code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCAmelCase: List[str] = 'Usage of script: script_name <size_of_canvas:int>' lowerCAmelCase: Optional[int] = [0] * 1_0_0 + [1] * 1_0 random.shuffle(choice) def lowerCamelCase__ ( _A ): a : Dict = [[False for i in range(_A )] for j in range(_A )] return canvas def lowerCamelCase__ ( _A ): for i, row in enumerate(_A ): for j, _ in enumerate(_A ): a : int = bool(random.getrandbits(1 ) ) def lowerCamelCase__ ( _A ): a : Tuple = np.array(_A ) a : int = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(_A ): for c, pt in enumerate(_A ): a : Tuple = __judge_point( _A , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) a : Tuple = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. a : list[list[bool]] = current_canvas.tolist() return return_canvas def lowerCamelCase__ ( _A , _A ): a : Dict = 0 a : List[str] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. a : int = pt if pt: if alive < 2: a : Union[str, Any] = False elif alive == 2 or alive == 3: a : Optional[Any] = True elif alive > 3: a : Tuple = False else: if alive == 3: a : Any = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCAmelCase: Dict = int(sys.argv[1]) # main working structure of this module. lowerCAmelCase: List[Any] = create_canvas(canvas_size) seed(c) lowerCAmelCase , lowerCAmelCase: Any = plt.subplots() fig.show() lowerCAmelCase: str = ListedColormap(['w', 'k']) try: while True: lowerCAmelCase: Dict = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
297
'''simple docstring''' def lowerCamelCase__ ( _A ): return 10 - x * x def lowerCamelCase__ ( _A , _A ): # Bolzano theory in order to find if there is a root between a and b if equation(_A ) * equation(_A ) >= 0: raise ValueError('Wrong space!' ) a : Tuple = a while (b - a) >= 0.01: # Find middle point a : Tuple = (a + b) / 2 # Check if middle point is root if equation(_A ) == 0.0: break # Decide the side to repeat the steps if equation(_A ) * equation(_A ) < 0: a : List[str] = c else: a : Tuple = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
297
1
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class __UpperCamelCase : def __init__( self ): '''simple docstring''' __a : List[str] = {} def __UpperCAmelCase ( self , __a , __a , __a=1 ): '''simple docstring''' if self.graph.get(snake_case_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __a : Tuple = [[w, v]] if not self.graph.get(snake_case_ ): __a : Optional[Any] = [] def __UpperCAmelCase ( self ): '''simple docstring''' return list(self.graph ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' if self.graph.get(snake_case_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(snake_case_ ) def __UpperCAmelCase ( self , __a=-2 , __a=-1 ): '''simple docstring''' if s == d: return [] __a : Optional[Any] = [] __a : List[Any] = [] if s == -2: __a : Union[str, Any] = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) __a : Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __a : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(snake_case_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __a : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(snake_case_ ) != 0: __a : Tuple = stack[len(snake_case_ ) - 1] else: __a : Tuple = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return visited def __UpperCAmelCase ( self , __a=-1 ): '''simple docstring''' if c == -1: __a : Union[str, Any] = floor(random() * 1_0000 ) + 10 for i in range(snake_case_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __a : str = floor(random() * c ) + 1 if n != i: self.add_pair(snake_case_ , snake_case_ , 1 ) def __UpperCAmelCase ( self , __a=-2 ): '''simple docstring''' __a : Tuple = deque() __a : str = [] if s == -2: __a : str = list(self.graph )[0] d.append(snake_case_ ) visited.append(snake_case_ ) while d: __a : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Optional[int] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __UpperCAmelCase ( self , __a ): '''simple docstring''' return len(self.graph[u] ) def __UpperCAmelCase ( self , __a=-2 ): '''simple docstring''' __a : str = [] __a : Any = [] if s == -2: __a : Any = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) __a : Dict = s __a : List[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __a : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __a : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(snake_case_ ) != 0: __a : Optional[int] = stack[len(snake_case_ ) - 1] else: __a : Union[str, Any] = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return sorted_nodes def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = [] __a : Union[str, Any] = [] __a : Optional[int] = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) __a : List[Any] = -2 __a : Union[str, Any] = [] __a : Optional[Any] = s __a : Optional[Any] = False __a : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __a : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __a : str = len(snake_case_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __a : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() __a : List[str] = True if len(snake_case_ ) != 0: __a : Any = stack[len(snake_case_ ) - 1] else: __a : Optional[Any] = False indirect_parents.append(snake_case_ ) __a : Union[str, Any] = s __a : str = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return list(snake_case_ ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = [] __a : str = [] __a : Tuple = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) __a : Optional[int] = -2 __a : List[str] = [] __a : Optional[int] = s __a : str = False __a : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __a : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __a : Optional[Any] = len(snake_case_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __a : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() __a : List[str] = True if len(snake_case_ ) != 0: __a : List[str] = stack[len(snake_case_ ) - 1] else: __a : int = False indirect_parents.append(snake_case_ ) __a : Any = s __a : Tuple = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return False def __UpperCAmelCase ( self , __a=-2 , __a=-1 ): '''simple docstring''' __a : List[Any] = time() self.dfs(snake_case_ , snake_case_ ) __a : Optional[Any] = time() return end - begin def __UpperCAmelCase ( self , __a=-2 ): '''simple docstring''' __a : Any = time() self.bfs(snake_case_ ) __a : List[str] = time() return end - begin class __UpperCamelCase : def __init__( self ): '''simple docstring''' __a : List[str] = {} def __UpperCAmelCase ( self , __a , __a , __a=1 ): '''simple docstring''' if self.graph.get(snake_case_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __a : Dict = [[w, v]] # add the other way if self.graph.get(snake_case_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __a : Any = [[w, u]] def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' if self.graph.get(snake_case_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(snake_case_ ) # the other way round if self.graph.get(snake_case_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(snake_case_ ) def __UpperCAmelCase ( self , __a=-2 , __a=-1 ): '''simple docstring''' if s == d: return [] __a : Dict = [] __a : Optional[int] = [] if s == -2: __a : Any = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) __a : Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __a : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(snake_case_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __a : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(snake_case_ ) != 0: __a : str = stack[len(snake_case_ ) - 1] else: __a : Union[str, Any] = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return visited def __UpperCAmelCase ( self , __a=-1 ): '''simple docstring''' if c == -1: __a : Union[str, Any] = floor(random() * 1_0000 ) + 10 for i in range(snake_case_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __a : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(snake_case_ , snake_case_ , 1 ) def __UpperCAmelCase ( self , __a=-2 ): '''simple docstring''' __a : Union[str, Any] = deque() __a : Optional[int] = [] if s == -2: __a : Tuple = list(self.graph )[0] d.append(snake_case_ ) visited.append(snake_case_ ) while d: __a : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __UpperCAmelCase ( self , __a ): '''simple docstring''' return len(self.graph[u] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = [] __a : List[str] = [] __a : str = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) __a : Tuple = -2 __a : Optional[int] = [] __a : str = s __a : int = False __a : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __a : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __a : Tuple = len(snake_case_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __a : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() __a : Optional[Any] = True if len(snake_case_ ) != 0: __a : Dict = stack[len(snake_case_ ) - 1] else: __a : int = False indirect_parents.append(snake_case_ ) __a : int = s __a : Tuple = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return list(snake_case_ ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = [] __a : Tuple = [] __a : Any = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) __a : List[Any] = -2 __a : Dict = [] __a : str = s __a : Optional[Any] = False __a : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __a : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __a : Optional[int] = len(snake_case_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __a : int = node[1] break # check if all the children are visited if s == ss: stack.pop() __a : Any = True if len(snake_case_ ) != 0: __a : Any = stack[len(snake_case_ ) - 1] else: __a : Tuple = False indirect_parents.append(snake_case_ ) __a : Optional[int] = s __a : List[Any] = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return False def __UpperCAmelCase ( self ): '''simple docstring''' return list(self.graph ) def __UpperCAmelCase ( self , __a=-2 , __a=-1 ): '''simple docstring''' __a : int = time() self.dfs(snake_case_ , snake_case_ ) __a : List[str] = time() return end - begin def __UpperCAmelCase ( self , __a=-2 ): '''simple docstring''' __a : Optional[int] = time() self.bfs(snake_case_ ) __a : str = time() return end - begin
371
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=400 , __a=True , __a=None , __a=True , ): '''simple docstring''' __a : List[Any] = size if size is not None else {'height': 18, 'width': 18} __a : int = parent __a : Dict = batch_size __a : Optional[int] = num_channels __a : List[Any] = image_size __a : Tuple = min_resolution __a : str = max_resolution __a : str = do_resize __a : Optional[Any] = size __a : str = apply_ocr def __UpperCAmelCase ( self ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = LayoutLMvaImageProcessingTester(self ) @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , 'do_resize' ) ) self.assertTrue(hasattr(__a , 'size' ) ) self.assertTrue(hasattr(__a , 'apply_ocr' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __a : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __a : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , __a ) self.assertIsInstance(encoding.boxes , __a ) # Test batched __a : Any = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __a : Tuple = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __a : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __a : List[str] = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = LayoutLMvaImageProcessor() from datasets import load_dataset __a : str = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __a : Tuple = Image.open(ds[0]['file'] ).convert('RGB' ) __a : Optional[Any] = image_processing(__a , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __a : Optional[Any] = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __a : Union[str, Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __a ) self.assertListEqual(encoding.boxes , __a ) # with apply_OCR = False __a : List[Any] = LayoutLMvaImageProcessor(apply_ocr=__a ) __a : List[Any] = image_processing(__a , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
294
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : int = "marian" __lowercase : List[str] = ["past_key_values"] __lowercase : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , A_=58_101 , A_=None , A_=1_024 , A_=12 , A_=4_096 , A_=16 , A_=12 , A_=4_096 , A_=16 , A_=0.0 , A_=0.0 , A_=True , A_=True , A_="gelu" , A_=1_024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=58_100 , A_=False , A_=58_100 , A_=0 , A_=0 , A_=True , **A_ , ) -> Optional[int]: """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = decoder_vocab_size or vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) class lowercase ( _SCREAMING_SNAKE_CASE ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: UpperCamelCase = {0: 'batch'} UpperCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(A_ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(A_ ): UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} else: UpperCamelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super().outputs else: UpperCamelCase = super(A_ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(A_ ): UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __UpperCamelCase ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs UpperCamelCase = seq_length if not self.use_past else 1 UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( A_ , A_ , A_ , A_ , A_ ) UpperCamelCase = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} UpperCamelCase = dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape UpperCamelCase = common_inputs['decoder_input_ids'].shape[1] UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = decoder_seq_length + 3 UpperCamelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(A_ , A_ )] , dim=1 ) UpperCamelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase = min(A_ , A_ ) UpperCamelCase = max(A_ , A_ ) - min_num_layers UpperCamelCase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. UpperCamelCase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def __UpperCamelCase ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase = self._generate_dummy_inputs_for_encoder_and_decoder( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase = seqlen + 2 UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = common_inputs['attention_mask'].dtype UpperCamelCase = torch.cat( [common_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) UpperCamelCase = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def __UpperCamelCase ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = tokenizer.num_special_tokens_to_add(A_ ) UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase = dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def __UpperCamelCase ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: UpperCamelCase = self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: UpperCamelCase = super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ ) @property def __UpperCamelCase ( self ) -> float: """simple docstring""" return 1e-4
222
0
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters A : Optional[Any] = logging.get_logger(__name__) def lowerCAmelCase__ ( lowerCamelCase : Union[str, Any] ,lowerCamelCase : Tuple ,lowerCamelCase : Optional[int] ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : str=None ): # Recurse if needed if "." in tensor_name: _A : List[Any] = tensor_name.split('.' ) for split in splits[:-1]: _A : Dict = getattr(__lowerCAmelCase ,__lowerCAmelCase ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) _A : Optional[Any] = new_module _A : Any = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' ) _A : List[str] = tensor_name in module._buffers _A : Dict = getattr(__lowerCAmelCase ,__lowerCAmelCase ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) _A : List[str] = False _A : str = False if is_buffer or not is_bitsandbytes_available(): _A : Optional[int] = False _A : List[Any] = False else: _A : str = hasattr(bnb.nn ,'Params4bit' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) _A : str = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: _A : Dict = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _A : Tuple = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,torch.Tensor ): _A : int = value.to('cpu' ) if value.dtype == torch.inta: _A : str = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: _A : Optional[Any] = torch.tensor(__lowerCAmelCase ,device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,__lowerCAmelCase ) and fpaa_statistics is None: _A : Optional[int] = new_value.T _A : Union[str, Any] = old_value.__dict__ if is_abit: _A : str = bnb.nn.IntaParams(__lowerCAmelCase ,requires_grad=__lowerCAmelCase ,**__lowerCAmelCase ).to(__lowerCAmelCase ) elif is_abit: _A : Union[str, Any] = bnb.nn.Paramsabit(__lowerCAmelCase ,requires_grad=__lowerCAmelCase ,**__lowerCAmelCase ).to(__lowerCAmelCase ) _A : Optional[Any] = new_value if fpaa_statistics is not None: setattr(module.weight ,'SCB' ,fpaa_statistics.to(__lowerCAmelCase ) ) else: if value is None: _A : str = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,torch.Tensor ): _A : List[str] = value.to(__lowerCAmelCase ) else: _A : Optional[int] = torch.tensor(__lowerCAmelCase ,device=__lowerCAmelCase ) if is_buffer: _A : List[str] = new_value else: _A : List[Any] = nn.Parameter(__lowerCAmelCase ,requires_grad=old_value.requires_grad ) _A : Dict = new_value def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : int=None ,lowerCamelCase : List[Any]=None ,lowerCamelCase : List[str]=None ,lowerCamelCase : Optional[Any]=False ): for name, module in model.named_children(): if current_key_name is None: _A : Union[str, Any] = [] current_key_name.append(__lowerCAmelCase ) if (isinstance(__lowerCAmelCase ,nn.Linear ) or isinstance(__lowerCAmelCase ,__lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(__lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _A : Tuple = module.weight.shape else: _A : str = module.in_features _A : Dict = module.out_features if quantization_config.quantization_method() == "llm_int8": _A : Dict = bnb.nn.LinearabitLt( __lowerCAmelCase ,__lowerCAmelCase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) _A : Tuple = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _A : Optional[int] = bnb.nn.Linearabit( __lowerCAmelCase ,__lowerCAmelCase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) _A : int = True # Store the module class in case we need to transpose the weight later _A : Dict = type(__lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCAmelCase ) if len(list(module.children() ) ) > 0: _A : Tuple = _replace_with_bnb_linear( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,has_been_replaced=__lowerCAmelCase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase__ ( lowerCamelCase : List[str] ,lowerCamelCase : Any=None ,lowerCamelCase : int=None ,lowerCamelCase : List[str]=None ): _A : int = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert _A : Any = _replace_with_bnb_linear( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def lowerCAmelCase__ ( *lowerCamelCase : Optional[int] ,**lowerCamelCase : Tuple ): warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' ,__lowerCAmelCase ,) return replace_with_bnb_linear(*__lowerCAmelCase ,**__lowerCAmelCase ) def lowerCAmelCase__ ( *lowerCamelCase : Dict ,**lowerCamelCase : Dict ): warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' ,__lowerCAmelCase ,) return set_module_quantized_tensor_to_device(*__lowerCAmelCase ,**__lowerCAmelCase ) def lowerCAmelCase__ ( lowerCamelCase : Tuple ): _A : List[Any] = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _A : List[str] = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _A : Union[str, Any] = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: _A : List[Any] = sum(__lowerCAmelCase ,[] ) _A : str = len(__lowerCAmelCase ) > 0 # Check if it is a base model _A : Optional[int] = not hasattr(__lowerCAmelCase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _A : int = list(model.named_children() ) _A : str = [list_modules[-1][0]] # add last module together with tied weights _A : Any = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) _A : Any = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys _A : Any = [""".weight""", """.bias"""] _A : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _A : Optional[int] = name.replace(__lowerCAmelCase ,'' ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names
362
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
227
0
from PIL import Image def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_UpperCAmelCase ) -> int: return int(128 + factor * (c - 128) ) return img.point(_UpperCAmelCase ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 __snake_case :Optional[int] = change_contrast(img, 170) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
49
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } _UpperCamelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def _lowercase ( lowercase__ ): __lowerCAmelCase : List[str] = {} with open(lowercase__ , '''r''' ) as file: for line_number, line in enumerate(lowercase__ ): __lowerCAmelCase : Any = line.strip() if line: __lowerCAmelCase : Dict = line.split() __lowerCAmelCase : str = line_number __lowerCAmelCase : List[str] = words[0] __lowerCAmelCase : Any = value return result def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): for attribute in key.split('''.''' ): __lowerCAmelCase : List[Any] = getattr(lowercase__ , lowercase__ ) __lowerCAmelCase : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase__ ): __lowerCAmelCase : Tuple = PARAM_MAPPING[full_name.split('''.''' )[-1]] __lowerCAmelCase : List[Any] = '''param''' if weight_type is not None and weight_type != "param": __lowerCAmelCase : str = getattr(lowercase__ , lowercase__ ).shape elif weight_type is not None and weight_type == "param": __lowerCAmelCase : Dict = hf_pointer for attribute in hf_param_name.split('''.''' ): __lowerCAmelCase : Dict = getattr(lowercase__ , lowercase__ ) __lowerCAmelCase : str = shape_pointer.shape # let's reduce dimension __lowerCAmelCase : Any = value[0] else: __lowerCAmelCase : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __lowerCAmelCase : List[str] = value elif weight_type == "weight_v": __lowerCAmelCase : int = value elif weight_type == "bias": __lowerCAmelCase : Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __lowerCAmelCase : Dict = getattr(lowercase__ , lowercase__ ) __lowerCAmelCase : Tuple = value else: __lowerCAmelCase : Any = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase__ ): __lowerCAmelCase : str = PARAM_MAPPING[full_name.split('''.''' )[-1]] __lowerCAmelCase : int = '''param''' if weight_type is not None and weight_type != "param": __lowerCAmelCase : Tuple = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __lowerCAmelCase : List[str] = '''.'''.join([key, hf_param_name] ) else: __lowerCAmelCase : Optional[int] = key __lowerCAmelCase : Union[str, Any] = value if '''lm_head''' in full_key else value[0] _UpperCamelCase = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def _lowercase ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): __lowerCAmelCase : Any = False for key, mapped_key in MAPPING.items(): __lowerCAmelCase : Tuple = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __lowerCAmelCase : Optional[Any] = True if "*" in mapped_key: __lowerCAmelCase : List[str] = name.split(lowercase__ )[0].split('''.''' )[-2] __lowerCAmelCase : Dict = mapped_key.replace('''*''' , lowercase__ ) if "weight_g" in name: __lowerCAmelCase : List[Any] = '''weight_g''' elif "weight_v" in name: __lowerCAmelCase : List[Any] = '''weight_v''' elif "bias" in name: __lowerCAmelCase : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase : int = '''weight''' else: __lowerCAmelCase : Any = None if hf_dict is not None: rename_dict(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return is_used return is_used def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = [] __lowerCAmelCase : Optional[Any] = fairseq_model.state_dict() __lowerCAmelCase : Tuple = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase : Any = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == '''group''' , ) __lowerCAmelCase : int = True else: __lowerCAmelCase : Dict = load_wavaveca_layer(lowercase__ , lowercase__ , lowercase__ ) if not is_used: unused_weights.append(lowercase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] __lowerCAmelCase : List[str] = name.split('''.''' ) __lowerCAmelCase : Any = int(items[0] ) __lowerCAmelCase : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCAmelCase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCAmelCase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCAmelCase : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def _lowercase ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=True , lowercase__=False ): if config_path is not None: __lowerCAmelCase : Union[str, Any] = WavaVecaConfig.from_pretrained(lowercase__ ) else: __lowerCAmelCase : Optional[int] = WavaVecaConfig() if is_seq_class: __lowerCAmelCase : Optional[Any] = read_txt_into_dict(lowercase__ ) __lowerCAmelCase : int = idalabel __lowerCAmelCase : Optional[int] = WavaVecaForSequenceClassification(lowercase__ ) __lowerCAmelCase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) feature_extractor.save_pretrained(lowercase__ ) elif is_finetuned: if dict_path: __lowerCAmelCase : List[str] = Dictionary.load(lowercase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowerCAmelCase : List[Any] = target_dict.pad_index __lowerCAmelCase : List[Any] = target_dict.bos_index __lowerCAmelCase : Optional[int] = target_dict.eos_index __lowerCAmelCase : Any = len(target_dict.symbols ) __lowerCAmelCase : Union[str, Any] = os.path.join(lowercase__ , '''vocab.json''' ) if not os.path.isdir(lowercase__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowercase__ ) ) return os.makedirs(lowercase__ , exist_ok=lowercase__ ) __lowerCAmelCase : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : int = 1 with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(lowercase__ , lowercase__ ) __lowerCAmelCase : Dict = WavaVecaCTCTokenizer( lowercase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowercase__ , ) __lowerCAmelCase : List[str] = True if config.feat_extract_norm == '''layer''' else False __lowerCAmelCase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) __lowerCAmelCase : List[Any] = WavaVecaProcessor(feature_extractor=lowercase__ , tokenizer=lowercase__ ) processor.save_pretrained(lowercase__ ) __lowerCAmelCase : str = WavaVecaForCTC(lowercase__ ) else: __lowerCAmelCase : Any = WavaVecaForPreTraining(lowercase__ ) if is_finetuned or is_seq_class: __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __lowerCAmelCase : Union[str, Any] = argparse.Namespace(task='''audio_pretraining''' ) __lowerCAmelCase : str = fairseq.tasks.setup_task(lowercase__ ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase__ ) __lowerCAmelCase : int = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowercase__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
275
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
355
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __A = {'''allegro/herbert-base-cased''': 5_14} __A = {} class lowercase_ ( __lowercase ): UpperCamelCase_ : Any = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = HerbertTokenizer def __init__( self : Tuple , A__ : str=None , A__ : Optional[Any]=None , A__ : Union[str, Any]=None , A__ : Optional[int]="<s>" , A__ : Optional[int]="<unk>" , A__ : str="<pad>" , A__ : List[Any]="<mask>" , A__ : Dict="</s>" , **A__ : Optional[int] , ) -> Optional[int]: super().__init__( A__ , A__ , tokenizer_file=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , sep_token=A__ , **A__ , ) def UpperCamelCase_ ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] def UpperCamelCase_ ( self : Any , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
278
0
import unittest import numpy as np def __UpperCamelCase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray | None = None , ): __a : Union[str, Any] = np.shape(UpperCAmelCase_ ) __a : Optional[int] = np.shape(UpperCAmelCase_ ) __a : Union[str, Any] = np.shape(UpperCAmelCase_ ) if shape_a[0] != shape_b[0]: __a : Optional[Any] = ( 'Expected the same number of rows for A and B. ' f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(UpperCAmelCase_ ) if shape_b[1] != shape_c[1]: __a : Optional[int] = ( 'Expected the same number of columns for B and C. ' f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(UpperCAmelCase_ ) __a : int = pseudo_inv if a_inv is None: try: __a : Union[str, Any] = np.linalg.inv(UpperCAmelCase_ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : List[str] ): __a : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __a : Tuple = np.array([[0, 3], [3, 0], [2, 3]] ) __a : Optional[int] = np.array([[2, 1], [6, 3]] ) __a : int = schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __a : str = np.block([[a, b], [b.T, c]] ) __a : List[str] = np.linalg.det(SCREAMING_SNAKE_CASE_ ) __a : List[str] = np.linalg.det(SCREAMING_SNAKE_CASE_ ) __a : Tuple = np.linalg.det(SCREAMING_SNAKE_CASE_ ) self.assertAlmostEqual(SCREAMING_SNAKE_CASE_ , det_a * det_s ) def lowerCAmelCase (self : Optional[int] ): __a : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __a : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) __a : Optional[int] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase (self : int ): __a : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __a : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) __a : Optional[int] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
216
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A__ : Dict = None A__ : List[Any] = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} A__ : Union[str, Any] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } A__ : Any = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } A__ : Dict = """▁""" # Segments (not really needed) A__ : List[str] = 0 A__ : List[Any] = 1 A__ : Union[str, Any] = 2 A__ : List[Any] = 3 A__ : str = 4 class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = 'left' lowerCamelCase : Optional[Any] = XLNetTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<sep>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<cls>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=["<eop>", "<eod>"] , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( vocab_file=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , remove_space=SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : int = do_lower_case __lowerCamelCase : Optional[Any] = remove_space __lowerCamelCase : int = keep_accents __lowerCamelCase : Any = vocab_file __lowerCamelCase : Any = False if not self.vocab_file else True def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : Optional[Any] = [self.sep_token_id] __lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : int = [self.sep_token_id] __lowerCamelCase : Dict = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase : Tuple = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
185
0
"""simple docstring""" import os import string import sys __A = 1 << 8 __A = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } __A = KEYMAP['up'] __A = KEYMAP['left'] if sys.platform == "win32": __A = [] __A = { B'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, B'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): __A = ord(str(i)) def _lowerCamelCase() -> List[str]: if os.name == "nt": import msvcrt _lowerCAmelCase ="""mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCamelCase ) == 0: # Read the keystroke _lowerCAmelCase =msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCAmelCase =ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCAmelCase =chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__UpperCamelCase ) if ord(__UpperCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCAmelCase =chr(KEYMAP["""esc"""] ) except KeyError: _lowerCAmelCase =cha[1] else: _lowerCAmelCase =ch.decode(__UpperCamelCase ) else: _lowerCAmelCase =WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCAmelCase =sys.stdin.fileno() _lowerCAmelCase =termios.tcgetattr(__UpperCamelCase ) try: tty.setraw(__UpperCamelCase ) _lowerCAmelCase =sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCamelCase , termios.TCSADRAIN , __UpperCamelCase ) return ch def _lowerCamelCase() -> Dict: _lowerCAmelCase =get_raw_chars() if ord(__UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCamelCase ) == KEYMAP["esc"]: _lowerCAmelCase =get_raw_chars() if ord(__UpperCamelCase ) == KEYMAP["mod_int"]: _lowerCAmelCase =get_raw_chars() if ord(__UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
341
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A = logging.get_logger(__name__) __A = {'vocab_file': 'spiece.model'} __A = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } __A = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) __A = 0 __A = 1 __A = 2 __A = 3 __A = 4 class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = '''left''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =3 _lowerCAmelCase =do_lower_case _lowerCAmelCase =remove_space _lowerCAmelCase =keep_accents _lowerCAmelCase =vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> str: return len(self.sp_model ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None return state def __setstate__( self , __UpperCAmelCase ) -> Tuple: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: if self.remove_space: _lowerCAmelCase =""" """.join(inputs.strip().split() ) else: _lowerCAmelCase =inputs _lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase ) _lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase =outputs.lower() return outputs def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =self.preprocess_text(__UpperCAmelCase ) _lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) _lowerCAmelCase =[] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase =cur_pieces[1:] else: _lowerCAmelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: return self.sp_model.PieceToId(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.IdToPiece(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str: _lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase ) _lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase =[] _lowerCAmelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) _lowerCAmelCase =[] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase ="""""".join(__UpperCAmelCase ) _lowerCAmelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
341
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase__ = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCAmelCase__ = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase__ = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase__ = sorted(arg_to_scheduler.keys()) UpperCAmelCase__ = "{" + ", ".join(arg_to_scheduler_choices) + "}" class lowercase_ ( pl.LightningModule ): '''simple docstring''' def __init__( self : str , __UpperCAmelCase : argparse.Namespace , __UpperCAmelCase : str=None , __UpperCAmelCase : List[str]="base" , __UpperCAmelCase : str=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[int] , ) ->Tuple: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) a = 0 a = Path(self.hparams.output_dir ) a = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: a = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: a = config a = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F"""model config doesn't have a `{p}` attribute""" setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: a = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: a = tokenizer a = MODEL_MODES[mode] if model is None: a = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: a = model def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) ->str: """simple docstring""" a = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" a = arg_to_scheduler[self.hparams.lr_scheduler] a = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) a = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" a = self.model a = ['''bias''', '''LayerNorm.weight'''] a = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: a = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: a = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) a = optimizer a = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) ->Dict: """simple docstring""" return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] ) ->Any: """simple docstring""" return self.validation_end(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Dict ) ->Optional[int]: """simple docstring""" if stage == "test": a = len(self.test_dataloader().dataset ) else: a = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) a = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : bool = False ) ->str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return self.train_loader def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] ) ->Optional[Any]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Dict[str, Any] ) ->None: """simple docstring""" a = self.output_dir.joinpath('''best_tfmr''' ) a = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Dict , __UpperCAmelCase : int ) ->int: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=__UpperCAmelCase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''cache''' ) , type=__UpperCAmelCase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=__UpperCAmelCase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=__UpperCAmelCase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=__UpperCAmelCase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=__UpperCAmelCase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5e-5 , type=__UpperCAmelCase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__UpperCAmelCase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=__UpperCAmelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=__UpperCAmelCase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=__UpperCAmelCase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=__UpperCAmelCase ) parser.add_argument('''--train_batch_size''' , default=32 , type=__UpperCAmelCase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=__UpperCAmelCase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowercase_ ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) ->int: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowercase_ ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ) ->Union[str, Any]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class lowercase_ ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict ) ->int: """simple docstring""" a = trainer.lr_schedulers[0]['''scheduler'''] a = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) ->Union[str, Any]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) a = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) ->Optional[int]: """simple docstring""" rank_zero_info('''***** Test results *****''' ) a = trainer.callback_metrics # Log and save results to file a = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(__UpperCAmelCase , '''w''' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) ) def _a ( a :Union[str, Any] , a :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=a , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( a :BaseTransformer , a :argparse.Namespace , a :Tuple=None , a :Any=True , a :List[str]=[] , a :List[Any]=None , a :Union[str, Any]=None , **a :Optional[Any] , ) -> List[str]: pl.seed_everything(args.seed ) # init model a = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=a ) # add custom checkpoints if checkpoint_callback is None: a = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(a ) if logging_callback is None: a = LoggingCallback() a = {} if args.fpaa: a = 16 if args.gpus > 1: a = '''auto''' a = '''ddp''' a = args.accumulate_grad_batches a = None a = '''auto''' a = pl.Trainer.from_argparse_args( a , weights_summary=a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a , val_check_interval=1 , num_sanity_val_steps=2 , **a , ) if args.do_train: trainer.fit(a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule _A = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
