_rank""" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase__ : int = args.hub_token if hasattr(UpperCamelCase__ , """hub_token""" ) else None UpperCAmelCase__ : Optional[int] = get_full_repo_name(UpperCamelCase__ , token=UpperCamelCase__ ) UpperCAmelCase__ : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=UpperCamelCase__ , model_name=UpperCamelCase__ , repo_name=UpperCamelCase__ , dataset_name=args.dataset_name if hasattr(UpperCamelCase__ , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(UpperCamelCase__ , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(UpperCamelCase__ , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(UpperCamelCase__ , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(UpperCamelCase__ , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(UpperCamelCase__ , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(UpperCamelCase__ , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(UpperCamelCase__ , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(UpperCamelCase__ , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(UpperCamelCase__ , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(UpperCamelCase__ , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase__ : str = os.path.join(args.output_dir , """README.md""" ) model_card.save(UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase__ : Union[str, Any] = str(Path(UpperCamelCase__ ).as_posix() ) UpperCAmelCase__ : List[Any] = re.search(R"""snapshots/([^/]+)/""" , UpperCamelCase__ ) if search is None: return None UpperCAmelCase__ : Tuple = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(UpperCamelCase__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __A =os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __A =os.path.join(hf_cache_home, 'diffusers') def _UpperCamelCase ( UpperCamelCase__ = None , UpperCamelCase__ = None ): if new_cache_dir is None: UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase__ : Optional[int] = old_diffusers_cache UpperCAmelCase__ : str = Path(UpperCamelCase__ ).expanduser() UpperCAmelCase__ : Union[str, Any] = Path(UpperCamelCase__ ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase__ : List[Any] = new_cache_dir / old_blob_path.relative_to(UpperCamelCase__ ) new_blob_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) os.replace(UpperCamelCase__ , UpperCamelCase__ ) try: os.symlink(UpperCamelCase__ , UpperCamelCase__ ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __A =os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __A =0 else: with open(cache_version_file) as f: try: __A =int(f.read()) except ValueError: __A =0 if cache_version < 1: __A =os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __A ='\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None ): if variant is not None: UpperCAmelCase__ : int = weights_name.split(""".""" ) UpperCAmelCase__ : str = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase__ : Dict = """.""".join(UpperCamelCase__ ) return weights_name def _UpperCamelCase ( UpperCamelCase__ , *, UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , ): UpperCAmelCase__ : List[str] = str(UpperCamelCase__ ) if os.path.isfile(UpperCamelCase__ ): return pretrained_model_name_or_path elif os.path.isdir(UpperCamelCase__ ): if os.path.isfile(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ): # Load from a PyTorch checkpoint UpperCAmelCase__ : str = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ): UpperCAmelCase__ : Dict = os.path.join(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(UpperCamelCase__ ).base_version ) >= version.parse("""0.20.0""" ) ): try: UpperCAmelCase__ : Optional[Any] = hf_hub_download( UpperCamelCase__ , filename=_add_variant(UpperCamelCase__ , UpperCamelCase__ ) , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , proxies=UpperCamelCase__ , resume_download=UpperCamelCase__ , local_files_only=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , user_agent=UpperCamelCase__ , subfolder=UpperCamelCase__ , revision=revision or commit_hash , ) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , UpperCamelCase__ , ) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(UpperCamelCase__ , UpperCamelCase__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(UpperCamelCase__ , UpperCamelCase__ )}\' so that the correct variant file can be added.''' , UpperCamelCase__ , ) try: # 2. Load model file as usual UpperCAmelCase__ : Optional[int] = hf_hub_download( UpperCamelCase__ , filename=UpperCamelCase__ , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , proxies=UpperCamelCase__ , resume_download=UpperCamelCase__ , local_files_only=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , user_agent=UpperCamelCase__ , subfolder=UpperCamelCase__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' """this model name. Check the model page at """ f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
283
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = x UpperCAmelCase__ : Optional[int] = y for step in range(UpperCamelCase__ ): # noqa: B007 UpperCAmelCase__ : List[str] = a * a - b * b + x UpperCAmelCase__ : Optional[int] = 2 * a * b + y UpperCAmelCase__ : int = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( UpperCamelCase__ ): if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def _UpperCamelCase ( UpperCamelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(UpperCamelCase__ , 1 , 1 ) ) def _UpperCamelCase ( UpperCamelCase__ = 8_0_0 , UpperCamelCase__ = 6_0_0 , UpperCamelCase__ = -0.6 , UpperCamelCase__ = 0 , UpperCamelCase__ = 3.2 , UpperCamelCase__ = 5_0 , UpperCamelCase__ = True , ): UpperCAmelCase__ : str = Image.new("""RGB""" , (image_width, image_height) ) UpperCAmelCase__ : Optional[int] = img.load() # loop through the image-coordinates for image_x in range(UpperCamelCase__ ): for image_y in range(UpperCamelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase__ : Union[str, Any] = figure_width / image_width * image_height UpperCAmelCase__ : Union[str, Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase__ : Tuple = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase__ : List[str] = get_distance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase__ : Any = get_color_coded_rgb(UpperCamelCase__ ) else: UpperCAmelCase__ : Tuple = get_black_and_white_rgb(UpperCamelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __A =get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
283
1
from math import ceil, sqrt def lowercase_ ( _A : str = 1000000 ): """simple docstring""" lowerCamelCase__ : List[Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__ : Tuple = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__ : Any = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
184
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _A ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __a = '''fp16''' self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] __a = '''fp16''' self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE)) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] __a = '''fp16''' self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
49
0
from __future__ import annotations def snake_case_ (__A : int | float | str , __A : int | float | str ) -> List[Any]: """simple docstring""" if nth_term == "": return [""] __lowerCAmelCase : Optional[Any] = int(_a ) __lowerCAmelCase : Dict = int(_a ) __lowerCAmelCase : Any = [] for temp in range(int(_a ) ): series.append(f'''1 / {pow(temp + 1 , int(_a ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("""Enter the last number (nth term) of the P-Series""")) __UpperCAmelCase = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
361
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any]=13 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : int=False , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : Optional[int]=19 , lowerCAmelCase : Any=32 , lowerCAmelCase : int=5 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : Optional[Any]=37 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=5_12 , lowerCAmelCase : Dict=16 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Union[str, Any]=None , ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : Union[str, Any] = seq_length __lowerCAmelCase : int = is_training __lowerCAmelCase : Dict = use_input_mask __lowerCAmelCase : Dict = use_token_type_ids __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : str = vocab_size __lowerCAmelCase : Optional[int] = hidden_size __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : Tuple = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Any = type_vocab_size __lowerCAmelCase : Union[str, Any] = type_sequence_label_size __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : int = num_labels __lowerCAmelCase : Tuple = num_choices __lowerCAmelCase : str = scope def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : int = None if self.use_input_mask: __lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Any = None __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : Optional[int] = None if self.use_labels: __lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=lowerCAmelCase , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = EsmForProteinFolding(config=lowerCAmelCase ).float() model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Any = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) __lowerCAmelCase : str = model(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = model(lowerCAmelCase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) , ) : Optional[int] = config_and_inputs __lowerCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple =False lowerCamelCase : int =(EsmForProteinFolding,) if is_torch_available() else () lowerCamelCase : int =() lowerCamelCase : Dict ={} if is_torch_available() else {} lowerCamelCase : str =False def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = EsmFoldModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) @unittest.skip("""Does not support attention outputs""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" pass @unittest.skip def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""ESMFold does not support head pruning.""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""ESMFold does not support head pruning.""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""ESMFold does not support head pruning.""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: """simple docstring""" pass @unittest.skip("""ESMFold does not support head pruning.""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: """simple docstring""" pass @unittest.skip("""ESMFold does not support head pruning.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: """simple docstring""" pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: """simple docstring""" pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @unittest.skip("""ESMFold only has one output format.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""ESMFold does not support input chunking.""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: """simple docstring""" pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" pass @require_torch class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() __lowerCAmelCase : Union[str, Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowerCAmelCase : str = model(lowerCAmelCase )["""positions"""] __lowerCAmelCase : str = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , lowerCAmelCase , atol=1e-4 ) )
139
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE : Optional[int] = 16 SCREAMING_SNAKE_CASE : List[Any] = 32 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = 16 ) -> Optional[Any]: _lowercase : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowercase : Any = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase_ ): # max_length=None => use the model max length (it's actually the default) _lowercase : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase : Union[str, Any] = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": _lowercase : Any = 8 else: _lowercase : List[Any] = None return tokenizer.pad( lowerCamelCase_ , padding='longest' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. _lowercase : str = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ , drop_last=lowerCamelCase_ ) _lowercase : str = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: # Initialize accelerator _lowercase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : Tuple = config['lr'] _lowercase : Any = int(config['num_epochs'] ) _lowercase : Optional[int] = int(config['seed'] ) _lowercase : List[str] = int(config['batch_size'] ) _lowercase : List[Any] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _lowercase : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowercase : List[str] = batch_size // MAX_GPU_BATCH_SIZE _lowercase : Any = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase_ ) _lowercase , _lowercase : Optional[int] = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer _lowercase : str = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) # Instantiate scheduler _lowercase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : int = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase : str = model(**lowerCamelCase_ ) _lowercase : Tuple = outputs.loss _lowercase : str = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase : List[str] = model(**lowerCamelCase_ ) _lowercase : Dict = outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase : str = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) _lowercase : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCamelCase_ ) def UpperCamelCase_( ) -> Tuple: _lowercase : List[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _lowercase : Optional[int] = parser.parse_args() _lowercase : Dict = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
21
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase ( lowercase_ ): @staticmethod @abstractmethod def a ( snake_case ): raise NotImplementedError() @abstractmethod def a ( self ): raise NotImplementedError()
285
0
"""simple docstring""" __A = 9.8_0665 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = g ) -> float: if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
2
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'pegasus' A_ : Union[str, Any] = ['past_key_values'] A_ : Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self : Any , a__ : Optional[int]=5_0265 , a__ : int=1024 , a__ : List[str]=12 , a__ : List[Any]=4096 , a__ : List[str]=16 , a__ : Any=12 , a__ : Union[str, Any]=4096 , a__ : Tuple=16 , a__ : Optional[Any]=0.0 , a__ : Any=0.0 , a__ : List[str]=True , a__ : Optional[int]=True , a__ : Union[str, Any]="gelu" , a__ : List[str]=1024 , a__ : int=0.1 , a__ : List[str]=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : Optional[int]=0 , a__ : Tuple=False , a__ : List[Any]=0 , a__ : Any=1 , a__ : List[Any]=1 , **a__ : List[Any] , ): """simple docstring""" __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , forced_eos_token_id=a__ , **a__ , ) @property def a (self : Any ): """simple docstring""" return self.encoder_attention_heads @property def a (self : Tuple ): """simple docstring""" return self.d_model
24
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , *a__ : Any , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : Tuple ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" return {}, {}, {} def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : int , a__ : List[Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
24
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument UpperCAmelCase : Union[str, Any] = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = list(s_dict.keys() ) for key in keys: lowerCamelCase = R""".*/layers_(\d+)""" lowerCamelCase = key if re.match(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase = re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , lowerCamelCase__ ) lowerCamelCase = R"""(encoder|decoder)\/""" if re.match(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase = re.match(lowerCamelCase__ , lowerCamelCase__ ).groups() if groups[0] == "encoder": lowerCamelCase = re.sub(R"""/mlp/""" , R"""/1/mlp/""" , lowerCamelCase__ ) lowerCamelCase = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , lowerCamelCase__ ) elif groups[0] == "decoder": lowerCamelCase = re.sub(R"""/mlp/""" , R"""/2/mlp/""" , lowerCamelCase__ ) lowerCamelCase = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , lowerCamelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCamelCase = new_key.replace(lowerCamelCase__ , lowerCamelCase__ ) print(f'{key} -> {new_key}' ) lowerCamelCase = s_dict.pop(lowerCamelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCamelCase = s_dict[key].shape[0] lowerCamelCase = s_dict[key] for idx in range(lowerCamelCase__ ): lowerCamelCase = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowerCamelCase__ ) return s_dict UpperCAmelCase : Tuple = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] ): '''simple docstring''' import regex as re with open(lowerCamelCase__ , """r""" ) as f: lowerCamelCase = f.read() lowerCamelCase = re.findall(R"""(.*) = ([0-9.]*)""" , lowerCamelCase__ ) lowerCamelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCamelCase = float(lowerCamelCase__ ) if """.""" in value else int(lowerCamelCase__ ) lowerCamelCase = re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , lowerCamelCase__ )[0] lowerCamelCase = str(activation[1] ) lowerCamelCase = num_experts lowerCamelCase = SwitchTransformersConfig(**lowerCamelCase__ ) return config def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : int , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Optional[int]="./" , lowerCamelCase__ : List[str]=8 ): '''simple docstring''' print(f'Loading flax weights from : {flax_checkpoint_path}' ) lowerCamelCase = checkpoints.load_tax_checkpoint(lowerCamelCase__ ) if gin_file is not None: lowerCamelCase = convert_gin_to_config(lowerCamelCase__ , lowerCamelCase__ ) else: lowerCamelCase = SwitchTransformersConfig.from_pretrained(lowerCamelCase__ ) lowerCamelCase = SwitchTransformersForConditionalGeneration(lowerCamelCase__ ) lowerCamelCase = flax_params["""target"""] lowerCamelCase = flatten_dict(lowerCamelCase__ , sep="""/""" ) lowerCamelCase = rename_keys(lowerCamelCase__ ) lowerCamelCase = unflatten_dict(lowerCamelCase__ , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCamelCase__ , lowerCamelCase__ ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") UpperCAmelCase : List[Any] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
350
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __lowercase ( a_ , a_ , a_ ): """simple docstring""" UpperCamelCase : int = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self , A , A , A = None , A = 5_02_57 , A = 10_24 , A = 7_68 , A = 12 , A = 12 , A = None , A = "gelu_new" , A = 0.1 , A = 0.1 , A = 0.1 , A = 1e-5 , A = 0.02 , A = True , A = True , A = False , A = False , ) -> int: '''simple docstring''' super().__init__() lowerCamelCase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' F' `n_embd`: {n_embd} are not equal.' ) lowerCamelCase = prefix_inner_dim lowerCamelCase = prefix_hidden_dim lowerCamelCase = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase = ( nn.Linear(self.prefix_hidden_dim , A ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase = GPTaConfig( vocab_size=A , n_positions=A , n_embd=A , n_layer=A , n_head=A , n_inner=A , activation_function=A , resid_pdrop=A , embd_pdrop=A , attn_pdrop=A , layer_norm_epsilon=A , initializer_range=A , scale_attn_weights=A , use_cache=A , scale_attn_by_inverse_layer_idx=A , reorder_and_upcast_attn=A , ) lowerCamelCase = GPTaLMHeadModel(A ) def __A ( self , A , A , A = None , A = None , ) -> Any: '''simple docstring''' lowerCamelCase = self.transformer.transformer.wte(A ) lowerCamelCase = self.encode_prefix(A ) lowerCamelCase = self.decode_prefix(A ) lowerCamelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCamelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCamelCase = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCamelCase = self.transformer(inputs_embeds=A , labels=A , attention_mask=A ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __A ( self , A , A ) -> torch.Tensor: '''simple docstring''' return torch.zeros(A , self.prefix_length , dtype=torch.intaa , device=A ) def __A ( self , A ) -> int: '''simple docstring''' return self.encode_prefix(A ) @torch.no_grad() def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = torch.split(A , 1 , dim=0 ) lowerCamelCase = [] lowerCamelCase = [] for feature in features: lowerCamelCase = self.decode_prefix(feature.to(A ) ) # back to the clip feature # Only support beam search for now lowerCamelCase , lowerCamelCase = self.generate_beam( input_embeds=A , device=A , eos_token_id=A ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCamelCase = torch.stack(A ) lowerCamelCase = torch.stack(A ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __A ( self , A=None , A=None , A=None , A = 5 , A = 67 , A = 1.0 , A = None , ) -> Any: '''simple docstring''' lowerCamelCase = eos_token_id lowerCamelCase = None lowerCamelCase = None lowerCamelCase = torch.ones(A , device=A , dtype=torch.int ) lowerCamelCase = torch.zeros(A , device=A , dtype=torch.bool ) if input_embeds is not None: lowerCamelCase = input_embeds else: lowerCamelCase = self.transformer.transformer.wte(A ) for i in range(A ): lowerCamelCase = self.transformer(inputs_embeds=A ) lowerCamelCase = outputs.logits lowerCamelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCamelCase = logits.softmax(-1 ).log() if scores is None: lowerCamelCase , lowerCamelCase = logits.topk(A , -1 ) lowerCamelCase = generated.expand(A , *generated.shape[1:] ) lowerCamelCase , lowerCamelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCamelCase = next_tokens else: lowerCamelCase = tokens.expand(A , *tokens.shape[1:] ) lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCamelCase = -float(np.inf ) lowerCamelCase = 0 lowerCamelCase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCamelCase = scores_sum / seq_lengths[:, None] lowerCamelCase , lowerCamelCase = scores_sum_average.view(-1 ).topk(A , -1 ) lowerCamelCase = next_tokens // scores_sum.shape[1] lowerCamelCase = seq_lengths[next_tokens_source] lowerCamelCase = next_tokens % scores_sum.shape[1] lowerCamelCase = next_tokens.unsqueeze(1 ) lowerCamelCase = tokens[next_tokens_source] lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 ) lowerCamelCase = generated[next_tokens_source] lowerCamelCase = scores_sum_average * seq_lengths lowerCamelCase = is_stopped[next_tokens_source] lowerCamelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCamelCase = torch.cat((generated, next_token_embed) , dim=1 ) lowerCamelCase = is_stopped + next_tokens.eq(A ).squeeze() if is_stopped.all(): break lowerCamelCase = scores / seq_lengths lowerCamelCase = scores.argsort(descending=A ) # tokens tensors are already padded to max_seq_length lowerCamelCase = [tokens[i] for i in order] lowerCamelCase = torch.stack(A , dim=0 ) lowerCamelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
66
0
def lowerCAmelCase__ ( a__: float ) -> str: '''simple docstring''' if edge <= 0 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('Length must be a positive.' ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowerCAmelCase__ ( a__: float ) -> Union[str, Any]: '''simple docstring''' if edge <= 0 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('Length must be a positive.' ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
329
import os import jsonlines import numpy as np from tqdm import tqdm __snake_case : Any =2_0_4_8 __snake_case : Union[str, Any] =4_0_9_6 __snake_case : Optional[Any] =4_2 __snake_case : Dict =os.environ.pop('PROCESS_TRAIN', 'false') __snake_case : List[str] ={'null': 0, 'short': 1, 'long': 2, 'yes': 3, 'no': 4} def lowerCAmelCase__ ( lowerCamelCase_ : List[Any]): '''simple docstring''' def choose_first(lowerCamelCase_ : List[str] ,lowerCamelCase_ : Any=False): assert isinstance(lowerCamelCase_ ,lowerCamelCase_) if len(lowerCamelCase_) == 1: lowerCAmelCase__ : Optional[int] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowerCAmelCase__ : Any = {k: [a[k]] for k in a} if len(a['''start_token''']) > 0: break return a lowerCAmelCase__ : Optional[Any] = {'''id''': example['''id''']} lowerCAmelCase__ : int = example['''annotations'''] lowerCAmelCase__ : str = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: lowerCAmelCase__ : Union[str, Any] = ['''yes'''] if 1 in yes_no_answer else ['''no'''] lowerCAmelCase__ : int = [] lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : int = ['''<cls>'''] else: lowerCAmelCase__ : Tuple = ['''short'''] lowerCAmelCase__ : int = choose_first(annotation['''short_answers''']) if len(out['''start_token''']) == 0: # answer will be long if short is not available lowerCAmelCase__ : Optional[Any] = ['''long'''] lowerCAmelCase__ : str = choose_first(annotation['''long_answer'''] ,is_long_answer=lowerCamelCase_) lowerCAmelCase__ : Optional[int] = [] answer.update(lowerCamelCase_) # disregard some samples if len(answer['''start_token''']) > 1 or answer["start_token"] == answer["end_token"]: lowerCAmelCase__ : Optional[Any] = True else: lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Tuple = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] ,lowerCamelCase_) for k in cols): raise ValueError('''Issue in ID''' ,example['''id''']) return answer def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Union[str, Any]=False): '''simple docstring''' lowerCAmelCase__ : Any = _get_single_answer(lowerCamelCase_) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCAmelCase__ : List[Any] = example['''document''']['''tokens'''] lowerCAmelCase__ : Any = [] for i in range(len(doc['''token'''])): if not doc["is_html"][i]: context.append(doc['''token'''][i]) return { "context": " ".join(lowerCamelCase_), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowerCAmelCase__ : Union[str, Any] = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k]) > 0 else answer[k] for k in cols}) # e.g. [10] == 10 lowerCAmelCase__ : List[Any] = example['''document''']['''tokens'''] lowerCAmelCase__ : Optional[Any] = answer['''start_token'''] lowerCAmelCase__ : Union[str, Any] = answer['''end_token'''] lowerCAmelCase__ : int = [] for i in range(len(doc['''token'''])): if not doc["is_html"][i]: context.append(doc['''token'''][i]) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowerCAmelCase__ : List[Any] = ''' '''.join(context[start_token:end_token]) # checking above code if assertion: lowerCAmelCase__ : str = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] lowerCAmelCase__ : List[Any] = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] lowerCAmelCase__ : Optional[int] = ''' '''.join([old[i] for i in range(len(lowerCamelCase_)) if not is_html[i]]) if new != old: print('''ID:''' ,example['''id''']) print('''New:''' ,lowerCamelCase_ ,end='''\n''') print('''Old:''' ,lowerCamelCase_ ,end='''\n\n''') return { "context": " ".join(lowerCamelCase_), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : str ,lowerCamelCase_ : Tuple=2048 ,lowerCamelCase_ : Dict=4096 ,lowerCamelCase_ : Optional[Any]=True): '''simple docstring''' lowerCAmelCase__ : int = get_context_and_ans(lowerCamelCase_ ,assertion=lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowerCAmelCase__ : Union[str, Any] = tokenizer(example['''question''']['''text'''] ,out['''context''']).input_ids lowerCAmelCase__ : List[str] = input_ids.index(tokenizer.sep_token_id) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[Any] = input_ids[:q_len] lowerCAmelCase__ : List[Any] = range(lowerCamelCase_ ,len(lowerCamelCase_) ,max_length - doc_stride) for i in doc_start_indices: lowerCAmelCase__ : Union[str, Any] = i + max_length - q_len lowerCAmelCase__ : Any = input_ids[i:end_index] inputs.append(q_indices + slice) category.append(answer['''category'''][0]) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase_), "end_token": [-100] * len(lowerCamelCase_), "category": category, }, } lowerCAmelCase__ : Optional[Any] = out['''context'''].split() lowerCAmelCase__ : Union[str, Any] = splitted_context[answer['''end_token''']] lowerCAmelCase__ : Optional[int] = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']]) ,add_special_tokens=lowerCamelCase_ ,).input_ids) lowerCAmelCase__ : Dict = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']]) ,add_special_tokens=lowerCamelCase_).input_ids) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowerCAmelCase__ : int = len(tokenizer(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_).input_ids) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowerCAmelCase__ : Union[str, Any] = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive lowerCAmelCase__ : List[str] = answer['''start_token'''] lowerCAmelCase__ : Union[str, Any] = answer['''end_token'''] if assertion: lowerCAmelCase__ : int = tokenizer.decode(lowerCamelCase_) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''') print('''OLD:''' ,answer['''span''']) print('''NEW:''' ,lowerCamelCase_ ,end='''\n\n''') if len(lowerCamelCase_) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowerCAmelCase__ : int = input_ids[:q_len] lowerCAmelCase__ : Optional[Any] = range(lowerCamelCase_ ,len(lowerCamelCase_) ,max_length - doc_stride) lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Any = [] # null, yes, no, long, short for i in doc_start_indices: lowerCAmelCase__ : str = i + max_length - q_len lowerCAmelCase__ : List[str] = input_ids[i:end_index] inputs.append(q_indices + slice) assert len(inputs[-1]) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowerCAmelCase__ : int = start_token - i + q_len lowerCAmelCase__ : str = end_token - i + q_len answers_category.append(answer['''category'''][0]) # ["short"] -> "short" else: lowerCAmelCase__ : Tuple = -100 lowerCAmelCase__ : List[str] = -100 answers_category.append('''null''') lowerCAmelCase__ : int = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase_) answers_end_token.append(lowerCamelCase_) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' ,example['''id''']) print('''New:''' ,tokenizer.decode(lowerCamelCase_)) print('''Old:''' ,tokenizer.decode(lowerCamelCase_) ,end='''\n\n''') if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : List[Any] ,lowerCamelCase_ : int=2048 ,lowerCamelCase_ : Tuple=4096 ,lowerCamelCase_ : Optional[int]=False): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = get_strided_contexts_and_ans( lowerCamelCase_ ,lowerCamelCase_ ,doc_stride=lowerCamelCase_ ,max_length=lowerCamelCase_ ,assertion=lowerCamelCase_ ,) return example def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : int): '''simple docstring''' with jsonlines.open(lowerCamelCase_ ,'''a''') as writer: for example in tqdm(lowerCamelCase_ ,total=len(lowerCamelCase_) ,desc='''Saving samples ... '''): lowerCAmelCase__ : Optional[Any] = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] ,labels['''start_token'''] ,labels['''end_token'''] ,labels['''category'''] ,): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], }) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __snake_case : Optional[int] =load_dataset('natural_questions') __snake_case : Union[str, Any] =BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') __snake_case : Tuple =data['train' if PROCESS_TRAIN == 'true' else 'validation'] __snake_case : Optional[int] ={ 'tokenizer': tokenizer, 'doc_stride': DOC_STRIDE, 'max_length': MAX_LENGTH, 'assertion': False, } __snake_case : Dict =data.map(prepare_inputs, fn_kwargs=fn_kwargs) __snake_case : Dict =data.remove_columns(['annotations', 'document', 'id', 'question']) print(data) np.random.seed(SEED) __snake_case : int ='nq-training.jsonl' if PROCESS_TRAIN == 'true' else 'nq-validation.jsonl' save_to_disk(data, file_name=cache_file_name)