171
0
A__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: """simple docstring""" snake_case__ : int = [False] * len(__lowerCAmelCase ) snake_case__ : Union[str, Any] = [s] snake_case__ : List[str] = True while queue: snake_case__ : Tuple = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCAmelCase ) snake_case__ : Any = True snake_case__ : str = u return visited[t] def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Union[str, Any] = [-1] * (len(__lowerCAmelCase )) snake_case__ : Tuple = 0 snake_case__ : Optional[int] = [] snake_case__ : Optional[Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Union[str, Any] = float('''Inf''' ) snake_case__ : List[str] = sink while s != source: # Find the minimum value in select path snake_case__ : Optional[Any] = min(__lowerCAmelCase , graph[parent[s]][s] ) snake_case__ : Any = parent[s] max_flow += path_flow snake_case__ : Union[str, Any] = sink while v != source: snake_case__ : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case__ : int = parent[v] for i in range(len(__lowerCAmelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
351
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
44
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
233
# flake8: noqa # Lint as: python3 lowerCamelCase : Optional[Any] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
233
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger() @dataclass class a : """simple docstring""" lowerCamelCase :nn.Module lowerCamelCase :List[nn.Module] = field(default_factory=__lowerCAmelCase ) lowerCamelCase :list = field(default_factory=__lowerCAmelCase ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _A = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase_ , nn.Convad ) or isinstance(lowerCAmelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ ) -> Any: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCAmelCase_ ) [x.remove() for x in self.handles] return self @property def UpperCAmelCase ( self ) -> Tuple: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda lowerCAmelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a : """simple docstring""" lowerCamelCase :nn.Module lowerCamelCase :nn.Module lowerCamelCase :int = 0 lowerCamelCase :List = field(default_factory=__lowerCAmelCase ) lowerCamelCase :List = field(default_factory=__lowerCAmelCase ) def __call__( self , lowerCAmelCase_ ) -> Tuple: _A = Tracker(self.dest )(lowerCAmelCase_ ).parametrized _A = Tracker(self.src )(lowerCAmelCase_ ).parametrized _A = list(filter(lambda lowerCAmelCase_ : type(lowerCAmelCase_ ) not in self.src_skip , lowerCAmelCase_ ) ) _A = list(filter(lambda lowerCAmelCase_ : type(lowerCAmelCase_ ) not in self.dest_skip , lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCAmelCase_ )} operations while''' F''' destination module has {len(lowerCAmelCase_ )}.''' ) for dest_m, src_m in zip(lowerCAmelCase_ , lowerCAmelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def snake_case ( snake_case__ :str , snake_case__ :ResNetConfig , snake_case__ :Path , snake_case__ :bool = True) -> Optional[Any]: print(F'''Converting {name}...''') with torch.no_grad(): _A = timm.create_model(snake_case__ , pretrained=snake_case__).eval() _A = ResNetForImageClassification(snake_case__).eval() _A = ModuleTransfer(src=snake_case__ , dest=snake_case__) _A = torch.randn((1, 3, 224, 224)) module_transfer(snake_case__) assert torch.allclose(from_model(snake_case__) , our_model(snake_case__).logits), "The model logits don't match the original one." _A = F'''resnet{'-'.join(name.split('resnet'))}''' print(snake_case__) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=snake_case__ , ) # we can use the convnext one _A = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""") image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=snake_case__ , ) print(F'''Pushed {checkpoint_name}''') def snake_case ( snake_case__ :Path , snake_case__ :str = None , snake_case__ :bool = True) -> int: _A = """imagenet-1k-id2label.json""" _A = 1_000 _A = (1, num_labels) _A = """huggingface/label-files""" _A = num_labels _A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""") , """r""")) _A = {int(snake_case__): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} _A = partial(snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__) _A = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic"""), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="""bottleneck"""), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic"""), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="""bottleneck"""), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="""bottleneck"""), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="""bottleneck"""), } if model_name: convert_weight_and_push(snake_case__ , names_to_config[model_name] , snake_case__ , snake_case__) else: for model_name, config in names_to_config.items(): convert_weight_and_push(snake_case__ , snake_case__ , snake_case__ , snake_case__) return config, expected_shape if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
81
def snake_case ( snake_case__ :str , snake_case__ :str) -> list: _A = len(snake_case__) _A = [] for i in range(len(snake_case__) - pat_len + 1): _A = True for j in range(snake_case__): if s[i + j] != pattern[j]: _A = False break if match_found: position.append(snake_case__) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
81
1
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _lowercase ( ) -> Optional[Any]: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowerCAmelCase : int = "__test_patch_submodule_mock__" with patch_submodule(_test_patching ,"os.path.join" ,__snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os ,_PatchedModuleObj ) assert isinstance(_test_patching.os.path ,_PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path ,_PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os ,_PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path ,_PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path ,_PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _lowercase ( ) -> str: assert _test_patching.open is open __lowerCAmelCase : Union[str, Any] = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching ,"open" ,__snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _lowercase ( ) -> Tuple: # pandas.read_csv is not present in _test_patching __lowerCAmelCase : List[Any] = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching ,"pandas.read_csv" ,__snake_case ): pass def _lowercase ( ) -> Tuple: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __lowerCAmelCase : Optional[int] = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching ,"len" ,__snake_case ) is None with patch_submodule(_test_patching ,"len" ,__snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def _lowercase ( ) -> Optional[Any]: __lowerCAmelCase : int = "__test_patch_submodule_start_and_stop_mock__" __lowerCAmelCase : Tuple = patch_submodule(_test_patching ,"open" ,__snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _lowercase ( ) -> Optional[Any]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowerCAmelCase : Dict = "__test_patch_submodule_successive_join__" __lowerCAmelCase : Optional[int] = "__test_patch_submodule_successive_dirname__" __lowerCAmelCase : str = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching ,"os.path.join" ,__snake_case ): with patch_submodule(_test_patching ,"os.rename" ,__snake_case ): with patch_submodule(_test_patching ,"os.path.dirname" ,__snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching ,"os.rename" ,__snake_case ): with patch_submodule(_test_patching ,"os.path.join" ,__snake_case ): with patch_submodule(_test_patching ,"os.path.dirname" ,__snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _lowercase ( ) -> Tuple: __lowerCAmelCase : Optional[int] = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching ,"__module_that_doesn_exist__.__attribute_that_doesn_exist__" ,__snake_case ): pass with patch_submodule(_test_patching ,"os.__attribute_that_doesn_exist__" ,__snake_case ): pass
269
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule __snake_case : Optional[int] = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
269
1
from __future__ import annotations from typing import Generic, TypeVar _snake_case = TypeVar("""T""") class lowerCAmelCase ( Generic[T] ): def __init__( self :int , _lowercase :T ): '''simple docstring''' lowercase__ = data lowercase__ = self lowercase__ = 0 class lowerCAmelCase ( Generic[T] ): def __init__( self :Union[str, Any] ): '''simple docstring''' lowercase__ = {} def UpperCAmelCase ( self :int , _lowercase :T ): '''simple docstring''' lowercase__ = DisjointSetTreeNode(_lowercase ) def UpperCAmelCase ( self :List[str] , _lowercase :T ): '''simple docstring''' lowercase__ = self.map[data] if elem_ref != elem_ref.parent: lowercase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase ( self :str , _lowercase :DisjointSetTreeNode[T] , _lowercase :DisjointSetTreeNode[T] ): '''simple docstring''' if nodea.rank > nodea.rank: lowercase__ = nodea else: lowercase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase ( self :Dict , _lowercase :T , _lowercase :T ): '''simple docstring''' self.link(self.find_set(_lowercase ) , self.find_set(_lowercase ) ) class lowerCAmelCase ( Generic[T] ): def __init__( self :str ): '''simple docstring''' lowercase__ = {} def UpperCAmelCase ( self :str , _lowercase :T ): '''simple docstring''' if node not in self.connections: lowercase__ = {} def UpperCAmelCase ( self :Optional[int] , _lowercase :T , _lowercase :T , _lowercase :int ): '''simple docstring''' self.add_node(_lowercase ) self.add_node(_lowercase ) lowercase__ = weight lowercase__ = weight def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = [] lowercase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _lowercase : x[2] ) # creating the disjoint set lowercase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_lowercase ) # MST generation lowercase__ = 0 lowercase__ = 0 lowercase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowercase__ , lowercase__ , lowercase__ = edges[index] index += 1 lowercase__ = disjoint_set.find_set(_lowercase ) lowercase__ = disjoint_set.find_set(_lowercase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_lowercase , _lowercase , _lowercase ) disjoint_set.union(_lowercase , _lowercase ) return graph
201
def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if height >= 1: move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) move_disk(__magic_name__ , __magic_name__ ) move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) def _A ( __magic_name__ , __magic_name__ ): print("moving disk from" , __magic_name__ , "to" , __magic_name__ ) def _A ( ): lowercase__ = int(input("Height of hanoi: " ).strip() ) move_tower(__magic_name__ , "A" , "B" , "C" ) if __name__ == "__main__": main()
201
1
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def A ( snake_case :Union[str, Any] , snake_case :str=7 ) -> Any: __UpperCamelCase = None if token is not None: __UpperCamelCase = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} # The id of a workflow (not of a workflow run) __UpperCamelCase = '636036' __UpperCamelCase = f'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' __UpperCamelCase = requests.get(snake_case , headers=snake_case ).json() return result["workflow_runs"] def A ( snake_case :Dict ) -> Union[str, Any]: __UpperCamelCase = get_daily_ci_runs(snake_case ) __UpperCamelCase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __UpperCamelCase = workflow_run['id'] break return workflow_run_id def A ( snake_case :Tuple , snake_case :Union[str, Any] , snake_case :List[Any] ) -> int: __UpperCamelCase = get_last_daily_ci_runs(snake_case ) if workflow_run_id is not None: __UpperCamelCase = get_artifacts_links(worflow_run_id=snake_case , token=snake_case ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __UpperCamelCase = artifacts_links[artifact_name] download_artifact( artifact_name=snake_case , artifact_url=snake_case , output_dir=snake_case , token=snake_case ) def A ( snake_case :str , snake_case :List[Any] , snake_case :List[str] ) -> Any: get_last_daily_ci_artifacts(snake_case , snake_case , snake_case ) __UpperCamelCase = {} for artifact_name in artifact_names: __UpperCamelCase = os.path.join(snake_case , f'{artifact_name}.zip' ) if os.path.isfile(snake_case ): __UpperCamelCase = {} with zipfile.ZipFile(snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case ): # read the file with z.open(snake_case ) as f: __UpperCamelCase = f.read().decode('UTF-8' ) return results
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCamelCase_ ( pl.LightningModule ): '''simple docstring''' def __init__( self : int , UpperCAmelCase__ : int) ->Dict: '''simple docstring''' super().__init__() A__ = model A__ = 2 A__ = nn.Linear(self.model.config.hidden_size , self.num_labels) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: """simple docstring""" A__ = LongformerModel.from_pretrained(lowerCAmelCase__ ) A__ = LightningModel(lowerCAmelCase__ ) A__ = torch.load(lowerCAmelCase__ , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model A__ = LongformerForQuestionAnswering.from_pretrained(lowerCAmelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCAmelCase__ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCamelCase : Tuple = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
360
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase_ : '''simple docstring''' def __init__( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any=14 , UpperCAmelCase__ : Any=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Tuple=99 , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : int=4 , UpperCAmelCase__ : Optional[Any]=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Optional[Any]=512 , UpperCAmelCase__ : Union[str, Any]=0.02 , ) ->Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = rotary_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = None A__ = vocab_size - 1 A__ = vocab_size - 1 A__ = vocab_size - 1 def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any]) ->Optional[int]: '''simple docstring''' A__ = 20 A__ = model_class_name(UpperCAmelCase__) A__ = model.init_cache(input_ids.shape[0] , UpperCAmelCase__) A__ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''') A__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) A__ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , ) A__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''') A__ = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase__ , ) A__ = model(UpperCAmelCase__) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int) ->Any: '''simple docstring''' A__ = 20 A__ = model_class_name(UpperCAmelCase__) A__ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) A__ = model.init_cache(input_ids.shape[0] , UpperCAmelCase__) A__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) A__ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , ) A__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''') A__ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , ) A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") @require_flax class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () UpperCAmelCase__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: '''simple docstring''' A__ = FlaxGPTJModelTester(self) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: '''simple docstring''' for model_class_name in self.all_model_classes: A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' for model_class_name in self.all_model_classes: A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) @tooslow def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''') A__ = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__) A__ = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''') A__ = False A__ = model.config.eos_token_id A__ = jax.jit(model.generate) A__ = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id).sequences A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) A__ = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A__ = model_class.__name__[4:] # Skip the "Flax" at the beginning A__ = getattr(UpperCAmelCase__ , UpperCAmelCase__) A__ , A__ = pt_inputs['''input_ids'''].shape A__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(UpperCAmelCase__): A__ = 0 A__ = 1 A__ = 0 A__ = 1 A__ = pt_model_class(UpperCAmelCase__).eval() A__ = model_class(UpperCAmelCase__ , dtype=jnp.floataa) A__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase__) A__ = fx_state with torch.no_grad(): A__ = pt_model(**UpperCAmelCase__).to_tuple() A__ = fx_model(**UpperCAmelCase__).to_tuple() self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase__) A__ = model_class.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__) A__ = fx_model_loaded(**UpperCAmelCase__).to_tuple() self.assertEqual( len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output_loaded, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) A__ = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A__ = model_class.__name__[4:] # Skip the "Flax" at the beginning A__ = getattr(UpperCAmelCase__ , UpperCAmelCase__) A__ = pt_model_class(UpperCAmelCase__).eval() A__ = model_class(UpperCAmelCase__ , dtype=jnp.floataa) A__ = load_flax_weights_in_pytorch_model(UpperCAmelCase__ , fx_model.params) A__ , A__ = pt_inputs['''input_ids'''].shape A__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(UpperCAmelCase__): A__ = 0 A__ = 1 A__ = 0 A__ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): A__ = pt_model(**UpperCAmelCase__).to_tuple() A__ = fx_model(**UpperCAmelCase__).to_tuple() self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase__) A__ = pt_model_class.from_pretrained(UpperCAmelCase__ , from_flax=UpperCAmelCase__) with torch.no_grad(): A__ = pt_model_loaded(**UpperCAmelCase__).to_tuple() self.assertEqual( len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) @tooslow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''') A__ = model(np.ones((1, 1))) self.assertIsNotNone(UpperCAmelCase__)
231
0
import re import string import numpy as np import datasets __A : str = '''\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n''' __A : Optional[Any] = '''\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n''' __A : Union[str, Any] = '''\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowercase__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def lowercase__ ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[str]=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCAmelCase : int = np.array([re.sub(_lowerCamelCase , '' , _lowerCamelCase ) for x in predictions] ) lowerCAmelCase : List[Any] = np.array([re.sub(_lowerCamelCase , '' , _lowerCamelCase ) for x in references] ) else: lowerCAmelCase : Optional[int] = np.asarray(_lowerCamelCase ) lowerCAmelCase : Any = np.asarray(_lowerCamelCase ) if ignore_case: lowerCAmelCase : Optional[int] = np.char.lower(_lowerCamelCase ) lowerCAmelCase : Any = np.char.lower(_lowerCamelCase ) if ignore_punctuation: lowerCAmelCase : List[str] = string.punctuation.maketrans('' , '' , string.punctuation ) lowerCAmelCase : Optional[int] = np.char.translate(_lowerCamelCase , table=_lowerCamelCase ) lowerCAmelCase : Optional[int] = np.char.translate(_lowerCamelCase , table=_lowerCamelCase ) if ignore_numbers: lowerCAmelCase : Tuple = string.digits.maketrans('' , '' , string.digits ) lowerCAmelCase : List[Any] = np.char.translate(_lowerCamelCase , table=_lowerCamelCase ) lowerCAmelCase : Dict = np.char.translate(_lowerCamelCase , table=_lowerCamelCase ) lowerCAmelCase : int = predictions == references return {"exact_match": np.mean(_lowerCamelCase ) * 100}
138
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( a__ , a__ , a__ ): lowerCAmelCase :List[str] = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 5_0257 , _lowerCamelCase = 1024 , _lowerCamelCase = 768 , _lowerCamelCase = 12 , _lowerCamelCase = 12 , _lowerCamelCase = None , _lowerCamelCase = "gelu_new" , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 1e-5 , _lowerCamelCase = 0.02 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = False , ): super().__init__() UpperCAmelCase__ : Optional[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''') UpperCAmelCase__ : str = prefix_inner_dim UpperCAmelCase__ : Tuple = prefix_hidden_dim UpperCAmelCase__ : Any = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Optional[Any] = ( nn.Linear(self.prefix_hidden_dim , _lowerCamelCase) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Optional[Any] = GPTaConfig( vocab_size=_lowerCamelCase , n_positions=_lowerCamelCase , n_embd=_lowerCamelCase , n_layer=_lowerCamelCase , n_head=_lowerCamelCase , n_inner=_lowerCamelCase , activation_function=_lowerCamelCase , resid_pdrop=_lowerCamelCase , embd_pdrop=_lowerCamelCase , attn_pdrop=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , initializer_range=_lowerCamelCase , scale_attn_weights=_lowerCamelCase , use_cache=_lowerCamelCase , scale_attn_by_inverse_layer_idx=_lowerCamelCase , reorder_and_upcast_attn=_lowerCamelCase , ) UpperCAmelCase__ : int = GPTaLMHeadModel(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , ): UpperCAmelCase__ : Dict = self.transformer.transformer.wte(_lowerCamelCase) UpperCAmelCase__ : Any = self.encode_prefix(_lowerCamelCase) UpperCAmelCase__ : Tuple = self.decode_prefix(_lowerCamelCase) UpperCAmelCase__ : List[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1) if labels is not None: UpperCAmelCase__ : str = self.get_dummy_token(input_ids.shape[0] , input_ids.device) UpperCAmelCase__ : Tuple = torch.cat((dummy_token, input_ids) , dim=1) UpperCAmelCase__ : Union[str, Any] = self.transformer(inputs_embeds=_lowerCamelCase , labels=_lowerCamelCase , attention_mask=_lowerCamelCase) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): return torch.zeros(_lowerCamelCase , self.prefix_length , dtype=torch.intaa , device=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): return self.encode_prefix(_lowerCamelCase) @torch.no_grad() def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Dict = torch.split(_lowerCamelCase , 1 , dim=0) UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Any = [] for feature in features: UpperCAmelCase__ : int = self.decode_prefix(feature.to(_lowerCamelCase)) # back to the clip feature # Only support beam search for now UpperCAmelCase__ , UpperCAmelCase__ : str = self.generate_beam( input_embeds=_lowerCamelCase , device=_lowerCamelCase , eos_token_id=_lowerCamelCase) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) UpperCAmelCase__ : List[Any] = torch.stack(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = torch.stack(_lowerCamelCase) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case__ ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = 5 , _lowerCamelCase = 67 , _lowerCamelCase = 1.0 , _lowerCamelCase = None , ): UpperCAmelCase__ : Dict = eos_token_id UpperCAmelCase__ : Any = None UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Any = torch.ones(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.int) UpperCAmelCase__ : Any = torch.zeros(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.bool) if input_embeds is not None: UpperCAmelCase__ : Optional[int] = input_embeds else: UpperCAmelCase__ : Any = self.transformer.transformer.wte(_lowerCamelCase) for i in range(_lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = self.transformer(inputs_embeds=_lowerCamelCase) UpperCAmelCase__ : List[str] = outputs.logits UpperCAmelCase__ : List[str] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCAmelCase__ : int = logits.softmax(-1).log() if scores is None: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = logits.topk(_lowerCamelCase , -1) UpperCAmelCase__ : int = generated.expand(_lowerCamelCase , *generated.shape[1:]) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = next_tokens.permute(1 , 0), scores.squeeze(0) if tokens is None: UpperCAmelCase__ : Any = next_tokens else: UpperCAmelCase__ : Tuple = tokens.expand(_lowerCamelCase , *tokens.shape[1:]) UpperCAmelCase__ : List[Any] = torch.cat((tokens, next_tokens) , dim=1) else: UpperCAmelCase__ : Any = -float(np.inf) UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Any = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCAmelCase__ : Optional[Any] = scores_sum / seq_lengths[:, None] UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = scores_sum_average.view(-1).topk(_lowerCamelCase , -1) UpperCAmelCase__ : str = next_tokens // scores_sum.shape[1] UpperCAmelCase__ : Optional[int] = seq_lengths[next_tokens_source] UpperCAmelCase__ : List[str] = next_tokens % scores_sum.shape[1] UpperCAmelCase__ : List[Any] = next_tokens.unsqueeze(1) UpperCAmelCase__ : Dict = tokens[next_tokens_source] UpperCAmelCase__ : Optional[int] = torch.cat((tokens, next_tokens) , dim=1) UpperCAmelCase__ : Optional[Any] = generated[next_tokens_source] UpperCAmelCase__ : List[Any] = scores_sum_average * seq_lengths UpperCAmelCase__ : Union[str, Any] = is_stopped[next_tokens_source] UpperCAmelCase__ : Union[str, Any] = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0] , 1 , -1) UpperCAmelCase__ : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1) UpperCAmelCase__ : Union[str, Any] = is_stopped + next_tokens.eq(_lowerCamelCase).squeeze() if is_stopped.all(): break UpperCAmelCase__ : Tuple = scores / seq_lengths UpperCAmelCase__ : Union[str, Any] = scores.argsort(descending=_lowerCamelCase) # tokens tensors are already padded to max_seq_length UpperCAmelCase__ : Optional[Any] = [tokens[i] for i in order] UpperCAmelCase__ : Optional[Any] = torch.stack(_lowerCamelCase , dim=0) UpperCAmelCase__ : Dict = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype) return output_texts, seq_lengths
163
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class a__ ( unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = MODEL_FOR_CAUSAL_LM_MAPPING lowercase__ : Union[str, Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ = text_generator('''This is a test''' , do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) lowerCAmelCase__ = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( lowerCamelCase_ , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) lowerCAmelCase__ = text_generator('''This is a test''' , do_sample=lowerCamelCase_ , num_return_sequences=2 , return_tensors=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ {'''generated_token_ids''': ANY(lowerCamelCase_ )}, {'''generated_token_ids''': ANY(lowerCamelCase_ )}, ] , ) lowerCAmelCase__ = text_generator.model.config.eos_token_id lowerCAmelCase__ = '''<pad>''' lowerCAmelCase__ = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=lowerCamelCase_ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCamelCase_ , ) self.assertEqual( lowerCamelCase_ , [ [ {'''generated_token_ids''': ANY(lowerCamelCase_ )}, {'''generated_token_ids''': ANY(lowerCamelCase_ )}, ], [ {'''generated_token_ids''': ANY(lowerCamelCase_ )}, {'''generated_token_ids''': ANY(lowerCamelCase_ )}, ], ] , ) @require_tf def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ = text_generator('''This is a test''' , do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) lowerCAmelCase__ = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: lowerCAmelCase__ = TextGenerationPipeline(model=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) return text_generator, ["This is a test", "Another test"] def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = '''Hello I believe in''' lowerCAmelCase__ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase__ = text_generator(lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) lowerCAmelCase__ = text_generator(lowerCamelCase_ , stop_sequence=''' fe''' ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': '''Hello I believe in fe'''}] ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: lowerCAmelCase__ = text_generator.model lowerCAmelCase__ = text_generator.tokenizer lowerCAmelCase__ = text_generator('''This is a test''' ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': ANY(lowerCamelCase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ = text_generator('''This is a test''' , return_full_text=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': ANY(lowerCamelCase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ = pipeline(task='''text-generation''' , model=lowerCamelCase_ , tokenizer=lowerCamelCase_ , return_full_text=lowerCamelCase_ ) lowerCAmelCase__ = text_generator('''This is a test''' ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': ANY(lowerCamelCase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ = text_generator('''This is a test''' , return_full_text=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': ANY(lowerCamelCase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ [{'''generated_text''': ANY(lowerCamelCase_ )}, {'''generated_text''': ANY(lowerCamelCase_ )}], [{'''generated_text''': ANY(lowerCamelCase_ )}, {'''generated_text''': ANY(lowerCamelCase_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCAmelCase__ = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ [{'''generated_text''': ANY(lowerCamelCase_ )}, {'''generated_text''': ANY(lowerCamelCase_ )}], [{'''generated_text''': ANY(lowerCamelCase_ )}, {'''generated_text''': ANY(lowerCamelCase_ )}], ] , ) with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = text_generator('''test''' , return_full_text=lowerCamelCase_ , return_text=lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = text_generator('''test''' , return_full_text=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = text_generator('''test''' , return_text=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCAmelCase__ = text_generator('''''' ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': ANY(lowerCamelCase_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCAmelCase__ = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCAmelCase__ = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_00 , max_new_tokens=20 ) lowerCAmelCase__ = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(lowerCamelCase_ ): text_generator( '''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self ) -> str: import torch # Classic `model_kwargs` lowerCAmelCase__ = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ = pipe('''This is a test''' ) self.assertEqual( lowerCamelCase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCAmelCase__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ = pipe('''This is a test''' ) self.assertEqual( lowerCamelCase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCAmelCase__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCAmelCase__ = pipe('''This is a test''' ) self.assertEqual( lowerCamelCase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: import torch lowerCAmelCase__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self ) -> str: import torch lowerCAmelCase__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=lowerCamelCase_ , top_p=0.5 ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = '''Hello world''' lowerCAmelCase__ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": lowerCAmelCase__ = logging.get_logger('''transformers.generation.tf_utils''' ) else: lowerCAmelCase__ = logging.get_logger('''transformers.generation.utils''' ) lowerCAmelCase__ = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowerCamelCase_ ) as cl: lowerCAmelCase__ = text_generator(lowerCamelCase_ , max_length=10 , max_new_tokens=1 ) self.assertIn(lowerCamelCase_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(lowerCamelCase_ ) as cl: lowerCAmelCase__ = text_generator(lowerCamelCase_ , max_new_tokens=1 ) self.assertNotIn(lowerCamelCase_ , cl.out ) with CaptureLogger(lowerCamelCase_ ) as cl: lowerCAmelCase__ = text_generator(lowerCamelCase_ , max_length=10 ) self.assertNotIn(lowerCamelCase_ , cl.out )
228
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( A , A , A ) -> Optional[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _snake_case ( A , A , A ) -> Union[str, Any]: lowerCAmelCase__ = to_pil_image(A ) lowerCAmelCase__ , lowerCAmelCase__ = pil_image.size lowerCAmelCase__ = pytesseract.image_to_data(A , lang=A , output_type='''dict''' , config=A ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCAmelCase__ = [idx for idx, word in enumerate(A ) if not word.strip()] lowerCAmelCase__ = [word for idx, word in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ = [] for x, y, w, h in zip(A , A , A , A ): lowerCAmelCase__ = [x, y, x + w, y + h] actual_boxes.append(A ) # finally, normalize the bounding boxes lowerCAmelCase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(A , A , A ) ) assert len(A ) == len(A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = ["pixel_values"] def __init__( self , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = True , lowerCamelCase_ = 1 / 2_55 , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = "" , **lowerCamelCase_ , ) -> None: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_value lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase__ = apply_ocr lowerCAmelCase__ = ocr_lang lowerCAmelCase__ = tesseract_config def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase__ = (size['''height'''], size['''width''']) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = ChannelDimension.FIRST , **lowerCamelCase_ , ) -> PIL.Image.Image: lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowerCamelCase_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for image in images: lowerCAmelCase__ , lowerCAmelCase__ = apply_tesseract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) words_batch.append(lowerCamelCase_ ) boxes_batch.append(lowerCamelCase_ ) if do_resize: lowerCAmelCase__ = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowerCAmelCase__ = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowerCamelCase_ ) if apply_ocr: lowerCAmelCase__ = words_batch lowerCAmelCase__ = boxes_batch return data
228
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: int = LayoutLMTokenizer lowerCamelCase__: str = LayoutLMTokenizerFast lowerCamelCase__: Tuple = True lowerCamelCase__: List[str] = True def _lowerCamelCase ( self: Optional[int] ) -> str: super().setUp() __UpperCAmelCase : Union[str, Any] = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _lowerCamelCase ( self: Optional[Any] , **__lowerCamelCase: Any ) -> Any: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: Dict ) -> Optional[Any]: __UpperCAmelCase : Optional[Any] = "UNwant\u00E9d,running" __UpperCAmelCase : Any = "unwanted, running" return input_text, output_text def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase : str = self.tokenizer_class(self.vocab_file ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__lowerCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [7, 4, 5, 10, 8, 9] ) def _lowerCamelCase ( self: List[Any] ) -> Dict: pass
157
import argparse import os import re _snake_case = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _snake_case = re.compile(r'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings _snake_case = re.compile(r'''\s*\(\s*"(\S[^"]+)"''') def _UpperCamelCase ( snake_case__, snake_case__ = False ) -> List[Any]: with open(snake_case__, "r", encoding="utf-8" ) as f: __UpperCAmelCase : Dict = f.read() __UpperCAmelCase : Optional[Any] = content.split("\n" ) __UpperCAmelCase : int = [] __UpperCAmelCase : Optional[int] = 0 while line_idx < len(snake_case__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __UpperCAmelCase : str = len(re.search(r"^(\s*)\S", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 __UpperCAmelCase : Dict = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __UpperCAmelCase : str = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __UpperCAmelCase : Dict = sorted(snake_case__, key=lambda snake_case__ : _re_identifier.search(snake_case__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(snake_case__, "w", encoding="utf-8" ) as f: f.write("\n".join(snake_case__ ) ) elif "\n".join(snake_case__ ) != content: return True def _UpperCamelCase ( snake_case__ = False ) -> Any: __UpperCAmelCase : str = [os.path.join(snake_case__, snake_case__ ) for f in os.listdir(snake_case__ ) if f.endswith(".py" )] __UpperCAmelCase : Optional[Any] = [sort_auto_mapping(snake_case__, overwrite=snake_case__ ) for fname in fnames] if not overwrite and any(snake_case__ ): __UpperCAmelCase : List[Any] = [f for f, d in zip(snake_case__, snake_case__ ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {', '.join(snake_case__ )}. Run `make style` to fix''' " this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') _snake_case = parser.parse_args() sort_all_auto_mappings(not args.check_only)
157
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 1_2_8, "min_length": 1_2, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 1_4_2, "min_length": 5_6, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 6_2, "min_length": 1_1, "num_beams": 6}, } } __lowerCAmelCase = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 1_2_8, "task_specific_params.summarization.min_length": 1_2, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 1_4_2, "task_specific_params.summarization_cnn.min_length": 5_6, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 6_2, "task_specific_params.summarization_xsum.min_length": 1_1, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ) , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_A ) , x.transpose() ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ) , np.asarray(transpose(_A ) ) ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , np.asarray(transpose(_A , axes=(1, 2, 0) ) ) ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.reshape(_A , (4, 3) ) ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_A , (1_2, 5) ) , np.reshape(_A , (1_2, 5) ) ) ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (1_2, 5) ) , reshape(_A , (1_2, 5) ).numpy() ) ) @require_tf def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (1_2, 5) ) , reshape(_A , (1_2, 5) ).numpy() ) ) @require_flax def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.asarray(reshape(_A , (4, 3) ) ) ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (1_2, 5) ) , np.asarray(reshape(_A , (1_2, 5) ) ) ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_A ) , np.squeeze(_A ) ) ) __lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.squeeze(_A , axis=2 ) ) ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(1 , 3 , 4 ) __lowerCAmelCase = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) __lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCAmelCase = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_tf def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(1 , 3 , 4 ) __lowerCAmelCase = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) __lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCAmelCase = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_flax def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(1 , 3 , 4 ) __lowerCAmelCase = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ) , np.asarray(squeeze(_A ) ) ) ) __lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCAmelCase = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.asarray(squeeze(_A , axis=2 ) ) ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.expand_dims(_A , axis=1 ) ) ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_tf def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_flax def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.asarray(expand_dims(_A , axis=1 ) ) ) )
354
def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): __lowerCAmelCase , __lowerCAmelCase = [], [] while len(SCREAMING_SNAKE_CASE_ ) > 1: __lowerCAmelCase , __lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) start.append(SCREAMING_SNAKE_CASE_ ) end.append(SCREAMING_SNAKE_CASE_ ) collection.remove(SCREAMING_SNAKE_CASE_ ) collection.remove(SCREAMING_SNAKE_CASE_ ) end.reverse() return start + collection + end if __name__ == "__main__": UpperCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
102
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "encodec" def __init__( self : Dict , _UpperCAmelCase : List[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _UpperCAmelCase : Any=2_40_00 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : List[Any]=[8, 5, 4, 2] , _UpperCAmelCase : Union[str, Any]="weight_norm" , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : str=3 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]="reflect" , _UpperCAmelCase : Any=2 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Optional[Any]=10_24 , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=True , **_UpperCAmelCase : str , ) -> str: """simple docstring""" __lowercase = target_bandwidths __lowercase = sampling_rate __lowercase = audio_channels __lowercase = normalize __lowercase = chunk_length_s __lowercase = overlap __lowercase = hidden_size __lowercase = num_filters __lowercase = num_residual_layers __lowercase = upsampling_ratios __lowercase = norm_type __lowercase = kernel_size __lowercase = last_kernel_size __lowercase = residual_kernel_size __lowercase = dilation_growth_rate __lowercase = use_causal_conv __lowercase = pad_mode __lowercase = compress __lowercase = num_lstm_layers __lowercase = trim_right_ratio __lowercase = codebook_size __lowercase = codebook_dim if codebook_dim is not None else hidden_size __lowercase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**_UpperCAmelCase ) @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__ ( self : int ) -> int: """simple docstring""" return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
325
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "mask2former" lowerCAmelCase__ : List[Any] = ["swin"] lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"} def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : str ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
325
1
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : """simple docstring""" def __init__( self : str , snake_case_ : Any , snake_case_ : List[Any]=13 , snake_case_ : str=7 , snake_case_ : Any=True , snake_case_ : List[str]=True , snake_case_ : Optional[Any]=False , snake_case_ : List[str]=True , snake_case_ : Any=99 , snake_case_ : List[str]=32 , snake_case_ : Tuple=5 , snake_case_ : Any=4 , snake_case_ : Dict=37 , snake_case_ : List[Any]="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Optional[int]=512 , snake_case_ : Dict=16 , snake_case_ : Union[str, Any]=2 , snake_case_ : List[str]=0.02 , snake_case_ : List[Any]=3 , snake_case_ : Optional[int]=4 , snake_case_ : str=None , ): snake_case__ : str = parent snake_case__ : List[str] = batch_size snake_case__ : Dict = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : Any = use_input_mask snake_case__ : int = use_token_type_ids snake_case__ : Optional[int] = use_labels snake_case__ : Dict = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Any = intermediate_size snake_case__ : int = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Optional[int] = max_position_embeddings snake_case__ : int = type_vocab_size snake_case__ : str = type_sequence_label_size snake_case__ : List[str] = initializer_range snake_case__ : Optional[Any] = num_labels snake_case__ : Optional[Any] = num_choices snake_case__ : Union[str, Any] = scope def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Optional[int] = None if self.use_input_mask: snake_case__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Any = None if self.use_token_type_ids: snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Union[str, Any] = None snake_case__ : str = None snake_case__ : Dict = None if self.use_labels: snake_case__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : str ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : Tuple , snake_case_ : Any , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : int ): snake_case__ : List[Any] = BioGptModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ ) snake_case__ : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : List[str] , ): snake_case__ : List[str] = BioGptForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : str = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Dict , *snake_case_ : Optional[int] ): snake_case__ : Any = BioGptModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() # create attention mask snake_case__ : Any = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case_ ) snake_case__ : Optional[int] = self.seq_length // 2 snake_case__ : int = 0 # first forward pass snake_case__ , snake_case__ : Optional[int] = model(snake_case_ , attention_mask=snake_case_ ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case__ : List[Any] = ids_tensor((1,) , snake_case_ ).item() + 1 snake_case__ : Dict = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case__ : List[Any] = random_other_next_tokens # append to next input_ids and attn_mask snake_case__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[str] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case_ )] , dim=1 , ) # get two different outputs snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ )["""last_hidden_state"""] snake_case__ : Union[str, Any] = model(snake_case_ , past_key_values=snake_case_ , attention_mask=snake_case_ )["""last_hidden_state"""] # select random slice snake_case__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[int] = output_from_no_past[:, -1, random_slice_idx].detach() snake_case__ : Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def lowerCamelCase ( self : Tuple , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : List[str] , *snake_case_ : Optional[int] ): snake_case__ : Optional[Any] = BioGptModel(config=snake_case_ ).to(snake_case_ ).eval() snake_case__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case_ ) # first forward pass snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) snake_case__ , snake_case__ : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Optional[Any] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Any = model(snake_case_ , attention_mask=snake_case_ )["""last_hidden_state"""] snake_case__ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[ """last_hidden_state""" ] # select random slice snake_case__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : str , *snake_case_ : Dict , snake_case_ : Optional[int]=False ): snake_case__ : Union[str, Any] = BioGptForCausalLM(snake_case_ ) model.to(snake_case_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case__ : Optional[int] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Optional[Any] , *snake_case_ : Optional[Any] ): snake_case__ : int = BioGptModel(snake_case_ ) snake_case__ : List[str] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def lowerCamelCase ( self : Any , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Tuple , *snake_case_ : Optional[Any] ): snake_case__ : Union[str, Any] = self.num_labels snake_case__ : Dict = BioGptForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : List[str] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self : Tuple ): snake_case__ : Dict = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : int = config_and_inputs snake_case__ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , _a , unittest.TestCase ): """simple docstring""" lowercase = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowercase = (BioGptForCausalLM,) if is_torch_available() else () lowercase = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) lowercase = False def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Any = BioGptModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCamelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowerCamelCase ( self : List[Any] ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : List[str] ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : List[str] = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : Dict ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case_ ) def lowerCamelCase ( self : Dict ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case_ , gradient_checkpointing=snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case_ ) def lowerCamelCase ( self : List[str] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case_ ) @slow def lowerCamelCase ( self : int ): snake_case__ : List[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case_ ) snake_case__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) snake_case__ : Dict = """left""" # Define PAD Token = EOS Token = 50256 snake_case__ : Dict = tokenizer.eos_token snake_case__ : Optional[int] = model.config.eos_token_id # use different length sentences to test batching snake_case__ : Tuple = [ """Hello, my dog is a little""", """Today, I""", ] snake_case__ : List[Any] = tokenizer(snake_case_ , return_tensors="""pt""" , padding=snake_case_ ) snake_case__ : Tuple = inputs["""input_ids"""].to(snake_case_ ) snake_case__ : Dict = model.generate( input_ids=snake_case_ , attention_mask=inputs["""attention_mask"""].to(snake_case_ ) , ) snake_case__ : str = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case_ ) snake_case__ : List[Any] = model.generate(input_ids=snake_case_ ) snake_case__ : int = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() snake_case__ : Tuple = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case_ ) snake_case__ : Dict = model.generate(input_ids=snake_case_ , max_length=model.config.max_length - num_paddings ) snake_case__ : Any = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) snake_case__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case_ ) snake_case__ : List[Any] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , [non_padded_sentence, padded_sentence] ) @slow def lowerCamelCase ( self : Tuple ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : int = BioGptModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = 3 snake_case__ : Union[str, Any] = input_dict["""input_ids"""] snake_case__ : List[str] = input_ids.ne(1 ).to(snake_case_ ) snake_case__ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ : Union[str, Any] = BioGptForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase ( self : Tuple ): snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Tuple = 3 snake_case__ : str = """multi_label_classification""" snake_case__ : Tuple = input_dict["""input_ids"""] snake_case__ : Optional[int] = input_ids.ne(1 ).to(snake_case_ ) snake_case__ : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ : Dict = BioGptForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Optional[int] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase ( self : Tuple ): snake_case__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) snake_case__ : Optional[Any] = torch.tensor([[2, 4_805, 9, 656, 21]] ) snake_case__ : str = model(snake_case_ )[0] snake_case__ : List[Any] = 42_384 snake_case__ : Tuple = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case_ ) snake_case__ : Optional[int] = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) snake_case__ : Union[str, Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case_ ) torch.manual_seed(0 ) snake_case__ : Dict = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case_ ) snake_case__ : str = model.generate( **snake_case_ , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=snake_case_ , ) snake_case__ : str = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case_ ) snake_case__ : int = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(snake_case_ , snake_case_ )
43
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Any ): snake_case__ : int = [] def lowerCamelCase ( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Any , **snake_case_ : str ): self.events.append("""on_init_end""" ) def lowerCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : List[Any] , **snake_case_ : List[str] ): self.events.append("""on_train_begin""" ) def lowerCamelCase ( self : Dict , snake_case_ : Dict , snake_case_ : str , snake_case_ : int , **snake_case_ : str ): self.events.append("""on_train_end""" ) def lowerCamelCase ( self : List[str] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : List[str] , **snake_case_ : int ): self.events.append("""on_epoch_begin""" ) def lowerCamelCase ( self : List[Any] , snake_case_ : str , snake_case_ : List[str] , snake_case_ : List[Any] , **snake_case_ : Union[str, Any] ): self.events.append("""on_epoch_end""" ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , **snake_case_ : str ): self.events.append("""on_step_begin""" ) def lowerCamelCase ( self : Optional[Any] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Any , **snake_case_ : Optional[Any] ): self.events.append("""on_step_end""" ) def lowerCamelCase ( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : int , **snake_case_ : List[Any] ): self.events.append("""on_evaluate""" ) def lowerCamelCase ( self : int , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : Optional[int] , **snake_case_ : Any ): self.events.append("""on_predict""" ) def lowerCamelCase ( self : int , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : Dict , **snake_case_ : str ): self.events.append("""on_save""" ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : int , **snake_case_ : Optional[int] ): self.events.append("""on_log""" ) def lowerCamelCase ( self : Any , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , **snake_case_ : Tuple ): self.events.append("""on_prediction_step""" ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = tempfile.mkdtemp() def lowerCamelCase ( self : List[Any] ): shutil.rmtree(self.output_dir ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : List[Any]=0 , snake_case_ : List[Any]=0 , snake_case_ : List[str]=64 , snake_case_ : Optional[Any]=64 , snake_case_ : List[Any]=None , snake_case_ : Optional[int]=False , **snake_case_ : int ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case__ : Optional[int] = RegressionDataset(length=snake_case_ ) snake_case__ : Dict = RegressionDataset(length=snake_case_ ) snake_case__ : Any = RegressionModelConfig(a=snake_case_ , b=snake_case_ ) snake_case__ : str = RegressionPreTrainedModel(snake_case_ ) snake_case__ : Any = TrainingArguments(self.output_dir , disable_tqdm=snake_case_ , report_to=[] , **snake_case_ ) return Trainer( snake_case_ , snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , callbacks=snake_case_ , ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[int] ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) # Order doesn't matter snake_case__ : int = sorted(snake_case_ , key=lambda snake_case_ : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) snake_case__ : Optional[int] = sorted(snake_case_ , key=lambda snake_case_ : cb.__name__ if isinstance(snake_case_ , snake_case_ ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case_ , snake_case_ ): if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , snake_case_ ) and not isinstance(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , cba.__class__ ) elif not isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): self.assertEqual(cba.__class__ , snake_case_ ) else: self.assertEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] ): snake_case__ : Optional[Any] = ["""on_init_end""", """on_train_begin"""] snake_case__ : Optional[int] = 0 snake_case__ : Any = len(trainer.get_eval_dataloader() ) snake_case__ : Optional[int] = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(snake_case_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = self.get_trainer() snake_case__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # Callbacks passed at init are added to the default callbacks snake_case__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case__ : int = self.get_trainer(disable_tqdm=snake_case_ ) snake_case__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[int] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case__ : Any = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) snake_case__ : List[Any] = self.get_trainer() snake_case__ : List[Any] = trainer.pop_callback(snake_case_ ) self.assertEqual(cb.__class__ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) # We can also add, pop, or remove by instance snake_case__ : Optional[Any] = self.get_trainer() snake_case__ : Any = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case_ ) expected_callbacks.remove(snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) snake_case__ : Any = self.get_trainer() snake_case__ : Dict = trainer.callback_handler.callbacks[0] snake_case__ : Optional[int] = trainer.pop_callback(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) trainer.add_callback(snake_case_ ) expected_callbacks.insert(0 , snake_case_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case_ ) def lowerCamelCase ( self : str ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=snake_case_ ) snake_case__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # Independent log/save/eval snake_case__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() snake_case__ : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # A bit of everything snake_case__ : Optional[int] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() snake_case__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case_ , self.get_expected_events(snake_case_ ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: snake_case__ : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case_ ) in warn_mock.call_args[0][0]
43
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: snake_case : Any = {} snake_case : Union[str, Any] = job["""started_at"""] snake_case : Tuple = job["""completed_at"""] snake_case : str = date_parser.parse(lowercase ) snake_case : List[str] = date_parser.parse(lowercase ) snake_case : Optional[Any] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case : Optional[int] = start snake_case : Any = end snake_case : Optional[Any] = duration_in_min return job_info def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ) -> str: snake_case : int = None if token is not None: snake_case : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} snake_case : Optional[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case : Optional[Any] = requests.get(lowercase ,headers=lowercase ).json() snake_case : Tuple = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(lowercase ) for job in result["""jobs"""]} ) snake_case : Optional[Any] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowercase ): snake_case : int = requests.get(url + f"""&page={i + 2}""" ,headers=lowercase ).json() job_time.update({job["""name"""]: extract_time_from_single_job(lowercase ) for job in result["""jobs"""]} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') lowerCamelCase : str = parser.parse_args() lowerCamelCase : Optional[Any] = get_job_time(args.workflow_run_id) lowerCamelCase : Any = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
124
from typing import List from .keymap import KEYMAP, get_character def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: def decorator(lowercase ): snake_case : Tuple = getattr(lowercase ,"""handle_key""" ,[] ) handle += [key] setattr(lowercase ,"""handle_key""" ,lowercase ) return func return decorator def SCREAMING_SNAKE_CASE__ ( *lowercase ) -> List[str]: def decorator(lowercase ): snake_case : Optional[int] = getattr(lowercase ,"""handle_key""" ,[] ) handle += keys setattr(lowercase ,"""handle_key""" ,lowercase ) return func return decorator class __lowercase (UpperCamelCase__ ): """simple docstring""" def __new__( cls , A , A , A ) -> str: snake_case : int = super().__new__(cls , A , A , A ) if not hasattr(A , """key_handler""" ): setattr(A , """key_handler""" , {} ) setattr(A , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): snake_case : Dict = getattr(A , """handle_key""" , [] ) for key in handled_keys: snake_case : Any = value return new_cls @staticmethod def UpperCAmelCase ( cls ) -> List[str]: snake_case : Tuple = get_character() if char != KEYMAP["undefined"]: snake_case : str = ord(A ) snake_case : Optional[Any] = cls.key_handler.get(A ) if handler: snake_case : Optional[Any] = char return handler(cls ) else: return None def SCREAMING_SNAKE_CASE__ ( cls ) -> Tuple: return KeyHandler(cls.__name__ ,cls.__bases__ ,cls.__dict__.copy() )
124
1
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : int = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class snake_case_( a__ ): __UpperCamelCase = '''encodec''' def __init__( self : Dict , UpperCamelCase_ : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCamelCase_ : int=2_4_0_0_0 , UpperCamelCase_ : Optional[Any]=1 , UpperCamelCase_ : Dict=False , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=1_2_8 , UpperCamelCase_ : Union[str, Any]=3_2 , UpperCamelCase_ : str=1 , UpperCamelCase_ : Optional[int]=[8, 5, 4, 2] , UpperCamelCase_ : Optional[Any]="weight_norm" , UpperCamelCase_ : Dict=7 , UpperCamelCase_ : Dict=7 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]="reflect" , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : List[str]=1.0 , UpperCamelCase_ : Any=1_0_2_4 , UpperCamelCase_ : int=None , UpperCamelCase_ : int=True , **UpperCamelCase_ : Dict , ): lowerCAmelCase : Optional[int] = target_bandwidths lowerCAmelCase : Tuple = sampling_rate lowerCAmelCase : Optional[Any] = audio_channels lowerCAmelCase : Dict = normalize lowerCAmelCase : int = chunk_length_s lowerCAmelCase : Union[str, Any] = overlap lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_filters lowerCAmelCase : Dict = num_residual_layers lowerCAmelCase : List[str] = upsampling_ratios lowerCAmelCase : List[Any] = norm_type lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : str = last_kernel_size lowerCAmelCase : List[str] = residual_kernel_size lowerCAmelCase : int = dilation_growth_rate lowerCAmelCase : Tuple = use_causal_conv lowerCAmelCase : Optional[int] = pad_mode lowerCAmelCase : Any = compress lowerCAmelCase : Optional[int] = num_lstm_layers lowerCAmelCase : List[Any] = trim_right_ratio lowerCAmelCase : Dict = codebook_size lowerCAmelCase : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size lowerCAmelCase : Optional[Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**UpperCamelCase_ ) @property def lowerCamelCase__ ( self : Tuple ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCamelCase__ ( self : Tuple ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Dict = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowerCamelCase__ ( self : Optional[int] ): return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
314
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
1
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py UpperCamelCase__ = """src/transformers""" UpperCamelCase__ = """docs/source/en""" UpperCamelCase__ = """.""" def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() # Find the start prompt. __lowerCAmelCase = 0 while not lines[start_index].startswith(SCREAMING_SNAKE_CASE_ ): start_index += 1 start_index += 1 __lowerCAmelCase = start_index while not lines[end_index].startswith(SCREAMING_SNAKE_CASE_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | UpperCamelCase__ = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. UpperCamelCase__ = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") UpperCamelCase__ = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCamelCase__ = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): __lowerCAmelCase = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , SCREAMING_SNAKE_CASE_ ) return [m.group(0 ) for m in matches] def _a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __lowerCAmelCase = 2 if text == "✅" or text == "❌" else len(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = (width - text_length) // 2 __lowerCAmelCase = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _a ( ): __lowerCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __lowerCAmelCase = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __lowerCAmelCase = {name: config.replace("Config" , "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __lowerCAmelCase = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) # Let's lookup through all transformers object (once). for attr_name in dir(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = None if attr_name.endswith("Tokenizer" ): __lowerCAmelCase = slow_tokenizers __lowerCAmelCase = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): __lowerCAmelCase = fast_tokenizers __lowerCAmelCase = attr_name[:-13] elif _re_tf_models.match(SCREAMING_SNAKE_CASE_ ) is not None: __lowerCAmelCase = tf_models __lowerCAmelCase = _re_tf_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] elif _re_flax_models.match(SCREAMING_SNAKE_CASE_ ) is not None: __lowerCAmelCase = flax_models __lowerCAmelCase = _re_flax_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] elif _re_pt_models.match(SCREAMING_SNAKE_CASE_ ) is not None: __lowerCAmelCase = pt_models __lowerCAmelCase = _re_pt_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] if lookup_dict is not None: while len(SCREAMING_SNAKE_CASE_ ) > 0: if attr_name in model_name_to_prefix.values(): __lowerCAmelCase = True break # Try again after removing the last word in the name __lowerCAmelCase = "".join(camel_case_split(SCREAMING_SNAKE_CASE_ )[:-1] ) # Let's build that table! __lowerCAmelCase = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __lowerCAmelCase = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __lowerCAmelCase = [len(SCREAMING_SNAKE_CASE_ ) + 2 for c in columns] __lowerCAmelCase = max([len(SCREAMING_SNAKE_CASE_ ) for name in model_names] ) + 2 # Build the table per se __lowerCAmelCase = "|" + "|".join([_center_text(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for c, w in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" __lowerCAmelCase = {True: "✅", False: "❌"} for name in model_names: __lowerCAmelCase = model_name_to_prefix[name] __lowerCAmelCase = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for l, w in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] ) + "|\n" return table def _a ( SCREAMING_SNAKE_CASE_ : Optional[int]=False ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = _find_text_in_file( filename=os.path.join(SCREAMING_SNAKE_CASE_ , "index.md" ) , start_prompt="<!--This table is updated automatically from the auto modules" , end_prompt="<!-- End table-->" , ) __lowerCAmelCase = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(SCREAMING_SNAKE_CASE_ , "index.md" ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
92
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : Optional[Any] ={ 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] =[ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __snake_case : int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
129
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } UpperCamelCase , UpperCamelCase = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCamelCase = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase_ ) assert base_extractor.is_extractable(UpperCamelCase_ ) UpperCamelCase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(UpperCamelCase_ , UpperCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCamelCase = file_path.read_text(encoding="""utf-8""" ) else: UpperCamelCase = output_path.read_text(encoding="""utf-8""" ) UpperCamelCase = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> List[str]: '''simple docstring''' UpperCamelCase = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } UpperCamelCase = input_paths[compression_format] if input_path is None: UpperCamelCase = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase_ ) UpperCamelCase = Extractor.infer_extractor_format(UpperCamelCase_ ) assert extractor_format is not None UpperCamelCase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCamelCase = file_path.read_text(encoding="""utf-8""" ) else: UpperCamelCase = output_path.read_text(encoding="""utf-8""" ) UpperCamelCase = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' import tarfile UpperCamelCase = tmp_path / """data_dot_dot""" directory.mkdir() UpperCamelCase = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(UpperCamelCase_ , """w""" ) as f: f.add(UpperCamelCase_ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowercase( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' import tarfile UpperCamelCase = tmp_path / """data_sym_link""" directory.mkdir() UpperCamelCase = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=UpperCamelCase_ ) with tarfile.TarFile(UpperCamelCase_ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } UpperCamelCase = insecure_tar_files[insecure_tar_file] UpperCamelCase = tmp_path / """extracted""" TarExtractor.extract(UpperCamelCase_ , UpperCamelCase_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 UpperCamelCase = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(UpperCamelCase_ ) assert zipfile.is_zipfile(str(UpperCamelCase_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCamelCase_ ) # but we're right
367
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE = TypeVar("""T""") class SCREAMING_SNAKE_CASE_ ( Generic[T] ): def __init__( self : Optional[Any] , lowerCamelCase_ : bool = True ): """simple docstring""" UpperCamelCase = {} # dictionary of lists UpperCamelCase = directed def lowerCamelCase_ ( self : int , lowerCamelCase_ : T , lowerCamelCase_ : T ): """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) self.adj_list[destination_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) UpperCamelCase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCamelCase_ ) UpperCamelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: UpperCamelCase = [destination_vertex] UpperCamelCase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) UpperCamelCase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: UpperCamelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: UpperCamelCase = [destination_vertex] UpperCamelCase = [] return self def __repr__( self : Optional[int] ): """simple docstring""" return pformat(self.adj_list )
165
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCAmelCase__ :Optional[Any] = datasets.load_iris() lowerCAmelCase__ :List[str] = np.array(data['''data''']) lowerCAmelCase__ :List[str] = np.array(data['''target''']) lowerCAmelCase__ :Tuple = data['''target_names'''] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = train_test_split(X, y) def lowerCAmelCase__ ( a__: Union[str, Any] , a__: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return np.linalg.norm(np.array(_A ) - np.array(_A ) ) def lowerCAmelCase__ ( a__: str , a__: Union[str, Any] , a__: List[str] , a__: Any , a__: Union[str, Any]=5 ) -> Dict: '''simple docstring''' _UpperCAmelCase = zip(_A , _A ) # List of distances of all points from the point to be classified _UpperCAmelCase = [] for data_point in data: _UpperCAmelCase = euclidean_distance(data_point[0] , _A ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _UpperCAmelCase = [i[1] for i in sorted(_A )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _UpperCAmelCase = Counter(_A ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
329
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Dict = MvpTokenizer UpperCAmelCase_ : Optional[Any] = MvpTokenizerFast UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = filter_roberta_detectors def a_ ( self): """simple docstring""" super().setUp() lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase)))) lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(__lowerCAmelCase) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(__lowerCAmelCase)) def a_ ( self , **__lowerCAmelCase): """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase): """simple docstring""" return "lower newer", "lower newer" @cached_property def a_ ( self): """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""") @cached_property def a_ ( self): """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""") @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCAmelCase = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(__lowerCAmelCase , max_length=len(__lowerCAmelCase) , padding=__lowerCAmelCase , return_tensors="""pt""") self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) # Test that special tokens are reset @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors="""pt""") # check if input_ids are returned and no labels self.assertIn("""input_ids""" , __lowerCAmelCase) self.assertIn("""attention_mask""" , __lowerCAmelCase) self.assertNotIn("""labels""" , __lowerCAmelCase) self.assertNotIn("""decoder_attention_mask""" , __lowerCAmelCase) @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(text_target=__lowerCAmelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""") self.assertEqual(32 , targets["""input_ids"""].shape[1]) @require_torch def a_ ( self): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""") self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase) self.assertEqual(batch.input_ids.shape , (2, 1024)) @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = ["""A long paragraph for summarization."""] lowerCAmelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(__lowerCAmelCase , text_target=__lowerCAmelCase , return_tensors="""pt""") lowerCAmelCase = inputs["""input_ids"""] lowerCAmelCase = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) def a_ ( self): """simple docstring""" pass def a_ ( self): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = """A, <mask> AllenNLP sentence.""" lowerCAmelCase = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase) lowerCAmelCase = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""]) , sum(tokens_p["""token_type_ids"""])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""]) / len(tokens_r["""attention_mask"""]) , sum(tokens_p["""attention_mask"""]) / len(tokens_p["""attention_mask"""]) , ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""]) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( __lowerCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""]) self.assertSequenceEqual( __lowerCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""])
272
0
from __future__ import annotations def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = 0.0_0 SCREAMING_SNAKE_CASE_: Optional[int] = 0 for resistor in resistors: if resistor <= 0: SCREAMING_SNAKE_CASE_: str = f"Resistor at index {index} has a negative or zero value!" raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = 0.0_0 SCREAMING_SNAKE_CASE_: Optional[Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: SCREAMING_SNAKE_CASE_: Optional[int] = f"Resistor at index {index} has a negative value!" raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
127
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = -1 SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: int = TextStreamer(lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Union[str, Any] = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = tokenizer.decode(greedy_ids[0]) SCREAMING_SNAKE_CASE_: int = TextIteratorStreamer(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Tuple = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() SCREAMING_SNAKE_CASE_: Optional[Any] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = -1 SCREAMING_SNAKE_CASE_: Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Dict = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Any = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("distilgpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = -1 SCREAMING_SNAKE_CASE_: List[str] = torch.ones((1, 5) , device=lowerCAmelCase__).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Union[str, Any] = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE_: str = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__ , return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") SCREAMING_SNAKE_CASE_: List[str] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = -1 SCREAMING_SNAKE_CASE_: List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001) SCREAMING_SNAKE_CASE_: Any = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE_: Optional[Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = "" for new_text in streamer: streamer_text += new_text
127
1