129
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase_ : List[str] = 250_004 UpperCAmelCase_ : Optional[Any] = 250_020 @require_sentencepiece @require_tokenizers class UpperCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : int = MBartaaTokenizer lowerCAmelCase : List[Any] = MBartaaTokenizerFast lowerCAmelCase : Any = True lowerCAmelCase : List[Any] = True def __A ( self ): super().setUp() # We have a SentencePiece fixture for testing A__ = MBartaaTokenizer(UpperCAmelCase__ , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ): A__ = "<s>" A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def __A ( self ): A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(UpperCAmelCase__ ) , 1_054 ) def __A ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def __A ( self ): A__ = MBartaaTokenizer(UpperCAmelCase__ , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=UpperCAmelCase__ ) A__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) A__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __A ( self ): # fmt: off A__ = {"input_ids": [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def __A ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A__ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A__ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(UpperCAmelCase__ ) A__ = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) A__ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(UpperCAmelCase__ ) A__ = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase__ ) # Save tokenizer rust, legacy_format=True A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(UpperCAmelCase__ , legacy_format=UpperCAmelCase__ ) A__ = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(UpperCAmelCase__ ) A__ = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) shutil.rmtree(UpperCAmelCase__ ) # Save tokenizer rust, legacy_format=False A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(UpperCAmelCase__ , legacy_format=UpperCAmelCase__ ) A__ = tokenizer_p.save_pretrained(UpperCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(UpperCAmelCase__ ) A__ = tokenizer_p.from_pretrained(UpperCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) shutil.rmtree(UpperCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): lowerCAmelCase : Tuple = """facebook/mbart-large-50-one-to-many-mmt""" lowerCAmelCase : Union[str, Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowerCAmelCase : str = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowerCAmelCase : List[str] = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def __A ( cls ): A__ = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) A__ = 1 return cls def __A ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 250_038 ) def __A ( self ): A__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase__ ) def __A ( self ): self.assertIn(UpperCAmelCase__ , self.tokenizer.all_special_ids ) A__ = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] A__ = self.tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) A__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase__ ) def __A ( self ): A__ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , UpperCAmelCase__ ) A__ = 10 A__ = self.tokenizer(UpperCAmelCase__ , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ ).input_ids[0] self.assertEqual(ids[0] , UpperCAmelCase__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) def __A ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250_053, 250_001] ) def __A ( self ): A__ = tempfile.mkdtemp() A__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase__ ) A__ = MBartaaTokenizer.from_pretrained(UpperCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase__ ) @require_torch def __A ( self ): A__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase__ , return_tensors="pt" ) A__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __A ( self ): A__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) A__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) A__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __A ( self ): A__ = self.tokenizer(self.src_text , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=3 , return_tensors="pt" ) A__ = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=10 , return_tensors="pt" ) A__ = targets["input_ids"] A__ = shift_tokens_right(UpperCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __A ( self ): A__ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , { # en_XX, A, test, EOS "input_ids": [[250_004, 62, 3_034, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250_001, } , )
198
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase ( _A : Optional[int] )-> List[Any]: """simple docstring""" A__ = FileLock(str(tmpdir / "foo.lock" ) ) A__ = FileLock(str(tmpdir / "foo.lock" ) ) A__ = 0.01 with locka.acquire(): with pytest.raises(_A ): A__ = time.time() locka.acquire(_A ) assert time.time() - _start > timeout def UpperCamelCase ( _A : str )-> List[Any]: """simple docstring""" A__ = "a" * 1000 + ".lock" A__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(_A ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_A ): locka.acquire(0 )
198
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class _lowerCamelCase ( lowerCamelCase__ ): UpperCAmelCase_ = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase_ = Features({"audio": Audio()} ) UpperCAmelCase_ = Features({"labels": ClassLabel} ) UpperCAmelCase_ = "audio" UpperCAmelCase_ = "labels" def snake_case_ (self , __a ) -> int: if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) UpperCamelCase = copy.deepcopy(self ) UpperCamelCase = self.label_schema.copy() UpperCamelCase = features[self.label_column] UpperCamelCase = label_schema return task_template @property def snake_case_ (self ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
153
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def UpperCAmelCase__ ( _A : int = 3 ): '''simple docstring''' if isinstance(_A , _A ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_A ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) a__ =QuantumRegister(_A , '''qr''' ) a__ =ClassicalRegister(_A , '''cr''' ) a__ =QuantumCircuit(_A , _A ) a__ =number_of_qubits for i in range(_A ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_A ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _A , _A ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_A , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_A , _A ) # simulate with 10000 shots a__ =Aer.get_backend('''qasm_simulator''' ) a__ =execute(_A , _A , shots=1_00_00 ) return job.result().get_counts(_A ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
188
0
'''simple docstring''' import math class _lowercase : def lowerCamelCase_ ( self: Dict , UpperCamelCase__: list[list[float]] , UpperCamelCase__: list[int] ): lowerCamelCase__ : int = 0.0 lowerCamelCase__ : Union[str, Any] = 0.0 for i in range(len(UpperCamelCase__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCamelCase_ ( self: Dict , UpperCamelCase__: list[list[int | float]] , UpperCamelCase__: list[int] , UpperCamelCase__: int , UpperCamelCase__: float ): for i in range(len(UpperCamelCase__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE_ () -> None: # Training Examples ( m, n ) lowerCamelCase__ : Any = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowerCamelCase__ : Dict = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowerCamelCase__ : Optional[int] = SelfOrganizingMap() lowerCamelCase__ : Optional[Any] = 3 lowerCamelCase__ : Tuple = 0.5 for _ in range(UpperCamelCase ): for j in range(len(UpperCamelCase ) ): # training sample lowerCamelCase__ : List[Any] = training_samples[j] # Compute the winning vector lowerCamelCase__ : Optional[int] = self_organizing_map.get_winner(UpperCamelCase , UpperCamelCase ) # Update the winning vector lowerCamelCase__ : str = self_organizing_map.update(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # classify test sample lowerCamelCase__ : List[Any] = [0, 0, 0, 1] lowerCamelCase__ : List[Any] = self_organizing_map.get_winner(UpperCamelCase , UpperCamelCase ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
350
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence lowerCamelCase__ : List[str] = gray_code_sequence_string(UpperCamelCase ) # # convert them to integers for i in range(len(UpperCamelCase ) ): lowerCamelCase__ : int = int(sequence[i] , 2 ) return sequence def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowerCamelCase__ : Optional[Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowerCamelCase__ : Any = gray_code_sequence_string(bit_count - 1 ) lowerCamelCase__ : Union[str, Any] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowerCamelCase__ : Optional[int] = """0""" + smaller_sequence[i] sequence.append(UpperCamelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowerCamelCase__ : int = """1""" + smaller_sequence[i] sequence.append(UpperCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
129
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class A_ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: SCREAMING_SNAKE_CASE_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: SCREAMING_SNAKE_CASE_ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCAmelCase__ ( self :int ): """simple docstring""" lowerCamelCase__ : Optional[Any] =pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' ) lowerCamelCase__ : Dict =text_classifier('This is great !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.5_04}] ) lowerCamelCase__ : List[str] =text_classifier('This is great !' , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}] ) lowerCamelCase__ : Union[str, Any] =text_classifier(['This is great !', 'This is bad'] , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ] , ) lowerCamelCase__ : List[Any] =text_classifier('This is great !' , top_k=1 ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.5_04}] ) # Legacy behavior lowerCamelCase__ : List[str] =text_classifier('This is great !' , return_all_scores=lowercase_ ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.5_04}] ) lowerCamelCase__ : List[str] =text_classifier('This is great !' , return_all_scores=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [[{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}]] ) lowerCamelCase__ : Any =text_classifier(['This is great !', 'Something else'] , return_all_scores=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ] , ) lowerCamelCase__ : Any =text_classifier(['This is great !', 'Something else'] , return_all_scores=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [ {'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_0', 'score': 0.5_04}, ] , ) @require_torch def UpperCAmelCase__ ( self :str ): """simple docstring""" import torch lowerCamelCase__ : List[Any] =pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu' ) , ) lowerCamelCase__ : Any =text_classifier('This is great !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.5_04}] ) @require_tf def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : str =pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf' ) lowerCamelCase__ : Tuple =text_classifier('This is great !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'LABEL_0', 'score': 0.5_04}] ) @slow @require_torch def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" lowerCamelCase__ : Any =pipeline('text-classification' ) lowerCamelCase__ : List[str] =text_classifier('This is great !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'POSITIVE', 'score': 1.0}] ) lowerCamelCase__ : str =text_classifier('This is bad !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) lowerCamelCase__ : List[str] =text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'POSITIVE', 'score': 0.9_88}] ) @slow @require_tf def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : str =pipeline('text-classification' , framework='tf' ) lowerCamelCase__ : List[Any] =text_classifier('This is great !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'POSITIVE', 'score': 1.0}] ) lowerCamelCase__ : Union[str, Any] =text_classifier('This is bad !' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) lowerCamelCase__ : int =text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': 'POSITIVE', 'score': 0.9_88}] ) def UpperCAmelCase__ ( self :Optional[int] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :str ): """simple docstring""" lowerCamelCase__ : List[Any] =TextClassificationPipeline(model=lowercase_ , tokenizer=lowercase_ ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCAmelCase__ ( self :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :str ): """simple docstring""" lowerCamelCase__ : Tuple =text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCamelCase__ : Optional[int] ='HuggingFace is in' lowerCamelCase__ : List[str] =text_classifier(lowercase_ ) self.assertEqual(nested_simplify(lowercase_ ) , [{'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) lowerCamelCase__ : List[Any] =['HuggingFace is in ', 'Paris is in France'] lowerCamelCase__ : Any =text_classifier(lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [{'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}, {'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCamelCase__ : Dict =text_classifier(lowercase_ , top_k=lowercase_ ) lowerCamelCase__ : Optional[Any] =len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowercase_ ) , [[{'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}] * N, [{'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}] * N] , ) lowerCamelCase__ : int ={'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} lowerCamelCase__ : Optional[Any] =text_classifier(lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , {'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )} , ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCamelCase__ : str =[['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(lowercase_ ): text_classifier(lowercase_ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCamelCase__ : Dict =text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(lowercase_ ) , [{'label': ANY(lowercase_ ), 'score': ANY(lowercase_ )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
126
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]=False ): A__ = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: A__ = "" else: A__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( _lowerCamelCase : int ): A__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] ): A__ = dct.pop(_lowerCamelCase ) A__ = val def UpperCamelCase ( ): A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any]=False ): A__ = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_lowerCamelCase , ) A__ = ViTHybridConfig(backbone_config=_lowerCamelCase , image_size=3_84 , num_labels=10_00 ) A__ = False # load original model from timm A__ = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) A__ = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "huggingface/label-files" A__ = "imagenet-1k-id2label.json" A__ = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) A__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A__ = ViTHybridModel(_lowerCamelCase ).eval() else: A__ = ViTHybridForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # create image processor A__ = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) A__ = transform.transforms A__ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A__ = ViTHybridImageProcessor( do_resize=_lowerCamelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A__ = prepare_img() A__ = transform(_lowerCamelCase ).unsqueeze(0 ) A__ = processor(_lowerCamelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): A__ = model(_lowerCamelCase ) A__ = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: A__ = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: A__ = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
237
0
'''simple docstring''' def _a ( _lowercase : list ): '''simple docstring''' if len(lowercase_ ) <= 1: return [tuple(lowercase_ )] __UpperCAmelCase : List[Any] = [] def generate(_lowercase : int , _lowercase : list ): __UpperCAmelCase : Dict = [0] * n res.append(tuple(lowercase_ ) ) __UpperCAmelCase : Optional[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: __UpperCAmelCase , __UpperCAmelCase : List[str] = arr[i], arr[0] else: __UpperCAmelCase , __UpperCAmelCase : Tuple = arr[i], arr[c[i]] res.append(tuple(lowercase_ ) ) c[i] += 1 __UpperCAmelCase : str = 0 else: __UpperCAmelCase : List[Any] = 0 i += 1 generate(len(lowercase_ ) , lowercase_ ) return res if __name__ == "__main__": __UpperCAmelCase :List[str] = input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase :int = [int(item) for item in user_input.split(",")] print(heaps(arr))
357
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _a ): """simple docstring""" def __init__( self : Optional[Any] , snake_case : Dict , snake_case : Dict=13 , snake_case : str=7 , snake_case : Dict=True , snake_case : Any=True , snake_case : Optional[Any]=True , snake_case : Optional[Any]=True , snake_case : List[str]=99 , snake_case : str=32 , snake_case : Any=5 , snake_case : List[str]=4 , snake_case : List[str]=37 , snake_case : int="gelu" , snake_case : int=0.1 , snake_case : int=0.1 , snake_case : Union[str, Any]=512 , snake_case : int=16 , snake_case : Optional[Any]=2 , snake_case : List[Any]=0.02 , snake_case : Any=False , snake_case : int=True , snake_case : Union[str, Any]="None" , snake_case : str=3 , snake_case : Union[str, Any]=4 , snake_case : Any=None , ) -> List[Any]: __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : List[str] = use_input_mask __UpperCAmelCase : Union[str, Any] = use_token_type_ids __UpperCAmelCase : Any = use_labels __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Any = type_vocab_size __UpperCAmelCase : Tuple = type_sequence_label_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : Any = num_choices __UpperCAmelCase : Any = relative_attention __UpperCAmelCase : Dict = position_biased_input __UpperCAmelCase : Optional[int] = pos_att_type __UpperCAmelCase : Dict = scope def lowerCamelCase__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_input_mask: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[str] = None __UpperCAmelCase : int = None __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Tuple ) -> List[str]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase__ ( self : Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = self.get_config() __UpperCAmelCase : Dict = 300 return config def lowerCamelCase__ ( self : Any , snake_case : int ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase__ ( self : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : Any , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase : List[str] = DebertaModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )[0] __UpperCAmelCase : Tuple = model(snake_case , token_type_ids=snake_case )[0] __UpperCAmelCase : Optional[int] = model(snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase__ ( self : Optional[int] , snake_case : int , snake_case : Tuple , snake_case : Any , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = DebertaForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : int = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple , snake_case : List[Any] , snake_case : str , snake_case : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : List[Any] = DebertaForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Any = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case ) def lowerCamelCase__ ( self : str , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] , snake_case : Dict , snake_case : Optional[int] ) -> int: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Union[str, Any] = DebertaForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Any = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : Optional[int] , snake_case : int , snake_case : int , snake_case : str ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = DebertaForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Optional[int] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str ) -> int: __UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Dict = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Any = False def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Dict = DebertaModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[str]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> str: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case ) @slow def lowerCamelCase__ ( self : Dict ) -> Tuple: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : str = DebertaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def lowerCamelCase__ ( self : Dict ) -> Tuple: pass @slow def lowerCamelCase__ ( self : int ) -> Optional[Any]: __UpperCAmelCase : Any = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __UpperCAmelCase : Any = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __UpperCAmelCase : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : int = model(snake_case , attention_mask=snake_case )[0] # compare the actual values for a slice. __UpperCAmelCase : Optional[Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
240
0
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = (KDPMaDiscreteScheduler,) _lowerCamelCase = 10 def snake_case ( self , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = { "num_train_timesteps": 1100, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**UpperCamelCase ) return config def snake_case ( self ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase ) def snake_case ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase , beta_end=UpperCamelCase ) def snake_case ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase ) def snake_case ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCamelCase_ = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ = sample.to(UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ = scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCamelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def snake_case ( self ): """simple docstring""" if torch_device == "mps": return lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ = sample.to(UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ = scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCamelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def snake_case ( self ): """simple docstring""" if torch_device == "mps": return lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter.to(UpperCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase_ = scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCamelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCamelCase ) ) if str(UpperCamelCase ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
55
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 def __init__( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase ) @torch.no_grad() def __call__( self , UpperCamelCase = 1 , UpperCamelCase = 2000 , UpperCamelCase = None , UpperCamelCase = "pil" , UpperCamelCase = True , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = self.unet.config.sample_size lowerCamelCase_ = (batch_size, 3, img_size, img_size) lowerCamelCase_ = self.unet lowerCamelCase_ = randn_tensor(UpperCamelCase , generator=UpperCamelCase ) * self.scheduler.init_noise_sigma lowerCamelCase_ = sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase ) self.scheduler.set_sigmas(UpperCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCamelCase_ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCamelCase_ = self.unet(UpperCamelCase , UpperCamelCase ).sample lowerCamelCase_ = self.scheduler.step_correct(UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample # prediction step lowerCamelCase_ = model(UpperCamelCase , UpperCamelCase ).sample lowerCamelCase_ = self.scheduler.step_pred(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = output.prev_sample, output.prev_sample_mean lowerCamelCase_ = sample_mean.clamp(0 , 1 ) lowerCamelCase_ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase )
55
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
lowerCAmelCase = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
304
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A__ : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A__ : int = 256047 A__ : List[str] = 256145 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (_SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple = NllbTokenizer lowerCamelCase : int = NllbTokenizerFast lowerCamelCase : str = True lowerCamelCase : Dict = True lowerCamelCase : Union[str, Any] = {} def lowercase_ ( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase : Optional[Any] = NllbTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[str] = NllbTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) __lowerCamelCase : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowerCamelCase : Dict = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCamelCase : str = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) __lowerCamelCase : int = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) __lowerCamelCase : List[Any] = tempfile.mkdtemp() __lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(_lowerCAmelCase ) __lowerCamelCase : Tuple = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __lowerCamelCase : Tuple = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way __lowerCamelCase : List[Any] = tokenizer_r.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Any = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=True __lowerCamelCase : Dict = tempfile.mkdtemp() __lowerCamelCase : int = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) __lowerCamelCase : int = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way __lowerCamelCase : List[str] = tokenizer_r.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Any = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=False __lowerCamelCase : Tuple = tempfile.mkdtemp() __lowerCamelCase : Dict = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCamelCase : Tuple = tokenizer_r.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) @require_torch def lowercase_ ( self ) -> List[Any]: if not self.test_seqaseq: return __lowerCamelCase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __lowerCamelCase : Union[str, Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __lowerCamelCase : Dict = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __lowerCamelCase : Any = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCAmelCase , tgt_texts=_lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __lowerCamelCase : Optional[Any] = tokenizer.prepare_seqaseq_batch( _lowerCAmelCase , tgt_texts=_lowerCAmelCase , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __lowerCamelCase : str = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : Tuple = [AddedToken('<special>' , lstrip=_lowerCAmelCase )] __lowerCamelCase : Any = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase ) __lowerCamelCase : Optional[int] = tokenizer_r.encode('Hey this is a <special> token' ) __lowerCamelCase : List[Any] = tokenizer_r.encode('<special>' , add_special_tokens=_lowerCAmelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) __lowerCamelCase : Optional[Any] = self.tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase ) __lowerCamelCase : Optional[int] = tokenizer_p.encode('Hey this is a <special> token' ) __lowerCamelCase : int = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = 'facebook/nllb-200-distilled-600M' lowerCamelCase : List[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCamelCase : Optional[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCamelCase : Dict = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def lowercase_ ( cls ) -> int: __lowerCamelCase : List[Any] = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __lowerCamelCase : Optional[Any] = 1 return cls def lowercase_ ( self ) -> List[str]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_60_57 ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) def lowercase_ ( self ) -> List[str]: self.assertIn(_lowerCAmelCase , self.tokenizer.all_special_ids ) # fmt: off __lowerCamelCase : List[str] = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on __lowerCamelCase : List[Any] = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) __lowerCamelCase : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCAmelCase ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , _lowerCAmelCase ) __lowerCamelCase : Optional[int] = 10 __lowerCamelCase : Optional[int] = self.tokenizer(_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , _lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) def lowercase_ ( self ) -> Optional[int]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_62_03, 3] ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Any = tempfile.mkdtemp() __lowerCamelCase : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCAmelCase ) __lowerCamelCase : int = NllbTokenizer.from_pretrained(_lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowerCAmelCase ) @require_torch def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __lowerCamelCase : Union[str, Any] = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __lowerCamelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.tokenizer(self.src_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=3 , return_tensors='pt' ) __lowerCamelCase : int = self.tokenizer( text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=10 , return_tensors='pt' ) __lowerCamelCase : int = targets['input_ids'] __lowerCamelCase : List[Any] = shift_tokens_right( _lowerCAmelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Tuple = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { # A, test, EOS, en_XX 'input_ids': [[25_60_47, 70, 73_56, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_60_57, } , ) @require_torch def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Dict = True __lowerCamelCase : Tuple = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) __lowerCamelCase : str = False __lowerCamelCase : str = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
185