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _A : int = logging.get_logger(__name__) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = WavaVecaForSequenceClassification.from_pretrained(UpperCAmelCase , config=UpperCAmelCase ) lowerCamelCase__ : Dict = downstream_dict['''projector.weight'''] lowerCamelCase__ : Dict = downstream_dict['''projector.bias'''] lowerCamelCase__ : int = downstream_dict['''model.post_net.linear.weight'''] lowerCamelCase__ : List[Any] = downstream_dict['''model.post_net.linear.bias'''] return model def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : List[Any] = WavaVecaForAudioFrameClassification.from_pretrained(UpperCAmelCase , config=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = downstream_dict['''model.linear.weight'''] lowerCamelCase__ : List[Any] = downstream_dict['''model.linear.bias'''] return model def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ : str = WavaVecaForXVector.from_pretrained(UpperCAmelCase , config=UpperCAmelCase ) lowerCamelCase__ : List[Any] = downstream_dict['''connector.weight'''] lowerCamelCase__ : Tuple = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowerCamelCase__ : Optional[Any] = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] lowerCamelCase__ : Dict = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] lowerCamelCase__ : int = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] lowerCamelCase__ : Optional[int] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] lowerCamelCase__ : str = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] lowerCamelCase__ : List[str] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] lowerCamelCase__ : Any = downstream_dict['''objective.W'''] return model @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Dict = torch.load(UpperCAmelCase , map_location='''cpu''' ) lowerCamelCase__ : int = checkpoint['''Downstream'''] lowerCamelCase__ : str = WavaVecaConfig.from_pretrained(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( UpperCAmelCase , return_attention_mask=UpperCAmelCase , do_normalize=UpperCAmelCase ) lowerCamelCase__ : Tuple = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): lowerCamelCase__ : str = convert_classification(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif arch.endswith('''ForAudioFrameClassification''' ): lowerCamelCase__ : List[str] = convert_diarization(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif arch.endswith('''ForXVector''' ): lowerCamelCase__ : Optional[int] = convert_xvector(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: lowerCamelCase__ : Tuple = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(UpperCAmelCase ) hf_model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _A : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _A : List[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
142
import argparse import os import re import packaging.version _A : Optional[int] = 'examples/' _A : str = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _A : Any = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } _A : List[str] = 'README.md' def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase__ : Tuple = f.read() lowerCamelCase__ , lowerCamelCase__ : Optional[int] = REPLACE_PATTERNS[pattern] lowerCamelCase__ : Union[str, Any] = replace.replace('''VERSION''' , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = re_pattern.sub(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" for folder, directories, fnames in os.walk(UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , pattern='''examples''' ) def _a ( UpperCAmelCase , UpperCAmelCase=False ) -> Dict: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not patch: update_version_in_examples(UpperCAmelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Any = '''🤗 Transformers currently provides the following architectures''' lowerCamelCase__ : Dict = '''1. Want to contribute a new model?''' with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase__ : str = f.readlines() # Find the start of the list. lowerCamelCase__ : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowerCamelCase__ : Any = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowerCamelCase__ : List[str] = f.read() lowerCamelCase__ : Any = REPLACE_PATTERNS['''init'''][0].search(UpperCAmelCase ).groups()[0] return packaging.version.parse(UpperCAmelCase ) def _a ( UpperCAmelCase=False ) -> str: """simple docstring""" lowerCamelCase__ : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowerCamelCase__ : Union[str, Any] = default_version.base_version elif patch: lowerCamelCase__ : str = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: lowerCamelCase__ : Dict = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. lowerCamelCase__ : str = input(f"Which version are you releasing? [{default_version}]" ) if len(UpperCAmelCase ) == 0: lowerCamelCase__ : int = default_version print(f"Updating version to {version}." ) global_version_update(UpperCAmelCase , patch=UpperCAmelCase ) def _a ( ) -> List[Any]: """simple docstring""" lowerCamelCase__ : List[str] = get_version() lowerCamelCase__ : Optional[int] = f"{current_version.major}.{current_version.minor + 1}.0.dev0" lowerCamelCase__ : Union[str, Any] = current_version.base_version # Check with the user we got that right. lowerCamelCase__ : Dict = input(f"Which version are we developing now? [{dev_version}]" ) if len(UpperCAmelCase ) == 0: lowerCamelCase__ : Tuple = dev_version print(f"Updating version to {version}." ) global_version_update(UpperCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _A : Any = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _A : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
142
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _lowercase ( UpperCamelCase_ ) -> Dict[str, torch.Tensor]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for rt in rc.restypes: SCREAMING_SNAKE_CASE__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE__ = {name: i for i, name in enumerate(UpperCamelCase_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE__ = torch.tensor( UpperCamelCase_ , dtype=torch.intaa , device=protein['aatype'].device , ) SCREAMING_SNAKE_CASE__ = torch.tensor( UpperCamelCase_ , dtype=torch.intaa , device=protein['aatype'].device , ) SCREAMING_SNAKE_CASE__ = torch.tensor( UpperCamelCase_ , dtype=torch.floataa , device=protein['aatype'].device , ) SCREAMING_SNAKE_CASE__ = protein['aatype'].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE__ = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE__ = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE__ = residx_atomaa_mask SCREAMING_SNAKE_CASE__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE__ = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE__ = residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE__ = rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE__ = rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE__ = rc.atom_order[atom_name] SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE__ = residx_atomaa_mask return protein def _lowercase ( UpperCamelCase_ ) -> Dict[str, np.ndarray]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = tree_map(lambda UpperCamelCase_ : torch.tensor(UpperCamelCase_ , device=batch['aatype'].device ) , UpperCamelCase_ , np.ndarray ) SCREAMING_SNAKE_CASE__ = tensor_tree_map(lambda UpperCamelCase_ : np.array(UpperCamelCase_ ) , make_atomaa_masks(UpperCamelCase_ ) ) return out
169
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE__ = True if checkpoint_name is None: SCREAMING_SNAKE_CASE__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: SCREAMING_SNAKE_CASE__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = checkpoint.split('/' ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = dump_path else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: SCREAMING_SNAKE_CASE__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] SCREAMING_SNAKE_CASE__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) SCREAMING_SNAKE_CASE__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(UpperCamelCase_ ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) __snake_case = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
169
1
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : int = set() # edges = list of graph's edges UpperCAmelCase__ : List[str] = get_edges(A__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = edges.pop() chosen_vertices.add(A__ ) chosen_vertices.add(A__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(A__ ) return chosen_vertices def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : int = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
163
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = SMALL_MODEL_IDENTIFIER __lowerCamelCase = """pt""" __lowerCamelCase = """tf""" def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ ) model_tf.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """mock_framework""" # Framework provided - return whatever the user provides __lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Both in environment -> use PyTorch __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # Both not in environment -> raise error __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
12
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : int = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[int]): lowercase__ , lowercase__ : int = emb.weight.shape lowercase__ : List[str] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) lowercase__ : Dict = emb.weight.data return lin_layer def lowercase_ ( _lowerCamelCase : Optional[Any]): lowercase__ : int = torch.load(_lowerCamelCase , map_location="cpu") lowercase__ : List[Any] = mam_aaa["args"] or mam_aaa["cfg"]["model"] lowercase__ : int = mam_aaa["model"] remove_ignore_keys_(_lowerCamelCase) lowercase__ : str = state_dict["encoder.embed_tokens.weight"].shape[0] lowercase__ : Any = MaMaaaConfig( vocab_size=_lowerCamelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) lowercase__ : Optional[int] = state_dict["decoder.embed_tokens.weight"] lowercase__ : int = MaMaaaForConditionalGeneration(_lowerCamelCase) model.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase) lowercase__ : Optional[Any] = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase = parser.parse_args() UpperCamelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
333
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
1
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _A = grid[0] for row_n in range(1 , len(__lowercase ) ): _A = grid[row_n] _A = fill_row(__lowercase , __lowercase ) _A = grid[row_n] return grid[-1][-1] def __lowercase ( __lowercase , __lowercase ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(__lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
79
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Union[str, Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = self.vocab_size - 1 def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) A_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = OpenAIGPTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = OpenAIGPTLMHeadModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> int: '''simple docstring''' A_ = OpenAIGPTDoubleHeadsModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.num_labels A_ = OpenAIGPTForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): lowercase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Union[str, Any]: '''simple docstring''' A_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) A_ = inputs_dict["""labels"""] A_ = inputs_dict["""labels"""] A_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCamelCase__ , ) A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = OpenAIGPTModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=37 ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = OpenAIGPTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(UpperCamelCase__ ) A_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=UpperCamelCase__ ) # the president is A_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].tolist() , UpperCamelCase__ )
162
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[Any] = "beit" def __init__(self ,_lowerCamelCase=8192 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=224 ,_lowerCamelCase=16 ,_lowerCamelCase=3 ,_lowerCamelCase=False ,_lowerCamelCase=False ,_lowerCamelCase=False ,_lowerCamelCase=False ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=True ,_lowerCamelCase=[3, 5, 7, 11] ,_lowerCamelCase=[1, 2, 3, 6] ,_lowerCamelCase=True ,_lowerCamelCase=0.4 ,_lowerCamelCase=256 ,_lowerCamelCase=1 ,_lowerCamelCase=False ,_lowerCamelCase=255 ,**_lowerCamelCase ,) -> Any: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = use_mask_token __lowercase = use_absolute_position_embeddings __lowercase = use_relative_position_bias __lowercase = use_shared_relative_position_bias __lowercase = layer_scale_init_value __lowercase = drop_path_rate __lowercase = use_mean_pooling # decode head attributes (semantic segmentation) __lowercase = out_indices __lowercase = pool_scales # auxiliary head attributes (semantic segmentation) __lowercase = use_auxiliary_head __lowercase = auxiliary_loss_weight __lowercase = auxiliary_channels __lowercase = auxiliary_num_convs __lowercase = auxiliary_concat_input __lowercase = semantic_loss_ignore_index class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = version.parse("1.11" ) @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCAmelCase (self ) -> float: '''simple docstring''' return 1E-4
367
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int = 6_0_0_8_5_1_4_7_5_1_4_3 ): try: __lowercase = int(lowerCamelCase_ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __lowercase = 1 __lowercase = 2 while i * i <= n: while n % i == 0: __lowercase = i n //= i i += 1 if n > 1: __lowercase = n return int(lowerCamelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
217
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :torch.FloatTensor _SCREAMING_SNAKE_CASE :torch.FloatTensor class __a (UpperCamelCase_ , UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[Any] = 1 @register_to_config def __init__( self , _a = 2_000 , _a = 0.15 , _a = 0.01 , _a = 1_348.0 , _a = 1E-5 , _a = 1 , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = sigma_max # setable values SCREAMING_SNAKE_CASE__ : Optional[int] = None self.set_sigmas(_a , _a , _a , _a ) def _a ( self , _a , _a = None ) -> torch.FloatTensor: """simple docstring""" return sample def _a ( self , _a , _a = None , _a = None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.linspace(1 , _a , _a , device=_a ) def _a ( self , _a , _a = None , _a = None , _a = None ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min SCREAMING_SNAKE_CASE__ : List[Any] = sigma_max if sigma_max is not None else self.config.sigma_max SCREAMING_SNAKE_CASE__ : List[str] = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_a , _a ) SCREAMING_SNAKE_CASE__ : Any = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) SCREAMING_SNAKE_CASE__ : List[str] = torch.exp(torch.linspace(math.log(_a ) , math.log(_a ) , _a ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _a ( self , _a , _a ) -> Optional[int]: """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _a ( self , _a , _a , _a , _a = None , _a = True , ) -> Union[SdeVeOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) SCREAMING_SNAKE_CASE__ : List[Any] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) SCREAMING_SNAKE_CASE__ : Union[str, Any] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda SCREAMING_SNAKE_CASE__ : str = timesteps.to(self.discrete_sigmas.device ) SCREAMING_SNAKE_CASE__ : List[Any] = self.discrete_sigmas[timesteps].to(sample.device ) SCREAMING_SNAKE_CASE__ : Dict = self.get_adjacent_sigma(_a , _a ).to(sample.device ) SCREAMING_SNAKE_CASE__ : Tuple = torch.zeros_like(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods SCREAMING_SNAKE_CASE__ : Any = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = diffusion.unsqueeze(-1 ) SCREAMING_SNAKE_CASE__ : Tuple = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of SCREAMING_SNAKE_CASE__ : List[str] = randn_tensor( sample.shape , layout=sample.layout , generator=_a , device=sample.device , dtype=sample.dtype ) SCREAMING_SNAKE_CASE__ : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? SCREAMING_SNAKE_CASE__ : Optional[Any] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_a , prev_sample_mean=_a ) def _a ( self , _a , _a , _a = None , _a = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction SCREAMING_SNAKE_CASE__ : Optional[int] = randn_tensor(sample.shape , layout=sample.layout , generator=_a ).to(sample.device ) # compute step size from the model_output, the noise, and the snr SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() SCREAMING_SNAKE_CASE__ : int = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() SCREAMING_SNAKE_CASE__ : Optional[int] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 SCREAMING_SNAKE_CASE__ : Any = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term SCREAMING_SNAKE_CASE__ : List[str] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): SCREAMING_SNAKE_CASE__ : Any = step_size.unsqueeze(-1 ) SCREAMING_SNAKE_CASE__ : str = sample + step_size * model_output SCREAMING_SNAKE_CASE__ : Optional[int] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def _a ( self , _a , _a , _a , ) -> torch.FloatTensor: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE__ : Tuple = self.discrete_sigmas.to(original_samples.device )[timesteps] SCREAMING_SNAKE_CASE__ : str = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_a ) * sigmas[:, None, None, None] ) SCREAMING_SNAKE_CASE__ : Optional[int] = noise + original_samples return noisy_samples def __len__( self ) -> List[str]: """simple docstring""" return self.config.num_train_timesteps
132
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration a :Union[str, Any] = 500_000 a ,a :Union[str, Any] = os.path.split(__file__) a :Union[str, Any] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def _lowercase ( __lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : str = dataset.map(**__lowerCAmelCase ) @get_duration def _lowercase ( __lowerCAmelCase , **__lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : List[str] = dataset.filter(**__lowerCAmelCase ) def _lowercase ( ) -> str: SCREAMING_SNAKE_CASE__ : str = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Tuple = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) SCREAMING_SNAKE_CASE__ : Any = generate_example_dataset( os.path.join(__lowerCAmelCase , """dataset.arrow""" ) , __lowerCAmelCase , num_examples=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__lowerCAmelCase ) def tokenize(__lowerCAmelCase ): return tokenizer(examples["""text"""] ) SCREAMING_SNAKE_CASE__ : List[str] = map(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = map(__lowerCAmelCase , batched=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""numpy""" ): SCREAMING_SNAKE_CASE__ : Any = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""pandas""" ): SCREAMING_SNAKE_CASE__ : Optional[int] = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): SCREAMING_SNAKE_CASE__ : Any = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): SCREAMING_SNAKE_CASE__ : int = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = map(__lowerCAmelCase , function=__lowerCAmelCase , batched=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = filter(__lowerCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__lowerCAmelCase , """wb""" ) as f: f.write(json.dumps(__lowerCAmelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
132
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = '''blenderbot-small''' _UpperCamelCase : Union[str, Any] = ['''past_key_values'''] _UpperCamelCase : Dict = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self: int , _SCREAMING_SNAKE_CASE: Any=50265 , _SCREAMING_SNAKE_CASE: int=512 , _SCREAMING_SNAKE_CASE: Optional[int]=8 , _SCREAMING_SNAKE_CASE: Tuple=2048 , _SCREAMING_SNAKE_CASE: Any=16 , _SCREAMING_SNAKE_CASE: Any=8 , _SCREAMING_SNAKE_CASE: List[Any]=2048 , _SCREAMING_SNAKE_CASE: str=16 , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: int="gelu" , _SCREAMING_SNAKE_CASE: Tuple=512 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: Dict=0.0 , _SCREAMING_SNAKE_CASE: Dict=0.0 , _SCREAMING_SNAKE_CASE: Dict=0.02 , _SCREAMING_SNAKE_CASE: str=1 , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: Optional[int]=0 , _SCREAMING_SNAKE_CASE: int=1 , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: Optional[Any]=2 , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> int: """simple docstring""" UpperCamelCase_ = vocab_size UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = d_model UpperCamelCase_ = encoder_ffn_dim UpperCamelCase_ = encoder_layers UpperCamelCase_ = encoder_attention_heads UpperCamelCase_ = decoder_ffn_dim UpperCamelCase_ = decoder_layers UpperCamelCase_ = decoder_attention_heads UpperCamelCase_ = dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = activation_dropout UpperCamelCase_ = activation_function UpperCamelCase_ = init_std UpperCamelCase_ = encoder_layerdrop UpperCamelCase_ = decoder_layerdrop UpperCamelCase_ = use_cache UpperCamelCase_ = encoder_layers UpperCamelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , forced_eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class _UpperCamelCase ( lowerCAmelCase_ ): @property def lowercase ( self: Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase_ = {0: "batch"} UpperCamelCase_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCamelCase_ = {0: "batch", 1: "decoder_sequence"} UpperCamelCase_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase_ , UpperCamelCase_ = self.num_layers for i in range(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase_ = {0: "batch", 2: "past_sequence + sequence"} else: UpperCamelCase_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def lowercase ( self: str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_ = super().outputs else: UpperCamelCase_ = super(_SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: UpperCamelCase_ , UpperCamelCase_ = self.num_layers for i in range(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Generate decoder inputs UpperCamelCase_ = seq_length if not self.use_past else 1 UpperCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} UpperCamelCase_ = dict(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase_ , UpperCamelCase_ = common_inputs["input_ids"].shape UpperCamelCase_ = common_inputs["decoder_input_ids"].shape[1] UpperCamelCase_ , UpperCamelCase_ = self.num_attention_heads UpperCamelCase_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase_ = decoder_seq_length + 3 UpperCamelCase_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] , dim=1 ) UpperCamelCase_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase_ , UpperCamelCase_ = self.num_layers UpperCamelCase_ = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - min_num_layers UpperCamelCase_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. UpperCamelCase_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) ) return common_inputs def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase_ , UpperCamelCase_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCamelCase_ = seqlen + 2 UpperCamelCase_ , UpperCamelCase_ = self.num_layers UpperCamelCase_ , UpperCamelCase_ = self.num_attention_heads UpperCamelCase_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase_ = common_inputs["attention_mask"].dtype UpperCamelCase_ = torch.cat( [common_inputs["attention_mask"], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) UpperCamelCase_ = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(_SCREAMING_SNAKE_CASE ) ] return common_inputs def lowercase ( self: int , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase_ = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase_ = tokenizer.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase_ = dict(tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) return common_inputs def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) elif self.task == "causal-lm": UpperCamelCase_ = self._generate_dummy_inputs_for_causal_lm( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) return common_inputs def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int ) -> Any: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_ = super()._flatten_past_key_values_(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = super(_SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
350
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __A : Dict = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(_A ) __A : Tuple = -1 __A : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_A ) __A : Tuple = model.generate(_A , max_new_tokens=10 , do_sample=_A ) __A : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __A : Any = TextStreamer(_A ) model.generate(_A , max_new_tokens=10 , do_sample=_A , streamer=_A ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __A : Optional[int] = cs.out[:-1] self.assertEqual(_A , _A ) def UpperCAmelCase_ ( self ): __A : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __A : str = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(_A ) __A : Optional[int] = -1 __A : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_A ) __A : Union[str, Any] = model.generate(_A , max_new_tokens=10 , do_sample=_A ) __A : Optional[Any] = tokenizer.decode(greedy_ids[0] ) __A : List[str] = TextIteratorStreamer(_A ) __A : str = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} __A : Any = Thread(target=model.generate , kwargs=_A ) thread.start() __A : List[Any] = '' for new_text in streamer: streamer_text += new_text self.assertEqual(_A , _A ) def UpperCAmelCase_ ( self ): __A : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __A : Tuple = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(_A ) __A : Union[str, Any] = -1 __A : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_A ) __A : Optional[int] = model.generate(_A , max_new_tokens=10 , do_sample=_A ) __A : Any = greedy_ids[:, input_ids.shape[1] :] __A : int = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __A : List[Any] = TextStreamer(_A , skip_prompt=_A ) model.generate(_A , max_new_tokens=10 , do_sample=_A , streamer=_A ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __A : Dict = cs.out[:-1] self.assertEqual(_A , _A ) def UpperCAmelCase_ ( self ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __A : Union[str, Any] = AutoTokenizer.from_pretrained('distilgpt2' ) __A : Optional[int] = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(_A ) __A : Optional[int] = -1 __A : Optional[int] = torch.ones((1, 5) , device=_A ).long() * model.config.bos_token_id with CaptureStdout() as cs: __A : Tuple = TextStreamer(_A , skip_special_tokens=_A ) model.generate(_A , max_new_tokens=1 , do_sample=_A , streamer=_A ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __A : str = cs.out[:-1] # Remove the final "\n" __A : str = tokenizer(_A , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def UpperCAmelCase_ ( self ): __A : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __A : Any = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(_A ) __A : Union[str, Any] = -1 __A : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_A ) __A : Any = TextIteratorStreamer(_A , timeout=0.0_0_1 ) __A : Dict = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} __A : Optional[int] = Thread(target=model.generate , kwargs=_A ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_A ): __A : int = '' for new_text in streamer: streamer_text += new_text
280
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> None: __A : int = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(a ) == len(a ), F"""{len(a )} != {len(a )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) UpperCAmelCase : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } UpperCAmelCase : Optional[int] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE ( a , a ) -> Dict: try: __A : int = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(a ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> List[int]: if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(a ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE ( a , a = "student" , a = None , a = None , a=False , a=None , a=None , **a , ) -> Tuple[PreTrainedModel, List[int], List[int]]: __A : List[str] = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(a , a ): AutoTokenizer.from_pretrained(a ).save_pretrained(a ) # purely for convenience __A : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(a ).eval() else: assert isinstance(a , a ), F"""teacher must be a model or string got type {type(a )}""" __A : int = teacher.config.to_diff_dict() try: __A , __A : List[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __A : str = teacher_e if d is None: __A : List[Any] = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): __A , __A : List[Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __A , __A : Optional[int] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __A : int = teacher_e if d is None: __A : Optional[Any] = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(a ) # Copy weights __A : Dict = teacher.config_class(**a ) __A : int = AutoModelForSeqaSeqLM.from_config(a ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __A : Any = student.load_state_dict(teacher.state_dict() , strict=a ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __A , __A : Optional[int] = list(range(a ) ), list(range(a ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(a ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __A : List[int] = pick_layers_to_copy(a , a ) if d_layers_to_copy is None: __A : List[int] = pick_layers_to_copy(a , a ) try: if hasattr( a , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , a ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , a ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , a ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , a ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , a ) copy_layers(teacher.decoder.block , student.decoder.block , a ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) __A : Optional[int] = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(a ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
280
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase__ ( a__: Optional[int] , a__: int , a__: Tuple , a__: List[str] , a__: Dict=True , a__: Optional[int]="pt" ) -> Any: '''simple docstring''' _UpperCAmelCase = {'add_prefix_space': True} if isinstance(a__ , a__ ) and not line.startswith(' ' ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=a__ , padding='max_length' if pad_to_max_length else None , truncation=a__ , return_tensors=a__ , add_special_tokens=a__ , **a__ , ) def lowerCAmelCase__ ( a__: List[Any] , a__: Dict , a__: Union[str, Any]=None , ) -> List[str]: '''simple docstring''' _UpperCAmelCase = input_ids.ne(a__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="train" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="" , ) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + '.source' ) _UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + '.target' ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.src_lens ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , _SCREAMING_SNAKE_CASE ).rstrip('\n' ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , _SCREAMING_SNAKE_CASE ).rstrip('\n' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer _UpperCAmelCase = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_source_length , 'right' ) _UpperCAmelCase = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_target_length , 'right' ) _UpperCAmelCase = source_inputs['input_ids'].squeeze() _UpperCAmelCase = target_inputs['input_ids'].squeeze() _UpperCAmelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return [len(_SCREAMING_SNAKE_CASE ) for x in Path(_SCREAMING_SNAKE_CASE ).open().readlines()] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCAmelCase = torch.stack([x['input_ids'] for x in batch] ) _UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch] ) _UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCAmelCase__ :Tuple = getLogger(__name__) def lowerCAmelCase__ ( a__: List[List] ) -> Any: '''simple docstring''' return list(itertools.chain.from_iterable(a__ ) ) def lowerCAmelCase__ ( a__: str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(a__ , os.path.join(a__ , 'git_log.json' ) ) def lowerCAmelCase__ ( a__: Any , a__: List[str] , a__: Union[str, Any]=4 , **a__: int ) -> Optional[int]: '''simple docstring''' with open(a__ , 'w' ) as f: json.dump(a__ , a__ , indent=a__ , **a__ ) def lowerCAmelCase__ ( a__: List[Any] ) -> str: '''simple docstring''' with open(a__ ) as f: return json.load(a__ ) def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=a__ ) _UpperCAmelCase = { 'repo_id': str(a__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def lowerCAmelCase__ ( a__: Callable , a__: Iterable ) -> List: '''simple docstring''' return list(map(a__ , a__ ) ) def lowerCAmelCase__ ( a__: Any , a__: Dict ) -> Optional[int]: '''simple docstring''' with open(a__ , 'wb' ) as f: return pickle.dump(a__ , a__ ) def lowerCAmelCase__ ( a__: List[str] ) -> Dict: '''simple docstring''' def remove_articles(a__: Dict ): return re.sub(R'\b(a|an|the)\b' , ' ' , a__ ) def white_space_fix(a__: Any ): return " ".join(text.split() ) def remove_punc(a__: Any ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a__: Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a__ ) ) ) ) def lowerCAmelCase__ ( a__: Optional[Any] , a__: List[str] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = normalize_answer(a__ ).split() _UpperCAmelCase = normalize_answer(a__ ).split() _UpperCAmelCase = Counter(a__ ) & Counter(a__ ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(a__ ) _UpperCAmelCase = 1.0 * num_same / len(a__ ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase__ ( a__: Optional[Any] , a__: Union[str, Any] ) -> List[str]: '''simple docstring''' return normalize_answer(a__ ) == normalize_answer(a__ ) def lowerCAmelCase__ ( a__: List[str] , a__: List[str] ) -> Dict: '''simple docstring''' assert len(a__ ) == len(a__ ) _UpperCAmelCase = 0 for hypo, pred in zip(a__ , a__ ): em += exact_match_score(a__ , a__ ) if len(a__ ) > 0: em /= len(a__ ) return {"em": em} def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return model_prefix.startswith('rag' ) def lowerCAmelCase__ ( a__: int , a__: List[Any] , a__: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = 'dropout_rate' for p in extra_params: if getattr(a__ , a__ , a__ ): if not hasattr(a__ , a__ ) and not hasattr(a__ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(a__ ) ) delattr(a__ , a__ ) continue _UpperCAmelCase = p if hasattr(a__ , a__ ) else equivalent_param[p] setattr(a__ , a__ , getattr(a__ , a__ ) ) delattr(a__ , a__ ) return hparams, config
362
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCAmelCase__ ( a__: str , a__: List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' _UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('RGB' ) _UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) _UpperCAmelCase = transform(a__ ).unsqueeze(0 ).to(a__ ) return image def lowerCAmelCase__ ( a__: Optional[int] ) -> int: '''simple docstring''' if "visual_encoder" in key: _UpperCAmelCase = re.sub('visual_encoder*' , 'vision_model.encoder' , a__ ) if "blocks" in key: _UpperCAmelCase = re.sub(R'blocks' , 'layers' , a__ ) if "attn" in key: _UpperCAmelCase = re.sub(R'attn' , 'self_attn' , a__ ) if "norm1" in key: _UpperCAmelCase = re.sub(R'norm1' , 'layer_norm1' , a__ ) if "norm2" in key: _UpperCAmelCase = re.sub(R'norm2' , 'layer_norm2' , a__ ) if "encoder.norm" in key: _UpperCAmelCase = re.sub(R'encoder.norm' , 'post_layernorm' , a__ ) if "encoder.patch_embed.proj" in key: _UpperCAmelCase = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , a__ ) if "encoder.pos_embed" in key: _UpperCAmelCase = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , a__ ) if "encoder.cls_token" in key: _UpperCAmelCase = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , a__ ) if "self_attn" in key: _UpperCAmelCase = re.sub(R'self_attn.proj' , 'self_attn.projection' , a__ ) return key @torch.no_grad() def lowerCAmelCase__ ( a__: Optional[Any] , a__: List[str]=None ) -> Optional[Any]: '''simple docstring''' if config_path is not None: _UpperCAmelCase = BlipConfig.from_pretrained(a__ ) else: _UpperCAmelCase = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) _UpperCAmelCase = BlipForConditionalGeneration(a__ ).eval() _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' _UpperCAmelCase = blip_decoder(pretrained=a__ , image_size=3_8_4 , vit='base' ) _UpperCAmelCase = pt_model.eval() _UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value hf_model.load_state_dict(a__ ) _UpperCAmelCase = 3_8_4 _UpperCAmelCase = load_demo_image(image_size=a__ , device='cpu' ) _UpperCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) _UpperCAmelCase = tokenizer(['a picture of'] ).input_ids _UpperCAmelCase = hf_model.generate(a__ , a__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] _UpperCAmelCase = hf_model.generate(a__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(a__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _UpperCAmelCase = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) _UpperCAmelCase = blip_vqa(pretrained=a__ , image_size=a__ , vit='base' ) vqa_model.eval() _UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value _UpperCAmelCase = BlipForQuestionAnswering(a__ ) hf_vqa_model.load_state_dict(a__ ) _UpperCAmelCase = ['How many dogs are in this image?'] _UpperCAmelCase = tokenizer(a__ , return_tensors='pt' ).input_ids _UpperCAmelCase = hf_vqa_model.generate(a__ , a__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' _UpperCAmelCase = blip_itm(pretrained=a__ , image_size=a__ , vit='base' ) itm_model.eval() _UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value _UpperCAmelCase = BlipForImageTextRetrieval(a__ ) _UpperCAmelCase = ['A picture of a woman with a dog sitting in a beach'] _UpperCAmelCase = tokenizer( a__ , return_tensors='pt' , padding='max_length' , truncation=a__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(a__ ) hf_itm_model.eval() _UpperCAmelCase = hf_itm_model(a__ , a__ , use_itm_head=a__ ) _UpperCAmelCase = hf_itm_model(a__ , a__ , use_itm_head=a__ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase__ :int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase__ :List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
185
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ (lowerCamelCase_ ): __lowerCamelCase : Any = ["""image_processor""", """tokenizer"""] __lowerCamelCase : Dict = """AutoImageProcessor""" __lowerCamelCase : Any = """AutoTokenizer""" def __init__( self , a=None , a=None , **a): lowercase__ : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) lowercase__ : Dict = kwargs.pop('feature_extractor') lowercase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_UpperCAmelCase , _UpperCAmelCase) lowercase__ : Union[str, Any] = self.image_processor lowercase__ : Dict = False def __call__( self , *a , **a): if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase) lowercase__ : Union[str, Any] = kwargs.pop('images' , _UpperCAmelCase) lowercase__ : Tuple = kwargs.pop('text' , _UpperCAmelCase) if len(_UpperCAmelCase) > 0: lowercase__ : Dict = args[0] lowercase__ : List[str] = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.') if images is not None: lowercase__ : Union[str, Any] = self.image_processor(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase) if text is not None: lowercase__ : Tuple = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase) if text is None: return inputs elif images is None: return encodings else: lowercase__ : Tuple = encodings['input_ids'] return inputs def snake_case_ ( self , *a , **a): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase) def snake_case_ ( self , *a , **a): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase) @contextmanager def snake_case_ ( self): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.') lowercase__ : Dict = True lowercase__ : List[str] = self.tokenizer yield lowercase__ : str = self.image_processor lowercase__ : Tuple = False def snake_case_ ( self , a , a=False , a=None): if added_vocab is None: lowercase__ : Tuple = self.tokenizer.get_added_vocab() lowercase__ : Dict = {} while tokens: lowercase__ : str = re.search(r'<s_(.*?)>' , _UpperCAmelCase , re.IGNORECASE) if start_token is None: break lowercase__ : Tuple = start_token.group(1) lowercase__ : Optional[Any] = re.search(rf"""</s_{key}>""" , _UpperCAmelCase , re.IGNORECASE) lowercase__ : Any = start_token.group() if end_token is None: lowercase__ : Union[str, Any] = tokens.replace(_UpperCAmelCase , '') else: lowercase__ : Tuple = end_token.group() lowercase__ : Dict = re.escape(_UpperCAmelCase) lowercase__ : Optional[Any] = re.escape(_UpperCAmelCase) lowercase__ : Dict = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , _UpperCAmelCase , re.IGNORECASE) if content is not None: lowercase__ : str = content.group(1).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowercase__ : Optional[int] = self.tokenajson(_UpperCAmelCase , is_inner_value=_UpperCAmelCase , added_vocab=_UpperCAmelCase) if value: if len(_UpperCAmelCase) == 1: lowercase__ : Tuple = value[0] lowercase__ : Optional[int] = value else: # leaf nodes lowercase__ : Any = [] for leaf in content.split(r'<sep/>'): lowercase__ : Any = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowercase__ : Tuple = leaf[1:-2] # for categorical special tokens output[key].append(_UpperCAmelCase) if len(output[key]) == 1: lowercase__ : Optional[Any] = output[key][0] lowercase__ : Optional[Any] = tokens[tokens.find(_UpperCAmelCase) + len(_UpperCAmelCase) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_UpperCAmelCase , added_vocab=_UpperCAmelCase) if len(_UpperCAmelCase): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def snake_case_ ( self): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def snake_case_ ( self): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
214
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ): '''simple docstring''' UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
346
0
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a__ : Union[str, Any] = logging.get_logger('transformers.models.speecht5') def _lowercase ( __A ,__A ,__A ): '''simple docstring''' hf_model.apply_weight_norm() __UpperCamelCase = checkpoint["""input_conv.weight_g"""] __UpperCamelCase = checkpoint["""input_conv.weight_v"""] __UpperCamelCase = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): __UpperCamelCase = checkpoint[f"upsamples.{i}.1.weight_g"] __UpperCamelCase = checkpoint[f"upsamples.{i}.1.weight_v"] __UpperCamelCase = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __UpperCamelCase = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] __UpperCamelCase = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] __UpperCamelCase = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] __UpperCamelCase = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] __UpperCamelCase = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] __UpperCamelCase = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] __UpperCamelCase = checkpoint["""output_conv.1.weight_g"""] __UpperCamelCase = checkpoint["""output_conv.1.weight_v"""] __UpperCamelCase = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,): '''simple docstring''' if config_path is not None: __UpperCamelCase = SpeechTaHifiGanConfig.from_pretrained(__A ) else: __UpperCamelCase = SpeechTaHifiGanConfig() __UpperCamelCase = SpeechTaHifiGan(__A ) __UpperCamelCase = torch.load(__A ) load_weights(orig_checkpoint["""model"""]["""generator"""] ,__A ,__A ) __UpperCamelCase = np.load(__A ) __UpperCamelCase = stats[0].reshape(-1 ) __UpperCamelCase = stats[1].reshape(-1 ) __UpperCamelCase = torch.from_numpy(__A ).float() __UpperCamelCase = torch.from_numpy(__A ).float() model.save_pretrained(__A ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(__A ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) a__ : Any = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
243
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ) -> Any: torch.manual_seed(0 ) __UpperCamelCase = UNetaDModel( sample_size=(3_2, 6_4) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def __lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=1_0 , ) return model @property def __lowerCamelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( sample_size=(1_2_8, 6_4) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) __UpperCamelCase = UNetaDModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __UpperCamelCase = DDPMScheduler() __UpperCamelCase = AudioDiffusionPipeline(vqvae=lowercase , unet=self.dummy_unet , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase , steps=4 ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase , steps=4 , return_dict=lowercase ) __UpperCamelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __UpperCamelCase = DDIMScheduler() __UpperCamelCase = self.dummy_vqvae_and_unet __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) np.random.seed(0 ) __UpperCamelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(raw_audio=lowercase , generator=lowercase , start_step=5 , steps=1_0 ) __UpperCamelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = self.dummy_unet_condition __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowercase , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) np.random.seed(0 ) __UpperCamelCase = torch.rand((1, 1, 1_0) ) __UpperCamelCase = pipe(generator=lowercase , encoding=lowercase ) __UpperCamelCase = output.images[0] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> str: __UpperCamelCase = torch_device __UpperCamelCase = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
243
1
import os import numpy import onnx def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = a.name __SCREAMING_SNAKE_CASE : Union[str, Any] = b.name __SCREAMING_SNAKE_CASE : List[Any] = '''''' __SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' __SCREAMING_SNAKE_CASE : List[Any] = a == b __SCREAMING_SNAKE_CASE : Dict = name_a __SCREAMING_SNAKE_CASE : str = name_b return res def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(snake_case , snake_case ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , snake_case , snake_case ) _graph_replace_input_with(node_proto.attribute[1].g , snake_case , snake_case ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , snake_case , snake_case ) def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(snake_case , snake_case , snake_case ) def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = list(model.graph.initializer ) __SCREAMING_SNAKE_CASE : Dict = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __SCREAMING_SNAKE_CASE : Any = inits[i].name __SCREAMING_SNAKE_CASE : Dict = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , snake_case , snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = os.path.dirname(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.basename(snake_case ) __SCREAMING_SNAKE_CASE : Tuple = onnx.load(os.path.join(snake_case , snake_case ) ) __SCREAMING_SNAKE_CASE : Dict = list(model.graph.initializer ) __SCREAMING_SNAKE_CASE : Optional[Any] = set() __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : int = 0 for i in range(len(snake_case ) ): if i in dup_set: continue for j in range(i + 1 , len(snake_case ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(snake_case ) dup_set.add(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = inits[j].data_type __SCREAMING_SNAKE_CASE : List[Any] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , snake_case ) total_reduced_size += mem_size __SCREAMING_SNAKE_CASE : List[Any] = inits[i].name __SCREAMING_SNAKE_CASE : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(snake_case ) else: __SCREAMING_SNAKE_CASE : List[str] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) __SCREAMING_SNAKE_CASE : Any = sorted(snake_case ) _remove_dup_initializers_from_model(snake_case , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Dict = '''optimized_''' + model_file_name __SCREAMING_SNAKE_CASE : List[str] = os.path.join(snake_case , snake_case ) onnx.save(snake_case , snake_case ) return new_model
303
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''mra''' def __init__( self : str , _A : List[str]=5_0265 , _A : int=768 , _A : Union[str, Any]=12 , _A : Union[str, Any]=12 , _A : Union[str, Any]=3072 , _A : Any="gelu" , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[str]=512 , _A : Tuple=1 , _A : List[str]=0.02 , _A : Union[str, Any]=1e-5 , _A : Optional[int]="absolute" , _A : Union[str, Any]=4 , _A : List[Any]="full" , _A : Union[str, Any]=0 , _A : Union[str, Any]=0 , _A : Optional[Any]=1 , _A : Union[str, Any]=0 , _A : Any=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : str = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : Any = type_vocab_size __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type __SCREAMING_SNAKE_CASE : str = block_per_row __SCREAMING_SNAKE_CASE : Union[str, Any] = approx_mode __SCREAMING_SNAKE_CASE : Optional[int] = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE : List[Any] = initial_prior_diagonal_n_blocks
303
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A = logging.get_logger(__name__) A = {"vocab_file": "spiece.model"} A = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } A = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) A = 0 A = 1 A = 2 A = 3 A = 4 class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = '''left''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<sep>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<cls>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<eop>", "<eod>"] , _UpperCAmelCase = None , **_UpperCAmelCase , ): __a : str = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token __a : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __a : List[Any] = 3 __a : Optional[int] = do_lower_case __a : Any = remove_space __a : Dict = keep_accents __a : List[str] = vocab_file __a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) @property def _lowerCamelCase ( self ): return len(self.sp_model ) def _lowerCamelCase ( self ): __a : List[Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __a : Optional[int] = self.__dict__.copy() __a : Any = None return state def __setstate__( self , _UpperCAmelCase ): __a : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a : Optional[Any] = {} __a : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , _UpperCAmelCase ): if self.remove_space: __a : str = ''' '''.join(inputs.strip().split() ) else: __a : int = inputs __a : List[Any] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __a : Union[str, Any] = unicodedata.normalize('''NFKD''' , _snake_case ) __a : Any = ''''''.join([c for c in outputs if not unicodedata.combining(_snake_case )] ) if self.do_lower_case: __a : Optional[int] = outputs.lower() return outputs def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Union[str, Any] = self.preprocess_text(_snake_case ) __a : List[Any] = self.sp_model.encode(_snake_case , out_type=_snake_case ) __a : Any = [] for piece in pieces: if len(_snake_case ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __a : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_snake_case , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __a : Union[str, Any] = cur_pieces[1:] else: __a : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_snake_case ) else: new_pieces.append(_snake_case ) return new_pieces def _lowerCamelCase ( self , _UpperCAmelCase ): return self.sp_model.PieceToId(_snake_case ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.sp_model.IdToPiece(_snake_case ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case , ''' ''' ).strip() return out_string def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = True , **_UpperCAmelCase , ): __a : Optional[int] = kwargs.pop('''use_source_tokenizer''' , _snake_case ) __a : Dict = self.convert_ids_to_tokens(_snake_case , skip_special_tokens=_snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __a : str = [] __a : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_snake_case ) ) __a : Any = [] sub_texts.append(_snake_case ) else: current_sub_text.append(_snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __a : List[str] = ''''''.join(_snake_case ) __a : Optional[int] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __a : Optional[Any] = self.clean_up_tokenization(_snake_case ) return clean_text else: return text def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Dict = [self.sep_token_id] __a : List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is not None: return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1, 1] return ([0] * len(_snake_case )) + [1, 1] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Optional[Any] = [self.sep_token_id] __a : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : Dict = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , '''wb''' ) as fi: __a : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
357
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=1 , ): __a : Dict = parent __a : str = batch_size __a : Union[str, Any] = seq_length __a : Any = is_training __a : int = use_input_mask __a : Optional[int] = use_token_type_ids __a : int = use_labels __a : int = vocab_size __a : int = hidden_size __a : str = num_hidden_layers __a : str = num_attention_heads __a : Any = intermediate_size __a : Union[str, Any] = hidden_act __a : Optional[int] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Union[str, Any] = type_vocab_size __a : List[str] = type_sequence_label_size __a : List[str] = initializer_range __a : Optional[int] = num_labels __a : List[str] = num_choices __a : int = scope __a : Union[str, Any] = q_groups __a : Dict = k_groups __a : List[str] = v_groups __a : Any = post_attention_groups __a : Optional[int] = intermediate_groups __a : List[str] = output_groups def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Optional[Any] = None if self.use_input_mask: __a : int = random_attention_mask([self.batch_size, self.seq_length] ) __a : List[str] = None __a : Union[str, Any] = None __a : int = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Dict = ids_tensor([self.batch_size] , self.num_choices ) __a : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = SqueezeBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Optional[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = SqueezeBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = SqueezeBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Optional[int] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Any = self.num_labels __a : List[Any] = SqueezeBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = self.num_labels __a : List[str] = SqueezeBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Any = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = self.num_choices __a : Union[str, Any] = SqueezeBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : Optional[Any] = config_and_inputs __a : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __lowerCAmelCase = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : Union[str, Any] = SqueezeBertModelTester(self ) __a : Dict = ConfigTester(self , config_class=_UpperCAmelCase , dim=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Any = SqueezeBertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : int = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) __a : Tuple = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) __a : List[str] = model(_UpperCAmelCase )[0] __a : int = torch.Size((1, 3) ) self.assertEqual(output.shape , _UpperCAmelCase ) __a : int = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) )
188
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Tuple = inspect.getfile(accelerate.test_utils ) _snake_case : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) _snake_case : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) _snake_case : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) _snake_case : Optional[int] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_, env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase_ ( self: Dict ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) _snake_case : Optional[int] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_, env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : int = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_, env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) _snake_case : Tuple = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1, cuda_visible_devices="""0,1""" ): execute_subprocess_async(a_, env=os.environ.copy() ) if __name__ == "__main__": A_ = Accelerator() A_ = (accelerator.state.process_index + 2, 10) A_ = torch.randint(0, 10, shape).to(accelerator.device) A_ = '''''' A_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." A_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." A_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
64
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ = 16 A_ = 32 def UpperCAmelCase__ (snake_case__ : Accelerator , snake_case__ : int = 16 ): """simple docstring""" _snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _snake_case : Any = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(snake_case__ : Any ): # max_length=None => use the model max length (it's actually the default) _snake_case : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case : List[Any] = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case : Optional[int] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case : str = 16 elif accelerator.mixed_precision != "no": _snake_case : Optional[int] = 8 else: _snake_case : Optional[int] = None return tokenizer.pad( snake_case__ , padding="""longest""" , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _snake_case : Optional[int] = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) _snake_case : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Any ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , snake_case__ ) == "1": _snake_case : List[Any] = 2 # Initialize accelerator _snake_case : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case : Tuple = config["""lr"""] _snake_case : str = int(config["""num_epochs"""] ) _snake_case : Union[str, Any] = int(config["""seed"""] ) _snake_case : Union[str, Any] = int(config["""batch_size"""] ) _snake_case : List[str] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case__ ) def inner_training_loop(snake_case__ : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case : Tuple = model.to(accelerator.device ) # Instantiate optimizer _snake_case : str = AdamW(params=model.parameters() , lr=snake_case__ ) _snake_case , _snake_case : Optional[int] = get_dataloaders(snake_case__ , snake_case__ ) # Instantiate scheduler _snake_case : str = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=1_00 , num_training_steps=(len(snake_case__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[str] = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _snake_case : int = model(**snake_case__ ) _snake_case : str = outputs.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case : int = model(**snake_case__ ) _snake_case : Optional[Any] = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) _snake_case : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , snake_case__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=snake_case__ , default=snake_case__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _snake_case : Dict = parser.parse_args() _snake_case : int = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
64
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Any = tempfile.mkdtemp() # fmt: off _snake_case : Any = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _snake_case : Union[str, Any] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _snake_case : Tuple = {'unk_token': '<unk>'} _snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) _snake_case : Union[str, Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _snake_case : int = os.path.join(self.tmpdirname , UpperCamelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **UpperCamelCase ) def UpperCamelCase_ ( self : Any , **UpperCamelCase : Tuple ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , **UpperCamelCase : Any ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _snake_case : Any = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : int = self.get_tokenizer() _snake_case : List[str] = self.get_rust_tokenizer() _snake_case : Dict = self.get_image_processor() _snake_case : int = OwlViTProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase ) _snake_case : str = OwlViTProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case : str = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Any = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _snake_case : Optional[int] = self.get_image_processor(do_normalize=UpperCamelCase ) _snake_case : Any = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.get_image_processor() _snake_case : Tuple = self.get_tokenizer() _snake_case : Optional[int] = OwlViTProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) _snake_case : List[Any] = self.prepare_image_inputs() _snake_case : List[Any] = image_processor(UpperCamelCase , return_tensors='np' ) _snake_case : Any = processor(images=UpperCamelCase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_image_processor() _snake_case : Optional[int] = self.get_tokenizer() _snake_case : Optional[int] = OwlViTProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) _snake_case : Optional[Any] = 'lower newer' _snake_case : Optional[int] = processor(text=UpperCamelCase , return_tensors='np' ) _snake_case : List[Any] = tokenizer(UpperCamelCase , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_image_processor() _snake_case : List[str] = self.get_tokenizer() _snake_case : Optional[int] = OwlViTProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) _snake_case : Tuple = 'lower newer' _snake_case : Union[str, Any] = self.prepare_image_inputs() _snake_case : Any = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = 'google/owlvit-base-patch32' _snake_case : Dict = OwlViTProcessor.from_pretrained(UpperCamelCase ) _snake_case : List[Any] = ['cat', 'nasa badge'] _snake_case : Optional[int] = processor(text=UpperCamelCase ) _snake_case : Any = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : str = 'google/owlvit-base-patch32' _snake_case : List[Any] = OwlViTProcessor.from_pretrained(UpperCamelCase ) _snake_case : Optional[int] = [['cat', 'nasa badge'], ['person']] _snake_case : List[str] = processor(text=UpperCamelCase ) _snake_case : Tuple = 16 _snake_case : Tuple = len(UpperCamelCase ) _snake_case : int = max([len(UpperCamelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = 'google/owlvit-base-patch32' _snake_case : Any = OwlViTProcessor.from_pretrained(UpperCamelCase ) _snake_case : Any = ['cat', 'nasa badge'] _snake_case : List[Any] = processor(text=UpperCamelCase ) _snake_case : List[Any] = 16 _snake_case : Tuple = inputs['input_ids'] _snake_case : Tuple = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.get_image_processor() _snake_case : Dict = self.get_tokenizer() _snake_case : Tuple = OwlViTProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) _snake_case : str = self.prepare_image_inputs() _snake_case : Optional[int] = self.prepare_image_inputs() _snake_case : str = processor(images=UpperCamelCase , query_images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : int = self.get_image_processor() _snake_case : List[str] = self.get_tokenizer() _snake_case : List[Any] = OwlViTProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) _snake_case : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case : Optional[int] = processor.batch_decode(UpperCamelCase ) _snake_case : List[Any] = tokenizer.batch_decode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase )
260
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: int , lowerCAmelCase: List[Any] )-> Dict: # Initialise PyTorch model _snake_case : Dict = RemBertConfig.from_json_file(lowerCAmelCase ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase ) ) ) _snake_case : Optional[Any] = RemBertModel(lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase ) ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
260
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __lowercase : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , *__a , **__a ): '''simple docstring''' warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
27
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A__ : Any =logging.get_logger(__name__) A__ : List[Any] ='''▁''' A__ : Optional[int] ={'''vocab_file''': '''sentencepiece.bpe.model'''} A__ : Union[str, Any] ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } A__ : Dict ={ '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off A__ : Union[str, Any] =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCAmelCase ( snake_case_ ): _lowercase: int = VOCAB_FILES_NAMES _lowercase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase: str = ['''input_ids''', '''attention_mask'''] _lowercase: List[int] = [] _lowercase: List[int] = [] def __init__( self : int , __snake_case : Optional[Any] , __snake_case : Dict="<s>" , __snake_case : Optional[int]="</s>" , __snake_case : Dict="</s>" , __snake_case : str="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : List[Any]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Optional[Dict[str, Any]] = None , __snake_case : str=None , __snake_case : str=False , **__snake_case : List[Any] , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase = legacy_behaviour super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , tokenizer_file=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__snake_case , **__snake_case , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__snake_case ) } _lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _lowerCAmelCase = src_lang if src_lang is not None else """eng_Latn""" _lowerCAmelCase = self.lang_code_to_id[self._src_lang] _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ) -> List[str]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None _lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , __snake_case : Optional[Any] ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase__ ( self : List[Any] ) -> Any: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase__ ( self : int ) -> str: return self._src_lang @src_lang.setter def lowercase__ ( self : Dict , __snake_case : str ) -> None: _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowercase__ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] , __snake_case : Optional[str] , **__snake_case : Optional[int] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case ) _lowerCAmelCase = self.convert_tokens_to_ids(__snake_case ) _lowerCAmelCase = tgt_lang_id return inputs def lowercase__ ( self : List[Any] ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Optional[int] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowercase__ ( self : Optional[Any] , __snake_case : Union[str, Any] ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(__snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : List[Any] , __snake_case : Union[str, Any] ) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : Optional[int] , __snake_case : Union[str, Any] ) -> str: _lowerCAmelCase = """""".join(__snake_case ).replace(__snake_case , """ """ ).strip() return out_string def lowercase__ ( self : str , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def lowercase__ ( self : Optional[Any] , __snake_case : List[str] , __snake_case : str = "eng_Latn" , __snake_case : Optional[List[str]] = None , __snake_case : str = "fra_Latn" , **__snake_case : Optional[int] , ) -> BatchEncoding: _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : str ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Dict ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : str , __snake_case : int ) -> None: _lowerCAmelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] def lowercase__ ( self : Any , __snake_case : str ) -> None: _lowerCAmelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id]
70
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def _lowerCAmelCase ( A__: Optional[int] , A__: Union[str, Any] ): '''simple docstring''' UpperCAmelCase = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) UpperCAmelCase = DatasetInfosDict.from_directory(A__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def _lowerCAmelCase ( A__: Union[str, Any] , A__: DatasetInfo ): '''simple docstring''' UpperCAmelCase = str(A__ ) dataset_info.write_to_directory(A__ ) UpperCAmelCase = DatasetInfo.from_directory(A__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(A__ , '''dataset_info.json''' ) ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) UpperCAmelCase = dataset_info._to_yaml_dict() assert sorted(A__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) UpperCAmelCase = yaml.safe_dump(A__ ) UpperCAmelCase = yaml.safe_load(A__ ) assert dataset_info_yaml_dict == reloaded def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = DatasetInfo() UpperCAmelCase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=1337 ), } ), ] , ) def _lowerCAmelCase ( A__: Optional[Any] , A__: DatasetInfosDict ): '''simple docstring''' UpperCAmelCase = str(A__ ) dataset_infos_dict.write_to_directory(A__ ) UpperCAmelCase = DatasetInfosDict.from_directory(A__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): UpperCAmelCase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml UpperCAmelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(A__ , '''README.md''' ) )
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __magic_name__ = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["BeitFeatureExtractor"] __magic_name__ = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
152
0
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :int = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Any = """align_text_model""" def __init__( self : str , snake_case_ : Any=3_0_5_2_2 , snake_case_ : Dict=7_6_8 , snake_case_ : Union[str, Any]=1_2 , snake_case_ : Dict=1_2 , snake_case_ : Optional[int]=3_0_7_2 , snake_case_ : Optional[int]="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : Tuple=0.1 , snake_case_ : Dict=5_1_2 , snake_case_ : Optional[Any]=2 , snake_case_ : int=0.0_2 , snake_case_ : Dict=1e-12 , snake_case_ : List[Any]=0 , snake_case_ : Optional[Any]="absolute" , snake_case_ : Dict=True , **snake_case_ : Dict , ): super().__init__(**snake_case_ ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = pad_token_id @classmethod def lowercase ( cls : Optional[int] , snake_case_ : Union[str, os.PathLike] , **snake_case_ : Optional[int] ): cls._set_token_in_kwargs(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": _UpperCAmelCase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = """align_vision_model""" def __init__( self : int , snake_case_ : int = 3 , snake_case_ : int = 6_0_0 , snake_case_ : float = 2.0 , snake_case_ : float = 3.1 , snake_case_ : int = 8 , snake_case_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , snake_case_ : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , snake_case_ : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , snake_case_ : List[int] = [] , snake_case_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , snake_case_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , snake_case_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , snake_case_ : float = 0.2_5 , snake_case_ : str = "swish" , snake_case_ : int = 2_5_6_0 , snake_case_ : str = "mean" , snake_case_ : float = 0.0_2 , snake_case_ : float = 0.0_0_1 , snake_case_ : float = 0.9_9 , snake_case_ : float = 0.2 , **snake_case_ : Dict , ): super().__init__(**snake_case_ ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = width_coefficient _UpperCAmelCase = depth_coefficient _UpperCAmelCase = depth_divisor _UpperCAmelCase = kernel_sizes _UpperCAmelCase = in_channels _UpperCAmelCase = out_channels _UpperCAmelCase = depthwise_padding _UpperCAmelCase = strides _UpperCAmelCase = num_block_repeats _UpperCAmelCase = expand_ratios _UpperCAmelCase = squeeze_expansion_ratio _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dim _UpperCAmelCase = pooling_type _UpperCAmelCase = initializer_range _UpperCAmelCase = batch_norm_eps _UpperCAmelCase = batch_norm_momentum _UpperCAmelCase = drop_connect_rate _UpperCAmelCase = sum(snake_case_ ) * 4 @classmethod def lowercase ( cls : int , snake_case_ : Union[str, os.PathLike] , **snake_case_ : Tuple ): cls._set_token_in_kwargs(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": _UpperCAmelCase = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = """align""" _lowerCamelCase : Any = True def __init__( self : Tuple , snake_case_ : Dict=None , snake_case_ : Dict=None , snake_case_ : Tuple=6_4_0 , snake_case_ : List[str]=1.0 , snake_case_ : Dict=0.0_2 , **snake_case_ : Optional[int] , ): super().__init__(**snake_case_ ) if text_config is None: _UpperCAmelCase = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: _UpperCAmelCase = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) _UpperCAmelCase = AlignTextConfig(**snake_case_ ) _UpperCAmelCase = AlignVisionConfig(**snake_case_ ) _UpperCAmelCase = projection_dim _UpperCAmelCase = temperature_init_value _UpperCAmelCase = initializer_range @classmethod def lowercase ( cls : Optional[Any] , snake_case_ : AlignTextConfig , snake_case_ : AlignVisionConfig , **snake_case_ : Union[str, Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def lowercase ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.text_config.to_dict() _UpperCAmelCase = self.vision_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
22
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
254
0
'''simple docstring''' import argparse __lowercase: List[Any] = "docs/source/_static/js/custom.js" def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 UpperCamelCase__ = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_UpperCamelCase ) if __name__ == "__main__": __lowercase: List[Any] = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") __lowercase: List[Any] = parser.parse_args() update_custom_js(args.version)
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
1
snake_case_ : List[Any] = 9.80_665 def A (__A : float , __A : float , __A : float = g ) -> float: """simple docstring""" if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
51
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __snake_case ( a , a , a , unittest.TestCase ): UpperCAmelCase__ : List[Any] = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) UpperCAmelCase__ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(_snake_case) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase ( self : Union[str, Any] , _snake_case : Any , _snake_case : Dict=0): """simple docstring""" if str(_snake_case).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_snake_case) else: UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = 2 UpperCAmelCase_ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case) , ) UpperCAmelCase_ = floats_tensor(control_image.shape , rng=random.Random(_snake_case)).to(_snake_case) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_snake_case)).convert('''RGB''').resize((64, 64)) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def lowerCamelCase ( self : Any): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase ( self : Any): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3) class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : str = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ : str = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowerCamelCase ( self : str): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0) def init_weights(_snake_case : Optional[int]): if isinstance(_snake_case , torch.nn.Convad): torch.nn.init.normal(m.weight) m.bias.data.fill_(1.0) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case) torch.manual_seed(0) UpperCAmelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case) torch.manual_seed(0) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(_snake_case) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = MultiControlNetModel([controlneta, controlneta]) UpperCAmelCase_ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase ( self : int , _snake_case : Union[str, Any] , _snake_case : str=0): """simple docstring""" if str(_snake_case).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_snake_case) else: UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = 2 UpperCAmelCase_ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case) , ), ] UpperCAmelCase_ = floats_tensor(control_image[0].shape , rng=random.Random(_snake_case)).to(_snake_case) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_snake_case)).convert('''RGB''').resize((64, 64)) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_snake_case) pipe.to(_snake_case) UpperCAmelCase_ = 1_0.0 UpperCAmelCase_ = 4 UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case)[0] UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2)[0] UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7])[0] UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = steps UpperCAmelCase_ = scale UpperCAmelCase_ = pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8])[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase ( self : int): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def lowerCamelCase ( self : int): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_snake_case) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case) except NotImplementedError: pass @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''') UpperCAmelCase_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=_snake_case , controlnet=_snake_case) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = '''evil space-punk bird''' UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''').resize((512, 512)) UpperCAmelCase_ = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''').resize((512, 512)) UpperCAmelCase_ = pipe( _snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''') assert np.abs(expected_image - image).max() < 9e-2
51
1
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _snake_case = TypeVar('T') class UpperCamelCase ( Generic[T] ): UpperCamelCase : deque[T] # Cache store of keys UpperCamelCase : set[T] # References of the keys in cache UpperCamelCase : int = 10 # Maximum capacity of cache def __init__( self : Any , UpperCAmelCase__ : int ) -> None: _a : int = deque() _a : Optional[Any] = set() if not n: _a : Tuple = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: _a : Union[str, Any] = n def _lowercase ( self : List[str] , UpperCAmelCase__ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _a : List[Any] = self.dq_store.pop() self.key_reference.remove(UpperCAmelCase__ ) else: self.dq_store.remove(UpperCAmelCase__ ) self.dq_store.appendleft(UpperCAmelCase__ ) self.key_reference.add(UpperCAmelCase__ ) def _lowercase ( self : str ) -> None: for k in self.dq_store: print(UpperCAmelCase__ ) def __repr__( self : int ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() _snake_case = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