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : str=False ) -> List[str]: SCREAMING_SNAKE_CASE_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE_ = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False ) -> Any: for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_ = '' else: SCREAMING_SNAKE_CASE_ = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE_ = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> str: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. SCREAMING_SNAKE_CASE_ = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Any ) -> Dict: SCREAMING_SNAKE_CASE_ = dct.pop(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = val def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE_ = ViTMSNConfig() SCREAMING_SNAKE_CASE_ = 10_00 SCREAMING_SNAKE_CASE_ = 'datasets/huggingface/label-files' SCREAMING_SNAKE_CASE_ = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase ) , 'r' ) ) SCREAMING_SNAKE_CASE_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 3_84 SCREAMING_SNAKE_CASE_ = 15_36 SCREAMING_SNAKE_CASE_ = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 10_24 SCREAMING_SNAKE_CASE_ = 40_96 SCREAMING_SNAKE_CASE_ = 24 SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = 10_24 SCREAMING_SNAKE_CASE_ = 40_96 SCREAMING_SNAKE_CASE_ = 24 SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 0.1 SCREAMING_SNAKE_CASE_ = ViTMSNModel(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='cpu' )['target_encoder'] SCREAMING_SNAKE_CASE_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , base_model=__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) SCREAMING_SNAKE_CASE_ = ViTImageProcessor( size=config.image_size , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = image_processor(images=__UpperCAmelCase , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_ = model(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: SCREAMING_SNAKE_CASE_ = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __UpperCAmelCase , atol=1E-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCamelCase__ : Union[str, Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
225
0
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase = 100_0000 ): lowercase__ : Optional[int] = 1 lowercase__ : List[str] = 1 lowercase__ : int = {1: 1} for inputa in range(2 , UpperCAmelCase ): lowercase__ : int = 0 lowercase__ : int = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowercase__ : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: lowercase__ : Tuple = counter if counter > pre_counter: lowercase__ : str = inputa lowercase__ : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
214
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=2 , __lowerCAmelCase=32 , __lowerCAmelCase=16 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=32 , __lowerCAmelCase=4 , __lowerCAmelCase=[0, 1, 2, 3] , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=[1, 384, 24, 24] , __lowerCAmelCase=True , __lowerCAmelCase=None , ) -> Dict: lowercase__ : str = parent lowercase__ : List[Any] = batch_size lowercase__ : Dict = image_size lowercase__ : Tuple = patch_size lowercase__ : str = num_channels lowercase__ : Dict = is_training lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : int = backbone_out_indices lowercase__ : List[str] = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[Any] = initializer_range lowercase__ : Optional[int] = num_labels lowercase__ : Optional[int] = backbone_featmap_shape lowercase__ : int = scope lowercase__ : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase__ : List[str] = (image_size // patch_size) ** 2 lowercase__ : Tuple = num_patches + 1 def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__lowerCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: lowercase__ : Optional[int] = DPTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: lowercase__ : Union[str, Any] = self.num_labels lowercase__ : str = DPTForDepthEstimation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : List[str] = model(__lowerCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: lowercase__ : str = self.num_labels lowercase__ : Tuple = DPTForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Dict = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : List[str] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : str = DPTModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def _lowerCAmelCase( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def _lowerCAmelCase( self ) -> Tuple: pass def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = model_class(__lowerCAmelCase ) lowercase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True if model_class in get_values(__lowerCAmelCase ): continue lowercase__ : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() lowercase__ : Tuple = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) lowercase__ : str = model(**__lowerCAmelCase ).loss loss.backward() def _lowerCAmelCase( self ) -> Tuple: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Any = False lowercase__ : str = True if model_class in get_values(__lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue lowercase__ : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() lowercase__ : str = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) lowercase__ : List[Any] = model(**__lowerCAmelCase ).loss loss.backward() def _lowerCAmelCase( self ) -> List[Any]: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = _config_zero_init(__lowerCAmelCase ) for model_class in self.all_model_classes: lowercase__ : Dict = model_class(config=__lowerCAmelCase ) # Skip the check for the backbone lowercase__ : Union[str, Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase__ : List[Any] = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCAmelCase( self ) -> List[str]: pass @slow def _lowerCAmelCase( self ) -> List[Any]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase__ : Dict = DPTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[str] = '''add''' with self.assertRaises(__lowerCAmelCase ): lowercase__ : Tuple = DPTForDepthEstimation(__lowerCAmelCase ) def __UpperCamelCase ( ): lowercase__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Any: lowercase__ : Optional[int] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) lowercase__ : List[Any] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__lowerCAmelCase ) lowercase__ : Optional[Any] = prepare_img() lowercase__ : Optional[Any] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**__lowerCAmelCase ) lowercase__ : str = outputs.predicted_depth # verify the predicted depth lowercase__ : Optional[Any] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __lowerCAmelCase ) lowercase__ : str = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __lowerCAmelCase , atol=1E-4 ) )
214
1
'''simple docstring''' import numpy # List of input, output pairs a__ : List[Any] = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) a__ : List[str] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) a__ : Optional[int] = [2, 4, 1, 5] a__ : Optional[Any] = len(train_data) a__ : Union[str, Any] = 0.0_09 def _lowercase ( __A ,__A="train" ): '''simple docstring''' return calculate_hypothesis_value(__A ,__A ) - output( __A ,__A ) def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = 0 for i in range(len(__A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowercase ( __A ,__A ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowercase ( __A ,__A ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowercase ( __A ,__A=m ): '''simple docstring''' __UpperCamelCase = 0 for i in range(__A ): if index == -1: summation_value += _error(__A ) else: summation_value += _error(__A ) * train_data[i][0][index] return summation_value def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = summation_of_cost_derivative(__A ,__A ) / m return cost_derivative_value def _lowercase ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __UpperCamelCase = 0.00_0002 __UpperCamelCase = 0 __UpperCamelCase = 0 while True: j += 1 __UpperCamelCase = [0, 0, 0, 0] for i in range(0 ,len(__A ) ): __UpperCamelCase = get_cost_derivative(i - 1 ) __UpperCamelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __A ,__A ,atol=__A ,rtol=__A ,): break __UpperCamelCase = temp_parameter_vector print(("""Number of iterations:""", j) ) def _lowercase ( ): '''simple docstring''' for i in range(len(__A ) ): print(("""Actual output value:""", output(__A ,"""test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__A ,"""test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
349
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder() __UpperCamelCase = inputs_dict["""input_ids"""] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict["""attention_mask"""][:1, :] __UpperCamelCase = inputs_dict["""head_mask"""] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase = model(lowercase , attention_mask=lowercase )[0] __UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase): __SCREAMING_SNAKE_CASE = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __SCREAMING_SNAKE_CASE = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __SCREAMING_SNAKE_CASE = '''google/pegasus-xsum''' @cached_property def __lowerCamelCase ( self ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCamelCase ( self , **lowercase ) -> Optional[int]: __UpperCamelCase = self.translate_src_text(**lowercase ) assert self.expected_text == generated_words def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]: __UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) __UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase ) return generated_words @slow def __lowerCamelCase ( self ) -> Dict: self._assert_generated_batch_equal_expected()
349
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowercase( __a ): '''simple docstring''' lowercase__ = "Speech2TextFeatureExtractor" lowercase__ = "Speech2TextTokenizer" def __init__( self: Optional[Any], a_: Any, a_: Optional[int] ): '''simple docstring''' super().__init__(a_, a_ ) _snake_case : Union[str, Any] = self.feature_extractor _snake_case : Optional[int] = False def __call__( self: str, *a_: Optional[Any], **a_: Dict ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*a_, **a_ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) _snake_case : Tuple = kwargs.pop("""raw_speech""" ) else: _snake_case : Optional[int] = kwargs.pop("""audio""", a_ ) _snake_case : List[Any] = kwargs.pop("""sampling_rate""", a_ ) _snake_case : Optional[int] = kwargs.pop("""text""", a_ ) if len(a_ ) > 0: _snake_case : str = args[0] _snake_case : Any = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _snake_case : Union[str, Any] = self.feature_extractor(a_, *a_, sampling_rate=a_, **a_ ) if text is not None: _snake_case : Optional[Any] = self.tokenizer(a_, **a_ ) if text is None: return inputs elif audio is None: return encodings else: _snake_case : Dict = encodings["""input_ids"""] return inputs def UpperCamelCase_ ( self: List[str], *a_: List[str], **a_: Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*a_, **a_ ) def UpperCamelCase_ ( self: Tuple, *a_: List[str], **a_: List[str] ): '''simple docstring''' return self.tokenizer.decode(*a_, **a_ ) @contextmanager def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) _snake_case : Dict = True _snake_case : Optional[int] = self.tokenizer yield _snake_case : Optional[Any] = self.feature_extractor _snake_case : int = False
132
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int = 1_00_00_00 ): """simple docstring""" _snake_case : Dict = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , snake_case__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
132
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase : Union[str, Any] = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCamelCase : Any = TypeVar('T') class a ( Generic[T] ): def __init__( self , _lowerCamelCase ): lowercase = data lowercase = None def __str__( self ): return F'{self.data}' class a ( Generic[T] ): def __init__( self ): lowercase = None def __iter__( self ): lowercase = self.top while node: yield node.data lowercase = node.next def __str__( self ): return "->".join([str(_lowerCamelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def UpperCamelCase_ ( self ): return self.top is None def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = Node(_lowerCamelCase ) if not self.is_empty(): lowercase = self.top lowercase = node def UpperCamelCase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _lowerCamelCase ) lowercase = self.top lowercase = self.top.next return pop_node.data def UpperCamelCase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase_ ( self ): lowercase = None if __name__ == "__main__": from doctest import testmod testmod()
220
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Optional[int] ={'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str =[ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] =['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict =[ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys A__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
'''simple docstring''' from manim import * class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : Union[str, Any] ) -> str: _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) _lowerCAmelCase = [mem.copy() for i in range(4 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) _lowerCAmelCase = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) _lowerCAmelCase = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCAmelCase = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(__snake_case ): _lowerCAmelCase = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) _lowerCAmelCase = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
220
0
'''simple docstring''' lowerCamelCase : int = 9.8_0_6_6_5 def _SCREAMING_SNAKE_CASE (A , A , A = g ) -> float: """simple docstring""" if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
2
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
1
'''simple docstring''' from torch import nn def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
351
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } _lowerCamelCase : Dict = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } _lowerCamelCase : Optional[Any] = { 'ctrl': 256, } _lowerCamelCase : List[str] = { 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char A = set(UpperCAmelCase ) return pairs class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = CONTROL_CODES def __init__(self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]="<unk>" , **_lowerCAmelCase : Dict ): super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: A = json.load(_lowerCAmelCase ) A = {v: k for k, v in self.encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: A = merges_handle.read().split("""\n""" )[1:-1] A = [tuple(merge.split() ) for merge in merges] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = {} @property def A (self : Tuple ): return len(self.encoder ) def A (self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def A (self : Optional[int] , _lowerCAmelCase : Optional[int] ): if token in self.cache: return self.cache[token] A = tuple(_lowerCAmelCase ) A = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: A = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(_lowerCAmelCase ): try: A = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(_lowerCAmelCase ) A = new_word if len(_lowerCAmelCase ) == 1: break else: A = get_pairs(_lowerCAmelCase ) A = """@@ """.join(_lowerCAmelCase ) A = word[:-4] A = word return word def A (self : List[str] , _lowerCAmelCase : Dict ): A = [] A = re.findall(r"""\S+\n?""" , _lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def A (self : str , _lowerCAmelCase : int ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A (self : Dict , _lowerCAmelCase : str ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def A (self : List[str] , _lowerCAmelCase : List[Any] ): A = """ """.join(_lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) A = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) A = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
337
0
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __A ( unittest.TestCase ): def __A ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _lowerCAmelCase : Tuple = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=a__ , cache_dir=a__ ) _lowerCAmelCase : Optional[int] = [t[-1] for t in os.walk(os.path.join(a__ , os.listdir(a__ )[0] , """snapshots""" ) )] _lowerCAmelCase : Tuple = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=a__ ) _lowerCAmelCase : str = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _lowerCAmelCase : str = jax.random.PRNGKey(0 ) _lowerCAmelCase : Optional[int] = 4 _lowerCAmelCase : Any = jax.device_count() _lowerCAmelCase : Any = num_samples * [prompt] _lowerCAmelCase : List[str] = pipeline.prepare_inputs(a__ ) # shard inputs and rng _lowerCAmelCase : Optional[Any] = replicate(a__ ) _lowerCAmelCase : Optional[Any] = jax.random.split(a__ , a__ ) _lowerCAmelCase : str = shard(a__ ) _lowerCAmelCase : Any = pipeline(a__ , a__ , a__ , a__ , jit=a__ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(a__ , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 _lowerCAmelCase : Dict = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(a__ ) == num_samples def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=a__ ) _lowerCAmelCase : Optional[int] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) _lowerCAmelCase : Optional[int] = 50 _lowerCAmelCase : List[Any] = jax.device_count() _lowerCAmelCase : List[Any] = num_samples * [prompt] _lowerCAmelCase : Union[str, Any] = pipeline.prepare_inputs(a__ ) # shard inputs and rng _lowerCAmelCase : int = replicate(a__ ) _lowerCAmelCase : Dict = jax.random.split(a__ , a__ ) _lowerCAmelCase : Optional[int] = shard(a__ ) _lowerCAmelCase : Dict = pipeline(a__ , a__ , a__ , a__ , jit=a__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(a__ , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=a__ ) _lowerCAmelCase : Optional[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _lowerCAmelCase : str = jax.random.PRNGKey(0 ) _lowerCAmelCase : List[Any] = 50 _lowerCAmelCase : int = jax.device_count() _lowerCAmelCase : Union[str, Any] = num_samples * [prompt] _lowerCAmelCase : Optional[Any] = pipeline.prepare_inputs(a__ ) # shard inputs and rng _lowerCAmelCase : Tuple = replicate(a__ ) _lowerCAmelCase : Any = jax.random.split(a__ , a__ ) _lowerCAmelCase : str = shard(a__ ) _lowerCAmelCase : str = pipeline(a__ , a__ , a__ , a__ , jit=a__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(a__ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) _lowerCAmelCase : List[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _lowerCAmelCase : str = jax.random.PRNGKey(0 ) _lowerCAmelCase : Optional[int] = 50 _lowerCAmelCase : Dict = jax.device_count() _lowerCAmelCase : int = num_samples * [prompt] _lowerCAmelCase : List[str] = pipeline.prepare_inputs(a__ ) # shard inputs and rng _lowerCAmelCase : Union[str, Any] = replicate(a__ ) _lowerCAmelCase : List[Any] = jax.random.split(a__ , a__ ) _lowerCAmelCase : Optional[int] = shard(a__ ) _lowerCAmelCase : Optional[int] = pipeline(a__ , a__ , a__ , a__ , jit=a__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(a__ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __A ( self ): _lowerCAmelCase : Any = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , set_alpha_to_one=a__ , steps_offset=1 , ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=a__ , safety_checker=a__ , ) _lowerCAmelCase : List[str] = scheduler.create_state() _lowerCAmelCase : List[Any] = scheduler_state _lowerCAmelCase : List[str] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _lowerCAmelCase : str = jax.random.PRNGKey(0 ) _lowerCAmelCase : List[Any] = 50 _lowerCAmelCase : str = jax.device_count() _lowerCAmelCase : Optional[int] = num_samples * [prompt] _lowerCAmelCase : str = pipeline.prepare_inputs(a__ ) # shard inputs and rng _lowerCAmelCase : Tuple = replicate(a__ ) _lowerCAmelCase : List[Any] = jax.random.split(a__ , a__ ) _lowerCAmelCase : Tuple = shard(a__ ) _lowerCAmelCase : Optional[Any] = pipeline(a__ , a__ , a__ , a__ , jit=a__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(a__ , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __A ( self ): _lowerCAmelCase : Tuple = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _lowerCAmelCase : Union[str, Any] = jax.device_count() _lowerCAmelCase : str = num_samples * [prompt] _lowerCAmelCase : Dict = jax.random.split(jax.random.PRNGKey(0 ) , a__ ) _lowerCAmelCase , _lowerCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=a__ , ) _lowerCAmelCase : Union[str, Any] = replicate(a__ ) _lowerCAmelCase : List[Any] = pipeline.prepare_inputs(a__ ) _lowerCAmelCase : Dict = shard(a__ ) _lowerCAmelCase : List[str] = pipeline(a__ , a__ , a__ , jit=a__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) _lowerCAmelCase : Dict = images[2, 0, 256, 10:17, 1] # With memory efficient attention _lowerCAmelCase , _lowerCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=a__ , use_memory_efficient_attention=a__ , ) _lowerCAmelCase : Any = replicate(a__ ) _lowerCAmelCase : Tuple = pipeline.prepare_inputs(a__ ) _lowerCAmelCase : List[str] = shard(a__ ) _lowerCAmelCase : List[Any] = pipeline(a__ , a__ , a__ , jit=a__ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _lowerCAmelCase : List[str] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
44
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _a : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _a : Union[str, Any] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } _a : Optional[Any] = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } _a : Any = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ElectraTokenizer def __init__( self , a__=None , a__=None , a__=True , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__=True , a__=None , **a__ , ): super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , ) _lowerCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , a__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , a__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , a__ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(a__ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : int = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : Dict = tokenize_chinese_chars _lowerCAmelCase : str = normalizer_class(**a__ ) _lowerCAmelCase : List[str] = do_lower_case def __A ( self , a__ , a__=None ): _lowerCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , a__ , a__ = None ): _lowerCAmelCase : List[str] = [self.sep_token_id] _lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Optional[Any] = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ )
44
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :List[Any] = XLNetTokenizer lowerCamelCase :Optional[Any] = XLNetTokenizerFast lowerCamelCase :Union[str, Any] = True lowerCamelCase :Dict = True def UpperCAmelCase ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing _A = XLNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self ) -> Any: _A = """<s>""" _A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(lowerCAmelCase_ ) , 10_06 ) def UpperCAmelCase ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = XLNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) _A = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [2_85, 46, 10, 1_70, 3_82] ) _A = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _A = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _A = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCAmelCase ( self ) -> str: _A = XLNetTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) _A = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def UpperCAmelCase ( self ) -> Optional[int]: _A = XLNetTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) _A = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def UpperCAmelCase ( self ) -> Dict: _A = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _A = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase_ ) _A = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase_ ) _A = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _A = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCAmelCase ( self ) -> Dict: # fmt: off _A = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
357
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def snake_case ( snake_case__ :str = "dhaka" , snake_case__ :int = 5) -> int: _A = min(snake_case__ , 50) # Prevent abuse! _A = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _A = requests.get("""https://www.google.com/search""" , params=snake_case__ , headers=snake_case__) _A = BeautifulSoup(html.text , """html.parser""") _A = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""")))) _A = json.dumps(snake_case__) _A = json.loads(snake_case__) _A = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , snake_case__ , ) if not matched_google_image_data: return 0 _A = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(snake_case__) , ) _A = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , snake_case__ , ) for index, fixed_full_res_image in enumerate(snake_case__): if index >= max_images: return index _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = urllib.request.build_opener() _A = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(snake_case__) _A = F'''query_{query.replace(' ' , '_')}''' if not os.path.exists(snake_case__): os.makedirs(snake_case__) urllib.request.urlretrieve( # noqa: S310 snake_case__ , F'''{path_name}/original_size_img_{index}.jpg''') return index if __name__ == "__main__": try: _SCREAMING_SNAKE_CASE = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
81
0
def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = 0 # if input_string is "aba" than new_input_string become "a|b|a" __lowerCAmelCase = '' __lowerCAmelCase = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(lowerCAmelCase_ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __lowerCAmelCase = 0, 0 # length[i] shows the length of palindromic substring with center i __lowerCAmelCase = [1 for i in range(len(lowerCAmelCase_ ) )] # for each character in new_string find corresponding palindromic string __lowerCAmelCase = 0 for j in range(len(lowerCAmelCase_ ) ): __lowerCAmelCase = 1 if j > r else min(length[l + r - j] // 2, r - j + 1 ) while ( j - k >= 0 and j + k < len(lowerCAmelCase_ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __lowerCAmelCase = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __lowerCAmelCase = j - k + 1 # noqa: E741 __lowerCAmelCase = j + k - 1 # update max_length and start position if max_length < length[j]: __lowerCAmelCase = length[j] __lowerCAmelCase = j # create that string __lowerCAmelCase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
284
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Any = params lowercase__: List[Any] = np.array(lowerCAmelCase__ ) lowercase__: Optional[Any] = np.array([len(lowerCAmelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> List[Any]: '''simple docstring''' return len(self.lengths ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = self.params.max_model_input_size lowercase__: Dict = self.lengths > max_len logger.info(F'Splitting {sum(lowerCAmelCase__ )} too long sequences.' ) def divide_chunks(lowerCAmelCase__ , lowerCAmelCase__ ): return [l[i : i + n] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )] lowercase__: str = [] lowercase__: List[str] = [] if self.params.mlm: lowercase__ , lowercase__: str = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: lowercase__ , lowercase__: int = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase__: Optional[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowercase__: int = np.insert(lowerCAmelCase__ , 0 , lowerCAmelCase__ ) if sub_s[-1] != sep_id: lowercase__: Union[str, Any] = np.insert(lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCAmelCase__ ) new_tok_ids.extend(lowerCAmelCase__ ) new_lengths.extend([len(lowerCAmelCase__ ) for l in sub_seqs] ) lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ ) lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = len(self ) lowercase__: Union[str, Any] = self.lengths > 11 lowercase__: List[Any] = self.token_ids[indices] lowercase__: Optional[Any] = self.lengths[indices] lowercase__: List[str] = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: lowercase__: List[str] = self.params.special_tok_ids['unk_token'] lowercase__: str = len(self ) lowercase__: Tuple = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase__: Any = (unk_occs / self.lengths) < 0.5 lowercase__: Tuple = self.token_ids[indices] lowercase__: str = self.lengths[indices] lowercase__: Dict = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Union[str, Any] = [t[0] for t in batch] lowercase__: Dict = [t[1] for t in batch] assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) # Max for paddings lowercase__: List[Any] = max(lowerCAmelCase__ ) # Pad token ids if self.params.mlm: lowercase__: Dict = self.params.special_tok_ids['pad_token'] else: lowercase__: Optional[Any] = self.params.special_tok_ids['unk_token'] lowercase__: int = [list(t.astype(lowerCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCAmelCase__ )) for t in token_ids] assert len(tk_ ) == len(lowerCAmelCase__ ) assert all(len(lowerCAmelCase__ ) == max_seq_len_ for t in tk_ ) lowercase__: Tuple = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase__: Optional[Any] = torch.tensor(lowerCAmelCase__ ) # (bs) return tk_t, lg_t
196
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
lowerCAmelCase__ :Optional[Any] = '''Input must be a string of 8 numbers plus letter''' lowerCAmelCase__ :List[Any] = '''TRWAGMYFPDXBNJZSQVHLCKE''' def lowerCAmelCase__ ( a__: str ) -> bool: '''simple docstring''' if not isinstance(a__ , a__ ): _UpperCAmelCase = F'''Expected string as input, found {type(a__ ).__name__}''' raise TypeError(a__ ) _UpperCAmelCase = spanish_id.replace('-' , '' ).upper() if len(a__ ) != 9: raise ValueError(a__ ) try: _UpperCAmelCase = int(spanish_id_clean[0:8] ) _UpperCAmelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(a__ ) from ex if letter.isdigit(): raise ValueError(a__ ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
329
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__ :int = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class __a ( UpperCAmelCase ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = {} if prompt is not None: _UpperCAmelCase = prompt if generate_kwargs is not None: _UpperCAmelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _UpperCAmelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) _UpperCAmelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( f'''Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. ''' 'Note also that one single text can be provided for conditional image to text generation.' ) _UpperCAmelCase = self.model.config.model_type if model_type == "git": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids _UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _UpperCAmelCase = None return model_inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs['input_ids'] ) ): _UpperCAmelCase = None if generate_kwargs is None: _UpperCAmelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _UpperCAmelCase = model_inputs.pop(self.model.main_input_name ) _UpperCAmelCase = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = [] for output_ids in model_outputs: _UpperCAmelCase = { 'generated_text': self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , ) } records.append(_SCREAMING_SNAKE_CASE ) return records
329
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __a = logging.get_logger(__name__) __a = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __SCREAMING_SNAKE_CASE ( A__ ): A : List[Any] = 'blenderbot-small' A : Any = ['past_key_values'] A : Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE__=50265 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=2 , **SCREAMING_SNAKE_CASE__ , ): lowercase : str = vocab_size lowercase : List[Any] = max_position_embeddings lowercase : str = d_model lowercase : Union[str, Any] = encoder_ffn_dim lowercase : Any = encoder_layers lowercase : Any = encoder_attention_heads lowercase : Tuple = decoder_ffn_dim lowercase : Optional[int] = decoder_layers lowercase : Union[str, Any] = decoder_attention_heads lowercase : Union[str, Any] = dropout lowercase : List[Any] = attention_dropout lowercase : Optional[Any] = activation_dropout lowercase : int = activation_function lowercase : Dict = init_std lowercase : List[Any] = encoder_layerdrop lowercase : List[str] = decoder_layerdrop lowercase : Tuple = use_cache lowercase : List[str] = encoder_layers lowercase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , forced_eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) class __SCREAMING_SNAKE_CASE ( A__ ): @property def __lowerCamelCase ( self ): if self.task in ["default", "seq2seq-lm"]: lowercase : Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase : Optional[Any] = {0: '''batch'''} lowercase : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase : Any = {0: '''batch''', 1: '''decoder_sequence'''} lowercase : Any = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase : Tuple = self.num_layers for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : int = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase : int = {0: '''batch''', 2: '''past_sequence + sequence'''} else: lowercase : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __lowerCamelCase ( self ): if self.task in ["default", "seq2seq-lm"]: lowercase : Optional[Any] = super().outputs else: lowercase : Union[str, Any] = super(SCREAMING_SNAKE_CASE__ , self ).outputs if self.use_past: lowercase : Dict = self.num_layers for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase : str = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ): lowercase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Generate decoder inputs lowercase : Optional[Any] = seq_length if not self.use_past else 1 lowercase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowercase : Any = dict(**SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase : int = common_inputs['''input_ids'''].shape lowercase : str = common_inputs['''decoder_input_ids'''].shape[1] lowercase : Union[str, Any] = self.num_attention_heads lowercase : Tuple = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase : List[str] = decoder_seq_length + 3 lowercase : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase : Any = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] , dim=1 ) lowercase : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase : Union[str, Any] = self.num_layers lowercase : Tuple = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) - min_num_layers lowercase : Dict = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(SCREAMING_SNAKE_CASE__ ): common_inputs["past_key_values"].append( ( torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), ) ) # TODO: test this. lowercase : List[Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): common_inputs["past_key_values"].append((torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) ) return common_inputs def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ): lowercase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase : Dict = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase : List[str] = seqlen + 2 lowercase : str = self.num_layers lowercase : List[str] = self.num_attention_heads lowercase : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase : Optional[Any] = common_inputs['''attention_mask'''].dtype lowercase : Union[str, Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )] , dim=1 ) lowercase : Optional[Any] = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(SCREAMING_SNAKE_CASE__ ) ] return common_inputs def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase : Any = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase : Dict = tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ ) lowercase : int = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE__ ) # Generate dummy inputs according to compute batch and sequence lowercase : List[str] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase : str = dict(tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) return common_inputs def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ): if self.task in ["default", "seq2seq-lm"]: lowercase : List[str] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) elif self.task == "causal-lm": lowercase : List[Any] = self._generate_dummy_inputs_for_causal_lm( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) else: lowercase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) return common_inputs def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if self.task in ["default", "seq2seq-lm"]: lowercase : Union[str, Any] = super()._flatten_past_key_values_(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: lowercase : Tuple = super(SCREAMING_SNAKE_CASE__ , self )._flatten_past_key_values_( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
356
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {'''vocab_file''': '''spiece.model'''} __a = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __a = { '''albert-base-v1''': 5_12, '''albert-large-v1''': 5_12, '''albert-xlarge-v1''': 5_12, '''albert-xxlarge-v1''': 5_12, '''albert-base-v2''': 5_12, '''albert-large-v2''': 5_12, '''albert-xlarge-v2''': 5_12, '''albert-xxlarge-v2''': 5_12, } __a = '''▁''' class __SCREAMING_SNAKE_CASE ( A__ ): A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase : Optional[Any] = ( AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ , normalized=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token ) lowercase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) lowercase : List[str] = do_lower_case lowercase : Tuple = remove_space lowercase : Tuple = keep_accents lowercase : str = vocab_file lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase ( self ): return len(self.sp_model ) def __lowerCamelCase ( self ): lowercase : Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowercase : List[Any] = self.__dict__.copy() lowercase : Optional[Any] = None return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : Any = {} lowercase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if self.remove_space: lowercase : int = ''' '''.join(inputs.strip().split() ) else: lowercase : List[Any] = inputs lowercase : int = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: lowercase : Optional[Any] = unicodedata.normalize('''NFKD''' , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE__ )] ) if self.do_lower_case: lowercase : Union[str, Any] = outputs.lower() return outputs def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = self.preprocess_text(SCREAMING_SNAKE_CASE__ ) lowercase : Any = self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) lowercase : Any = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowercase : Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase : Optional[int] = cur_pieces[1:] else: lowercase : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE__ ) else: new_pieces.append(SCREAMING_SNAKE_CASE__ ) return new_pieces def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : str = [] lowercase : Tuple = '''''' lowercase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token lowercase : Union[str, Any] = True lowercase : int = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : Optional[Any] = [self.sep_token_id] lowercase : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : Optional[int] = [self.sep_token_id] lowercase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as fi: lowercase : Dict = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
173
0
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[int] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[int] = BartphoTokenizer snake_case__ : Union[str, Any] = False snake_case__ : Optional[int] = True def UpperCAmelCase_ ( self : List[str] ) -> int: super().setUp() __SCREAMING_SNAKE_CASE = ["▁This", "▁is", "▁a", "▁t", "est"] __SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) __SCREAMING_SNAKE_CASE = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : str , **UpperCAmelCase__ : int ) -> int: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = "This is a là test" __SCREAMING_SNAKE_CASE = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase_ ( self : List[str] ) -> str: __SCREAMING_SNAKE_CASE = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE = "This is a là test" __SCREAMING_SNAKE_CASE = "▁This ▁is ▁a ▁l à ▁t est".split() __SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ )
54
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCamelCase_ : str = logging.get_logger(__name__) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , *__A , **__A ) -> None: warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
81
0
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowercase__ = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: if args.student_type == "roberta": a__: Union[str, Any] = False elif args.student_type == "gpt2": a__: List[str] = False def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: if args.student_type == "roberta": a__: str = False def __a ( ) ->List[Any]: a__: str = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_SCREAMING_SNAKE_CASE , choices=['distilbert', 'roberta', 'gpt2'] , required=_SCREAMING_SNAKE_CASE , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_SCREAMING_SNAKE_CASE , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_SCREAMING_SNAKE_CASE , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_SCREAMING_SNAKE_CASE , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_SCREAMING_SNAKE_CASE , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_SCREAMING_SNAKE_CASE , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_SCREAMING_SNAKE_CASE , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_SCREAMING_SNAKE_CASE , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_SCREAMING_SNAKE_CASE , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_SCREAMING_SNAKE_CASE , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_SCREAMING_SNAKE_CASE , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_SCREAMING_SNAKE_CASE , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_SCREAMING_SNAKE_CASE , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_SCREAMING_SNAKE_CASE , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_SCREAMING_SNAKE_CASE , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_SCREAMING_SNAKE_CASE , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_SCREAMING_SNAKE_CASE , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_SCREAMING_SNAKE_CASE , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_SCREAMING_SNAKE_CASE , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5e-4 , type=_SCREAMING_SNAKE_CASE , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1e-6 , type=_SCREAMING_SNAKE_CASE , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_SCREAMING_SNAKE_CASE , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_SCREAMING_SNAKE_CASE , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_SCREAMING_SNAKE_CASE , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_SCREAMING_SNAKE_CASE , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_SCREAMING_SNAKE_CASE , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_SCREAMING_SNAKE_CASE , default=500 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_SCREAMING_SNAKE_CASE , default=4000 , help='Checkpoint interval.' ) a__: Dict = parser.parse_args() sanity_checks(_SCREAMING_SNAKE_CASE ) # ARGS # init_gpu_params(_SCREAMING_SNAKE_CASE ) set_seed(_SCREAMING_SNAKE_CASE ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(F'Param: {args}' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , indent=4 ) git_log(args.dump_path ) a__ , a__ , a__: Optional[int] = MODEL_CLASSES[args.student_type] a__ , a__ , a__: List[str] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # a__: str = teacher_tokenizer_class.from_pretrained(args.teacher_name ) a__: str = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): a__: int = tokenizer.all_special_tokens.index(_SCREAMING_SNAKE_CASE ) a__: str = tokenizer.all_special_ids[idx] logger.info(F'Special tokens {special_tok_ids}' ) a__: Optional[int] = special_tok_ids a__: Any = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'Loading data from {args.data_file}' ) with open(args.data_file , 'rb' ) as fp: a__: str = pickle.load(_SCREAMING_SNAKE_CASE ) if args.mlm: logger.info(F'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , 'rb' ) as fp: a__: str = pickle.load(_SCREAMING_SNAKE_CASE ) a__: int = np.maximum(_SCREAMING_SNAKE_CASE , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): a__: Any = 0.0 # do not predict special tokens a__: Tuple = torch.from_numpy(_SCREAMING_SNAKE_CASE ) else: a__: Optional[Any] = None a__: Tuple = LmSeqsDataset(params=_SCREAMING_SNAKE_CASE , data=_SCREAMING_SNAKE_CASE ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'Loading student config from {args.student_config}' ) a__: Optional[int] = student_config_class.from_pretrained(args.student_config ) a__: List[Any] = True if args.student_pretrained_weights is not None: logger.info(F'Loading pretrained weights from {args.student_pretrained_weights}' ) a__: Union[str, Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=_SCREAMING_SNAKE_CASE ) else: a__: str = student_model_class(_SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: student.to(F'cuda:{args.local_rank}' ) logger.info('Student loaded.' ) # TEACHER # a__: int = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: teacher.to(F'cuda:{args.local_rank}' ) logger.info(F'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() a__: int = Distiller( params=_SCREAMING_SNAKE_CASE , dataset=_SCREAMING_SNAKE_CASE , token_probs=_SCREAMING_SNAKE_CASE , student=_SCREAMING_SNAKE_CASE , teacher=_SCREAMING_SNAKE_CASE ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
203
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE = 1000000 ) ->int: a__: Any = limit + 1 a__: List[str] = [0] * limit for first_term in range(1 , _SCREAMING_SNAKE_CASE ): for n in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a__: Optional[int] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
203
1
from typing import TYPE_CHECKING from ...utils import _LazyModule A_ : Optional[Any] = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
192
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : Optional[Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[Any] = '''mgp-str''' def __init__( self , A__=[32, 128] , A__=4 , A__=3 , A__=27 , A__=38 , A__=5_0257 , A__=3_0522 , A__=768 , A__=12 , A__=12 , A__=4.0 , A__=True , A__=False , A__=1e-5 , A__=0.0 , A__=0.0 , A__=0.0 , A__=False , A__=0.0_2 , **A__ , ): super().__init__(**A__ ) A__ : Dict = image_size A__ : int = patch_size A__ : Dict = num_channels A__ : List[Any] = max_token_length A__ : str = num_character_labels A__ : Tuple = num_bpe_labels A__ : Optional[Any] = num_wordpiece_labels A__ : Optional[int] = hidden_size A__ : Tuple = num_hidden_layers A__ : Any = num_attention_heads A__ : List[Any] = mlp_ratio A__ : Tuple = distilled A__ : Union[str, Any] = layer_norm_eps A__ : Tuple = drop_rate A__ : List[str] = qkv_bias A__ : Optional[Any] = attn_drop_rate A__ : Union[str, Any] = drop_path_rate A__ : Optional[Any] = output_aa_attentions A__ : Optional[int] = initializer_range
192
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Union[str, Any] = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
160
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE__ ( __A ) -> Union[str, Any]: if isinstance(__A , collections.abc.Iterable ): return x return (x, x) @require_flax class __UpperCAmelCase : def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase_ , lowerCAmelCase_ , F'Difference between torch and flax is {diff} (>= {tol}).' ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" _snake_case = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ ) _snake_case = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = {'vision_model': vision_model, 'text_model': text_model} _snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) _snake_case = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = {'vision_model': vision_model, 'text_model': text_model} _snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) _snake_case = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) _snake_case = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) _snake_case = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) _snake_case = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) _snake_case = after_output[0] _snake_case = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1E-3 ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = {'vision_model': vision_model, 'text_model': text_model} _snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) _snake_case = model( input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ ) _snake_case = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case = to_atuple(vision_model.config.image_size ) _snake_case = to_atuple(vision_model.config.patch_size ) _snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _snake_case = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _snake_case = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" pt_model.to(lowerCAmelCase_ ) pt_model.eval() # prepare inputs _snake_case = inputs_dict _snake_case = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _snake_case = pt_model(**lowerCAmelCase_ ).to_tuple() _snake_case = fx_model(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase_ ) _snake_case = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) _snake_case = fx_model_loaded(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase_ ) _snake_case = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ , from_flax=lowerCAmelCase_ ) pt_model_loaded.to(lowerCAmelCase_ ) pt_model_loaded.eval() with torch.no_grad(): _snake_case = pt_model_loaded(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase_ , pt_output_loaded.numpy() , 4E-2 ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = VisionTextDualEncoderModel(lowerCAmelCase_ ) _snake_case = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ ) _snake_case = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase_ ) _snake_case = fx_state self.check_pt_flax_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = VisionTextDualEncoderModel(lowerCAmelCase_ ) _snake_case = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ ) _snake_case = load_flax_weights_in_pytorch_model(lowerCAmelCase_ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase_ ) @is_pt_flax_cross_test def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() _snake_case = config_inputs_dict.pop('vision_config' ) _snake_case = config_inputs_dict.pop('text_config' ) _snake_case = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.check_equivalence_flax_to_pt(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.get_pretrained_model_and_inputs() _snake_case = model_a(**lowerCAmelCase_ ) _snake_case = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase_ ) _snake_case = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) _snake_case = model_a(**lowerCAmelCase_ ) _snake_case = after_outputs[0] _snake_case = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1E-5 ) @require_flax class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" _snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=lowerCAmelCase_ , text_from_pt=lowerCAmelCase_ , ) _snake_case = 13 _snake_case = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _snake_case = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _snake_case = random_attention_mask([batch_size, 4] ) _snake_case = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = FlaxViTModel(lowerCAmelCase_ ) _snake_case = FlaxBertModel(lowerCAmelCase_ ) return vision_model, text_model def lowerCamelCase ( self ): """simple docstring""" _snake_case = FlaxViTModelTester(self ) _snake_case = FlaxBertModelTester(self ) _snake_case = vit_model_tester.prepare_config_and_inputs() _snake_case = bert_model_tester.prepare_config_and_inputs() _snake_case , _snake_case = vision_config_and_inputs _snake_case , _snake_case , _snake_case , _snake_case = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" _snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=lowerCAmelCase_ , text_from_pt=lowerCAmelCase_ , ) _snake_case = 13 _snake_case = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _snake_case = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _snake_case = random_attention_mask([batch_size, 4] ) _snake_case = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = FlaxCLIPVisionModel(lowerCAmelCase_ ) _snake_case = FlaxBertModel(lowerCAmelCase_ ) return vision_model, text_model def lowerCamelCase ( self ): """simple docstring""" _snake_case = FlaxCLIPVisionModelTester(self ) _snake_case = FlaxBertModelTester(self ) _snake_case = clip_model_tester.prepare_config_and_inputs() _snake_case = bert_model_tester.prepare_config_and_inputs() _snake_case , _snake_case = vision_config_and_inputs _snake_case , _snake_case , _snake_case , _snake_case = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) _snake_case = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='np' ) _snake_case = model(**lowerCAmelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _snake_case = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase_ , atol=1E-3 ) )
160
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def snake_case__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : int="pt" ): '''simple docstring''' lowercase__ : str = {'add_prefix_space': True} if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not line.startswith(' ' ) else {} lowercase__ : Optional[Any] = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int]=None , ): '''simple docstring''' lowercase__ : Any = input_ids.ne(SCREAMING_SNAKE_CASE_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE__ (__snake_case ): def __init__( self , a , a , a , a , a="train" , a=None , a=None , a=None , a="" , ): super().__init__() lowercase__ : Tuple = Path(a).joinpath(type_path + '.source') lowercase__ : List[Any] = Path(a).joinpath(type_path + '.target') lowercase__ : Optional[int] = self.get_char_lens(self.src_file) lowercase__ : Dict = max_source_length lowercase__ : int = max_target_length assert min(self.src_lens) > 0, f"""found empty line in {self.src_file}""" lowercase__ : List[Any] = tokenizer lowercase__ : Any = prefix if n_obs is not None: lowercase__ : List[Any] = self.src_lens[:n_obs] lowercase__ : Union[str, Any] = src_lang lowercase__ : Dict = tgt_lang def __len__( self): return len(self.src_lens) def __getitem__( self , a): lowercase__ : Union[str, Any] = index + 1 # linecache starts at 1 lowercase__ : int = self.prefix + linecache.getline(str(self.src_file) , a).rstrip('\n') lowercase__ : Tuple = linecache.getline(str(self.tgt_file) , a).rstrip('\n') assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , a): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase__ : List[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , a) else self.tokenizer ) lowercase__ : Any = self.tokenizer.generator if isinstance(self.tokenizer , a) else self.tokenizer lowercase__ : int = encode_line(a , a , self.max_source_length , 'right') lowercase__ : Optional[int] = encode_line(a , a , self.max_target_length , 'right') lowercase__ : str = source_inputs['input_ids'].squeeze() lowercase__ : Optional[Any] = target_inputs['input_ids'].squeeze() lowercase__ : Optional[int] = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( a): return [len(a) for x in Path(a).open().readlines()] def snake_case_ ( self , a): lowercase__ : int = torch.stack([x['input_ids'] for x in batch]) lowercase__ : Union[str, Any] = torch.stack([x['attention_mask'] for x in batch]) lowercase__ : Dict = torch.stack([x['decoder_input_ids'] for x in batch]) lowercase__ : List[str] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , a) else self.tokenizer.pad_token_id ) lowercase__ : List[str] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , a) else self.tokenizer.pad_token_id ) lowercase__ : List[Any] = trim_batch(a , a) lowercase__ , lowercase__ : List[str] = trim_batch(a , a , attention_mask=a) lowercase__ : Optional[Any] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch snake_case_ = getLogger(__name__) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ : Dict = get_git_info() save_json(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , 'git_log.json' ) ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=4 , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ ) as f: return json.load(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( ): '''simple docstring''' lowercase__ : Union[str, Any] = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = { 'repo_id': str(SCREAMING_SNAKE_CASE_ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def snake_case__ ( SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : Iterable ): '''simple docstring''' return list(map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as f: return pickle.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' def remove_articles(SCREAMING_SNAKE_CASE_ : int ): return re.sub(R'\b(a|an|the)\b' , ' ' , SCREAMING_SNAKE_CASE_ ) def white_space_fix(SCREAMING_SNAKE_CASE_ : List[str] ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE_ : int ): lowercase__ : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE_ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE_ ) ) ) ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' lowercase__ : int = normalize_answer(SCREAMING_SNAKE_CASE_ ).split() lowercase__ : Any = normalize_answer(SCREAMING_SNAKE_CASE_ ).split() lowercase__ : List[Any] = Counter(SCREAMING_SNAKE_CASE_ ) & Counter(SCREAMING_SNAKE_CASE_ ) lowercase__ : int = sum(common.values() ) if num_same == 0: return 0 lowercase__ : Optional[Any] = 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[Any] = 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) lowercase__ : Dict = (2 * precision * recall) / (precision + recall) return fa def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return normalize_answer(SCREAMING_SNAKE_CASE_ ) == normalize_answer(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) lowercase__ : Tuple = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): em += exact_match_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: em /= len(SCREAMING_SNAKE_CASE_ ) return {"em": em} def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' return model_prefix.startswith('rag' ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' lowercase__ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase__ : Any = 'dropout_rate' for p in extra_params: if getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if not hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not hasattr(SCREAMING_SNAKE_CASE_ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue lowercase__ : Any = p if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return hparams, config
214
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : int = """switch_transformers""" __lowerCamelCase : Optional[Any] = ["""past_key_values"""] __lowerCamelCase : Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , a=3_2128 , a=768 , a=64 , a=2048 , a=64 , a=12 , a=3 , a=12 , a=3 , a=12 , a=8 , a=False , a=0.01 , a="float32" , a=False , a=32 , a=128 , a=0.1 , a=1e-6 , a=0.001 , a=0.001 , a=1.0 , a="relu" , a=True , a=False , a=True , a=0 , a=1 , **a , ): lowercase__ : Optional[int] = vocab_size lowercase__ : List[Any] = d_model lowercase__ : List[Any] = d_kv lowercase__ : Any = d_ff lowercase__ : Optional[int] = num_sparse_encoder_layers lowercase__ : Tuple = num_layers lowercase__ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ : str = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowercase__ : Optional[Any] = self.num_layers // self.num_sparse_encoder_layers else: lowercase__ : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowercase__ : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowercase__ : int = self.num_decoder_layers # HACK: this will create 0 sparse layers lowercase__ : List[Any] = num_heads lowercase__ : Union[str, Any] = num_experts lowercase__ : str = expert_capacity lowercase__ : List[Any] = router_bias lowercase__ : Optional[int] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""") lowercase__ : str = router_dtype lowercase__ : Optional[int] = router_ignore_padding_tokens lowercase__ : int = relative_attention_num_buckets lowercase__ : Optional[Any] = relative_attention_max_distance lowercase__ : List[str] = dropout_rate lowercase__ : str = layer_norm_epsilon lowercase__ : int = initializer_factor lowercase__ : int = feed_forward_proj lowercase__ : Dict = use_cache lowercase__ : int = add_router_probs lowercase__ : int = router_z_loss_coef lowercase__ : List[Any] = router_aux_loss_coef lowercase__ : int = self.feed_forward_proj.split('-') lowercase__ : Optional[int] = act_info[-1] lowercase__ : Dict = act_info[0] == 'gated' if len(a) > 1 and act_info[0] != "gated" or len(a) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase__ : Optional[int] = 'gelu_new' super().__init__( pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , **a , )
214