324
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
1
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _UpperCamelCase = 'sshleifer/mar_enro_6_3_student' class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def _lowercase ( self : Optional[int] ) -> Any: super().setUp() __lowerCamelCase : str = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=_a , ) __lowerCamelCase : List[str] = f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def _lowercase ( self : Union[str, Any] ) -> str: MarianMTModel.from_pretrained(_a ) @slow @require_torch_gpu def _lowercase ( self : Optional[int] ) -> List[Any]: __lowerCamelCase : Optional[int] = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script __lowerCamelCase : int = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() __lowerCamelCase : Dict = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): __lowerCamelCase : Optional[int] = bash_script.replace(_a , str(_a ) ) __lowerCamelCase : List[Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") __lowerCamelCase : Tuple = f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future __lowerCamelCase : str = ['finetune.py'] + bash_script.split() + args with patch.object(_a , 'argv' , _a ): __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() __lowerCamelCase : List[Any] = pl.Trainer.add_argparse_args(_a ) __lowerCamelCase : Optional[int] = SummarizationModule.add_model_specific_args(_a , os.getcwd() ) __lowerCamelCase : Any = parser.parse_args() __lowerCamelCase : int = main(_a ) # Check metrics __lowerCamelCase : Dict = load_json(model.metrics_save_path ) __lowerCamelCase : Tuple = metrics['val'][0] __lowerCamelCase : str = metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] , _a ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict __lowerCamelCase : Any = os.listdir(_a ) __lowerCamelCase : List[str] = [x for x in contents if x.endswith('.ckpt' )][0] __lowerCamelCase : str = os.path.join(args.output_dir , _a ) __lowerCamelCase : List[Any] = torch.load(_a , map_location='cpu' ) __lowerCamelCase : List[Any] = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowerCamelCase : Tuple = {os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowercase ( self : List[Any] ) -> List[str]: __lowerCamelCase : Tuple = f'{self.test_file_dir_str}/test_data/wmt_en_ro' __lowerCamelCase : List[Any] = { '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script __lowerCamelCase : Any = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) __lowerCamelCase : Union[str, Any] = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) __lowerCamelCase : str = bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): __lowerCamelCase : Any = bash_script.replace(_a , str(_a ) ) __lowerCamelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() __lowerCamelCase : Tuple = bash_script.replace('--fp16' , '' ) __lowerCamelCase : List[str] = 6 __lowerCamelCase : str = ( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(_a , 'argv' , _a ): __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() __lowerCamelCase : int = pl.Trainer.add_argparse_args(_a ) __lowerCamelCase : List[Any] = SummarizationDistiller.add_model_specific_args(_a , os.getcwd() ) __lowerCamelCase : int = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu __lowerCamelCase : Union[str, Any] = distill_main(_a ) # Check metrics __lowerCamelCase : Optional[int] = load_json(model.metrics_save_path ) __lowerCamelCase : Tuple = metrics['val'][0] __lowerCamelCase : int = metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] , _a ) # check lightning ckpt can be loaded and has a reasonable statedict __lowerCamelCase : Union[str, Any] = os.listdir(_a ) __lowerCamelCase : List[str] = [x for x in contents if x.endswith('.ckpt' )][0] __lowerCamelCase : List[str] = os.path.join(args.output_dir , _a ) __lowerCamelCase : str = torch.load(_a , map_location='cpu' ) __lowerCamelCase : str = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowerCamelCase : List[Any] = {os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
208
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = 100 ,) -> float: __lowerCamelCase : Dict = x_start __lowerCamelCase : int = fnc(_lowerCAmelCase ) __lowerCamelCase : Dict = 0.0 for _ in range(_lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length __lowerCamelCase : List[str] = (x_end - x_start) / steps + xa __lowerCamelCase : List[Any] = fnc(_lowerCAmelCase ) length += math.hypot(xa - xa ,fxa - fxa ) # Increment step __lowerCamelCase : Any = xa __lowerCamelCase : Tuple = fxa return length if __name__ == "__main__": def a_ ( _lowerCAmelCase ) -> Dict: return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') _UpperCamelCase = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
208
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=7 , __lowerCamelCase=3 , __lowerCamelCase=3_0 , __lowerCamelCase=4_0_0 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=[0.5, 0.5, 0.5] , __lowerCamelCase=[0.5, 0.5, 0.5] , __lowerCamelCase=True , __lowerCamelCase=1 / 2_5_5 , __lowerCamelCase=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} _SCREAMING_SNAKE_CASE : Optional[int] = parent _SCREAMING_SNAKE_CASE : Optional[int] = batch_size _SCREAMING_SNAKE_CASE : Dict = num_channels _SCREAMING_SNAKE_CASE : Optional[Any] = min_resolution _SCREAMING_SNAKE_CASE : str = max_resolution _SCREAMING_SNAKE_CASE : str = do_resize _SCREAMING_SNAKE_CASE : Optional[Any] = size _SCREAMING_SNAKE_CASE : List[Any] = do_normalize _SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean _SCREAMING_SNAKE_CASE : Optional[Any] = image_std _SCREAMING_SNAKE_CASE : str = do_rescale _SCREAMING_SNAKE_CASE : Any = rescale_factor _SCREAMING_SNAKE_CASE : List[Any] = do_pad def UpperCamelCase_ ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=False ) -> str: if not batched: _SCREAMING_SNAKE_CASE : Optional[Any] = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = image.size else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = image.shape[1], image.shape[2] if w < h: _SCREAMING_SNAKE_CASE : int = int(self.size["shortest_edge"] * h / w ) _SCREAMING_SNAKE_CASE : str = self.size["shortest_edge"] elif w > h: _SCREAMING_SNAKE_CASE : int = self.size["shortest_edge"] _SCREAMING_SNAKE_CASE : Optional[Any] = int(self.size["shortest_edge"] * w / h ) else: _SCREAMING_SNAKE_CASE : Any = self.size["shortest_edge"] _SCREAMING_SNAKE_CASE : List[Any] = self.size["shortest_edge"] else: _SCREAMING_SNAKE_CASE : Optional[Any] = [] for image in image_inputs: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE : Optional[int] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] _SCREAMING_SNAKE_CASE : List[str] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = DetaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : str = DetaImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: pass def UpperCamelCase_ ( self ) -> Any: # Initialize image_processing _SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Tuple: # Initialize image_processing _SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE : Dict = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Union[str, Any]: # Initialize image_processing _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE : Tuple = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase_ ( self ) -> List[str]: # prepare image and target _SCREAMING_SNAKE_CASE : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: _SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() ) _SCREAMING_SNAKE_CASE : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them _SCREAMING_SNAKE_CASE : int = DetaImageProcessor() _SCREAMING_SNAKE_CASE : List[Any] = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors="pt" ) # verify pixel values _SCREAMING_SNAKE_CASE : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __lowerCamelCase ) ) # verify boxes _SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __lowerCamelCase ) ) # verify is_crowd _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __lowerCamelCase ) ) # verify class_labels _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __lowerCamelCase ) ) # verify orig_size _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __lowerCamelCase ) ) # verify size _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __lowerCamelCase ) ) @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: # prepare image, target and masks_path _SCREAMING_SNAKE_CASE : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: _SCREAMING_SNAKE_CASE : Optional[int] = json.loads(f.read() ) _SCREAMING_SNAKE_CASE : int = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} _SCREAMING_SNAKE_CASE : List[str] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them _SCREAMING_SNAKE_CASE : Tuple = DetaImageProcessor(format="coco_panoptic" ) _SCREAMING_SNAKE_CASE : Tuple = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors="pt" ) # verify pixel values _SCREAMING_SNAKE_CASE : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE : List[str] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __lowerCamelCase ) ) # verify boxes _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __lowerCamelCase ) ) # verify is_crowd _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __lowerCamelCase ) ) # verify class_labels _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __lowerCamelCase ) ) # verify masks _SCREAMING_SNAKE_CASE : Optional[Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __lowerCamelCase ) # verify orig_size _SCREAMING_SNAKE_CASE : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __lowerCamelCase ) ) # verify size _SCREAMING_SNAKE_CASE : int = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __lowerCamelCase ) )
325
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ ='src/diffusers' UpperCamelCase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ =spec.loader.load_module() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$", __lowerCamelCase ) is not None def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = object_name.split("." ) _SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase, parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase, f"""{module}.py""" ), "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE : Union[str, Any] = "" _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE : Optional[int] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : Optional[int] = lines[start_index:line_index] return "".join(__lowerCamelCase ) UpperCamelCase__ =re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase__ =re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase__ =re.compile(R'<FILL\s+[^>]*>') def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = code.split("\n" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S", lines[idx] ).groups()[0] return "" def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE : Union[str, Any] = f"""class Bla:\n{code}""" _SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = black.format_str(__lowerCamelCase, mode=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = search.groups() _SCREAMING_SNAKE_CASE : Any = find_code_in_diffusers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE : int = theoretical_indent _SCREAMING_SNAKE_CASE : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE : Any = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] _SCREAMING_SNAKE_CASE : str = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(f"""^{indent}# End copy""", __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index] _SCREAMING_SNAKE_CASE : Optional[Any] = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE : Dict = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] _SCREAMING_SNAKE_CASE : str = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = replace_pattern.replace("with", "" ).split("," ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pattern.groups() _SCREAMING_SNAKE_CASE : Tuple = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE : List[Any] = re.sub(obja.lower(), obja.lower(), __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = re.sub(obja.upper(), obja.upper(), __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE : int = blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE : int = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ (__lowerCamelCase = False ): _SCREAMING_SNAKE_CASE : int = glob.glob(os.path.join(__lowerCamelCase, "**/*.py" ), recursive=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for filename in all_files: _SCREAMING_SNAKE_CASE : int = is_copy_consistent(__lowerCamelCase, __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Dict = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
325
1
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def a_ ( ): UpperCAmelCase__ = 1_0 UpperCAmelCase__ = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) UpperCAmelCase__ = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowerCamelCase ) ), } , features=lowerCamelCase , ) return dataset @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowerCamelCase ) return filename # FILE_CONTENT + files lowerCAmelCase__ : Tuple = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt' UpperCAmelCase__ = FILE_CONTENT with open(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase ) return filename @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): import bza UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' UpperCAmelCase__ = bytes(lowerCamelCase , 'utf-8' ) with bza.open(lowerCamelCase , 'wb' ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): import gzip UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) UpperCAmelCase__ = bytes(lowerCamelCase , 'utf-8' ) with gzip.open(lowerCamelCase , 'wb' ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' UpperCAmelCase__ = bytes(lowerCamelCase , 'utf-8' ) with lza.frame.open(lowerCamelCase , 'wb' ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase ): if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowerCamelCase , 'w' ) as archive: archive.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase ): import tarfile UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowerCamelCase , 'w' ) as f: f.add(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): import lzma UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' UpperCAmelCase__ = bytes(lowerCamelCase , 'utf-8' ) with lzma.open(lowerCamelCase , 'wb' ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase ): import zipfile UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' UpperCAmelCase__ = bytes(lowerCamelCase , 'utf-8' ) with zstd.open(lowerCamelCase , 'wb' ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'file.xml' UpperCAmelCase__ = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase ) return filename lowerCAmelCase__ : Optional[Any] = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCAmelCase__ : str = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCAmelCase__ : Any = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCAmelCase__ : Any = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCAmelCase__ : Union[str, Any] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def a_ ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = datasets.Dataset.from_dict(lowerCamelCase ) UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowerCamelCase ) ) as con: UpperCAmelCase__ = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowerCamelCase , 'w' , newline='' ) as f: UpperCAmelCase__ = csv.DictWriter(lowerCamelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowerCamelCase , 'w' , newline='' ) as f: UpperCAmelCase__ = csv.DictWriter(lowerCamelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase ): import bza UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowerCamelCase , 'rb' ) as f: UpperCAmelCase__ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase , 'wb' ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowerCamelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase ) ) ) f.write(lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) UpperCAmelCase__ = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowerCamelCase , 'wb' ) as f: UpperCAmelCase__ = pq.ParquetWriter(lowerCamelCase , schema=lowerCamelCase ) UpperCAmelCase__ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase ) )] for k in DATA[0]} , schema=lowerCamelCase ) writer.write_table(lowerCamelCase ) writer.close() return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase__ = {'data': DATA} with open(lowerCamelCase , 'w' ) as f: json.dump(lowerCamelCase , lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase__ = {'data': DATA_DICT_OF_LISTS} with open(lowerCamelCase , 'w' ) as f: json.dump(lowerCamelCase , lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowerCamelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowerCamelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowerCamelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowerCamelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase ): import gzip UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowerCamelCase , 'rb' ) as orig_file: with gzip.open(lowerCamelCase , 'wb' ) as zipped_file: zipped_file.writelines(lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase ): import gzip UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowerCamelCase , 'rb' ) as orig_file: with gzip.open(lowerCamelCase , 'wb' ) as zipped_file: zipped_file.writelines(lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase ) ) ) f.write(lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowerCamelCase , 'w' ) as f: f.add(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.add(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowerCamelCase , 'w' ) as f: f.add(lowerCamelCase , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = ['0', '1', '2', '3'] UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowerCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = ['0', '1', '2', '3'] UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowerCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = ['0', '1', '2', '3'] UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowerCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase ) ) ) f.write(lowerCamelCase , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowerCamelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) UpperCAmelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope='session' ) def a_ ( ): return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def a_ ( ): return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowerCamelCase , 'w' ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
98
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __a : __a : int = BlenderbotConfig __a : Any = {} __a : str = "gelu" def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=13 , __magic_name__ : Any=7 , __magic_name__ : Optional[Any]=True , __magic_name__ : str=False , __magic_name__ : Any=99 , __magic_name__ : List[Any]=32 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : List[Any]=4 , __magic_name__ : List[str]=37 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=20 , __magic_name__ : List[str]=2 , __magic_name__ : Any=1 , __magic_name__ : Union[str, Any]=0 , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Union[str, Any] = pad_token_id UpperCAmelCase_ : Tuple = bos_token_id def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ : str = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ : str = prepare_blenderbot_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) return config, inputs_dict def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = TFBlenderbotModel(config=__magic_name__ ).get_decoder() UpperCAmelCase_ : Union[str, Any] = inputs_dict['''input_ids'''] UpperCAmelCase_ : Any = input_ids[:1, :] UpperCAmelCase_ : Tuple = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase_ : List[str] = inputs_dict['''head_mask'''] UpperCAmelCase_ : Any = 1 # first forward pass UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , use_cache=__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ )[0] UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ : Union[str, Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ : Any = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-3 ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Optional[int]=None, SCREAMING_SNAKE_CASE__ : Tuple=None, SCREAMING_SNAKE_CASE__ : Any=None, ) -> Any: if attention_mask is None: UpperCAmelCase_ : List[str] = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: UpperCAmelCase_ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Tuple = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __a : Tuple = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __a : List[str] = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __a : List[str] = True __a : Any = False __a : Optional[int] = False def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" UpperCAmelCase_ : Any = TFBlenderbotModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) @require_tokenizers @require_tf class __a (unittest.TestCase ): __a : Union[str, Any] = ["My friends are cool but they eat too many carbs."] __a : List[Any] = "facebook/blenderbot-400M-distill" @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[Any] = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase_ : List[Any] = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase_ : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__magic_name__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
125
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() A : List[str] = logging.get_logger(__name__) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = original_name.split("." )[0] __lowerCAmelCase = key.split("." ) __lowerCAmelCase = int(key_list[key_list.index(_UpperCamelCase ) - 2] ) __lowerCAmelCase = int(key_list[key_list.index(_UpperCamelCase ) - 1] ) __lowerCAmelCase = orig_block_num - offset __lowerCAmelCase = key.replace(f"{orig_block_num}.{layer_num}.{original_name}" , f"block.{new_block_num}.{layer_num}.{new_name}" ) return key def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = OrderedDict() __lowerCAmelCase , __lowerCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): __lowerCAmelCase = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 __lowerCAmelCase = key[: key.find("proj" )] __lowerCAmelCase = key.replace(_UpperCamelCase , f"patch_embeddings.{total_embed_found}." ) __lowerCAmelCase = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: __lowerCAmelCase = "poolformer.encoder." + key if "mlp.fc1" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "mlp.fc2" , "output.conv2" ) if "norm1" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "norm1" , "before_norm" ) if "norm2" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "norm2" , "after_norm" ) if "layer_scale_1" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "layer_scale_2" , "layer_scale_2" ) if "head" in key: __lowerCAmelCase = key.replace("head" , "classifier" ) __lowerCAmelCase = value return new_state_dict def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return image @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = PoolFormerConfig() # set attributes based on model_name __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = model_name[-3:] __lowerCAmelCase = 1000 __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = (1, 1000) # set config attributes __lowerCAmelCase = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": __lowerCAmelCase = [2, 2, 6, 2] __lowerCAmelCase = [64, 128, 320, 512] __lowerCAmelCase = 4.0 __lowerCAmelCase = 0.9 elif size == "s24": __lowerCAmelCase = [4, 4, 12, 4] __lowerCAmelCase = [64, 128, 320, 512] __lowerCAmelCase = 4.0 __lowerCAmelCase = 0.9 elif size == "s36": __lowerCAmelCase = [6, 6, 18, 6] __lowerCAmelCase = [64, 128, 320, 512] __lowerCAmelCase = 4.0 __lowerCAmelCase = 1e-6 __lowerCAmelCase = 0.9 elif size == "m36": __lowerCAmelCase = [6, 6, 18, 6] __lowerCAmelCase = [96, 192, 384, 768] __lowerCAmelCase = 4.0 __lowerCAmelCase = 1e-6 __lowerCAmelCase = 0.95 elif size == "m48": __lowerCAmelCase = [8, 8, 24, 8] __lowerCAmelCase = [96, 192, 384, 768] __lowerCAmelCase = 4.0 __lowerCAmelCase = 1e-6 __lowerCAmelCase = 0.95 else: raise ValueError(f"Size {size} not supported" ) # load image processor __lowerCAmelCase = PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) # Prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_UpperCamelCase , return_tensors="pt" ).pixel_values logger.info(f"Converting model {model_name}..." ) # load original state dict __lowerCAmelCase = torch.load(_UpperCamelCase , map_location=torch.device("cpu" ) ) # rename keys __lowerCAmelCase = rename_keys(_UpperCamelCase ) # create HuggingFace model and load state dict __lowerCAmelCase = PoolFormerForImageClassification(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Define image processor __lowerCAmelCase = PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass __lowerCAmelCase = model(_UpperCamelCase ) __lowerCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": __lowerCAmelCase = torch.tensor([-0.30_45, -0.67_58, -0.48_69] ) elif size == "s24": __lowerCAmelCase = torch.tensor([0.44_02, -0.13_74, -0.80_45] ) elif size == "s36": __lowerCAmelCase = torch.tensor([-0.60_80, -0.51_33, -0.58_98] ) elif size == "m36": __lowerCAmelCase = torch.tensor([0.39_52, 0.22_63, -1.26_68] ) elif size == "m48": __lowerCAmelCase = torch.tensor([0.11_67, -0.06_56, -0.34_23] ) else: raise ValueError(f"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A : Any = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
370
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [False] * len(_UpperCamelCase ) __lowerCAmelCase = [] queue.append(_UpperCamelCase ) __lowerCAmelCase = True while queue: __lowerCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCamelCase ) __lowerCAmelCase = True __lowerCAmelCase = u return visited[t] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [-1] * (len(_UpperCamelCase )) __lowerCAmelCase = 0 while bfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = float("Inf" ) __lowerCAmelCase = sink while s != source: # Find the minimum value in select path __lowerCAmelCase = min(_UpperCamelCase , graph[parent[s]][s] ) __lowerCAmelCase = parent[s] max_flow += path_flow __lowerCAmelCase = sink while v != source: __lowerCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowerCAmelCase = parent[v] return max_flow A : Optional[Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] A , A : Optional[Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
259
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if len(lowercase ) != 2 or len(a[0] ) != 2 or len(lowercase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) snake_case : int = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[list, list, list, list]: if len(lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) snake_case : Optional[int] = len(lowercase ) snake_case : str = matrix_length // 2 snake_case : int = [[a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase )] snake_case : str = [ [a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase ,lowercase ) ] snake_case : Optional[Any] = [[a[i][j] for j in range(lowercase )] for i in range(lowercase )] snake_case : str = [[a[i][j] for j in range(lowercase )] for i in range(lowercase ,lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[int, int]: return len(lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: print("""\n""".join(str(lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase ) == (2, 2): return default_matrix_multiplication(lowercase ,lowercase ) snake_case , snake_case , snake_case , snake_case : Optional[Any] = split_matrix(lowercase ) snake_case , snake_case , snake_case , snake_case : Any = split_matrix(lowercase ) snake_case : List[Any] = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : List[str] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : Tuple = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : str = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : Union[str, Any] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : int = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : List[Any] = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : str = matrix_addition(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) snake_case : List[str] = matrix_addition(lowercase ,lowercase ) snake_case : Any = matrix_addition(lowercase ,lowercase ) snake_case : List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) # construct the new matrix from our 4 quadrants snake_case : Optional[Any] = [] for i in range(len(lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase )[1] != matrix_dimensions(lowercase )[0]: snake_case : Optional[Any] = ( """Unable to multiply these matrices, please check the dimensions.\n""" f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(lowercase ) snake_case : str = matrix_dimensions(lowercase ) snake_case : Optional[Any] = matrix_dimensions(lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case : Dict = max(*lowercase ,*lowercase ) snake_case : Optional[Any] = int(math.pow(2 ,math.ceil(math.loga(lowercase ) ) ) ) snake_case : Any = matrixa snake_case : Optional[Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case : Optional[int] = actual_strassen(lowercase ,lowercase ) # Removing the additional zeros for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase : Any = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase : int = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
124
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any ) -> List[Any]: if height >= 1: move_tower(height - 1 , _a , _a , _a ) move_disk(_a , _a ) move_tower(height - 1 , _a , _a , _a ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> str: print("""moving disk from""" , _a , """to""" , _a ) def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : Any = int(input("""Height of hanoi: """ ).strip() ) move_tower(_a , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
363
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowercase__ : Optional[int] = datasets.load_iris() lowercase__ : str = np.array(data['''data''']) lowercase__ : Optional[Any] = np.array(data['''target''']) lowercase__ : Tuple = data['''target_names'''] lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = train_test_split(X, y) def _lowerCAmelCase ( __snake_case : str , __snake_case : List[Any] ) -> Optional[Any]: return np.linalg.norm(np.array(__snake_case ) - np.array(__snake_case ) ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Tuple=5 ) -> Tuple: __A : str = zip(__snake_case , __snake_case ) # List of distances of all points from the point to be classified __A : int = [] for data_point in data: __A : Tuple = euclidean_distance(data_point[0] , __snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __A : int = [i[1] for i in sorted(__snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __A : str = Counter(__snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
190
'''simple docstring''' import random def _lowerCAmelCase ( __snake_case : int , __snake_case : float , __snake_case : bool = False ) -> dict: __A : dict = {i: [] for i in range(__snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__snake_case ): for j in range(i + 1 , __snake_case ): if random.random() < probability: graph[i].append(__snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__snake_case ) return graph def _lowerCAmelCase ( __snake_case : int ) -> dict: return { i: [j for j in range(__snake_case ) if i != j] for i in range(__snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
190
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def A (__lowerCamelCase :Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , __lowerCamelCase , ) if isinstance(__lowerCamelCase , torch.Tensor ): return image elif isinstance(__lowerCamelCase , PIL.Image.Image ): _lowerCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase , _lowerCAmelCase = image[0].size _lowerCAmelCase , _lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _lowerCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] _lowerCAmelCase = np.concatenate(__lowerCamelCase , axis=0 ) _lowerCAmelCase = np.array(__lowerCamelCase ).astype(np.floataa ) / 255.0 _lowerCAmelCase = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase = 2.0 * image - 1.0 _lowerCAmelCase = torch.from_numpy(__lowerCamelCase ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase = torch.cat(__lowerCamelCase , dim=0 ) return image def A (__lowerCamelCase :Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(__lowerCamelCase , torch.Tensor ): return mask elif isinstance(__lowerCamelCase , PIL.Image.Image ): _lowerCAmelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): _lowerCAmelCase , _lowerCAmelCase = mask[0].size _lowerCAmelCase , _lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _lowerCAmelCase = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] _lowerCAmelCase = np.concatenate(__lowerCamelCase , axis=0 ) _lowerCAmelCase = mask.astype(np.floataa ) / 255.0 _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = torch.from_numpy(__lowerCamelCase ) elif isinstance(mask[0] , torch.Tensor ): _lowerCAmelCase = torch.cat(__lowerCamelCase , dim=0 ) return mask class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : UNetaDModel _lowercase : RePaintScheduler def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase , _lowercase , _lowercase = 250 , _lowercase = 0.0 , _lowercase = 10 , _lowercase = 10 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ): """simple docstring""" _lowerCAmelCase = image _lowerCAmelCase = _preprocess_image(_lowercase ) _lowerCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) _lowerCAmelCase = _preprocess_mask(_lowercase ) _lowerCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) _lowerCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _lowerCAmelCase = original_image.shape _lowerCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowercase , _lowercase , _lowercase , self.device ) _lowerCAmelCase = eta _lowerCAmelCase = self.scheduler.timesteps[0] + 1 _lowerCAmelCase = generator[0] if isinstance(_lowercase , _lowercase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual _lowerCAmelCase = self.unet(_lowercase , _lowercase ).sample # compute previous image: x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ).prev_sample else: # compute the reverse: x_t-1 -> x_t _lowerCAmelCase = self.scheduler.undo_step(_lowercase , _lowercase , _lowercase ) _lowerCAmelCase = t _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
229
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = data _lowerCAmelCase = None def __iter__( self ): """simple docstring""" _lowerCAmelCase = self _lowerCAmelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(_lowercase ) yield node.data _lowerCAmelCase = node.next_node @property def _lowercase ( self ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _lowercase = Node(1) _lowercase = Node(2) _lowercase = Node(3) _lowercase = Node(4) print(root_node.has_loop) # False _lowercase = root_node.next_node print(root_node.has_loop) # True _lowercase = Node(5) _lowercase = Node(6) _lowercase = Node(5) _lowercase = Node(6) print(root_node.has_loop) # False _lowercase = Node(1) print(root_node.has_loop) # False
229
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowerCAmelCase: Optional[int] = logging.get_logger(__name__) lowerCAmelCase: str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase: Optional[int] = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } lowerCAmelCase: Dict = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } lowerCAmelCase: List[str] = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class a__( lowercase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = ['input_ids', 'attention_mask'] lowercase__ = DistilBertTokenizer def __init__( self : Any , __snake_case : List[Any]=None , __snake_case : List[Any]=None , __snake_case : List[Any]=True , __snake_case : Dict="[UNK]" , __snake_case : Optional[Any]="[SEP]" , __snake_case : int="[PAD]" , __snake_case : List[str]="[CLS]" , __snake_case : Any="[MASK]" , __snake_case : Union[str, Any]=True , __snake_case : str=None , **__snake_case : int , ): super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) a : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , __lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __lowercase ) != tokenize_chinese_chars ): a : List[Any] = getattr(__lowercase , normalizer_state.pop('type' ) ) a : Dict = do_lower_case a : Tuple = strip_accents a : Union[str, Any] = tokenize_chinese_chars a : str = normalizer_class(**__lowercase ) a : List[str] = do_lower_case def lowercase_ ( self : Dict , __snake_case : int , __snake_case : int=None ): a : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : int = [self.sep_token_id] a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): a : Tuple = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
297
from functools import lru_cache @lru_cache def lowerCamelCase__ ( __lowerCamelCase : int ): if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
114
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging _snake_case = logging.get_logger(__name__) _snake_case = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class lowercase ( _a ): """simple docstring""" @add_start_docstrings(__lowerCAmelCase ) def __call__( self , _a , _a , **_a ) -> Any: raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class lowercase ( _a ): """simple docstring""" def __init__( self , _a , _a = None ) -> Dict: _A : List[str] = max_length _A : Dict = max_position_embeddings @add_start_docstrings(__lowerCAmelCase ) def __call__( self , _a , _a , **_a ) -> str: _A : str = input_ids.shape[-1] _A : List[str] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' """exceptions, performance degradation, or nothing at all.""" ) return is_done class lowercase ( _a ): """simple docstring""" def __init__( self , _a , _a ) -> Optional[Any]: warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' """with `max_length = start_length + max_new_tokens` instead.""" , __lowerCAmelCase , ) _A : Union[str, Any] = start_length _A : Union[str, Any] = max_new_tokens _A : Optional[Any] = start_length + max_new_tokens @add_start_docstrings(__lowerCAmelCase ) def __call__( self , _a , _a , **_a ) -> int: return input_ids.shape[-1] >= self.max_length class lowercase ( _a ): """simple docstring""" def __init__( self , _a , _a = None ) -> int: _A : Dict = max_time _A : List[Any] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__lowerCAmelCase ) def __call__( self , _a , _a , **_a ) -> Optional[int]: return time.time() - self.initial_timestamp > self.max_time class lowercase ( _a ): """simple docstring""" @add_start_docstrings(__lowerCAmelCase ) def __call__( self , _a , _a , **_a ) -> List[str]: return any(criteria(__lowerCAmelCase , __lowerCAmelCase ) for criteria in self ) @property def a__ ( self ) -> List[str]: for stopping_criterium in self: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return stopping_criterium.max_length elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): return stopping_criterium.max_length return None def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = stopping_criteria.max_length _A : Optional[int] = deepcopy(a__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""",a__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=a__ ) ) return new_stopping_criteria