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any]=8 ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=5_1_2 , _UpperCamelCase : List[str]=5_1_2 ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) __UpperCAmelCase : str = np.array(pil_image.convert("""RGB""" ) ) __UpperCAmelCase : Optional[Any] = arr.astype(np.floataa ) / 127.5 - 1 __UpperCAmelCase : List[Any] = np.transpose(_UpperCamelCase , [2, 0, 1] ) __UpperCAmelCase : Union[str, Any] = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : DDPMScheduler , UpperCamelCase : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=UpperCamelCase , scheduler=UpperCamelCase , movq=UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = min(int(num_inference_steps * strength ) , UpperCamelCase ) __UpperCAmelCase : int = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Tuple=None ): '''simple docstring''' if not isinstance(UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCamelCase )}''' ) __UpperCAmelCase : Optional[Any] = image.to(device=UpperCamelCase , dtype=UpperCamelCase ) __UpperCAmelCase : List[str] = batch_size * num_images_per_prompt if image.shape[1] == 4: __UpperCAmelCase : Tuple = image else: if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(UpperCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCamelCase ) ] __UpperCAmelCase : Any = torch.cat(UpperCamelCase , dim=0 ) else: __UpperCAmelCase : List[str] = self.movq.encode(UpperCamelCase ).latent_dist.sample(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = self.movq.config.scaling_factor * init_latents __UpperCAmelCase : Any = torch.cat([init_latents] , dim=0 ) __UpperCAmelCase : Any = init_latents.shape __UpperCAmelCase : str = randn_tensor(UpperCamelCase , generator=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase ) # get latents __UpperCAmelCase : Union[str, Any] = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = init_latents return latents def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : int=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __UpperCAmelCase : List[str] = torch.device(f'''cuda:{gpu_id}''' ) __UpperCAmelCase : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[int]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __UpperCAmelCase : List[Any] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase : Tuple = cpu_offload_with_hook(UpperCamelCase , UpperCamelCase , prev_module_hook=UpperCamelCase ) # We'll offload the last model manually. __UpperCAmelCase : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self : Any ): '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase ) def __call__( self : List[Any] , UpperCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , UpperCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase : int = 512 , UpperCamelCase : int = 512 , UpperCamelCase : int = 100 , UpperCamelCase : float = 4.0 , UpperCamelCase : float = 0.3 , UpperCamelCase : int = 1 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._execution_device __UpperCAmelCase : List[Any] = guidance_scale > 1.0 if isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Any = torch.cat(UpperCamelCase , dim=0 ) __UpperCAmelCase : int = image_embeds.shape[0] if isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : int = torch.cat(UpperCamelCase , dim=0 ) if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(UpperCamelCase , dim=0 ) __UpperCAmelCase : Union[str, Any] = negative_image_embeds.repeat_interleave(UpperCamelCase , dim=0 ) __UpperCAmelCase : List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase ) if not isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : List[str] = [image] if not all(isinstance(UpperCamelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'''Input is in incorrect format: {[type(UpperCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) __UpperCAmelCase : List[Any] = torch.cat([prepare_image(UpperCamelCase , UpperCamelCase , UpperCamelCase ) for i in image] , dim=0 ) __UpperCAmelCase : Optional[int] = image.to(dtype=image_embeds.dtype , device=UpperCamelCase ) __UpperCAmelCase : int = self.movq.encode(UpperCamelCase )["""latents"""] __UpperCAmelCase : Tuple = latents.repeat_interleave(UpperCamelCase , dim=0 ) self.scheduler.set_timesteps(UpperCamelCase , device=UpperCamelCase ) __UpperCAmelCase : List[str] = self.get_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) __UpperCAmelCase : int = downscale_height_and_width(UpperCamelCase , UpperCamelCase , self.movq_scale_factor ) __UpperCAmelCase : int = self.prepare_latents( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , image_embeds.dtype , UpperCamelCase , UpperCamelCase ) for i, t in enumerate(self.progress_bar(UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase : Any = {"""image_embeds""": image_embeds} __UpperCAmelCase : List[str] = self.unet( sample=UpperCamelCase , timestep=UpperCamelCase , encoder_hidden_states=UpperCamelCase , added_cond_kwargs=UpperCamelCase , return_dict=UpperCamelCase , )[0] if do_classifier_free_guidance: __UpperCAmelCase : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) __UpperCAmelCase : Any = noise_pred.chunk(2 ) __UpperCAmelCase : Any = variance_pred.chunk(2 ) __UpperCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : List[Any] = self.scheduler.step( UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase , )[0] # post-processing __UpperCAmelCase : List[str] = self.movq.decode(UpperCamelCase , force_not_quantize=UpperCamelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __UpperCAmelCase : int = image * 0.5 + 0.5 __UpperCAmelCase : List[Any] = image.clamp(0 , 1 ) __UpperCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCAmelCase : List[Any] = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase )
350
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """AutoImageProcessor""" __a = """AutoTokenizer""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = self.image_processor def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: __UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: __UpperCAmelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
320
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run SCREAMING_SNAKE_CASE__ = True except (ImportError, AttributeError): SCREAMING_SNAKE_CASE__ = object def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' pass SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = logging.get_logger("transformers-cli/serving") def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Namespace ): '''simple docstring''' lowerCAmelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(SCREAMING_SNAKE_CASE , args.host , args.port , args.workers ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCAmelCase ): @staticmethod def _snake_case ( lowercase ) -> Any: lowerCAmelCase = parser.add_parser( """serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" , type=lowercase , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , ) serve_parser.add_argument("""--host""" , type=lowercase , default="""localhost""" , help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" , type=lowercase , default=8_888 , help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" , type=lowercase , default=1 , help="""Number of http workers""" ) serve_parser.add_argument("""--model""" , type=lowercase , help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""" , type=lowercase , help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" , type=lowercase , help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" , type=lowercase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) serve_parser.set_defaults(func=lowercase ) def __init__( self , lowercase , lowercase , lowercase , lowercase ) -> Tuple: lowerCAmelCase = pipeline lowerCAmelCase = host lowerCAmelCase = port lowerCAmelCase = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(f'Serving model over {host}:{port}' ) lowerCAmelCase = FastAPI( routes=[ APIRoute( """/""" , self.model_info , response_model=lowercase , response_class=lowercase , methods=["""GET"""] , ), APIRoute( """/tokenize""" , self.tokenize , response_model=lowercase , response_class=lowercase , methods=["""POST"""] , ), APIRoute( """/detokenize""" , self.detokenize , response_model=lowercase , response_class=lowercase , methods=["""POST"""] , ), APIRoute( """/forward""" , self.forward , response_model=lowercase , response_class=lowercase , methods=["""POST"""] , ), ] , timeout=600 , ) def _snake_case ( self ) -> str: run(self._app , host=self.host , port=self.port , workers=self.workers ) def _snake_case ( self ) -> List[Any]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _snake_case ( self , lowercase = Body(lowercase , embed=lowercase ) , lowercase = Body(lowercase , embed=lowercase ) ) -> Dict: try: lowerCAmelCase = self._pipeline.tokenizer.tokenize(lowercase ) if return_ids: lowerCAmelCase = self._pipeline.tokenizer.convert_tokens_to_ids(lowercase ) return ServeTokenizeResult(tokens=lowercase , tokens_ids=lowercase ) else: return ServeTokenizeResult(tokens=lowercase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(lowercase )} ) def _snake_case ( self , lowercase = Body(lowercase , embed=lowercase ) , lowercase = Body(lowercase , embed=lowercase ) , lowercase = Body(lowercase , embed=lowercase ) , ) -> Any: try: lowerCAmelCase = self._pipeline.tokenizer.decode(lowercase , lowercase , lowercase ) return ServeDeTokenizeResult(model="""""" , text=lowercase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(lowercase )} ) async def _snake_case ( self , lowercase=Body(lowercase , embed=lowercase ) ) -> str: # Check we don't have empty string if len(lowercase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model lowerCAmelCase = self._pipeline(lowercase ) return ServeForwardResult(output=lowercase ) except Exception as e: raise HTTPException(500 , {"""error""": str(lowercase )} )
46
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
184
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCamelCase__ ( _SCREAMING_SNAKE_CASE ): def lowerCAmelCase (self : Optional[Any] ): __a : Union[str, Any] = tempfile.mkdtemp() __a : Tuple = 5 # Realm tok __a : Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a : Any = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(A_ , exist_ok=A_ ) __a : Optional[int] = os.path.join(A_ , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __a : Tuple = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(A_ , exist_ok=A_ ) def lowerCAmelCase (self : int ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def lowerCAmelCase (self : Dict ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase (self : int ): __a : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def lowerCAmelCase (self : Tuple ): __a : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def lowerCAmelCase (self : Dict ): __a : List[str] = np.array( [ B'''This is the first record''', B'''This is the second record''', B'''This is the third record''', B'''This is the fourth record''', B'''This is the fifth record''', B'''This is a longer longer longer record''', ] , dtype=A_ , ) return block_records def lowerCAmelCase (self : int ): __a : str = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowerCAmelCase (self : str ): __a : List[str] = self.get_config() __a : Optional[int] = self.get_dummy_retriever() __a : Optional[int] = retriever.tokenizer __a : List[str] = np.array([0, 3] , dtype='''long''' ) __a : Any = tokenizer(['''Test question'''] ).input_ids __a : Optional[Any] = tokenizer( ['''the fourth'''] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids __a : int = config.reader_seq_len __a , __a , __a , __a : Optional[int] = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors='''np''' ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def lowerCAmelCase (self : List[Any] ): __a : List[str] = self.get_config() __a : Dict = self.get_dummy_retriever() __a : str = retriever.tokenizer __a : Union[str, Any] = np.array([0, 3, 5] , dtype='''long''' ) __a : List[Any] = tokenizer(['''Test question'''] ).input_ids __a : List[Any] = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids __a : int = config.reader_seq_len __a , __a , __a , __a : Any = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors='''np''' ) self.assertEqual([False, True, True] , A_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A_ ) def lowerCAmelCase (self : Optional[Any] ): __a : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path __a : str = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: __a : Union[str, Any] = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) __a : Optional[int] = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
371
def __UpperCamelCase ( lowerCAmelCase__ : list ): def merge(lowerCAmelCase__ : list , lowerCAmelCase__ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCAmelCase__ ) <= 1: return collection __a : str = len(lowerCAmelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ =input('Enter numbers separated by a comma:\n').strip() lowercase__ =[int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
90
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : int = logging.get_logger(__name__) lowercase : Tuple = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class __snake_case ( lowerCAmelCase ): _a : str= "instructblip_vision_model" def __init__( self ,snake_case=1408 ,snake_case=6144 ,snake_case=39 ,snake_case=16 ,snake_case=224 ,snake_case=14 ,snake_case="gelu" ,snake_case=1e-6 ,snake_case=0.0 ,snake_case=1e-10 ,snake_case=True ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) lowercase : Any = hidden_size lowercase : Optional[int] = intermediate_size lowercase : Optional[int] = num_hidden_layers lowercase : str = num_attention_heads lowercase : List[Any] = patch_size lowercase : Any = image_size lowercase : List[Any] = initializer_range lowercase : Optional[Any] = attention_dropout lowercase : str = layer_norm_eps lowercase : Optional[int] = hidden_act lowercase : Union[str, Any] = qkv_bias @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,**snake_case ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) lowercase , lowercase : Optional[int] = cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": lowercase : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case ,**snake_case ) class __snake_case ( lowerCAmelCase ): _a : List[str]= "instructblip_qformer" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=0 ,snake_case="absolute" ,snake_case=2 ,snake_case=1408 ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,**snake_case ) lowercase : Tuple = vocab_size lowercase : str = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : List[str] = num_attention_heads lowercase : List[str] = hidden_act lowercase : Optional[int] = intermediate_size lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : Optional[Any] = max_position_embeddings lowercase : Any = initializer_range lowercase : List[Any] = layer_norm_eps lowercase : Optional[Any] = position_embedding_type lowercase : Dict = cross_attention_frequency lowercase : int = encoder_hidden_size @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,**snake_case ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) lowercase , lowercase : Tuple = cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": lowercase : Any = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case ,**snake_case ) class __snake_case ( lowerCAmelCase ): _a : List[str]= "instructblip" _a : List[Any]= True def __init__( self ,snake_case=None ,snake_case=None ,snake_case=None ,snake_case=32 ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) if vision_config is None: lowercase : int = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: lowercase : Tuple = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: lowercase : Tuple = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowercase : Dict = InstructBlipVisionConfig(**snake_case ) lowercase : Optional[Any] = InstructBlipQFormerConfig(**snake_case ) lowercase : Optional[int] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowercase : Optional[Any] = CONFIG_MAPPING[text_model_type](**snake_case ) lowercase : Union[str, Any] = self.text_config.tie_word_embeddings lowercase : Optional[int] = self.text_config.is_encoder_decoder lowercase : Tuple = num_query_tokens lowercase : int = self.vision_config.hidden_size lowercase : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase : Tuple = 1.0 lowercase : int = 0.02 @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,snake_case ,snake_case ,**snake_case ,): '''simple docstring''' return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = copy.deepcopy(self.__dict__ ) lowercase : str = self.vision_config.to_dict() lowercase : int = self.qformer_config.to_dict() lowercase : List[Any] = self.text_config.to_dict() lowercase : Optional[int] = self.__class__.model_type return output
20
'''simple docstring''' from collections.abc import Generator def __magic_name__( ): __lowerCAmelCase , __lowerCAmelCase = 0, 1 while True: __lowerCAmelCase , __lowerCAmelCase = b, a + b yield b def __magic_name__( lowerCamelCase = 1_0_0_0): __lowerCAmelCase = 1 __lowerCAmelCase = fibonacci_generator() while len(str(next(lowerCamelCase))) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
174
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase_ = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _snake_case : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _snake_case : int = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _snake_case : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _snake_case : List[str] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) _snake_case : Any = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions _snake_case : Optional[Any] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) _snake_case : int = tf.keras.preprocessing.image.img_to_array(test_image) _snake_case : Tuple = np.expand_dims(test_image, axis=0) _snake_case : Any = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _snake_case : Any = "Normal" if result[0][0] == 1: _snake_case : List[str] = "Abnormality detected"
123
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowerCAmelCase_ ( _lowercase : Union[dict, list, tuple, torch.Tensor]) -> List[Tuple[int, ...]]: """simple docstring""" a__ : Tuple = [] if isinstance(_lowercase , _lowercase): for v in tree.values(): shapes.extend(_fetch_dims(_lowercase)) elif isinstance(_lowercase , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(_lowercase)) elif isinstance(_lowercase , torch.Tensor): shapes.append(tree.shape) else: raise ValueError("""Not supported""") return shapes @torch.jit.ignore def lowerCAmelCase_ ( _lowercase : int , _lowercase : Tuple[int, ...]) -> Tuple[int, ...]: """simple docstring""" a__ : Union[str, Any] = [] for d in reversed(_lowercase): idx.append(flat_idx % d) a__ : List[Any] = flat_idx // d return tuple(reversed(_lowercase)) @torch.jit.ignore def lowerCAmelCase_ ( _lowercase : Sequence[int] , _lowercase : Sequence[int] , _lowercase : Sequence[int] , _lowercase : Optional[Sequence[bool]] = None , _lowercase : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: """simple docstring""" # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(_lowercase : List[bool]) -> None: a__ : int = True for i in range(len(_lowercase)): a__ : Tuple = -1 * (i + 1) l[reversed_idx] &= tally a__ : str = l[reversed_idx] if start_edges is None: a__ : Tuple = [s == 0 for s in start] reduce_edge_list(_lowercase) if end_edges is None: a__ : List[str] = [e == (d - 1) for e, d in zip(_lowercase , _lowercase)] reduce_edge_list(_lowercase) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_lowercase) == 0: return [()] elif len(_lowercase) == 1: return [(slice(start[0] , end[0] + 1),)] a__ : List[Tuple[slice, ...]] = [] a__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(_lowercase , _lowercase): if s == e: path_list.append(slice(_lowercase , s + 1)) else: break a__ : Tuple[slice, ...] = tuple(_lowercase) a__ : Union[str, Any] = len(_lowercase) # start == end, and we're done if divergence_idx == len(_lowercase): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a__ : Optional[Any] = start[divergence_idx] return tuple( path + (slice(_lowercase , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a__ : Dict = end[divergence_idx] return tuple( path + (slice(_lowercase , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) a__ : int = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def lowerCAmelCase_ ( _lowercase : torch.Tensor , _lowercase : int , _lowercase : int , _lowercase : int) -> torch.Tensor: """simple docstring""" a__ : str = t.shape[:no_batch_dims] a__ : List[Any] = list(_flat_idx_to_idx(_lowercase , _lowercase)) # _get_minimal_slice_set is inclusive a__ : List[str] = list(_flat_idx_to_idx(flat_end - 1 , _lowercase)) # Get an ordered list of slices to perform a__ : Dict = _get_minimal_slice_set( _lowercase , _lowercase , _lowercase , ) a__ : Tuple = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def lowerCAmelCase_ ( _lowercase : Callable , _lowercase : Dict[str, Any] , _lowercase : int , _lowercase : int , _lowercase : bool = False , _lowercase : Any = None , _lowercase : bool = False , ) -> Any: """simple docstring""" if not (len(_lowercase) > 0): raise ValueError("""Must provide at least one input""") a__ : Optional[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(_lowercase)] a__ : Union[str, Any] = tuple([max(_lowercase) for s in zip(*_lowercase)]) def _prep_inputs(_lowercase : torch.Tensor) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: a__ : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) a__ : int = t.reshape(-1 , *t.shape[no_batch_dims:]) else: a__ : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t a__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , _lowercase) a__ : Any = None if _out is not None: a__ : List[str] = tensor_tree_map(lambda _lowercase: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) a__ : Tuple = 1 for d in orig_batch_dims: flat_batch_dim *= d a__ : str = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_lowercase : torch.Tensor) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t a__ : List[Any] = 0 a__ : int = prepped_outputs for _ in range(_lowercase): # Chunk the input if not low_mem: a__ : Union[str, Any] = _select_chunk else: a__ : Any = partial( _chunk_slice , flat_start=_lowercase , flat_end=min(_lowercase , i + chunk_size) , no_batch_dims=len(_lowercase) , ) a__ : Dict[str, Any] = tensor_tree_map(_lowercase , _lowercase) # Run the layer on the chunk a__ : str = layer(**_lowercase) # Allocate space for the output if out is None: a__ : int = tensor_tree_map(lambda _lowercase: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , _lowercase) # Put the chunk in its pre-allocated space if isinstance(_lowercase , _lowercase): def assign(_lowercase : dict , _lowercase : dict) -> None: for k, v in da.items(): if isinstance(_lowercase , _lowercase): assign(_lowercase , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: a__ : Any = da[k] assign(_lowercase , _lowercase) elif isinstance(_lowercase , _lowercase): for xa, xa in zip(_lowercase , _lowercase): if _add_into_out: xa[i : i + chunk_size] += xa else: a__ : Dict = xa elif isinstance(_lowercase , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: a__ : int = output_chunk else: raise ValueError("""Not supported""") i += chunk_size a__ : Any = tensor_tree_map(lambda _lowercase: t.view(orig_batch_dims + t.shape[1:]) , _lowercase) return out class snake_case__ : """simple docstring""" def __init__( self , __lowercase = 5_1_2 , ) -> Optional[Any]: """simple docstring""" a__ : Optional[Any] = max_chunk_size a__ : Optional[int] = None a__ : Optional[tuple] = None def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> int: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size a__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] a__ : Optional[int] = [c for c in candidates if c > min_chunk_size] a__ : Union[str, Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__lowercase ) -> bool: try: with torch.no_grad(): fn(*__lowercase , chunk_size=__lowercase ) return True except RuntimeError: return False a__ : Optional[Any] = 0 a__ : Union[str, Any] = len(__lowercase ) - 1 while i > min_viable_chunk_size_index: a__ : Optional[int] = test_chunk_size(candidates[i] ) if not viable: a__ : int = (min_viable_chunk_size_index + i) // 2 else: a__ : Dict = i a__ : List[str] = (i + len(__lowercase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> bool: """simple docstring""" a__ : str = True for aa, aa in zip(__lowercase , __lowercase ): assert type(__lowercase ) == type(__lowercase ) if isinstance(__lowercase , (list, tuple) ): consistent &= self._compare_arg_caches(__lowercase , __lowercase ) elif isinstance(__lowercase , __lowercase ): a__ : List[str] = [v for _, v in sorted(aa.items() , key=lambda __lowercase : x[0] )] a__ : Optional[Any] = [v for _, v in sorted(aa.items() , key=lambda __lowercase : x[0] )] consistent &= self._compare_arg_caches(__lowercase , __lowercase ) else: consistent &= aa == aa return consistent def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , ) -> int: """simple docstring""" a__ : Union[str, Any] = True a__ : tuple = tree_map(lambda __lowercase : a.shape if isinstance(__lowercase , torch.Tensor ) else a , __lowercase , __lowercase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__lowercase ) a__ : Tuple = self._compare_arg_caches(self.cached_arg_data , __lowercase ) else: # Otherwise, we can reuse the precomputed value a__ : Optional[int] = False if not consistent: a__ : Optional[Any] = self._determine_favorable_chunk_size( __lowercase , __lowercase , __lowercase , ) a__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
266
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowercase : int ={ "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] =[ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _lowercase : Any =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
266
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } SCREAMING_SNAKE_CASE__ : Optional[Any] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 2 SCREAMING_SNAKE_CASE__ : Dict = 3 SCREAMING_SNAKE_CASE__ : List[Any] = 4 class lowerCAmelCase__ ( __lowercase ): a__ : List[str] = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : int = """left""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Dict="<s>" , SCREAMING_SNAKE_CASE__ : int="</s>" , SCREAMING_SNAKE_CASE__ : Dict="<unk>" , SCREAMING_SNAKE_CASE__ : int="<sep>" , SCREAMING_SNAKE_CASE__ : Tuple="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="<cls>" , SCREAMING_SNAKE_CASE__ : int="<mask>" , SCREAMING_SNAKE_CASE__ : Dict=["<eop>", "<eod>"] , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = 3 __lowerCamelCase = do_lower_case __lowerCamelCase = remove_space __lowerCamelCase = keep_accents __lowerCamelCase = vocab_file __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __A ( self : Optional[int] ) -> Dict: return len(self.sp_model ) def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ) -> List[str]: __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: __lowerCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: if self.remove_space: __lowerCamelCase = ''' '''.join(inputs.strip().split() ) else: __lowerCamelCase = inputs __lowerCamelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __lowerCamelCase = unicodedata.normalize('''NFKD''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE__ )] ) if self.do_lower_case: __lowerCamelCase = outputs.lower() return outputs def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCamelCase = self.preprocess_text(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __lowerCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowerCamelCase = cur_pieces[1:] else: __lowerCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE__ ) else: new_pieces.append(SCREAMING_SNAKE_CASE__ ) return new_pieces def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: __lowerCamelCase = ''''''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ''' ''' ).strip() return out_string def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> str: __lowerCamelCase = kwargs.pop('''use_source_tokenizer''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowerCamelCase = [] __lowerCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [] sub_texts.append(SCREAMING_SNAKE_CASE__ ) else: current_sub_text.append(SCREAMING_SNAKE_CASE__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __lowerCamelCase = ''''''.join(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowerCamelCase = self.clean_up_tokenization(SCREAMING_SNAKE_CASE__ ) return clean_text else: return text def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is not None: return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
270
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Dict = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): a__ : Any = """mask2former""" a__ : Dict = ["""swin"""] a__ : Any = {"""hidden_size""": """hidden_dim"""} def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Dict] = None , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : str = "relu" , SCREAMING_SNAKE_CASE__ : int = 6 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 20_48 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : int = 4 , SCREAMING_SNAKE_CASE__ : int = 2_55 , SCREAMING_SNAKE_CASE__ : int = 1_00 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 2.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : int = 1_25_44 , SCREAMING_SNAKE_CASE__ : float = 3.0 , SCREAMING_SNAKE_CASE__ : float = 0.75 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : List[int] = [4, 8, 16, 32] , SCREAMING_SNAKE_CASE__ : bool = None , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> str: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) __lowerCamelCase = CONFIG_MAPPING['''swin''']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=SCREAMING_SNAKE_CASE__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = backbone_config.pop('''model_type''' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE__ ) @classmethod def __A ( cls : Any , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: return cls( backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __A ( self : Any ) -> Dict[str, any]: __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
270
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> float: '''simple docstring''' _A = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCamelCase )] ) _A = np.array(_UpperCamelCase ) _A = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCamelCase ) ) , x.transpose() ) , _UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __lowercase ( __lowercase , __lowercase , __lowercase ) -> float: '''simple docstring''' _A = (1, 2, 1) _A = (1, 1, 0, 7) _A = SARIMAX( _UpperCamelCase , exog=_UpperCamelCase , order=_UpperCamelCase , seasonal_order=_UpperCamelCase ) _A = model.fit(disp=_UpperCamelCase , maxiter=600 , method="nm" ) _A = model_fit.predict(1 , len(_UpperCamelCase ) , exog=[test_match] ) return result[0] def __lowercase ( __lowercase , __lowercase , __lowercase ) -> float: '''simple docstring''' _A = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCamelCase , _UpperCamelCase ) _A = regressor.predict(_UpperCamelCase ) return y_pred[0] def __lowercase ( __lowercase ) -> float: '''simple docstring''' train_user.sort() _A = np.percentile(_UpperCamelCase , 25 ) _A = np.percentile(_UpperCamelCase , 75 ) _A = qa - qa _A = qa - (iqr * 0.1) return low_lim def __lowercase ( __lowercase , __lowercase ) -> bool: '''simple docstring''' _A = 0 _A = 0 for i in list_vote: if i > actual_result: _A = not_safe + 1 else: if abs(abs(_UpperCamelCase ) - abs(_UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowerCamelCase_ = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] lowerCamelCase_ = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) lowerCamelCase_ = Normalizer().fit_transform(data_input_df.values) # split data lowerCamelCase_ = normalize_df[:, 2].tolist() lowerCamelCase_ = normalize_df[:, 0].tolist() lowerCamelCase_ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowerCamelCase_ = normalize_df[:, [1, 2]].tolist() lowerCamelCase_ = x[: len(x) - 1] lowerCamelCase_ = x[len(x) - 1 :] # for linear regression & sarimax lowerCamelCase_ = total_date[: len(total_date) - 1] lowerCamelCase_ = total_user[: len(total_user) - 1] lowerCamelCase_ = total_match[: len(total_match) - 1] lowerCamelCase_ = total_date[len(total_date) - 1 :] lowerCamelCase_ = total_user[len(total_user) - 1 :] lowerCamelCase_ = total_match[len(total_match) - 1 :] # voting system with forecasting lowerCamelCase_ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowerCamelCase_ = "" if data_safety_checker(res_vote, tst_user) else "not " print('''Today\'s data is {not_str}safe.''')
359
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED lowerCamelCase_ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowerCamelCase_ = { '''allenai/led-base-16384''': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __lowercase ( ) -> Dict: '''simple docstring''' _A = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) _A = bs[:] _A = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 _A = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def __lowercase ( __lowercase ) -> Dict: '''simple docstring''' _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple="replace" , __UpperCAmelCase : Optional[int]="<s>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : List[Any]="</s>" , __UpperCAmelCase : Any="<s>" , __UpperCAmelCase : int="<unk>" , __UpperCAmelCase : Optional[int]="<pad>" , __UpperCAmelCase : Optional[Any]="<mask>" , __UpperCAmelCase : Any=False , **__UpperCAmelCase : Any , ): '''simple docstring''' _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) with open(__UpperCAmelCase , encoding="utf-8" ) as vocab_handle: _A = json.load(__UpperCAmelCase ) _A = {v: k for k, v in self.encoder.items()} _A = errors # how to handle errors in decoding _A = bytes_to_unicode() _A = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCAmelCase , encoding="utf-8" ) as merges_handle: _A = merges_handle.read().split("\n" )[1:-1] _A = [tuple(merge.split() ) for merge in bpe_merges] _A = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _A = {} _A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _A = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase ( self : str ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int] ): '''simple docstring''' if token in self.cache: return self.cache[token] _A = tuple(__UpperCAmelCase ) _A = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: _A = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__UpperCAmelCase ): try: _A = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__UpperCAmelCase ) _A = new_word if len(__UpperCAmelCase ) == 1: break else: _A = get_pairs(__UpperCAmelCase ) _A = " ".join(__UpperCAmelCase ) _A = word return word def lowerCAmelCase ( self : Any , __UpperCAmelCase : str ): '''simple docstring''' _A = [] for token in re.findall(self.pat , __UpperCAmelCase ): _A = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Tuple ): '''simple docstring''' return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[int] ): '''simple docstring''' return self.decoder.get(__UpperCAmelCase ) def lowerCAmelCase ( self : str , __UpperCAmelCase : Dict ): '''simple docstring''' _A = "".join(__UpperCAmelCase ) _A = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + "\n" ) _A = 0 with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _A = token_index writer.write(" ".join(__UpperCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict=False , **__UpperCAmelCase : Any ): '''simple docstring''' _A = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()): _A = " " + text return (text, kwargs) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[bool] = None , ): '''simple docstring''' _A = super()._pad( encoded_inputs=__UpperCAmelCase , max_length=__UpperCAmelCase , padding_strategy=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: _A = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _A = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _A = len(encoded_inputs["global_attention_mask"] ) != len(__UpperCAmelCase ) if needs_to_be_padded: _A = len(__UpperCAmelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _A = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _A = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
174
0
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() _lowerCAmelCase = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=True ): """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowerCAmelCase__ : Tuple = cached_file(UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) lowerCAmelCase__ : List[Any] = config_class.from_json_file(UpperCamelCase ) lowerCAmelCase__ : str = True lowerCAmelCase__ : int = True print(f"""Building TensorFlow model from configuration: {config}""" ) lowerCAmelCase__ : Optional[int] = model_class(UpperCamelCase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowerCAmelCase__ : int = cached_file( UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowerCAmelCase__ : Any = load_pytorch_checkpoint_in_tfa_model(UpperCamelCase , UpperCamelCase ) if compare_with_pt_model: lowerCAmelCase__ : Optional[Any] = tf_model(tf_model.dummy_inputs , training=UpperCamelCase ) # build the network lowerCAmelCase__ : List[Any] = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCAmelCase__ : Optional[Any] = pt_model_class.from_pretrained( pretrained_model_name_or_path=UpperCamelCase , config=UpperCamelCase , state_dict=UpperCamelCase ) with torch.no_grad(): lowerCAmelCase__ : int = pt_model(**pt_model.dummy_inputs ) lowerCAmelCase__ : Dict = pto[0].numpy() lowerCAmelCase__ : Union[str, Any] = tfo[0].numpy() lowerCAmelCase__ : Any = np.amax(np.abs(np_pt - np_tf ) ) print(f"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2e-2, f"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(f"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(UpperCamelCase , save_format="""h5""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , ): """simple docstring""" if args_model_type is None: lowerCAmelCase__ : int = list(MODEL_CLASSES.keys() ) else: lowerCAmelCase__ : List[str] = [args_model_type] for j, model_type in enumerate(UpperCamelCase , start=1 ): print("""=""" * 100 ) print(f""" Converting model type {j}/{len(UpperCamelCase )}: {model_type}""" ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowerCAmelCase__ : List[str] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowerCAmelCase__ : int = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(UpperCamelCase , UpperCamelCase ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue lowerCAmelCase__ : str = model_shortcut_name elif only_convert_finetuned_models: print(f""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( f""" Converting checkpoint {i}/{len(UpperCamelCase )}: {model_shortcut_name} - model_type {model_type}""" ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: lowerCAmelCase__ : List[Any] = cached_file(UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) else: lowerCAmelCase__ : Tuple = config_shortcut_name if model_shortcut_name in aws_model_maps: lowerCAmelCase__ : List[Any] = cached_file(UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) else: lowerCAmelCase__ : Optional[int] = model_shortcut_name if os.path.isfile(UpperCamelCase ): lowerCAmelCase__ : int = """converted_model""" convert_pt_checkpoint_to_tf( model_type=UpperCamelCase , pytorch_checkpoint_path=UpperCamelCase , config_file=UpperCamelCase , tf_dump_path=os.path.join(UpperCamelCase , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=UpperCamelCase , ) if remove_cached_files: os.remove(UpperCamelCase ) os.remove(UpperCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') _lowerCAmelCase = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
37
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _a : Union[str, Any] = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex _a : List[str] = 10 _a : List[Any] = 256 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Optional[MinHash]: if len(_lowerCamelCase ) < MIN_NUM_TOKENS: return None _lowerCAmelCase : Optional[Any] = MinHash(num_perm=_lowerCamelCase ) for token in set(_lowerCamelCase ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> Set[str]: return {t for t in NON_ALPHA.split(_lowerCamelCase ) if len(t.strip() ) > 0} class __A : def __init__( self , *, a__ = 0.8_5 , ): _lowerCAmelCase : List[Any] = duplication_jaccard_threshold _lowerCAmelCase : Union[str, Any] = NUM_PERM _lowerCAmelCase : Optional[int] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase : Optional[int] = defaultdict(a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self._index.query(a__ ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(a__ , a__ ) if len(a__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(a__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(a__ ) def __A ( self ): _lowerCAmelCase : int = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase : List[str] = [base] + list(a__ ) # reformat the cluster to be a list of dict _lowerCAmelCase : List[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(a__ ) return duplicate_clusters def __A ( self , a__ ): _lowerCAmelCase : Dict = self.get_duplicate_clusters() with open(a__ , """w""" ) as f: json.dump(a__ , a__ ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = element _lowerCAmelCase : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ) -> Optional[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(_lowerCamelCase ,max_queue_size=10000 ) ,chunksize=100 ,): if data is not None: yield data def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ,_lowerCamelCase : float ) -> List[str]: _lowerCAmelCase : Optional[Any] = DuplicationIndex(duplication_jaccard_threshold=_lowerCamelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowerCamelCase ) ) ,max_queue_size=100 ) ): di.add(_lowerCamelCase ,_lowerCamelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> float: _lowerCAmelCase : Any = get_tokens(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = get_tokens(_lowerCamelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _a : str = None def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : List[Any] ) -> Dict: _lowerCAmelCase : int = [] for elementa in cluster: _lowerCAmelCase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _lowerCAmelCase : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_lowerCamelCase ,_lowerCamelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase : Any = 1 extremes.append(_lowerCamelCase ) return extremes def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> str: global _shared_dataset _lowerCAmelCase : Tuple = dataset _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[Any] = partial(_find_cluster_extremes_shared ,jaccard_threshold=_lowerCamelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowerCamelCase ,_lowerCamelCase ,) ,total=len(_lowerCamelCase ) ,): extremes_list.append(_lowerCamelCase ) return extremes_list def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ,_lowerCamelCase : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase : Tuple = make_duplicate_clusters(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : Tuple = find_extremes(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase : Union[str, Any] = element _lowerCAmelCase : List[Any] = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase : List[Any] = dataset.filter(lambda _lowerCamelCase ,_lowerCamelCase : idx not in remove_indices ,with_indices=_lowerCamelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase : Tuple = element["""base_index"""] in extreme_dict if element["is_extreme"]: _lowerCAmelCase : Dict = extreme_dict[element["""base_index"""]]["""copies"""] print(f"Original dataset size: {len(_lowerCamelCase )}" ) print(f"Number of duplicate clusters: {len(_lowerCamelCase )}" ) print(f"Files in duplicate cluster: {len(_lowerCamelCase )}" ) print(f"Unique files in duplicate cluster: {len(_lowerCamelCase )}" ) print(f"Filtered dataset size: {len(_lowerCamelCase )}" ) return ds_filter, duplicate_clusters
44
0
import torch from torch import nn class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : List[Any]=1 , UpperCamelCase : List[str]=False ): '''simple docstring''' super().__init__() _snake_case : Tuple = n_token _snake_case : str = d_embed _snake_case : Optional[int] = d_proj _snake_case : Tuple = cutoffs + [n_token] _snake_case : List[Any] = [0] + self.cutoffs _snake_case : Optional[int] = div_val _snake_case : Any = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs ) - 1 _snake_case : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _snake_case : str = nn.Parameter(torch.zeros(self.n_clusters ) ) _snake_case : List[Any] = nn.ModuleList() _snake_case : Optional[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase , UpperCamelCase ) ) ) else: self.out_projs.append(UpperCamelCase ) self.out_layers.append(nn.Linear(UpperCamelCase , UpperCamelCase ) ) else: for i in range(len(self.cutoffs ) ): _snake_case : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase , UpperCamelCase ) ) ) self.out_layers.append(nn.Linear(UpperCamelCase , r_idx - l_idx ) ) _snake_case : List[Any] = keep_order def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Dict ): '''simple docstring''' if proj is None: _snake_case : List[str] = nn.functional.linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : Optional[int] = nn.functional.linear(UpperCamelCase , proj.t().contiguous() ) _snake_case : Dict = nn.functional.linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Dict , UpperCamelCase : Tuple=None , UpperCamelCase : List[Any]=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n _snake_case : str = hidden[..., :-1, :].contiguous() _snake_case : Union[str, Any] = labels[..., 1:].contiguous() _snake_case : Optional[int] = hidden.view(-1 , hidden.size(-1 ) ) _snake_case : Optional[Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: _snake_case : List[str] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _snake_case : Dict = self._compute_logit(UpperCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _snake_case : Any = labels != -1_00 _snake_case : int = torch.zeros_like(UpperCamelCase , dtype=hidden.dtype , device=hidden.device ) _snake_case : int = ( -nn.functional.log_softmax(UpperCamelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _snake_case : Optional[Any] = nn.functional.log_softmax(UpperCamelCase , dim=-1 ) else: # construct weights and biases _snake_case : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _snake_case : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[int] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Union[str, Any] = self.out_layers[i].weight _snake_case : Tuple = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _snake_case : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase ) biases.append(UpperCamelCase ) _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : int = self._compute_logit(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _snake_case : Union[str, Any] = nn.functional.log_softmax(UpperCamelCase , dim=1 ) if labels is None: _snake_case : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _snake_case : Dict = torch.zeros_like(UpperCamelCase , dtype=hidden.dtype , device=hidden.device ) _snake_case : int = 0 _snake_case : int = [0] + self.cutoffs for i in range(len(UpperCamelCase ) - 1 ): _snake_case : str = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Tuple = (labels >= l_idx) & (labels < r_idx) _snake_case : str = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Any = labels.index_select(0 , UpperCamelCase ) - l_idx _snake_case : Optional[int] = head_logprob.index_select(0 , UpperCamelCase ) _snake_case : str = hidden.index_select(0 , UpperCamelCase ) else: _snake_case : Dict = hidden if i == 0: if labels is not None: _snake_case : Optional[int] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _snake_case : str = head_logprob[:, : self.cutoffs[0]] else: _snake_case : List[Any] = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _snake_case : Optional[Any] = nn.functional.log_softmax(UpperCamelCase , dim=1 ) _snake_case : Any = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Union[str, Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _snake_case : Optional[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : Tuple = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCamelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if self.n_clusters == 0: _snake_case : Any = self._compute_logit(UpperCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCamelCase , dim=-1 ) else: # construct weights and biases _snake_case : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _snake_case : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Tuple = self.out_layers[0].weight[l_idx:r_idx] _snake_case : str = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Optional[Any] = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Any = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _snake_case : List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase ) biases.append(UpperCamelCase ) _snake_case : Any = weights[0], biases[0], self.out_projs[0] _snake_case : Optional[int] = self._compute_logit(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _snake_case : Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _snake_case : Optional[Any] = nn.functional.log_softmax(UpperCamelCase , dim=1 ) _snake_case : Optional[Any] = [0] + self.cutoffs for i in range(len(UpperCamelCase ) - 1 ): _snake_case : Optional[Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : List[Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case : Union[str, Any] = weights[i], biases[i], self.out_projs[i] _snake_case : Optional[int] = self._compute_logit(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _snake_case : Any = nn.functional.log_softmax(UpperCamelCase , dim=1 ) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Tuple = logprob_i return out
352
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , *UpperCamelCase : int , **UpperCamelCase : Dict ): '''simple docstring''' warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
260
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : List[str] = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) __snake_case : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _UpperCAmelCase ( a__): '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: a_ : Union[str, Any] = model_type_to_module_name(a__) a_ : List[Any] = importlib.import_module(f'''.{module_name}''' , """transformers.models""") try: return getattr(a__ , a__) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(a__ , """__name__""" , a__) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a_ : Union[str, Any] = importlib.import_module("""transformers""") if hasattr(a__ , a__): return getattr(a__ , a__) return None def _UpperCAmelCase ( a__ , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , **a__ , ): '''simple docstring''' a_ : List[Any] = get_file_from_repo( a__ , a__ , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""") return {} with open(a__ , encoding="""utf-8""") as reader: return json.load(a__) class A__: """simple docstring""" def __init__( self ) -> Optional[Any]: raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_lowercase ) def UpperCamelCase__ ( cls , _lowercase , **_lowercase ) -> Dict: a_ : Tuple = kwargs.pop("""config""" , _lowercase ) a_ : Any = kwargs.pop("""trust_remote_code""" , _lowercase ) a_ : Tuple = True a_ , a_ : Any = ImageProcessingMixin.get_image_processor_dict(_lowercase , **_lowercase ) a_ : int = config_dict.get("""image_processor_type""" , _lowercase ) a_ : Dict = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ): a_ : Union[str, Any] = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: a_ : Any = config_dict.pop("""feature_extractor_type""" , _lowercase ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""" ) a_ : Optional[Any] = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): a_ : int = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] a_ : str = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_lowercase , _lowercase ): a_ : List[str] = AutoConfig.from_pretrained(_lowercase , **_lowercase ) # It could be in `config.image_processor_type`` a_ : List[str] = getattr(_lowercase , """image_processor_type""" , _lowercase ) if hasattr(_lowercase , """auto_map""" ) and "AutoImageProcessor" in config.auto_map: a_ : Optional[int] = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: a_ : str = image_processor_class_from_name(_lowercase ) a_ : int = image_processor_auto_map is not None a_ : List[Any] = image_processor_class is not None or type(_lowercase ) in IMAGE_PROCESSOR_MAPPING a_ : Optional[Any] = resolve_trust_remote_code( _lowercase , _lowercase , _lowercase , _lowercase ) if has_remote_code and trust_remote_code: a_ : Dict = get_class_from_dynamic_module( _lowercase , _lowercase , **_lowercase ) a_ : Dict = kwargs.pop("""code_revision""" , _lowercase ) if os.path.isdir(_lowercase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_lowercase , **_lowercase ) elif image_processor_class is not None: return image_processor_class.from_dict(_lowercase , **_lowercase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_lowercase ) in IMAGE_PROCESSOR_MAPPING: a_ : List[str] = IMAGE_PROCESSOR_MAPPING[type(_lowercase )] return image_processor_class.from_dict(_lowercase , **_lowercase ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def UpperCamelCase__ ( _lowercase , _lowercase ) -> str: IMAGE_PROCESSOR_MAPPING.register(_lowercase , _lowercase )
248
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case : Union[str, Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a__ , a__ , a__ , a__): '''simple docstring''' a_ : Tuple = original_name.split(""".""")[0] a_ : List[Any] = key.split(""".""") a_ : List[Any] = int(key_list[key_list.index(a__) - 2]) a_ : Dict = int(key_list[key_list.index(a__) - 1]) a_ : Any = orig_block_num - offset a_ : Optional[int] = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''') return key def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[str] = OrderedDict() a_ , a_ : Optional[int] = 0, 0 for key, value in state_dict.items(): if key.startswith("""network"""): a_ : str = key.replace("""network""" , """poolformer.encoder""") if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""") and "patch_embed" not in key: patch_emb_offset += 1 a_ : Tuple = key[: key.find("""proj""")] a_ : Dict = key.replace(a__ , f'''patch_embeddings.{total_embed_found}.''') a_ : Optional[Any] = key.replace("""proj""" , """projection""") if key.endswith("""bias"""): total_embed_found += 1 if "patch_embeddings" in key: a_ : int = """poolformer.encoder.""" + key if "mlp.fc1" in key: a_ : Union[str, Any] = replace_key_with_offset(a__ , a__ , """mlp.fc1""" , """output.conv1""") if "mlp.fc2" in key: a_ : str = replace_key_with_offset(a__ , a__ , """mlp.fc2""" , """output.conv2""") if "norm1" in key: a_ : str = replace_key_with_offset(a__ , a__ , """norm1""" , """before_norm""") if "norm2" in key: a_ : Any = replace_key_with_offset(a__ , a__ , """norm2""" , """after_norm""") if "layer_scale_1" in key: a_ : List[Any] = replace_key_with_offset(a__ , a__ , """layer_scale_1""" , """layer_scale_1""") if "layer_scale_2" in key: a_ : Optional[Any] = replace_key_with_offset(a__ , a__ , """layer_scale_2""" , """layer_scale_2""") if "head" in key: a_ : Optional[Any] = key.replace("""head""" , """classifier""") a_ : Union[str, Any] = value return new_state_dict def _UpperCAmelCase ( ): '''simple docstring''' a_ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" a_ : Any = Image.open(requests.get(a__ , stream=a__).raw) return image @torch.no_grad() def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : str = PoolFormerConfig() # set attributes based on model_name a_ : Union[str, Any] = """huggingface/label-files""" a_ : str = model_name[-3:] a_ : Tuple = 1_0_0_0 a_ : List[str] = """imagenet-1k-id2label.json""" a_ : Any = (1, 1_0_0_0) # set config attributes a_ : Optional[Any] = json.load(open(hf_hub_download(a__ , a__ , repo_type="""dataset""") , """r""")) a_ : List[Any] = {int(a__): v for k, v in idalabel.items()} a_ : Tuple = idalabel a_ : int = {v: k for k, v in idalabel.items()} if size == "s12": a_ : Optional[int] = [2, 2, 6, 2] a_ : str = [6_4, 1_2_8, 3_2_0, 5_1_2] a_ : List[Any] = 4.0 a_ : Tuple = 0.9 elif size == "s24": a_ : List[Any] = [4, 4, 1_2, 4] a_ : str = [6_4, 1_2_8, 3_2_0, 5_1_2] a_ : List[Any] = 4.0 a_ : Optional[Any] = 0.9 elif size == "s36": a_ : str = [6, 6, 1_8, 6] a_ : Dict = [6_4, 1_2_8, 3_2_0, 5_1_2] a_ : Optional[int] = 4.0 a_ : Optional[int] = 1e-6 a_ : Tuple = 0.9 elif size == "m36": a_ : str = [6, 6, 1_8, 6] a_ : List[Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] a_ : str = 4.0 a_ : Union[str, Any] = 1e-6 a_ : str = 0.95 elif size == "m48": a_ : List[Any] = [8, 8, 2_4, 8] a_ : Dict = [9_6, 1_9_2, 3_8_4, 7_6_8] a_ : int = 4.0 a_ : int = 1e-6 a_ : List[Any] = 0.95 else: raise ValueError(f'''Size {size} not supported''') # load image processor a_ : Tuple = PoolFormerImageProcessor(crop_pct=a__) # Prepare image a_ : List[Any] = prepare_img() a_ : List[str] = image_processor(images=a__ , return_tensors="""pt""").pixel_values logger.info(f'''Converting model {model_name}...''') # load original state dict a_ : List[str] = torch.load(a__ , map_location=torch.device("""cpu""")) # rename keys a_ : List[Any] = rename_keys(a__) # create HuggingFace model and load state dict a_ : List[str] = PoolFormerForImageClassification(a__) model.load_state_dict(a__) model.eval() # Define image processor a_ : Tuple = PoolFormerImageProcessor(crop_pct=a__) a_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""").pixel_values # forward pass a_ : Any = model(a__) a_ : Any = outputs.logits # define expected logit slices for different models if size == "s12": a_ : Union[str, Any] = torch.tensor([-0.3045, -0.6758, -0.4869]) elif size == "s24": a_ : Optional[Any] = torch.tensor([0.4402, -0.1374, -0.8045]) elif size == "s36": a_ : int = torch.tensor([-0.6080, -0.5133, -0.5898]) elif size == "m36": a_ : List[str] = torch.tensor([0.3952, 0.2263, -1.2668]) elif size == "m48": a_ : Union[str, Any] = torch.tensor([0.1167, -0.0656, -0.3423]) else: raise ValueError(f'''Size {size} not supported''') # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a__ , atol=1e-2) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''') Path(a__).mkdir(exist_ok=a__) model.save_pretrained(a__) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(a__) if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __snake_case : Optional[int] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
248
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : str=32 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : int=4 , __lowerCamelCase : Optional[int]=[0, 1, 2, 3] , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=3 , __lowerCamelCase : Tuple=[1, 384, 24, 24] , __lowerCamelCase : Any=True , __lowerCamelCase : List[Any]=None , ) -> List[str]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = backbone_out_indices SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = backbone_featmap_shape SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ = num_patches + 1 def lowercase_ ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def lowercase_ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=UpperCamelCase_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowercase_ ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = DPTModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = DPTForDepthEstimation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCamelCase_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def lowercase_ ( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = DPTForSemanticSegmentation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" a = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) a = False a = False a = False def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = DPTModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowercase_ ( self : List[Any] ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def lowercase_ ( self : List[Any] ) -> int: pass def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def lowercase_ ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowercase_ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowercase_ ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*UpperCamelCase_ ) def lowercase_ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_ ) def lowercase_ ( self : str ) -> str: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = True if model_class in get_values(UpperCamelCase_ ): continue SCREAMING_SNAKE_CASE__ = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() SCREAMING_SNAKE_CASE__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ).loss loss.backward() def lowercase_ ( self : Optional[Any] ) -> Optional[int]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True if model_class in get_values(UpperCamelCase_ ) or not model_class.supports_gradient_checkpointing: continue SCREAMING_SNAKE_CASE__ = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.gradient_checkpointing_enable() model.train() SCREAMING_SNAKE_CASE__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ).loss loss.backward() def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(config=UpperCamelCase_ ) # Skip the check for the backbone SCREAMING_SNAKE_CASE__ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": SCREAMING_SNAKE_CASE__ = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: pass @slow def lowercase_ ( self : str ) -> str: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: SCREAMING_SNAKE_CASE__ = DPTModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowercase_ ( self : Dict ) -> List[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = '''add''' with self.assertRaises(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = DPTForDepthEstimation(UpperCamelCase_ ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) SCREAMING_SNAKE_CASE__ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = outputs.predicted_depth # verify the predicted depth SCREAMING_SNAKE_CASE__ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , UpperCamelCase_ , atol=1e-4 ) )