371
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: debug_launcher(test_script.main ) def a__ ( self ) -> Any: debug_launcher(test_ops.main )
343
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Any , *UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : Union[str, Any] ) -> Any: """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = eval_examples __magic_name__ = post_process_function def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str = "eval" ) -> Tuple: """simple docstring""" __magic_name__ = self.eval_dataset if eval_dataset is None else eval_dataset __magic_name__ = self.get_eval_dataloader(UpperCamelCase__ ) __magic_name__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ = self.compute_metrics __magic_name__ = None __magic_name__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __magic_name__ = time.time() try: __magic_name__ = eval_loop( UpperCamelCase__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , metric_key_prefix=UpperCamelCase__ , ) finally: __magic_name__ = compute_metrics __magic_name__ = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( UpperCamelCase__ , UpperCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __magic_name__ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions ) __magic_name__ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __magic_name__ = metrics.pop(UpperCamelCase__ ) metrics.update(output.metrics ) else: __magic_name__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __magic_name__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase__ ) return metrics def _lowercase ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : str = "test" ) -> List[str]: """simple docstring""" __magic_name__ = self.get_test_dataloader(UpperCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ = self.compute_metrics __magic_name__ = None __magic_name__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __magic_name__ = time.time() try: __magic_name__ = eval_loop( UpperCamelCase__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , metric_key_prefix=UpperCamelCase__ , ) finally: __magic_name__ = compute_metrics __magic_name__ = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( UpperCamelCase__ , UpperCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __magic_name__ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions , """predict""" ) __magic_name__ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __magic_name__ = metrics.pop(UpperCamelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase__ )
88
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ : str = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCAmelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _snake_case ( unittest.TestCase ): def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=4 , ) -> Optional[Any]: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_choices def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_attention_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _snake_case ( lowercase_ , unittest.TestCase ): lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : List[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained("roberta-base" , from_pt=a__ ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(a__ )
92
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _SCREAMING_SNAKE_CASE : Any = False class _snake_case ( unittest.TestCase ): pass @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( image=a__ , generator=a__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images snake_case_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
92
1
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowercase ( snake_case_ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' __A : Optional[Any] = filter(lambda snake_case_ : p.requires_grad ,model.parameters() ) __A : int = sum([np.prod(p.size() ) for p in model_parameters] ) return params a_ = logging.getLogger(__name__) def __lowercase ( snake_case_ : Any ,snake_case_ : int ) ->Optional[int]: '''simple docstring''' if metric == "rouge2": __A : List[str] = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __A : str = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __A : List[Any] = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": __A : Any = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) __A : List[str] = ModelCheckpoint( dirpath=snake_case_ ,filename=snake_case_ ,monitor=F"""val_{metric}""" ,mode='''max''' ,save_top_k=1 ,every_n_epochs=1 ,) return checkpoint_callback def __lowercase ( snake_case_ : str ,snake_case_ : Optional[Any] ) ->Any: '''simple docstring''' return EarlyStopping( monitor=F"""val_{metric}""" ,mode='''min''' if '''loss''' in metric else '''max''' ,patience=snake_case_ ,verbose=snake_case_ ,) class __snake_case ( pl.Callback ): """simple docstring""" def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__lowerCamelCase ) @rank_zero_only def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=True ): '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __A : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __A : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __A : List[Any] = od / '''test_results.txt''' __A : str = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __A : int = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" __A : Any = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__lowerCamelCase ) generations_file.parent.mkdir(exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , '''a+''' ) as writer: for key in sorted(__lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue __A : Optional[int] = metrics[key] if isinstance(__lowerCamelCase , torch.Tensor ): __A : Tuple = val.item() __A : List[str] = F"""{key}: {val:.6f}\n""" writer.write(__lowerCamelCase ) if not save_generations: return if "preds" in metrics: __A : Optional[int] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__lowerCamelCase ) @rank_zero_only def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' try: __A : Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: __A : Optional[int] = pl_module.model.num_parameters() __A : int = count_trainable_parameters(__lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__lowerCamelCase , __lowerCamelCase , '''test''' ) @rank_zero_only def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
179
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = jnp.floataa _lowerCamelCase = True def UpperCamelCase__( self ): '''simple docstring''' super().setup() __A : List[Any] = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' __A : Tuple = super().__call__(*__lowerCamelCase , **__lowerCamelCase ) __A : Optional[int] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = FlaxBigBirdForNaturalQuestionsModule def __lowercase ( snake_case_ : Tuple ,snake_case_ : Optional[int] ,snake_case_ : int ,snake_case_ : Tuple ,snake_case_ : Any ,snake_case_ : Any ) ->List[Any]: '''simple docstring''' def cross_entropy(snake_case_ : str ,snake_case_ : Optional[Any] ,snake_case_ : Tuple=None ): __A : Dict = logits.shape[-1] __A : Dict = (labels[..., None] == jnp.arange(snake_case_ )[None]).astype('''f4''' ) __A : int = jax.nn.log_softmax(snake_case_ ,axis=-1 ) __A : Optional[int] = -jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: __A : Optional[int] = reduction(snake_case_ ) return loss __A : str = partial(snake_case_ ,reduction=jnp.mean ) __A : Dict = cross_entropy(snake_case_ ,snake_case_ ) __A : List[str] = cross_entropy(snake_case_ ,snake_case_ ) __A : str = cross_entropy(snake_case_ ,snake_case_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = "google/bigbird-roberta-base" _lowerCamelCase = 30_00 _lowerCamelCase = 1_05_00 _lowerCamelCase = 1_28 _lowerCamelCase = 3 _lowerCamelCase = 1 _lowerCamelCase = 5 # tx_args _lowerCamelCase = 3e-5 _lowerCamelCase = 0.0 _lowerCamelCase = 2_00_00 _lowerCamelCase = 0.0_0_9_5 _lowerCamelCase = "bigbird-roberta-natural-questions" _lowerCamelCase = "training-expt" _lowerCamelCase = "data/nq-training.jsonl" _lowerCamelCase = "data/nq-validation.jsonl" def UpperCamelCase__( self ): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=__lowerCamelCase ) __A : Dict = os.path.join(self.base_dir , self.save_dir ) __A : Dict = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 40_96 # no dynamic padding on TPUs def __call__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = self.collate_fn(__lowerCamelCase ) __A : Tuple = jax.tree_util.tree_map(__lowerCamelCase , __lowerCamelCase ) return batch def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A , __A : List[Any] = self.fetch_inputs(features['''input_ids'''] ) __A : Union[str, Any] = { '''input_ids''': jnp.array(__lowerCamelCase , dtype=jnp.intaa ), '''attention_mask''': jnp.array(__lowerCamelCase , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Any = [self._fetch_inputs(__lowerCamelCase ) for ids in input_ids] return zip(*__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Any = [1 for _ in range(len(__lowerCamelCase ) )] while len(__lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __lowercase ( snake_case_ : List[Any] ,snake_case_ : Optional[Any] ,snake_case_ : List[str]=None ) ->Optional[int]: '''simple docstring''' if seed is not None: __A : List[Any] = dataset.shuffle(seed=snake_case_ ) for i in range(len(snake_case_ ) // batch_size ): __A : Tuple = dataset[i * batch_size : (i + 1) * batch_size] yield dict(snake_case_ ) @partial(jax.pmap ,axis_name='''batch''' ) def __lowercase ( snake_case_ : str ,snake_case_ : Union[str, Any] ,**snake_case_ : List[str] ) ->Tuple: '''simple docstring''' def loss_fn(snake_case_ : List[str] ): __A : str = model_inputs.pop('''start_labels''' ) __A : str = model_inputs.pop('''end_labels''' ) __A : int = model_inputs.pop('''pooled_labels''' ) __A : Dict = state.apply_fn(**snake_case_ ,params=snake_case_ ,dropout_rng=snake_case_ ,train=snake_case_ ) __A , __A , __A : Union[str, Any] = outputs return state.loss_fn( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,) __A , __A : int = jax.random.split(snake_case_ ) __A : str = jax.value_and_grad(snake_case_ ) __A , __A : Optional[int] = grad_fn(state.params ) __A : List[str] = jax.lax.pmean({'''loss''': loss} ,axis_name='''batch''' ) __A : List[str] = jax.lax.pmean(snake_case_ ,'''batch''' ) __A : str = state.apply_gradients(grads=snake_case_ ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name='''batch''' ) def __lowercase ( snake_case_ : int ,**snake_case_ : Union[str, Any] ) ->List[str]: '''simple docstring''' __A : Tuple = model_inputs.pop('''start_labels''' ) __A : Dict = model_inputs.pop('''end_labels''' ) __A : int = model_inputs.pop('''pooled_labels''' ) __A : List[str] = state.apply_fn(**snake_case_ ,params=state.params ,train=snake_case_ ) __A , __A , __A : Dict = outputs __A : Optional[int] = state.loss_fn(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) __A : List[str] = jax.lax.pmean({'''loss''': loss} ,axis_name='''batch''' ) return metrics class __snake_case ( train_state.TrainState ): """simple docstring""" _lowerCamelCase = struct.field(pytree_node=SCREAMING_SNAKE_CASE__ ) @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = None def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' __A : Tuple = model.params __A : Union[str, Any] = TrainState.create( apply_fn=model.__call__ , params=__lowerCamelCase , tx=__lowerCamelCase , loss_fn=__lowerCamelCase , ) if ckpt_dir is not None: __A , __A , __A , __A , __A : Optional[Any] = restore_checkpoint(__lowerCamelCase , __lowerCamelCase ) __A : List[Any] = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } __A , __A : List[str] = build_tx(**__lowerCamelCase ) __A : int = train_state.TrainState( step=__lowerCamelCase , apply_fn=model.__call__ , params=__lowerCamelCase , tx=__lowerCamelCase , opt_state=__lowerCamelCase , ) __A : int = args __A : Optional[Any] = data_collator __A : Tuple = lr __A : List[Any] = params __A : Dict = jax_utils.replicate(__lowerCamelCase ) return state def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : List[Any] = self.args __A : Dict = len(__lowerCamelCase ) // args.batch_size __A : List[Any] = jax.random.PRNGKey(0 ) __A : Optional[Any] = jax.random.split(__lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): __A : Tuple = jnp.array(0 , dtype=jnp.floataa ) __A : Optional[Any] = get_batched_dataset(__lowerCamelCase , args.batch_size , seed=__lowerCamelCase ) __A : Union[str, Any] = 0 for batch in tqdm(__lowerCamelCase , total=__lowerCamelCase , desc=F"""Running EPOCH-{epoch}""" ): __A : Optional[Any] = self.data_collator(__lowerCamelCase ) __A , __A , __A : Union[str, Any] = self.train_step_fn(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: __A : Union[str, Any] = jax_utils.unreplicate(state.step ) __A : Optional[int] = running_loss.item() / i __A : List[Any] = self.scheduler_fn(state_step - 1 ) __A : Union[str, Any] = self.evaluate(__lowerCamelCase , __lowerCamelCase ) __A : Optional[Any] = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(__lowerCamelCase ) ) self.logger.log(__lowerCamelCase , commit=__lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = get_batched_dataset(__lowerCamelCase , self.args.batch_size ) __A : int = len(__lowerCamelCase ) // self.args.batch_size __A : Optional[Any] = jnp.array(0 , dtype=jnp.floataa ) __A : Dict = 0 for batch in tqdm(__lowerCamelCase , total=__lowerCamelCase , desc='''Evaluating ... ''' ): __A : List[str] = self.data_collator(__lowerCamelCase ) __A : Union[str, Any] = self.val_step_fn(__lowerCamelCase , **__lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Dict = jax_utils.unreplicate(__lowerCamelCase ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=''' ... ''' ) self.model_save_fn(__lowerCamelCase , params=state.params ) with open(os.path.join(__lowerCamelCase , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__lowerCamelCase , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(__lowerCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(__lowerCamelCase , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , __lowerCamelCase ) print('''DONE''' ) def __lowercase ( snake_case_ : int ,snake_case_ : Dict ) ->Optional[int]: '''simple docstring''' print(F"""RESTORING CHECKPOINT FROM {save_dir}""" ,end=''' ... ''' ) with open(os.path.join(snake_case_ ,'''flax_model.msgpack''' ) ,'''rb''' ) as f: __A : List[Any] = from_bytes(state.params ,f.read() ) with open(os.path.join(snake_case_ ,'''opt_state.msgpack''' ) ,'''rb''' ) as f: __A : Optional[int] = from_bytes(state.opt_state ,f.read() ) __A : Tuple = joblib.load(os.path.join(snake_case_ ,'''args.joblib''' ) ) __A : List[str] = joblib.load(os.path.join(snake_case_ ,'''data_collator.joblib''' ) ) with open(os.path.join(snake_case_ ,'''training_state.json''' ) ,'''r''' ) as f: __A : Dict = json.load(snake_case_ ) __A : int = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def __lowercase ( snake_case_ : List[str] ,snake_case_ : Any ,snake_case_ : Dict ,snake_case_ : str ) ->List[str]: '''simple docstring''' __A : str = num_train_steps - warmup_steps __A : Union[str, Any] = optax.linear_schedule(init_value=snake_case_ ,end_value=snake_case_ ,transition_steps=snake_case_ ) __A : Optional[Any] = optax.linear_schedule(init_value=snake_case_ ,end_value=1e-7 ,transition_steps=snake_case_ ) __A : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def __lowercase ( snake_case_ : List[str] ,snake_case_ : List[Any] ,snake_case_ : Union[str, Any] ,snake_case_ : List[Any] ,snake_case_ : str ) ->List[str]: '''simple docstring''' def weight_decay_mask(snake_case_ : List[Any] ): __A : List[Any] = traverse_util.flatten_dict(snake_case_ ) __A : int = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(snake_case_ ) __A : List[Any] = scheduler_fn(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) __A : List[str] = optax.adamw(learning_rate=snake_case_ ,weight_decay=snake_case_ ,mask=snake_case_ ) return tx, lr
179
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _A : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : List[str] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Optional[int] = use_input_mask __UpperCAmelCase : Tuple = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Optional[int] = num_labels __UpperCAmelCase : Tuple = num_choices __UpperCAmelCase : Optional[Any] = scope def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_input_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : int = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__A , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = FalconModel(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase : List[Any] = model(__A , attention_mask=__A ) __UpperCAmelCase : str = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = FalconModel(__A ) model.to(__A ) model.eval() __UpperCAmelCase : int = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , ) __UpperCAmelCase : Optional[Any] = model( __A , attention_mask=__A , encoder_hidden_states=__A , ) __UpperCAmelCase : List[str] = model(__A , attention_mask=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = FalconForCausalLM(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase : Optional[Any] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : str = True __UpperCAmelCase : List[str] = FalconForCausalLM(config=__A ) model.to(__A ) model.eval() # first forward pass __UpperCAmelCase : int = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , use_cache=__A , ) __UpperCAmelCase : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , output_hidden_states=__A , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , past_key_values=__A , output_hidden_states=__A , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1E-3 ) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : Optional[Any] = config_and_inputs __UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : str = (FalconForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Union[str, Any] = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : int = False def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = FalconModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__A , hidden_size=37 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __UpperCAmelCase : int = alibi self.model_tester.create_and_check_model(__A , *__A ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : Any = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__A ) __UpperCAmelCase : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = FalconForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase : Any = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Union[str, Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : Tuple = input_ids.ne(1 ).to(__A ) __UpperCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Any = FalconForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase : int = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : Any = FalconForCausalLM(__A ) model.to(__A ) model.eval() __UpperCAmelCase : Optional[int] = model(__A , use_cache=__A ) __UpperCAmelCase : Union[str, Any] = input_ids.shape[0] __UpperCAmelCase : Tuple = model._convert_to_rw_cache(result.past_key_values ) __UpperCAmelCase : Optional[int] = model._convert_cache_to_standard_format(__A , __A ) for layer in range(len(__A ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : Optional[int] = """multi_label_classification""" __UpperCAmelCase : List[str] = input_dict["""input_ids"""] __UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(__A ) __UpperCAmelCase : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Tuple = FalconForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase : Optional[Any] = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Tuple: '''simple docstring''' # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__A , """use_cache""" ): return __UpperCAmelCase : Optional[Any] = model_class(__A ).to(__A ) if "use_cache" not in inputs: __UpperCAmelCase : Any = True __UpperCAmelCase : List[str] = model(**__A ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __UpperCAmelCase : int = ( getattr(__A , """decoder_layers""" , __A ) or getattr(__A , """num_decoder_layers""" , __A ) or config.num_hidden_layers ) __UpperCAmelCase : Optional[int] = getattr(__A , """num_kv_heads""" , config.num_attention_heads ) __UpperCAmelCase : int = getattr(__A , """d_model""" , config.hidden_size ) __UpperCAmelCase : Tuple = embed_dim // num_attention_heads __UpperCAmelCase : List[str] = outputs["""past_key_values"""] self.assertEqual(len(__A ) , __A ) __UpperCAmelCase : List[str] = inputs["""input_ids"""].shape for i in range(__A ): if config.new_decoder_architecture: __UpperCAmelCase : Tuple = config.num_attention_heads elif config.multi_query: __UpperCAmelCase : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _A ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) __UpperCAmelCase : int = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(__A ) __UpperCAmelCase : List[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__A ) __UpperCAmelCase : List[str] = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) __UpperCAmelCase : int = model.generate(**__A , do_sample=__A , max_new_tokens=19 ) __UpperCAmelCase : List[str] = tokenizer.batch_decode(__A )[0] self.assertEqual(__A , __A ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(__A ) __UpperCAmelCase : str = FalconForCausalLM.from_pretrained(__A ) model.eval() model.to(__A ) __UpperCAmelCase : List[str] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__A ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__A , do_sample=__A , max_new_tokens=4 ) model.generate(**__A , do_sample=__A , max_new_tokens=4 ) model.generate(**__A , num_beams=2 , max_new_tokens=4 ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(__A ) __UpperCAmelCase : Dict = FalconForCausalLM.from_pretrained(__A ) model.eval() model.to(device=__A ) __UpperCAmelCase : Tuple = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__A ) # Test results are the same with and without cache __UpperCAmelCase : List[Any] = model.generate(**__A , do_sample=__A , max_new_tokens=20 , use_cache=__A ) __UpperCAmelCase : Dict = model.generate(**__A , do_sample=__A , max_new_tokens=20 , use_cache=__A ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
351
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A = "pt" elif is_tf_available(): __A = "tf" else: __A = "jax" class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = PerceiverTokenizer _UpperCAmelCase :Dict = False def _snake_case ( self ): super().setUp() lowercase__: Any = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self ): return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def _snake_case ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowercase__: Any = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__: Optional[int] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__: int = list(filter(lambda _UpperCAmelCase : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , _UpperCAmelCase ) ) lowercase__: Tuple = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__: str = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__: List[Any] = toks + toks # toks_str = [t[1] for t in toks] lowercase__: Dict = [t[0] for t in toks] # Ensure consistency lowercase__: Any = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__: Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__: Dict = ''' ''' + output_txt lowercase__: Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def _snake_case ( self ): lowercase__: int = self.perceiver_tokenizer lowercase__: Tuple = '''Unicode €.''' lowercase__: Optional[int] = tokenizer(_UpperCAmelCase ) lowercase__: List[str] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , _UpperCAmelCase ) # decoding lowercase__: Optional[int] = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '''[CLS]Unicode €.[SEP]''' ) lowercase__: List[Any] = tokenizer('''e è é ê ë''' ) lowercase__: Optional[int] = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , _UpperCAmelCase ) # decoding lowercase__: List[Any] = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def _snake_case ( self ): lowercase__: Union[str, Any] = self.perceiver_tokenizer lowercase__: List[str] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowercase__: List[str] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowercase__: Union[str, Any] = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__: Tuple = list(batch.input_ids.numpy()[0] ) else: lowercase__: int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _snake_case ( self ): lowercase__: Optional[int] = self.perceiver_tokenizer lowercase__: int = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase__: List[str] = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _UpperCAmelCase ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertNotIn('''decoder_input_ids''' , _UpperCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[Any] = self.perceiver_tokenizer lowercase__: Tuple = [ '''Summary of the text.''', '''Another summary.''', ] lowercase__: List[Any] = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='''max_length''' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _snake_case ( self ): # safety check on max_len default value so we are sure the test works lowercase__: Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase__: Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowercase__: Dict = tempfile.mkdtemp() lowercase__: Dict = ''' He is very happy, UNwant\u00E9d,running''' lowercase__: List[str] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__: Dict = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__: Union[str, Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__: Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowercase__: str = tempfile.mkdtemp() lowercase__: Tuple = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowercase__: Dict = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowercase__: Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__: Tuple = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__: Union[str, Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase__: List[str] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowercase__: List[str] = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowercase__: List[str] = json.load(_UpperCAmelCase ) lowercase__: Union[str, Any] = [F"""<extra_id_{i}>""" for i in range(125 )] lowercase__: Optional[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowercase__: Optional[int] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_UpperCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__: Dict = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__: Optional[Any] = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_UpperCAmelCase )] lowercase__: str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _snake_case ( self ): lowercase__: List[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def _snake_case ( self ): pass def _snake_case ( self ): pass def _snake_case ( self ): pass def _snake_case ( self ): pass def _snake_case ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens lowercase__: Any = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowercase__: Union[str, Any] = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] lowercase__: List[Any] = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
177
"""simple docstring""" from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = False ) -> float: if not arr: return 0 lowercase__: Any = 0 if allow_empty_subarrays else float('''-inf''' ) lowercase__: Union[str, Any] = 0.0 for num in arr: lowercase__: List[str] = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase__: int = max(__UpperCAmelCase , __UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __A = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
177
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A_ : lowerCAmelCase__ = XGLMConfig lowerCAmelCase__ = {} lowerCAmelCase__ = 'gelu' def __init__( self: int ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[Any]=14 ,__lowerCAmelCase: Any=7 ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Optional[int]=True ,__lowerCAmelCase: Optional[Any]=99 ,__lowerCAmelCase: int=32 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: str=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: str="gelu" ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: str=512 ,__lowerCAmelCase: List[str]=0.02 ,): '''simple docstring''' _lowerCamelCase : Dict = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Optional[int] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Any = use_input_mask _lowerCamelCase : Tuple = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : int = d_model _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Dict = ffn_dim _lowerCamelCase : List[str] = activation_function _lowerCamelCase : Dict = activation_dropout _lowerCamelCase : Optional[int] = attention_dropout _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Any = None _lowerCamelCase : Tuple = 0 _lowerCamelCase : Union[str, Any] = 2 _lowerCamelCase : Optional[Any] = 1 def _lowercase ( self: List[Any] ): '''simple docstring''' return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) ,clip_value_min=0 ,clip_value_max=3 ) _lowerCamelCase : Union[str, Any] = None if self.use_input_mask: _lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Dict = self.get_config() _lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self: Optional[int] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=__lowerCAmelCase ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=__lowerCAmelCase ,) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( _lowerCamelCase ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCAmelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCAmelCase__ = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = TFXGLMModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,n_embd=37 ) def _lowercase ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @slow def _lowercase ( self: Optional[int] ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = TFXGLMModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self: Dict ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class A_ ( unittest.TestCase ): @slow def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict=True ): '''simple docstring''' _lowerCamelCase : List[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _lowerCamelCase : int = tf.convert_to_tensor([[2, 268, 9_865]] ,dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCamelCase : Dict = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on _lowerCamelCase : int = model.generate(__lowerCAmelCase ,do_sample=__lowerCAmelCase ,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() ,__lowerCAmelCase ) @slow def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Tuple = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _lowerCamelCase : Dict = tokenizer("Today is a nice day and" ,return_tensors="tf" ) _lowerCamelCase : Dict = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,do_sample=__lowerCAmelCase ,seed=[7, 0] ) _lowerCamelCase : int = tokenizer.decode(output_ids[0] ,skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : List[str] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) @slow def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _lowerCamelCase : Optional[int] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _lowerCamelCase : Optional[int] = "left" # use different length sentences to test batching _lowerCamelCase : Optional[Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _lowerCamelCase : Tuple = tokenizer(__lowerCAmelCase ,return_tensors="tf" ,padding=__lowerCAmelCase ) _lowerCamelCase : int = inputs["input_ids"] _lowerCamelCase : List[Any] = model.generate(input_ids=__lowerCAmelCase ,attention_mask=inputs["attention_mask"] ,max_new_tokens=12 ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] ,return_tensors="tf" ).input_ids _lowerCamelCase : Dict = model.generate(input_ids=__lowerCAmelCase ,max_new_tokens=12 ) _lowerCamelCase : Optional[Any] = tokenizer(sentences[1] ,return_tensors="tf" ).input_ids _lowerCamelCase : Optional[int] = model.generate(input_ids=__lowerCAmelCase ,max_new_tokens=12 ) _lowerCamelCase : Dict = tokenizer.batch_decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : str = tokenizer.decode(output_padded[0] ,skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,[non_padded_sentence, padded_sentence] )
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> list[int]: __lowerCamelCase : str = len(lowerCamelCase__ ) for i in range(lowerCamelCase__ ): for j in range(i + 1 , lowerCamelCase__ ): if numbers[j] < numbers[i]: __lowerCamelCase , __lowerCamelCase : str = numbers[j], numbers[i] return numbers if __name__ == "__main__": a =input("""Enter numbers separated by a comma:\n""").strip() a =[int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
73
import os def UpperCAmelCase__ ( _A : Any ): '''simple docstring''' a__ =len(grid[0] ) a__ =len(_A ) a__ =0 a__ =0 a__ =0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_A ): for j in range(n_rows - 3 ): a__ =grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] a__ =grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: a__ =( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: a__ =( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) a__ =max( _A , _A , _A , _A ) if max_product > largest: a__ =max_product return largest def UpperCAmelCase__ ( ): '''simple docstring''' a__ =[] with open(os.path.dirname(_A ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) a__ =[[int(_A ) for i in grid[j]] for j in range(len(_A ) )] return largest_product(_A ) if __name__ == "__main__": print(solution())
188
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'scipy'] def __init__( self : List[Any] , *_A : Optional[Any] , **_A : Tuple ): '''simple docstring''' requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : Tuple , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''scipy'''] )
299
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) for i in range(length - 1 ): UpperCAmelCase__ : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase__ ): if collection[k] < collection[least]: UpperCAmelCase__ : Dict = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
299
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = 1 @register_to_config def __init__( self , _snake_case=2000 , _snake_case=0.1 , _snake_case=20 , _snake_case=1e-3 ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None def snake_case ( self , _snake_case , _snake_case = None ): """simple docstring""" _lowerCAmelCase = torch.linspace(1 , self.config.sampling_eps , _snake_case , device=_snake_case ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case=None ): """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowerCAmelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowerCAmelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowerCAmelCase = std.flatten() while len(std.shape ) < len(score.shape ): _lowerCAmelCase = std.unsqueeze(-1 ) _lowerCAmelCase = -score / std # compute _lowerCAmelCase = -1.0 / len(self.timesteps ) _lowerCAmelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowerCAmelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowerCAmelCase = beta_t.unsqueeze(-1 ) _lowerCAmelCase = -0.5 * beta_t * x _lowerCAmelCase = torch.sqrt(_snake_case ) _lowerCAmelCase = drift - diffusion**2 * score _lowerCAmelCase = x + drift * dt # add noise _lowerCAmelCase = randn_tensor(x.shape , layout=x.layout , generator=_snake_case , device=x.device , dtype=x.dtype ) _lowerCAmelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
82
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ : List[str] = logging.getLogger() def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> Dict: """simple docstring""" lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Union[str, Any] = os.path.join(lowerCAmelCase__ , 'all_results.json' ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , 'r' ) as f: lowerCAmelCase_ : Any = json.load(lowerCAmelCase__ ) else: raise ValueError(f"can't find {path}" ) return results lowercase__ : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : Any ): import xla_spawn lowerCAmelCase_ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = F"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Optional[Any] = time() xla_spawn.main() lowerCAmelCase_ : Any = time() lowerCAmelCase_ : Dict = get_results(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): import xla_spawn lowerCAmelCase_ : Dict = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): xla_spawn.main()
224