357
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
218
0
'''simple docstring''' __A = {str(digit): digit**5 for digit in range(10)} def _A ( lowercase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowercase__ ) ) def _A ( ): return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(lowercase__ ) ) if __name__ == "__main__": print(solution())
164
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
164
1
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path snake_case__ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def snake_case__ ( lowerCamelCase__ : List[str]=True ) -> str: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=a__ ) ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = None def _a ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): """simple docstring""" with TemporaryDirectory() as tmp_dir: A_ : List[Any] = dataset_module_factory(_lowerCamelCase , cache_dir=_lowerCamelCase ) A_ : Tuple = import_main_class(dataset_module.module_path , dataset=_lowerCamelCase ) A_ : DatasetBuilder = builder_cls( cache_dir=_lowerCamelCase , config_name=_lowerCamelCase , hash=dataset_module.hash , ) A_ : List[str] = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_lowerCamelCase ).replace(os.sep , '''/''' ), config.DATASET_INFO_FILENAME, ] ) A_ : Optional[int] = cached_path(_lowerCamelCase , cache_dir=_lowerCamelCase ) self.assertTrue(os.path.exists(_lowerCamelCase ) ) @pytest.mark.integration def snake_case__ ( lowerCamelCase__ : Optional[int] ) -> Tuple: A_ : Tuple = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' A_ : Optional[Any] = dataset_module_factory('''wikipedia''' , cache_dir=lowerCamelCase__ ) A_ : str = import_main_class(dataset_module.module_path ) A_ : DatasetBuilder = builder_cls( cache_dir=lowerCamelCase__ , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam A_ : Union[str, Any] = None builder_instance.download_and_prepare() A_ : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def snake_case__ ( lowerCamelCase__ : Any ) -> Dict: A_ : Dict = dataset_module_factory('''wikipedia''' , cache_dir=lowerCamelCase__ ) A_ : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=lowerCamelCase__ ) A_ : DatasetBuilder = builder_cls( cache_dir=lowerCamelCase__ , config_name='''20220301.frr''' , hash=dataset_module.hash , ) A_ : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert "train" in ds assert isinstance(ds['''train'''] , lowerCamelCase__ ) assert next(iter(ds['''train'''] ) )
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
239
'''simple docstring''' from __future__ import annotations def _A ( A__ ): """simple docstring""" __lowercase = len(A__ ) # We need to create solution object to save path. __lowercase = [[0 for _ in range(A__ )] for _ in range(A__ )] __lowercase = run_maze(A__ , 0 , 0 , A__ ) if solved: print('''\n'''.join(str(A__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = len(A__ ) # Final check point. if i == j == (size - 1): __lowercase = 1 return True __lowercase = (not i < 0) and (not j < 0) # Check lower bounds __lowercase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowercase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowercase = 1 # check for directions if ( run_maze(A__ , i + 1 , A__ , A__ ) or run_maze(A__ , A__ , j + 1 , A__ ) or run_maze(A__ , i - 1 , A__ , A__ ) or run_maze(A__ , A__ , j - 1 , A__ ) ): return True __lowercase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
104
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _UpperCAmelCase : '''simple docstring''' __A = BlenderbotConfig __A = {} __A = '''gelu''' def __init__( self : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[int]=13 , lowercase_ : Any=7 , lowercase_ : List[str]=True , lowercase_ : List[str]=False , lowercase_ : Any=99 , lowercase_ : int=32 , lowercase_ : Optional[int]=2 , lowercase_ : List[Any]=4 , lowercase_ : Optional[Any]=37 , lowercase_ : Optional[int]=0.1 , lowercase_ : Dict=0.1 , lowercase_ : Tuple=20 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[str]=1 , lowercase_ : List[str]=0 , ) -> List[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def __UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) _UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_) return config, inputs_dict def __UpperCAmelCase ( self : List[Any] , lowercase_ : str , lowercase_ : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFBlenderbotModel(config=lowercase_).get_decoder() _UpperCamelCase = inputs_dict["input_ids"] _UpperCamelCase = input_ids[:1, :] _UpperCamelCase = inputs_dict["attention_mask"][:1, :] _UpperCamelCase = inputs_dict["head_mask"] _UpperCamelCase = 1 # first forward pass _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_) _UpperCamelCase , _UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and _UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1) _UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1) _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_)[0] _UpperCamelCase = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice _UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1])) _UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3) def lowerCAmelCase__ ( a__ , a__ , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , ) ->Tuple: '''simple docstring''' if attention_mask is None: _UpperCamelCase = tf.cast(tf.math.not_equal(a__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __A = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __A = ( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __A = True __A = False __A = False def __UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCamelCase = TFBlenderbotModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_) def __UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : List[Any]) -> Any: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_) @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __A = ['''My friends are cool but they eat too many carbs.'''] __A = '''facebook/blenderbot-400M-distill''' @cached_property def __UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name) @cached_property def __UpperCAmelCase ( self : str) -> Dict: """simple docstring""" _UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def __UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.tokenizer(self.src_text , return_tensors="tf") _UpperCamelCase = self.model.generate( model_inputs.input_ids , ) _UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase_)[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
362
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ) -> Tuple: """simple docstring""" _UpperCamelCase = path_or_paths _UpperCamelCase = split if split or isinstance(lowercase_ , lowercase_) else "train" _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def __UpperCAmelCase ( self : Any) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Union[str, Any] , ) -> str: """simple docstring""" _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def __UpperCAmelCase ( self : Any) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
63
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _a = logging.get_logger(__name__) _a = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _a = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _a = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _a = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _a = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _a = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _a = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _a = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _a = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _a = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class A_ (UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Any = DPRContextEncoderTokenizer class A_ (UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[int] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Optional[Any] = DPRQuestionEncoderTokenizer _a = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) _a = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) _a = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class A_ : '''simple docstring''' def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , **lowercase_ , ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) elif titles is None or texts is None: UpperCAmelCase_ : List[Any] = titles if texts is None else texts return super().__call__( lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : Any = titles if not isinstance(lowercase_ , lowercase_ ) else [titles] UpperCAmelCase_ : Union[str, Any] = texts if not isinstance(lowercase_ , lowercase_ ) else [texts] UpperCAmelCase_ : Any = len(lowercase_ ) UpperCAmelCase_ : Dict = questions if not isinstance(lowercase_ , lowercase_ ) else [questions] * n_passages assert len(lowercase_ ) == len( lowercase_ ), F"""There should be as many titles than texts but got {len(lowercase_ )} titles and {len(lowercase_ )} texts.""" UpperCAmelCase_ : List[str] = super().__call__(lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ )['''input_ids'''] UpperCAmelCase_ : Tuple = super().__call__(lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ )['''input_ids'''] UpperCAmelCase_ : Dict = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase_ , lowercase_ ) ] } if return_attention_mask is not False: UpperCAmelCase_ : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase_ : int = attention_mask return self.pad(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = 16 , lowercase_ = 64 , lowercase_ = 4 , ): """simple docstring""" UpperCAmelCase_ : Optional[int] = reader_input['''input_ids'''] UpperCAmelCase_ : Optional[int] = reader_output[:3] UpperCAmelCase_ : List[Any] = len(lowercase_ ) UpperCAmelCase_ : Tuple = sorted(range(lowercase_ ) , reverse=lowercase_ , key=relevance_logits.__getitem__ ) UpperCAmelCase_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCAmelCase_ : str = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase_ : Optional[int] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase_ : str = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase_ : List[str] = len(lowercase_ ) UpperCAmelCase_ : int = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase_ , top_spans=lowercase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase_ , start_index=lowercase_ , end_index=lowercase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowercase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [] for start_index, start_score in enumerate(lowercase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase_ : List[str] = sorted(lowercase_ , key=lambda lowercase_ : x[1] , reverse=lowercase_ ) UpperCAmelCase_ : Optional[int] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" UpperCAmelCase_ : List[str] = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowercase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A_ (UpperCAmelCase__ ,UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = READER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : int = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : int = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = DPRReaderTokenizer
61
"""simple docstring""" from __future__ import annotations class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : int = 0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE_ : List[str] = '''''' for ch in content: ans += chr(ord(lowercase_) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE_ : List[Any] = '''''' for ch in content: ans += chr(ord(lowercase_) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) try: with open(lowercase_) as fin, open('''encrypt.out''' , '''w+''') as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowercase_ , lowercase_)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) try: with open(lowercase_) as fin, open('''decrypt.out''' , '''w+''') as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowercase_ , lowercase_)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
91
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' if openai_config_file == "": UpperCamelCase__ = OpenAIGPTConfig() else: UpperCamelCase__ = OpenAIGPTConfig.from_json_file(_UpperCamelCase ) UpperCamelCase__ = OpenAIGPTModel(_UpperCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model UpperCamelCase__ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCamelCase__ = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , _UpperCamelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowercase: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __lowercase: int = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
31
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()}) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel}) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def lowercase_ ( self : str, a_ : Union[str, Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column], a_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowercase_ ( self : Any ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
31
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : str = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''lilt''' def __init__( self , __SCREAMING_SNAKE_CASE=3_05_22 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=30_72 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_12 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-1_2 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=10_24 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = vocab_size lowercase_ : Dict = hidden_size lowercase_ : int = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : Tuple = hidden_act lowercase_ : List[str] = intermediate_size lowercase_ : int = hidden_dropout_prob lowercase_ : Dict = attention_probs_dropout_prob lowercase_ : Optional[int] = max_position_embeddings lowercase_ : int = type_vocab_size lowercase_ : List[str] = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Tuple = position_embedding_type lowercase_ : Tuple = classifier_dropout lowercase_ : Any = channel_shrink_ratio lowercase_ : List[Any] = max_ad_position_embeddings
93
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase__) class _lowercase ( lowercase__): """simple docstring""" A__ = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True}) A__ = Features({"audio": Audio()}) A__ = Features({"transcription": Value("string")}) A__ = "audio" A__ = "transcription" def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] , __lowerCamelCase ): raise ValueError(f"Column {self.audio_column} is not an Audio type." ) lowerCamelCase__ : Tuple = copy.deepcopy(self ) lowerCamelCase__ : Tuple = self.input_schema.copy() lowerCamelCase__ : Optional[int] = features[self.audio_column] lowerCamelCase__ : int = input_schema return task_template @property def lowerCAmelCase ( self : int ): '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
184
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase : Any = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
from math import factorial class __lowerCAmelCase : def __init__( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Tuple ): lowercase :str = real if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Tuple = [1] * rank else: lowercase :List[str] = rank def __repr__( self: Optional[Any] ): return ( F"{self.real}+" F"{'+'.join(str(_lowerCAmelCase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :int = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _lowerCAmelCase ) def __add__( self: int , _lowerCAmelCase: Tuple ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return Dual(self.real + other , self.duals ) lowercase :Dict = self.duals.copy() lowercase :List[str] = other.duals.copy() if len(_lowerCAmelCase ) > len(_lowerCAmelCase ): o_dual.extend([1] * (len(_lowerCAmelCase ) - len(_lowerCAmelCase )) ) elif len(_lowerCAmelCase ) < len(_lowerCAmelCase ): s_dual.extend([1] * (len(_lowerCAmelCase ) - len(_lowerCAmelCase )) ) lowercase :Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _lowerCAmelCase ) _a = __add__ def __sub__( self: Optional[Any] , _lowerCAmelCase: Optional[int] ): return self + other * -1 def __mul__( self: Optional[Any] , _lowerCAmelCase: Optional[int] ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :str = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _lowerCAmelCase ) lowercase :Dict = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _lowerCAmelCase ) _a = __mul__ def __truediv__( self: List[str] , _lowerCAmelCase: Optional[int] ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Union[str, Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _lowerCAmelCase ) raise ValueError def __floordiv__( self: int , _lowerCAmelCase: Any ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :str = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _lowerCAmelCase ) raise ValueError def __pow__( self: Any , _lowerCAmelCase: Tuple ): if n < 0 or isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self lowercase :Optional[int] = self for _ in range(n - 1 ): x *= self return x def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): if not callable(lowerCamelCase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(lowerCamelCase, (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(lowerCamelCase, lowerCamelCase ): raise ValueError("differentiate() requires an int as input for order" ) lowercase :str = Dual(lowerCamelCase, 1 ) lowercase :Dict = func(lowerCamelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() def UpperCAmelCase__ ( lowerCamelCase ): return y**2 * y**4 print(differentiate(f, 9, 2))
158
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Any =['''pixel_values'''] def __init__(self , lowerCAmelCase = True , lowerCAmelCase = 1 / 2_5_5 , lowerCAmelCase = True , lowerCAmelCase = 8 , **lowerCAmelCase , ): super().__init__(**__lowercase ) __lowercase= do_rescale __lowercase= rescale_factor __lowercase= do_pad __lowercase= pad_size def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase ): return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None ): __lowercase, __lowercase= get_image_size(__lowercase ) __lowercase= (old_height // size + 1) * size - old_height __lowercase= (old_width // size + 1) * size - old_width return pad(__lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__lowercase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): __lowercase= do_rescale if do_rescale is not None else self.do_rescale __lowercase= rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase= do_pad if do_pad is not None else self.do_pad __lowercase= pad_size if pad_size is not None else self.pad_size __lowercase= make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __lowercase= [to_numpy_array(__lowercase ) for image in images] if do_rescale: __lowercase= [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_pad: __lowercase= [self.pad(__lowercase , size=__lowercase ) for image in images] __lowercase= [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowercase= {'pixel_values': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
295
'''simple docstring''' import math class lowerCAmelCase : def snake_case ( self : Optional[int] , __lowercase : list[list[float]] , __lowercase : list[int] ): """simple docstring""" __lowercase =0.0 __lowercase =0.0 for i in range(len(__lowercase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def snake_case ( self : Union[str, Any] , __lowercase : list[list[int | float]] , __lowercase : list[int] , __lowercase : int , __lowercase : float ): """simple docstring""" for i in range(len(__lowercase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __UpperCamelCase ( ): '''simple docstring''' __lowercase =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __lowercase =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __lowercase =SelfOrganizingMap() __lowercase =3 __lowercase =0.5 for _ in range(lowercase__ ): for j in range(len(lowercase__ ) ): # training sample __lowercase =training_samples[j] # Compute the winning vector __lowercase =self_organizing_map.get_winner(lowercase__, lowercase__ ) # Update the winning vector __lowercase =self_organizing_map.update(lowercase__, lowercase__, lowercase__, lowercase__ ) # classify test sample __lowercase =[0, 0, 0, 1] __lowercase =self_organizing_map.get_winner(lowercase__, lowercase__ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
141
0
from typing import Any import numpy as np def __lowerCamelCase ( lowerCAmelCase__ ): return np.array_equal(lowerCAmelCase__ , matrix.conjugate().T ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = v.conjugate().T lowerCAmelCase__ = v_star.dot(lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , np.ndarray ) return (v_star_dot.dot(lowerCAmelCase__ )) / (v_star.dot(lowerCAmelCase__ )) def __lowerCamelCase ( ): lowerCAmelCase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowerCAmelCase__ = np.array([[1], [2], [3]] ) assert is_hermitian(lowerCAmelCase__ ), F"""{a} is not hermitian.""" print(rayleigh_quotient(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowerCAmelCase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowerCAmelCase__ ), F"""{a} is not hermitian.""" assert rayleigh_quotient(lowerCAmelCase__ , lowerCAmelCase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
119
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase__ = TaTokenizerFast lowerCAmelCase__ = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase__ = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
119
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Union[List[PIL.Image.Image], np.ndarray] __UpperCamelCase : Optional[List[bool]] __UpperCamelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
121
UpperCAmelCase__ : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def lowerCamelCase__ ( a , a , a ) -> list[str]: _A: Union[str, Any] = set() # keep track of all the paths to be checked _A: Union[str, Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _A: Any = queue.pop(0 ) # get the last node from the path _A: Union[str, Any] = path[-1] if node not in explored: _A: str = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _A: Optional[int] = list(a ) new_path.append(a ) queue.append(a ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(a ) # in case there's no path between the 2 nodes return [] def lowerCamelCase__ ( a , a , a ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _A: Any = [start] _A: List[str] = set(a ) # Keep tab on distances from `start` node. _A: Optional[int] = {start: 0, target: -1} while queue: _A: Union[str, Any] = queue.pop(0 ) if node == target: _A: Dict = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(a ) queue.append(a ) _A: List[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
121
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
from __future__ import annotations def _a ( a :dict , a :str ) -> set[str]: a , a = set(a ), [start] while stack: a = stack.pop() explored.add(a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a ) return explored UpperCAmelCase__ = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
26
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : str , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase_ ( self : Any ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : List[Any] ): ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ): _A = TFEsmModel(config=_UpperCAmelCase ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(_UpperCAmelCase ) _A = [input_ids, input_mask] _A = model(_UpperCAmelCase ) _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , ): _A = True _A = TFEsmModel(config=_UpperCAmelCase ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _A = model(_UpperCAmelCase ) _A = [input_ids, input_mask] _A = model(_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ) # Also check the case where encoder outputs are not passed _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str ): _A = TFEsmForMaskedLM(config=_UpperCAmelCase ) _A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ): _A = self.num_labels _A = TFEsmForTokenClassification(config=_UpperCAmelCase ) _A = {'input_ids': input_ids, 'attention_mask': input_mask} _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase : int = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase : int = False UpperCAmelCase : Tuple = False def lowerCAmelCase_ ( self : List[str] ): _A = TFEsmModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Tuple ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Optional[int] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : str ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFEsmModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCAmelCase_ ( self : Optional[int] ): pass def lowerCAmelCase_ ( self : str ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A = model.get_bias() assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) for k, v in name.items(): assert isinstance(_UpperCAmelCase , tf.Variable ) else: _A = model.get_output_embeddings() assert x is None _A = model.get_bias() assert name is None @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Tuple ): _A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(_UpperCAmelCase )[0] _A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _UpperCAmelCase ) # compare the actual values for a slice. _A = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCAmelCase_ ( self : Dict ): _A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(_UpperCAmelCase )[0] # compare the actual values for a slice. _A = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
315
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a = TypeVar('''T''') class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : T ): _A = data _A = None def __str__( self : str ): return F'''{self.data}''' class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): _A = None def __iter__( self : List[Any] ): _A = self.top while node: yield node.data _A = node.next def __str__( self : Union[str, Any] ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self : List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase_ ( self : str ): return self.top is None def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ): _A = Node(_UpperCAmelCase ) if not self.is_empty(): _A = self.top _A = node def lowerCAmelCase_ ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowerCAmelCase_ ( self : Optional[Any] ): _A = None if __name__ == "__main__": from doctest import testmod testmod()
315
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCAmelCase__ = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCAmelCase__ = { 'jukebox': 512, } class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_LYRIC_TOKENS_SIZES UpperCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Any , lowercase__ : Optional[Any] , lowercase__ : Dict , lowercase__ : int , lowercase__ : Optional[int]=["v3", "v2", "v2"] , lowercase__ : int=512 , lowercase__ : Optional[int]=5 , lowercase__ : List[Any]="<|endoftext|>" , **lowercase__ : List[Any] , ): '''simple docstring''' lowerCAmelCase__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else unk_token super().__init__( unk_token=lowercase__ , n_genres=lowercase__ , version=lowercase__ , max_n_lyric_tokens=lowercase__ , **lowercase__ , ) lowerCAmelCase__ = version lowerCAmelCase__ = max_n_lyric_tokens lowerCAmelCase__ = n_genres with open(lowercase__ , encoding='utf-8') as vocab_handle: lowerCAmelCase__ = json.load(lowercase__) with open(lowercase__ , encoding='utf-8') as vocab_handle: lowerCAmelCase__ = json.load(lowercase__) with open(lowercase__ , encoding='utf-8') as vocab_handle: lowerCAmelCase__ = json.load(lowercase__) lowerCAmelCase__ = r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder) == 79: lowerCAmelCase__ = oov.replace(r'\-\'' , r'\-+\'') lowerCAmelCase__ = regex.compile(lowercase__) lowerCAmelCase__ = {v: k for k, v in self.artists_encoder.items()} lowerCAmelCase__ = {v: k for k, v in self.genres_encoder.items()} lowerCAmelCase__ = {v: k for k, v in self.lyrics_encoder.items()} @property def __snake_case ( self : List[str]): '''simple docstring''' return len(self.artists_encoder) + len(self.genres_encoder) + len(self.lyrics_encoder) def __snake_case ( self : List[Any]): '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder) def __snake_case ( self : str , lowercase__ : Dict , lowercase__ : int , lowercase__ : Tuple): '''simple docstring''' lowerCAmelCase__ = [self.artists_encoder.get(lowercase__ , 0) for artist in list_artists] for genres in range(len(lowercase__)): lowerCAmelCase__ = [self.genres_encoder.get(lowercase__ , 0) for genre in list_genres[genres]] lowerCAmelCase__ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres])) lowerCAmelCase__ = [[self.lyrics_encoder.get(lowercase__ , 0) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def __snake_case ( self : int , lowercase__ : List[Any]): '''simple docstring''' return list(lowercase__) def __snake_case ( self : Dict , lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Dict , **lowercase__ : List[Any]): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_for_tokenization(lowercase__ , lowercase__ , lowercase__) lowerCAmelCase__ = self._tokenize(lowercase__) return artist, genre, lyrics def __snake_case ( self : Union[str, Any] , lowercase__ : str , lowercase__ : str , lowercase__ : str , lowercase__ : bool = False): '''simple docstring''' for idx in range(len(self.version)): if self.version[idx] == "v3": lowerCAmelCase__ = artists[idx].lower() lowerCAmelCase__ = [genres[idx].lower()] else: lowerCAmelCase__ = self._normalize(artists[idx]) + '.v2' lowerCAmelCase__ = [ self._normalize(lowercase__) + '.v2' for genre in genres[idx].split('_') ] # split is for the full dictionary with combined genres if self.version[0] == "v2": lowerCAmelCase__ = regex.compile(r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+') lowerCAmelCase__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' lowerCAmelCase__ = {vocab[index]: index + 1 for index in range(len(lowercase__))} lowerCAmelCase__ = 0 lowerCAmelCase__ = len(lowercase__) + 1 lowerCAmelCase__ = self.vocab lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} lowerCAmelCase__ = '' else: lowerCAmelCase__ = regex.compile(r'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+') lowerCAmelCase__ = self._run_strip_accents(lowercase__) lowerCAmelCase__ = lyrics.replace('\\' , '\n') lowerCAmelCase__ = self.out_of_vocab.sub('' , lowercase__), [], [] return artists, genres, lyrics def __snake_case ( self : Any , lowercase__ : List[str]): '''simple docstring''' lowerCAmelCase__ = unicodedata.normalize('NFD' , lowercase__) lowerCAmelCase__ = [] for char in text: lowerCAmelCase__ = unicodedata.category(lowercase__) if cat == "Mn": continue output.append(lowercase__) return "".join(lowercase__) def __snake_case ( self : Optional[int] , lowercase__ : str): '''simple docstring''' lowerCAmelCase__ = ( [chr(lowercase__) for i in range(ord('a') , ord('z') + 1)] + [chr(lowercase__) for i in range(ord('A') , ord('Z') + 1)] + [chr(lowercase__) for i in range(ord('0') , ord('9') + 1)] + ['.'] ) lowerCAmelCase__ = frozenset(lowercase__) lowerCAmelCase__ = re.compile(r'_+') lowerCAmelCase__ = ''.join([c if c in accepted else '_' for c in text.lower()]) lowerCAmelCase__ = pattern.sub('_' , lowercase__).strip('_') return text def __snake_case ( self : int , lowercase__ : List[str]): '''simple docstring''' return " ".join(lowercase__) def __snake_case ( self : Optional[int] , lowercase__ : List[str] , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : bool = False): '''simple docstring''' if not isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = TensorType(lowercase__) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.') import tensorflow as tf lowerCAmelCase__ = tf.constant lowerCAmelCase__ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.') import torch lowerCAmelCase__ = torch.tensor lowerCAmelCase__ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.') import jax.numpy as jnp # noqa: F811 lowerCAmelCase__ = jnp.array lowerCAmelCase__ = _is_jax else: lowerCAmelCase__ = np.asarray lowerCAmelCase__ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: lowerCAmelCase__ = [inputs] if not is_tensor(lowercase__): lowerCAmelCase__ = as_tensor(lowercase__) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.') return inputs def __call__( self : Tuple , lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : List[Any]="" , lowercase__ : int="pt"): '''simple docstring''' lowerCAmelCase__ = [0, 0, 0] lowerCAmelCase__ = [artist] * len(self.version) lowerCAmelCase__ = [genres] * len(self.version) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.tokenize(lowercase__ , lowercase__ , lowercase__) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._convert_token_to_id(lowercase__ , lowercase__ , lowercase__) lowerCAmelCase__ = [-INFINITY] * len(full_tokens[-1]) lowerCAmelCase__ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=lowercase__) for i in range(len(self.version)) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks}) def __snake_case ( self : Optional[int] , lowercase__ : str , lowercase__ : Optional[str] = None): '''simple docstring''' if not os.path.isdir(lowercase__): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCAmelCase__ = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file']) with open(lowercase__ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=lowercase__)) lowerCAmelCase__ = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file']) with open(lowercase__ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=lowercase__)) lowerCAmelCase__ = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file']) with open(lowercase__ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=lowercase__)) return (artists_file, genres_file, lyrics_file) def __snake_case ( self : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Optional[int]): '''simple docstring''' lowerCAmelCase__ = self.artists_decoder.get(lowercase__) lowerCAmelCase__ = [self.genres_decoder.get(lowercase__) for genre in genres_index] lowerCAmelCase__ = [self.lyrics_decoder.get(lowercase__) for character in lyric_index] return artist, genres, lyrics
119
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 42 @flax_register_to_config class a_ ( nn.Module , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 32 UpperCAmelCase_ = 4 UpperCAmelCase_ = 4 UpperCAmelCase_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCAmelCase_ = False UpperCAmelCase_ = (320, 640, 1_280, 1_280) UpperCAmelCase_ = 2 UpperCAmelCase_ = 8 UpperCAmelCase_ = None UpperCAmelCase_ = 1_280 UpperCAmelCase_ = 0.0 UpperCAmelCase_ = False UpperCAmelCase_ = jnp.floataa UpperCAmelCase_ = True UpperCAmelCase_ = 0 UpperCAmelCase_ = False def __snake_case ( self : Optional[int] , lowercase__ : jax.random.KeyArray): '''simple docstring''' lowerCAmelCase__ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase__ = jnp.zeros(lowercase__ , dtype=jnp.floataa) lowerCAmelCase__ = jnp.ones((1,) , dtype=jnp.intaa) lowerCAmelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) lowerCAmelCase__ , lowerCAmelCase__ = jax.random.split(lowercase__) lowerCAmelCase__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase__ , lowercase__ , lowercase__ , lowercase__)["params"] def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = self.block_out_channels lowerCAmelCase__ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase__ = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) lowerCAmelCase__ = FlaxTimestepEmbedding(lowercase__ , dtype=self.dtype) lowerCAmelCase__ = self.only_cross_attention if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = (only_cross_attention,) * len(self.down_block_types) if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = (num_attention_heads,) * len(self.down_block_types) # down lowerCAmelCase__ = [] lowerCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): lowerCAmelCase__ = output_channel lowerCAmelCase__ = block_out_channels[i] lowerCAmelCase__ = i == len(lowercase__) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase__ = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase__ = FlaxDownBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase__) lowerCAmelCase__ = down_blocks # mid lowerCAmelCase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCAmelCase__ = [] lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): lowerCAmelCase__ = output_channel lowerCAmelCase__ = reversed_block_out_channels[i] lowerCAmelCase__ = reversed_block_out_channels[min(i + 1 , len(lowercase__) - 1)] lowerCAmelCase__ = i == len(lowercase__) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCAmelCase__ = FlaxCrossAttnUpBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase__ = FlaxUpBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowercase__) lowerCAmelCase__ = output_channel lowerCAmelCase__ = up_blocks # out lowerCAmelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1e-5) lowerCAmelCase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , lowercase__ : bool = True , lowercase__ : bool = False , ): '''simple docstring''' if not isinstance(lowercase__ , jnp.ndarray): lowerCAmelCase__ = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(lowercase__ , jnp.ndarray) and len(timesteps.shape) == 0: lowerCAmelCase__ = timesteps.astype(dtype=jnp.floataa) lowerCAmelCase__ = jnp.expand_dims(lowercase__ , 0) lowerCAmelCase__ = self.time_proj(lowercase__) lowerCAmelCase__ = self.time_embedding(lowercase__) # 2. pre-process lowerCAmelCase__ = jnp.transpose(lowercase__ , (0, 2, 3, 1)) lowerCAmelCase__ = self.conv_in(lowercase__) # 3. down lowerCAmelCase__ = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ , lowerCAmelCase__ = down_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train) else: lowerCAmelCase__ , lowerCAmelCase__ = down_block(lowercase__ , lowercase__ , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCAmelCase__ = () for down_block_res_sample, down_block_additional_residual in zip( lowercase__ , lowercase__): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase__ = new_down_block_res_samples # 4. mid lowerCAmelCase__ = self.mid_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCAmelCase__ = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCAmelCase__ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = up_block( lowercase__ , temb=lowercase__ , encoder_hidden_states=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train , ) else: lowerCAmelCase__ = up_block(lowercase__ , temb=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train) # 6. post-process lowerCAmelCase__ = self.conv_norm_out(lowercase__) lowerCAmelCase__ = nn.silu(lowercase__) lowerCAmelCase__ = self.conv_out(lowercase__) lowerCAmelCase__ = jnp.transpose(lowercase__ , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowercase__)
119
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "pix2struct_text_model" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, lowerCAmelCase__=5_0244, lowerCAmelCase__=768, lowerCAmelCase__=64, lowerCAmelCase__=2048, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=32, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=1e-6, lowerCAmelCase__=1.0, lowerCAmelCase__="gelu_new", lowerCAmelCase__=0, lowerCAmelCase__=False, lowerCAmelCase__=0, lowerCAmelCase__=1, lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Optional[int]: snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = d_kv snake_case_ = d_ff snake_case_ = num_layers snake_case_ = num_heads snake_case_ = relative_attention_num_buckets snake_case_ = relative_attention_max_distance snake_case_ = dropout_rate snake_case_ = layer_norm_epsilon snake_case_ = initializer_factor snake_case_ = use_cache snake_case_ = eos_token_id snake_case_ = decoder_start_token_id # for backwards compatibility snake_case_ = dense_act_fn super().__init__( pad_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, decoder_start_token_id=lowerCAmelCase__, tie_word_embeddings=lowerCAmelCase__, is_decoder=lowerCAmelCase__, **lowerCAmelCase__, ) @classmethod def a_ ( cls, lowerCAmelCase__, **lowerCAmelCase__) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase__) snake_case_ , snake_case_ = cls.get_config_dict(lowerCAmelCase__, **lowerCAmelCase__) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type') == "pix2struct": snake_case_ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls, 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(lowerCAmelCase__, **lowerCAmelCase__) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "pix2struct_vision_model" def __init__( self, lowerCAmelCase__=768, lowerCAmelCase__=768, lowerCAmelCase__=2048, lowerCAmelCase__=64, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__="gelu_new", lowerCAmelCase__=1e-6, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=1e-10, lowerCAmelCase__=1.0, lowerCAmelCase__=4096, lowerCAmelCase__=32, lowerCAmelCase__=128, **lowerCAmelCase__, ) -> List[Any]: super().__init__(**lowerCAmelCase__) snake_case_ = hidden_size snake_case_ = patch_embed_hidden_size snake_case_ = d_ff snake_case_ = dropout_rate snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = initializer_range snake_case_ = initializer_factor snake_case_ = attention_dropout snake_case_ = layer_norm_eps snake_case_ = dense_act_fn snake_case_ = seq_len snake_case_ = relative_attention_num_buckets snake_case_ = relative_attention_max_distance snake_case_ = d_kv @classmethod def a_ ( cls, lowerCAmelCase__, **lowerCAmelCase__) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase__) snake_case_ , snake_case_ = cls.get_config_dict(lowerCAmelCase__, **lowerCAmelCase__) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type') == "pix2struct": snake_case_ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls, 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(lowerCAmelCase__, **lowerCAmelCase__) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "pix2struct" SCREAMING_SNAKE_CASE_ = True def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=1.0, lowerCAmelCase__=0.02, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> List[str]: super().__init__(tie_word_embeddings=lowerCAmelCase__, is_encoder_decoder=lowerCAmelCase__, **lowerCAmelCase__) if text_config is None: snake_case_ = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.') if vision_config is None: snake_case_ = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.') snake_case_ = PixaStructTextConfig(**lowerCAmelCase__) snake_case_ = PixaStructVisionConfig(**lowerCAmelCase__) snake_case_ = self.text_config.decoder_start_token_id snake_case_ = self.text_config.pad_token_id snake_case_ = self.text_config.eos_token_id snake_case_ = initializer_factor snake_case_ = initializer_range snake_case_ = self.initializer_range snake_case_ = self.initializer_range snake_case_ = is_vqa @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> Optional[Any]: return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = copy.deepcopy(self.__dict__) snake_case_ = self.text_config.to_dict() snake_case_ = self.vision_config.to_dict() snake_case_ = self.__class__.model_type return output
69
"""simple docstring""" from math import factorial def UpperCAmelCase ( UpperCAmelCase = 20 ) -> int: snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(UpperCAmelCase ) / (factorial(UpperCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __UpperCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
69
1
'''simple docstring''' from collections import defaultdict from math import gcd def a__ ( lowercase : int = 1500000 ) -> int: """simple docstring""" _UpperCamelCase = defaultdict(lowercase ) _UpperCamelCase = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, lowercase, 2 ): if gcd(lowercase, lowercase ) > 1: continue _UpperCamelCase = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowercase, limit + 1, lowercase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
287
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase = controlnet_params _UpperCamelCase = '''bird''' _UpperCamelCase = jax.device_count() _UpperCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) _UpperCamelCase = pipe.prepare_image_inputs([canny_image] * num_samples ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) _UpperCamelCase = replicate(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) _UpperCamelCase = controlnet_params _UpperCamelCase = '''Chef in the kitchen''' _UpperCamelCase = jax.device_count() _UpperCamelCase = pipe.prepare_text_inputs([prompts] * num_samples ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) _UpperCamelCase = pipe.prepare_image_inputs([pose_image] * num_samples ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) _UpperCamelCase = replicate(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = shard(lowerCAmelCase__ ) _UpperCamelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
287
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , ): """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
93
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> int: '''simple docstring''' if not nums: return 0 lowercase = nums[0] lowercase = 0 for num in nums[1:]: lowercase , lowercase = ( max_excluding + num, max(lowerCAmelCase__ , lowerCAmelCase__ ), ) return max(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
197
0
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ) -> List[str]: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" __lowerCamelCase = [[float('inf' ) for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __lowerCamelCase = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(UpperCamelCase__ ): # looping through rows of graph array for i in range(UpperCamelCase__ ): # looping through columns of graph array for j in range(UpperCamelCase__ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): __lowerCamelCase = dist[i][k] + dist[k][j] _print_dist(UpperCamelCase__ , UpperCamelCase__ ) return dist, v if __name__ == "__main__": __A = int(input("Enter number of vertices: ")) __A = int(input("Enter number of edges: ")) __A = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A = int(input("Enter source:")) __A = int(input("Enter destination:")) __A = float(input("Enter weight:")) __A = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
348
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
1
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __snake_case =[ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def a_ ( lowerCamelCase : Optional[Any]=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__lowercase ) ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = None lowerCamelCase : Dict = None def __UpperCAmelCase ( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> int: with TemporaryDirectory() as tmp_dir: lowerCAmelCase = dataset_module_factory(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ) lowerCAmelCase = import_main_class(dataset_module.module_path , dataset=UpperCAmelCase__ ) lowerCAmelCase = builder_cls( cache_dir=UpperCAmelCase__ , config_name=UpperCAmelCase__ , hash=dataset_module.hash , ) lowerCAmelCase = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCAmelCase__ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowerCAmelCase = cached_path(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ) self.assertTrue(os.path.exists(UpperCAmelCase__ ) ) @pytest.mark.integration def a_ ( lowerCamelCase : Tuple ): lowerCAmelCase = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowerCAmelCase = dataset_module_factory('wikipedia' , cache_dir=lowerCamelCase ) lowerCAmelCase = import_main_class(dataset_module.module_path ) lowerCAmelCase = builder_cls( cache_dir=lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowerCAmelCase = None builder_instance.download_and_prepare() lowerCAmelCase = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( lowerCamelCase : Optional[int] ): lowerCAmelCase = dataset_module_factory('wikipedia' , cache_dir=lowerCamelCase ) lowerCAmelCase = import_main_class(dataset_module.module_path , dataset=lowerCamelCase ) lowerCAmelCase = builder_cls( cache_dir=lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowerCAmelCase = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCamelCase , lowerCamelCase ) assert "train" in ds assert isinstance(ds['train'] , lowerCamelCase ) assert next(iter(ds['train'] ) )
4
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]=7): lowercase__ : Any = None if token is not None: lowercase__ : List[str] = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ : Tuple = "636036" lowercase__ : int = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ : List[str] = requests.get(_lowerCamelCase , headers=_lowerCamelCase).json() return result["workflow_runs"] def lowercase_ ( _lowerCamelCase : Tuple): lowercase__ : Tuple = get_daily_ci_runs(_lowerCamelCase) lowercase__ : List[str] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ : List[str] = workflow_run["id"] break return workflow_run_id def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Tuple): lowercase__ : Tuple = get_last_daily_ci_runs(_lowerCamelCase) if workflow_run_id is not None: lowercase__ : Optional[Any] = get_artifacts_links(worflow_run_id=_lowerCamelCase , token=_lowerCamelCase) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ : List[Any] = artifacts_links[artifact_name] download_artifact( artifact_name=_lowerCamelCase , artifact_url=_lowerCamelCase , output_dir=_lowerCamelCase , token=_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : str): get_last_daily_ci_artifacts(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) lowercase__ : Optional[int] = {} for artifact_name in artifact_names: lowercase__ : str = os.path.join(_lowerCamelCase , f'''{artifact_name}.zip''') if os.path.isfile(_lowerCamelCase): lowercase__ : Optional[int] = {} with zipfile.ZipFile(_lowerCamelCase) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase): # read the file with z.open(_lowerCamelCase) as f: lowercase__ : Dict = f.read().decode("UTF-8") return results
351
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure)
66
"""simple docstring""" from math import factorial class lowerCamelCase : '''simple docstring''' def __init__( self: Optional[int] , snake_case: Dict , snake_case: int ) -> Tuple: snake_case_ :List[Any] = real if isinstance(snake_case , snake_case ): snake_case_ :Tuple = [1] * rank else: snake_case_ :Optional[Any] = rank def __repr__( self: List[str] ) -> Tuple: return ( f"""{self.real}+""" f"""{'+'.join(str(snake_case )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[int]: snake_case_ :Any = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , snake_case ) def __add__( self: Optional[int] , snake_case: Dict ) -> List[str]: if not isinstance(snake_case , snake_case ): return Dual(self.real + other , self.duals ) snake_case_ :List[Any] = self.duals.copy() snake_case_ :Tuple = other.duals.copy() if len(snake_case ) > len(snake_case ): o_dual.extend([1] * (len(snake_case ) - len(snake_case )) ) elif len(snake_case ) < len(snake_case ): s_dual.extend([1] * (len(snake_case ) - len(snake_case )) ) snake_case_ :Dict = [] for i in range(len(snake_case ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , snake_case ) _A : str = __add__ def __sub__( self: Tuple , snake_case: Union[str, Any] ) -> Tuple: return self + other * -1 def __mul__( self: str , snake_case: Tuple ) -> Optional[Any]: if not isinstance(snake_case , snake_case ): snake_case_ :Dict = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , snake_case ) snake_case_ :int = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , snake_case ) _A : int = __mul__ def __truediv__( self: List[str] , snake_case: List[str] ) -> List[str]: if not isinstance(snake_case , snake_case ): snake_case_ :Optional[Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , snake_case ) raise ValueError def __floordiv__( self: int , snake_case: List[Any] ) -> Any: if not isinstance(snake_case , snake_case ): snake_case_ :Optional[int] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , snake_case ) raise ValueError def __pow__( self: Optional[Any] , snake_case: Optional[int] ) -> List[Any]: if n < 0 or isinstance(snake_case , snake_case ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self snake_case_ :str = self for _ in range(n - 1 ): x *= self return x def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' if not callable(_lowercase ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(_lowercase, (float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(_lowercase, _lowercase ): raise ValueError("""differentiate() requires an int as input for order""" ) snake_case_ :Optional[Any] = Dual(_lowercase, 1 ) snake_case_ :List[Any] = func(_lowercase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() def A_ ( _lowercase ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
66
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCAmelCase__ : Optional[int] =get_logger(__name__) def __lowercase ( a__ , a__ , a__ , a__ , a__=0 ) -> int: os.makedirs(a__ , exist_ok=a__ ) with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __SCREAMING_SNAKE_CASE = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __SCREAMING_SNAKE_CASE = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(a__ , a__ ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __SCREAMING_SNAKE_CASE = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(a__ , a__ ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __SCREAMING_SNAKE_CASE = os.path.join(a__ , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(a__ , exist_ok=a__ ) logger.info(f"""Saving model to {ckpt_dir}""" ) __SCREAMING_SNAKE_CASE = {'model': state_dict} dist_cp.save_state_dict( state_dict=a__ , storage_writer=dist_cp.FileSystemWriter(a__ ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def __lowercase ( a__ , a__ , a__ , a__ , a__=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(a__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return __SCREAMING_SNAKE_CASE = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) logger.info(f"""Loading model from {input_model_file}""" ) __SCREAMING_SNAKE_CASE = torch.load(a__ ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __SCREAMING_SNAKE_CASE = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) logger.info(f"""Loading model from {input_model_file}""" ) __SCREAMING_SNAKE_CASE = torch.load(a__ ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __SCREAMING_SNAKE_CASE = ( os.path.join(a__ , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) __SCREAMING_SNAKE_CASE = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=a__ , storage_reader=dist_cp.FileSystemReader(a__ ) , planner=DefaultLoadPlanner() , ) __SCREAMING_SNAKE_CASE = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(a__ ) def __lowercase ( a__ , a__ , a__ , a__ , a__ , a__=0 ) -> List[Any]: os.makedirs(a__ , exist_ok=a__ ) with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __SCREAMING_SNAKE_CASE = FSDP.optim_state_dict(a__ , a__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __SCREAMING_SNAKE_CASE = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(a__ , a__ ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: __SCREAMING_SNAKE_CASE = os.path.join(a__ , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(a__ , exist_ok=a__ ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(a__ ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def __lowercase ( a__ , a__ , a__ , a__ , a__ , a__=0 ) -> str: accelerator.wait_for_everyone() with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __SCREAMING_SNAKE_CASE = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __SCREAMING_SNAKE_CASE = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) __SCREAMING_SNAKE_CASE = torch.load(a__ ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: __SCREAMING_SNAKE_CASE = ( os.path.join(a__ , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) __SCREAMING_SNAKE_CASE = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(a__ ) , ) __SCREAMING_SNAKE_CASE = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) __SCREAMING_SNAKE_CASE = FSDP.optim_state_dict_to_load(a__ , a__ , a__ ) optimizer.load_state_dict(a__ )
118
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Optional[int] =logging.get_logger(__name__) def __lowercase ( a__ , a__=False ) -> Tuple: __SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def __lowercase ( a__ , a__ , a__=False ) -> Tuple: for i in range(config.num_hidden_layers ): if base_model: __SCREAMING_SNAKE_CASE = '' else: __SCREAMING_SNAKE_CASE = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] __SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __lowercase ( a__ , a__ , a__ ) -> str: __SCREAMING_SNAKE_CASE = dct.pop(a__ ) __SCREAMING_SNAKE_CASE = val def __lowercase ( ) -> List[Any]: __SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def __lowercase ( a__ , a__ ) -> Dict: __SCREAMING_SNAKE_CASE = DeiTConfig() # all deit models have fine-tuned heads __SCREAMING_SNAKE_CASE = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __SCREAMING_SNAKE_CASE = 10_00 __SCREAMING_SNAKE_CASE = 'huggingface/label-files' __SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) __SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = int(deit_name[-6:-4] ) __SCREAMING_SNAKE_CASE = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): __SCREAMING_SNAKE_CASE = 1_92 __SCREAMING_SNAKE_CASE = 7_68 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 3 elif deit_name[9:].startswith('small' ): __SCREAMING_SNAKE_CASE = 3_84 __SCREAMING_SNAKE_CASE = 15_36 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): __SCREAMING_SNAKE_CASE = 10_24 __SCREAMING_SNAKE_CASE = 40_96 __SCREAMING_SNAKE_CASE = 24 __SCREAMING_SNAKE_CASE = 16 # load original model from timm __SCREAMING_SNAKE_CASE = timm.create_model(a__ , pretrained=a__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __SCREAMING_SNAKE_CASE = timm_model.state_dict() __SCREAMING_SNAKE_CASE = create_rename_keys(a__ , a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , a__ ) # load HuggingFace model __SCREAMING_SNAKE_CASE = DeiTForImageClassificationWithTeacher(a__ ).eval() model.load_state_dict(a__ ) # Check outputs on an image, prepared by DeiTImageProcessor __SCREAMING_SNAKE_CASE = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __SCREAMING_SNAKE_CASE = DeiTImageProcessor(size=a__ , crop_size=config.image_size ) __SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors='pt' ) __SCREAMING_SNAKE_CASE = encoding['pixel_values'] __SCREAMING_SNAKE_CASE = model(a__ ) __SCREAMING_SNAKE_CASE = timm_model(a__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a__ , outputs.logits , atol=1E-3 ) Path(a__ ).mkdir(exist_ok=a__ ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ : str =parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
118
1