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __lowerCamelCase : Optional[Any] = NewType("""DataClass""", Any) __lowerCamelCase : Any = NewType("""DataClassType""", Any) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): if isinstance(snake_case_ , snake_case_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : list ): snake_case__ : Tuple = {str(snake_case_ ): choice for choice in choices} return lambda snake_case_ : str_to_choice.get(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE ( *, snake_case_ : Union[str, List[str]] = None , snake_case_ : str = None , snake_case_ : Any = dataclasses.MISSING , snake_case_ : Callable[[], Any] = dataclasses.MISSING , snake_case_ : dict = None , **snake_case_ : Union[str, Any] , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls snake_case__ : Union[str, Any] = {} if aliases is not None: snake_case__ : int = aliases if help is not None: snake_case__ : Dict = help return dataclasses.field(metadata=snake_case_ , default=snake_case_ , default_factory=snake_case_ , **snake_case_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = 42 def __init__( self : Dict , __A : Union[DataClassType, Iterable[DataClassType]] , **__A : Optional[int] ): # To make the default appear when using --help if "formatter_class" not in kwargs: snake_case__ : Tuple = ArgumentDefaultsHelpFormatter super().__init__(**__A ) if dataclasses.is_dataclass(__A ): snake_case__ : List[Any] = [dataclass_types] snake_case__ : Optional[int] = list(__A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__A ) @staticmethod def _lowercase ( __A : ArgumentParser , __A : dataclasses.Field ): snake_case__ : Optional[Any] = f'''--{field.name}''' snake_case__ : int = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __A ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) snake_case__ : Dict = kwargs.pop("aliases" , [] ) if isinstance(__A , __A ): snake_case__ : Union[str, Any] = [aliases] snake_case__ : int = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(__A , "UnionType" ) and isinstance(__A , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__A ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f''' Problem encountered in field \'{field.name}\'.''' ) if type(__A ) not in field.type.__args__: # filter `str` in Union snake_case__ : List[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] snake_case__ : List[Any] = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) snake_case__ : Optional[int] = ( field.type.__args__[0] if isinstance(__A , field.type.__args__[1] ) else field.type.__args__[1] ) snake_case__ : Optional[Any] = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) snake_case__ : Dict = {} if origin_type is Literal or (isinstance(field.type , __A ) and issubclass(field.type , __A )): if origin_type is Literal: snake_case__ : Any = field.type.__args__ else: snake_case__ : Any = [x.value for x in field.type] snake_case__ : Union[str, Any] = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: snake_case__ : int = field.default else: snake_case__ : List[str] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument snake_case__ : List[str] = copy(__A ) # Hack because type=bool in argparse does not behave as we want. snake_case__ : Optional[int] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. snake_case__ : int = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way snake_case__ : Tuple = default # This tells argparse we accept 0 or 1 value after --field_name snake_case__ : List[str] = "?" # This is the value that will get picked if we do --field_name (without value) snake_case__ : int = True elif isclass(__A ) and issubclass(__A , __A ): snake_case__ : List[str] = field.type.__args__[0] snake_case__ : Optional[Any] = "+" if field.default_factory is not dataclasses.MISSING: snake_case__ : Union[str, Any] = field.default_factory() elif field.default is dataclasses.MISSING: snake_case__ : List[str] = True else: snake_case__ : Optional[Any] = field.type if field.default is not dataclasses.MISSING: snake_case__ : Optional[Any] = field.default elif field.default_factory is not dataclasses.MISSING: snake_case__ : Optional[int] = field.default_factory() else: snake_case__ : str = True parser.add_argument(__A , *__A , **__A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): snake_case__ : Optional[int] = False parser.add_argument(f'''--no_{field.name}''' , action="store_false" , dest=field.name , **__A ) def _lowercase ( self : Tuple , __A : DataClassType ): if hasattr(__A , "_argument_group_name" ): snake_case__ : List[Any] = self.add_argument_group(dtype._argument_group_name ) else: snake_case__ : str = self try: snake_case__ : Dict[str, type] = get_type_hints(__A ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(__A ): snake_case__ : Optional[Any] = ".".join(map(__A , sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(__A ): if not field.init: continue snake_case__ : Any = type_hints[field.name] self._parse_dataclass_field(__A , __A ) def _lowercase ( self : Tuple , __A : Optional[Any]=None , __A : str=False , __A : str=True , __A : int=None , __A : Dict=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): snake_case__ : List[Any] = [] if args_filename: args_files.append(Path(__A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values snake_case__ : List[str] = ArgumentParser() args_file_parser.add_argument(__A , type=__A , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) snake_case__, snake_case__ : str = args_file_parser.parse_known_args(args=__A ) snake_case__ : List[Any] = vars(__A ).get(args_file_flag.lstrip("-" ) , __A ) if cmd_args_file_paths: args_files.extend([Path(__A ) for p in cmd_args_file_paths] ) snake_case__ : List[str] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last snake_case__ : Union[str, Any] = file_args + args if args is not None else file_args + sys.argv[1:] snake_case__, snake_case__ : Any = self.parse_known_args(args=__A ) snake_case__ : Optional[int] = [] for dtype in self.dataclass_types: snake_case__ : int = {f.name for f in dataclasses.fields(__A ) if f.init} snake_case__ : int = {k: v for k, v in vars(__A ).items() if k in keys} for k in keys: delattr(__A , __A ) snake_case__ : Optional[int] = dtype(**__A ) outputs.append(__A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _lowercase ( self : Tuple , __A : Dict[str, Any] , __A : bool = False ): snake_case__ : Optional[Any] = set(args.keys() ) snake_case__ : Optional[Any] = [] for dtype in self.dataclass_types: snake_case__ : Optional[int] = {f.name for f in dataclasses.fields(__A ) if f.init} snake_case__ : Any = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) snake_case__ : int = dtype(**__A ) outputs.append(__A ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(__A )}''' ) return tuple(__A ) def _lowercase ( self : List[str] , __A : str , __A : bool = False ): with open(Path(__A ) , encoding="utf-8" ) as open_json_file: snake_case__ : Union[str, Any] = json.loads(open_json_file.read() ) snake_case__ : Optional[Any] = self.parse_dict(__A , allow_extra_keys=__A ) return tuple(__A ) def _lowercase ( self : Dict , __A : str , __A : bool = False ): snake_case__ : Union[str, Any] = self.parse_dict(yaml.safe_load(Path(__A ).read_text() ) , allow_extra_keys=__A ) return tuple(__A )
286
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
286
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Tuple: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(UpperCamelCase__ ): UpperCamelCase : int = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase : Tuple = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__, UpperCamelCase__ ) @slow def snake_case_ ( self ) -> List[str]: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(UpperCamelCase__ ): UpperCamelCase : int = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase : int = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__, UpperCamelCase__ ) @slow def snake_case_ ( self ) -> List[str]: for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCamelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase__ ) UpperCamelCase : List[str] = FlaxBertModel.from_pretrained(UpperCamelCase__ ) UpperCamelCase : str = tokenizer('Do you support jax jitted function?', return_tensors=TensorType.JAX ) @jax.jit def eval(**SCREAMING_SNAKE_CASE_ ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() @slow def snake_case_ ( self ) -> int: for model_name in ["roberta-base", "roberta-large"]: UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase__ ) UpperCamelCase : Tuple = FlaxRobertaModel.from_pretrained(UpperCamelCase__ ) UpperCamelCase : Dict = tokenizer('Do you support jax jitted function?', return_tensors=TensorType.JAX ) @jax.jit def eval(**SCREAMING_SNAKE_CASE_ ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() def snake_case_ ( self ) -> List[Any]: with self.assertRaisesRegex( UpperCamelCase__, 'bert-base is not a local folder and is not a valid model identifier' ): UpperCamelCase : List[Any] = FlaxAutoModel.from_pretrained('bert-base' ) def snake_case_ ( self ) -> Optional[int]: with self.assertRaisesRegex( UpperCamelCase__, R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCamelCase : int = FlaxAutoModel.from_pretrained(UpperCamelCase__, revision='aaaaaa' ) def snake_case_ ( self ) -> Any: with self.assertRaisesRegex( UpperCamelCase__, 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack', ): UpperCamelCase : Optional[Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def snake_case_ ( self ) -> str: with self.assertRaisesRegex(UpperCamelCase__, 'Use `from_pt=True` to load this model' ): UpperCamelCase : str = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
119
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __snake_case = """hf-internal-testing/tiny-random-bert""" __snake_case = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") __snake_case = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : int = cached_file(UpperCamelCase__ , UpperCamelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) ) with open(os.path.join(UpperCamelCase__ , "refs" , "main" ) ) as f: snake_case : Dict = f.read() self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "snapshots" , UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # File is cached at the same place the second time. snake_case : List[str] = cached_file(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # Using a specific revision to test the full commit hash. snake_case : Any = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="9b8c223" ) self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "snapshots" , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid model identifier" ): snake_case : Optional[Any] = cached_file("tiny-random-bert" , UpperCamelCase__ ) with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid git identifier" ): snake_case : Optional[Any] = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="aaaa" ) with self.assertRaisesRegex(UpperCamelCase__ , "does not appear to have a file named" ): snake_case : List[Any] = cached_file(UpperCamelCase__ , "conf" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , "does not appear to have a file named" ): snake_case : Tuple = cached_file(UpperCamelCase__ , "conf" ) with open(os.path.join(UpperCamelCase__ , "refs" , "main" ) ) as f: snake_case : Any = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , ".no_exist" , UpperCamelCase__ , "conf" ) ) ) snake_case : Optional[Any] = cached_file(UpperCamelCase__ , "conf" , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) snake_case : Any = cached_file(UpperCamelCase__ , "conf" , local_files_only=UpperCamelCase__ , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) snake_case : Any = mock.Mock() snake_case : List[Any] = 500 snake_case : int = {} snake_case : Optional[int] = HTTPError snake_case : Tuple = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCamelCase__ ) as mock_head: snake_case : Tuple = cached_file(UpperCamelCase__ , "conf" , _raise_exceptions_for_connection_errors=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self ) -> Any: '''simple docstring''' self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> str: '''simple docstring''' self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , UpperCamelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , UpperCamelCase__ , revision="ahaha" ) snake_case : int = get_file_from_repo("bert-base-cased" , UpperCamelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case : str = json.loads(open(UpperCamelCase__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case : int = Path(UpperCamelCase__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase__ , "a.txt" ) , str(UpperCamelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase__ , "b.txt" ) )
203
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch SCREAMING_SNAKE_CASE__ : Any = True except ImportError: SCREAMING_SNAKE_CASE__ : str = False try: from torch.hub import _get_torch_home SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_torch_home() except ImportError: SCREAMING_SNAKE_CASE__ : List[Any] = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(torch_cache_home, "transformers") SCREAMING_SNAKE_CASE__ : List[Any] = "https://cdn.huggingface.co" SCREAMING_SNAKE_CASE__ : Dict = "https://s3.amazonaws.com/models.huggingface.co/bert" SCREAMING_SNAKE_CASE__ : List[str] = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(PATH, "config.yaml") SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(PATH, "attributes.txt") SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(PATH, "objects.txt") SCREAMING_SNAKE_CASE__ : Dict = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) SCREAMING_SNAKE_CASE__ : Tuple = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) SCREAMING_SNAKE_CASE__ : Dict = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) SCREAMING_SNAKE_CASE__ : Tuple = "pytorch_model.bin" SCREAMING_SNAKE_CASE__ : Union[str, Any] = "config.yaml" def __magic_name__ ( __lowerCAmelCase : Optional[int]=OBJECTS , __lowerCAmelCase : Any=ATTRIBUTES ) -> Any: __lowerCamelCase = [] with open(__lowerCAmelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __lowerCamelCase = [] with open(__lowerCAmelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Tuple: __lowerCamelCase = OrderedDict() with open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = pkl.load(__lowerCAmelCase )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __lowerCamelCase = ckp.pop(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , np.ndarray ): __lowerCamelCase = torch.tensor(__lowerCAmelCase ) else: assert isinstance(__lowerCAmelCase , torch.tensor ), type(__lowerCAmelCase ) __lowerCamelCase = v return r class lowerCAmelCase__ : a__ : Optional[Any] = {} def __init__( self : Any , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : str = "root" , SCREAMING_SNAKE_CASE__ : Tuple=0 ) -> Optional[Any]: __lowerCamelCase = name __lowerCamelCase = level __lowerCamelCase = {} for k, v in dictionary.items(): if v is None: raise ValueError() __lowerCamelCase = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = Config(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ , level=level + 1 ) __lowerCamelCase = v setattr(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = d def __repr__( self : int ) -> Union[str, Any]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: __lowerCamelCase = val __lowerCamelCase = val __lowerCamelCase = key.split('''.''' ) __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) - 1 __lowerCamelCase = self._pointer if len(SCREAMING_SNAKE_CASE__ ) > 1: for i, l in enumerate(SCREAMING_SNAKE_CASE__ ): if hasattr(self , SCREAMING_SNAKE_CASE__ ) and isinstance(getattr(self , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ): setattr(getattr(self , SCREAMING_SNAKE_CASE__ ) , '''.'''.join(levels[i:] ) , SCREAMING_SNAKE_CASE__ ) if l == last_level: __lowerCamelCase = val else: __lowerCamelCase = pointer[l] def __A ( self : List[str] ) -> Dict: return self._pointer def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: with open(f'''{file_name}''' , '''w''' ) as stream: dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Dict: with open(f'''{file_name}''' , '''w''' ) as stream: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @staticmethod def __A ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: with open(SCREAMING_SNAKE_CASE__ ) as stream: __lowerCamelCase = load(SCREAMING_SNAKE_CASE__ , Loader=SCREAMING_SNAKE_CASE__ ) return data def __str__( self : int ) -> Any: __lowerCamelCase = ''' ''' if self._name != "root": __lowerCamelCase = f'''{t * (self._level-1)}{self._name}:\n''' else: __lowerCamelCase = '''''' __lowerCamelCase = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(SCREAMING_SNAKE_CASE__ ).__name__})\n''' __lowerCamelCase = level return r[:-1] @classmethod def __A ( cls : List[str] , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : str ) -> Any: __lowerCamelCase , __lowerCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return cls(SCREAMING_SNAKE_CASE__ ) @classmethod def __A ( cls : str , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: __lowerCamelCase = kwargs.pop('''cache_dir''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = kwargs.pop('''force_download''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = kwargs.pop('''resume_download''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = kwargs.pop('''proxies''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = kwargs.pop('''local_files_only''' , SCREAMING_SNAKE_CASE__ ) if os.path.isdir(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif os.path.isfile(SCREAMING_SNAKE_CASE__ ) or is_remote_url(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = pretrained_model_name_or_path else: __lowerCamelCase = hf_bucket_url(SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , use_cdn=SCREAMING_SNAKE_CASE__ ) try: # Load from URL or cache if already cached __lowerCamelCase = cached_path( SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __lowerCamelCase = Config.load_yaml(SCREAMING_SNAKE_CASE__ ) except EnvironmentError: __lowerCamelCase = '''Can\'t load config for''' raise EnvironmentError(SCREAMING_SNAKE_CASE__ ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(SCREAMING_SNAKE_CASE__ ), kwargs def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Tuple: __lowerCamelCase = torch.load('''dump.pt''' , map_location=in_tensor.device ) __lowerCamelCase = in_tensor.numpy() __lowerCamelCase = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(__lowerCAmelCase , __lowerCAmelCase , rtol=0.01 , atol=0.1 ), ( f'''{sum([1 for x in np.isclose(__lowerCAmelCase , __lowerCAmelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: __lowerCamelCase = urlparse(__lowerCAmelCase ) return parsed.scheme in ("http", "https") def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=True ) -> str: __lowerCamelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __lowerCamelCase = '''/''' not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=0 , __lowerCAmelCase : Tuple=None , ) -> Optional[Any]: __lowerCamelCase = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): ua += "; " + "; ".join('''{}/{}'''.format(__lowerCAmelCase , __lowerCAmelCase ) for k, v in user_agent.items() ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): ua += "; " + user_agent __lowerCamelCase = {'''user-agent''': ua} if resume_size > 0: __lowerCamelCase = '''bytes=%d-''' % (resume_size,) __lowerCamelCase = requests.get(__lowerCAmelCase , stream=__lowerCAmelCase , proxies=__lowerCAmelCase , headers=__lowerCAmelCase ) if response.status_code == 416: # Range not satisfiable return __lowerCamelCase = response.headers.get('''Content-Length''' ) __lowerCamelCase = resume_size + int(__lowerCAmelCase ) if content_length is not None else None __lowerCamelCase = tqdm( unit='''B''' , unit_scale=__lowerCAmelCase , total=__lowerCAmelCase , initial=__lowerCAmelCase , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__lowerCAmelCase ) ) temp_file.write(__lowerCAmelCase ) progress.close() def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any=False , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[Any]=10 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Union[str, Any]=False , ) -> Dict: if cache_dir is None: __lowerCamelCase = TRANSFORMERS_CACHE if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = str(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) __lowerCamelCase = None if not local_files_only: try: __lowerCamelCase = requests.head(__lowerCAmelCase , allow_redirects=__lowerCAmelCase , proxies=__lowerCAmelCase , timeout=__lowerCAmelCase ) if response.status_code == 200: __lowerCamelCase = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __lowerCamelCase = url_to_filename(__lowerCAmelCase , __lowerCAmelCase ) # get cache path to put the file __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__lowerCAmelCase ): return cache_path else: __lowerCamelCase = [ file for file in fnmatch.filter(os.listdir(__lowerCAmelCase ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(__lowerCAmelCase ) > 0: return os.path.join(__lowerCAmelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(__lowerCAmelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __lowerCamelCase = cache_path + '''.lock''' with FileLock(__lowerCAmelCase ): # If the download just completed while the lock was activated. if os.path.exists(__lowerCAmelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __lowerCamelCase = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(__lowerCAmelCase , '''a+b''' ) as f: yield f __lowerCamelCase = _resumable_file_manager if os.path.exists(__lowerCAmelCase ): __lowerCamelCase = os.stat(__lowerCAmelCase ).st_size else: __lowerCamelCase = 0 else: __lowerCamelCase = partial(tempfile.NamedTemporaryFile , dir=__lowerCAmelCase , delete=__lowerCAmelCase ) __lowerCamelCase = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , __lowerCAmelCase , temp_file.name , ) http_get( __lowerCAmelCase , __lowerCAmelCase , proxies=__lowerCAmelCase , resume_size=__lowerCAmelCase , user_agent=__lowerCAmelCase , ) os.replace(temp_file.name , __lowerCAmelCase ) __lowerCamelCase = {'''url''': url, '''etag''': etag} __lowerCamelCase = cache_path + '''.json''' with open(__lowerCAmelCase , '''w''' ) as meta_file: json.dump(__lowerCAmelCase , __lowerCAmelCase ) return cache_path def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]=None ) -> int: __lowerCamelCase = url.encode('''utf-8''' ) __lowerCamelCase = shaaaa(__lowerCAmelCase ) __lowerCamelCase = url_hash.hexdigest() if etag: __lowerCamelCase = etag.encode('''utf-8''' ) __lowerCamelCase = shaaaa(__lowerCAmelCase ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Dict=False , ) -> List[str]: if cache_dir is None: __lowerCamelCase = TRANSFORMERS_CACHE if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = str(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = str(__lowerCAmelCase ) if is_remote_url(__lowerCAmelCase ): # URL, so get it from the cache (downloading if necessary) __lowerCamelCase = get_from_cache( __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , user_agent=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) elif os.path.exists(__lowerCAmelCase ): # File, and it exists. __lowerCamelCase = url_or_filename elif urlparse(__lowerCAmelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(__lowerCAmelCase ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(__lowerCAmelCase ) ) if extract_compressed_file: if not is_zipfile(__lowerCAmelCase ) and not tarfile.is_tarfile(__lowerCAmelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __lowerCamelCase , __lowerCamelCase = os.path.split(__lowerCAmelCase ) __lowerCamelCase = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isdir(__lowerCAmelCase ) and os.listdir(__lowerCAmelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions __lowerCamelCase = output_path + '''.lock''' with FileLock(__lowerCAmelCase ): shutil.rmtree(__lowerCAmelCase , ignore_errors=__lowerCAmelCase ) os.makedirs(__lowerCAmelCase ) if is_zipfile(__lowerCAmelCase ): with ZipFile(__lowerCAmelCase , '''r''' ) as zip_file: zip_file.extractall(__lowerCAmelCase ) zip_file.close() elif tarfile.is_tarfile(__lowerCAmelCase ): __lowerCamelCase = tarfile.open(__lowerCAmelCase ) tar_file.extractall(__lowerCAmelCase ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(__lowerCAmelCase ) ) return output_path_extracted return output_path def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any]="," ) -> Any: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase ) as f: __lowerCamelCase = eval(f.read() ) else: __lowerCamelCase = requests.get(__lowerCAmelCase ) try: __lowerCamelCase = requests.json() except Exception: __lowerCamelCase = req.content.decode() assert data is not None, "could not connect" try: __lowerCamelCase = eval(__lowerCAmelCase ) except Exception: __lowerCamelCase = data.split('''\n''' ) req.close() return data def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> List[str]: __lowerCamelCase = requests.get(__lowerCAmelCase ) __lowerCamelCase = np.array(Image.open(BytesIO(response.content ) ) ) return img def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: __lowerCamelCase = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__lowerCAmelCase ) with open(__lowerCAmelCase , '''rb''' ) as stream: __lowerCamelCase = pkl.load(__lowerCAmelCase ) __lowerCamelCase = weights.pop('''model''' ) __lowerCamelCase = {} for k, v in model.items(): __lowerCamelCase = torch.from_numpy(__lowerCAmelCase ) if "running_var" in k: __lowerCamelCase = torch.tensor([0] ) __lowerCamelCase = k.replace('''running_var''' , '''num_batches_tracked''' ) __lowerCamelCase = zero return new def __magic_name__ ( ) -> Any: print(f'''{os.path.abspath(os.path.join(__lowerCAmelCase , os.pardir ) )}/demo.ipynb''' ) def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict="RGB" ) -> str: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): __lowerCamelCase = cva.imread(__lowerCAmelCase ) else: __lowerCamelCase = get_image_from_url(__lowerCAmelCase ) assert img is not None, f'''could not connect to: {im}''' __lowerCamelCase = cva.cvtColor(__lowerCAmelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": __lowerCamelCase = img[:, :, ::-1] return img def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple=1 ) -> Optional[int]: return (images[i : i + batch] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ))
365
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512} def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(__lowerCAmelCase ) return pairs class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]: super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = {} @property def __A ( self : Dict ) -> int: return len(self.encoder ) def __A ( self : str ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str: if token in self.cache: return self.cache[token] __lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) if "\n" in token: __lowerCamelCase = token.replace('''\n''' , ''' __newln__''' ) __lowerCamelCase = token.split(''' ''' ) __lowerCamelCase = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE__ ): continue __lowerCamelCase = token.lower() __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: words.append(SCREAMING_SNAKE_CASE__ ) continue while True: __lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: __lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) new_word.extend(word[i:j] ) __lowerCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word words.append(SCREAMING_SNAKE_CASE__ ) return " ".join(SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCamelCase = [] __lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) ) return split_tokens def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int: __lowerCamelCase = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: __lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip() return out_string def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' ) __lowerCamelCase = 0 with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) index += 1 return vocab_file, merge_file
339
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :int ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = inspect.getfile(accelerate.test_utils ) __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __SCREAMING_SNAKE_CASE : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def __magic_name__( self :Optional[int] ) -> Any: print(f'''Found {torch.cuda.device_count()} devices.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def __magic_name__( self :Optional[int] ) -> Tuple: print(f'''Found {torch.cuda.device_count()} devices.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def __magic_name__( self :Tuple ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def __magic_name__( self :str ) -> int: print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __SCREAMING_SNAKE_CASE : Dict = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": __lowerCAmelCase : Dict =Accelerator() __lowerCAmelCase : Any =(accelerator.state.process_index + 2, 1_0) __lowerCAmelCase : List[Any] =torch.randint(0, 1_0, shape).to(accelerator.device) __lowerCAmelCase : Tuple ='' __lowerCAmelCase : Union[str, Any] =accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __lowerCAmelCase : Union[str, Any] =accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __lowerCAmelCase : Optional[int] =accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
9
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any ={'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations_with_dp_array( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE ) for item in array ) lowercase_ : Tuple = answer return answer lowercase_ : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = [0] * (target + 1) lowercase_ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =3 __SCREAMING_SNAKE_CASE =5 __SCREAMING_SNAKE_CASE =[1, 2, 5] print(combination_sum_iv(n, array, target))
364
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
321
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _lowercase : '''simple docstring''' _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : Node | None = None _SCREAMING_SNAKE_CASE : Node | None = None def UpperCamelCase_ ( ) -> Node | None: '''simple docstring''' __lowerCAmelCase = Node(1 ) __lowerCAmelCase = Node(2 ) __lowerCAmelCase = Node(3 ) __lowerCAmelCase = Node(4 ) __lowerCAmelCase = Node(5 ) return tree def UpperCamelCase_ ( snake_case_ : Node | None ) -> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase_ ( snake_case_ : Node | None ) -> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase_ ( snake_case_ : Node | None ) -> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase_ ( snake_case_ : Node | None ) -> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase_ ( snake_case_ : Node | None ) -> Sequence[Node | None]: '''simple docstring''' __lowerCAmelCase = [] if root is None: return output __lowerCAmelCase = deque([root] ) while process_queue: __lowerCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase_ ( snake_case_ : Node | None , snake_case_ : int ) -> Sequence[Node | None]: '''simple docstring''' __lowerCAmelCase = [] def populate_output(snake_case_ : Node | None , snake_case_ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def UpperCamelCase_ ( snake_case_ : Node | None , snake_case_ : int ) -> Sequence[Node | None]: '''simple docstring''' __lowerCAmelCase = [] def populate_output(snake_case_ : Node | None , snake_case_ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case_ , snake_case_ ) return output def UpperCamelCase_ ( snake_case_ : Node | None ) -> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = height(snake_case_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case_ , snake_case_ ) ) __lowerCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(snake_case_ , snake_case_ ) ) __lowerCAmelCase = 0 return output def UpperCamelCase_ ( ) -> None: # Main function for testing. '''simple docstring''' __lowerCAmelCase = make_tree() print(f"""In-order Traversal: {inorder(snake_case_ )}""" ) print(f"""Pre-order Traversal: {preorder(snake_case_ )}""" ) print(f"""Post-order Traversal: {postorder(snake_case_ )}""" , """\n""" ) print(f"""Height of Tree: {height(snake_case_ )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(snake_case_ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(snake_case_ ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(snake_case_ , level=snake_case_ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
229
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : Union[str, Any]=2_81_23 ) -> str: '''simple docstring''' __lowerCAmelCase = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __lowerCAmelCase = set() __lowerCAmelCase = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(snake_case_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
229
1
import math import tensorflow as tf from packaging import version def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Any = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Any = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) A_ : Tuple = tf.cast(math.pi , x.dtype ) A_ : str = tf.cast(0.0_4_4_7_1_5 , x.dtype ) A_ : List[Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(SCREAMING_SNAKE_CASE , 3 )) )) return x * cdf def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) return x * tf.tanh(tf.math.softplus(SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) A_ : str = tf.cast(0.0_4_4_7_1_5 , x.dtype ) A_ : Optional[int] = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : str = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) A_ : List[str] = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return tf.clip_by_value(_gelu(SCREAMING_SNAKE_CASE ) , -10 , 10 ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ): A_ , A_ : Any = tf.split(SCREAMING_SNAKE_CASE , 2 , axis=SCREAMING_SNAKE_CASE ) return a * tf.math.sigmoid(SCREAMING_SNAKE_CASE ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return tf.keras.activations.gelu(SCREAMING_SNAKE_CASE , approximate=SCREAMING_SNAKE_CASE ) UpperCamelCase = tf.keras.activations.gelu UpperCamelCase = approximate_gelu_wrap else: UpperCamelCase = _gelu UpperCamelCase = _gelu_new UpperCamelCase = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
65
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->int: '''simple docstring''' A_ : List[str] = tempfile.mkdtemp() A_ : Optional[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Union[str, Any] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } A_ : Tuple = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self )->int: '''simple docstring''' A_ : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Optional[Any] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[int] = self.get_tokenizer() A_ : int = self.get_rust_tokenizer() A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) A_ : List[str] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) A_ : List[str] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) A_ : int = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Dict = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Any = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) A_ : Optional[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Tuple = self.prepare_image_inputs() A_ : Optional[Any] = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) A_ : Union[str, Any] = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Union[str, Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : List[str] = '''lower newer''' A_ : Tuple = processor(text=_SCREAMING_SNAKE_CASE ) A_ : int = tokenizer(_SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Dict = self.get_image_processor() A_ : str = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = '''lower newer''' A_ : List[Any] = self.prepare_image_inputs() A_ : Any = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : Tuple = processor.batch_decode(_SCREAMING_SNAKE_CASE ) A_ : int = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Dict = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Optional[Any] = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : int = '''lower newer''' A_ : Dict = self.prepare_image_inputs() A_ : List[Any] = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
65
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : str = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A__ ( lowerCAmelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = """pegasus""" SCREAMING_SNAKE_CASE = ["""past_key_values"""] SCREAMING_SNAKE_CASE = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=5_0265 , _SCREAMING_SNAKE_CASE: str=1024 , _SCREAMING_SNAKE_CASE: Any=12 , _SCREAMING_SNAKE_CASE: Optional[int]=4096 , _SCREAMING_SNAKE_CASE: List[Any]=16 , _SCREAMING_SNAKE_CASE: Tuple=12 , _SCREAMING_SNAKE_CASE: Optional[int]=4096 , _SCREAMING_SNAKE_CASE: Any=16 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: List[Any]="gelu" , _SCREAMING_SNAKE_CASE: Dict=1024 , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: Optional[int]=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.02 , _SCREAMING_SNAKE_CASE: Optional[int]=0 , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Dict=0 , _SCREAMING_SNAKE_CASE: Dict=1 , _SCREAMING_SNAKE_CASE: List[str]=1 , **_SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = vocab_size __lowerCAmelCase : str = max_position_embeddings __lowerCAmelCase : List[str] = d_model __lowerCAmelCase : Optional[Any] = encoder_ffn_dim __lowerCAmelCase : List[str] = encoder_layers __lowerCAmelCase : str = encoder_attention_heads __lowerCAmelCase : List[Any] = decoder_ffn_dim __lowerCAmelCase : Tuple = decoder_layers __lowerCAmelCase : str = decoder_attention_heads __lowerCAmelCase : List[str] = dropout __lowerCAmelCase : List[Any] = attention_dropout __lowerCAmelCase : Tuple = activation_dropout __lowerCAmelCase : List[str] = activation_function __lowerCAmelCase : List[Any] = init_std __lowerCAmelCase : Union[str, Any] = encoder_layerdrop __lowerCAmelCase : Union[str, Any] = decoder_layerdrop __lowerCAmelCase : Optional[int] = use_cache __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , ) @property def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[Any]: """simple docstring""" return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self: Any) -> Tuple: """simple docstring""" return self.d_model
269
'''simple docstring''' import os from datetime import datetime as dt from github import Github __SCREAMING_SNAKE_CASE :str = [ '''good first issue''', '''feature request''', '''wip''', ] def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = Github(os.environ["GITHUB_TOKEN"] ) _UpperCAmelCase = g.get_repo("huggingface/accelerate" ) _UpperCAmelCase = repo.get_issues(state="open" ) for issue in open_issues: _UpperCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowercase : i.created_at , reverse=__lowercase ) _UpperCAmelCase = comments[0] if len(__lowercase ) > 0 else None _UpperCAmelCase = dt.utcnow() _UpperCAmelCase = (current_time - issue.updated_at).days _UpperCAmelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
22
0
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __UpperCAmelCase = getLogger(__name__) def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int = 8 , snake_case__ : int = 1024 , snake_case__ : Any="val" , snake_case__ : int=None , snake_case__ : Optional[Any]=False , snake_case__ : Any="summarization" , snake_case__ : Dict=None , snake_case__ : List[Any]=1 , snake_case__ : Dict = None , snake_case__ : Optional[Any]="" , **snake_case__ : List[str] , ) -> Dict: UpperCamelCase : Optional[Any] = str(snake_case__ ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=snake_case__ ) UpperCamelCase : Union[str, Any] = Path(snake_case__ ) UpperCamelCase : Optional[int] = save_dir.joinpath(F"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(snake_case__ ) UpperCamelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(snake_case__ ).cuda() if fpaa: UpperCamelCase : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case__ , snake_case__ ) # update config with task specific params UpperCamelCase : Dict = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCamelCase : int = num_return_sequences UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained(snake_case__ ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCamelCase : Any = tokenizer.model_max_length if prefix is None: UpperCamelCase : Optional[int] = prefix or getattr(model.config , 'prefix' , '' ) or '' UpperCamelCase : Dict = SeqaSeqDataset( snake_case__ , snake_case__ , snake_case__ , max_target_length=1024 , type_path=snake_case__ , n_obs=snake_case__ , prefix=snake_case__ , **snake_case__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCamelCase : str = ds.make_sortish_sampler(snake_case__ , distributed=snake_case__ , add_extra_examples=snake_case__ , shuffle=snake_case__ ) UpperCamelCase : Optional[Any] = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=snake_case__ , collate_fn=ds.collate_fn ) UpperCamelCase : Optional[Any] = [] for batch in tqdm(snake_case__ ): UpperCamelCase : Tuple = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=snake_case__ , num_beams=snake_case__ , **snake_case__ , ) UpperCamelCase : Tuple = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) UpperCamelCase : List[str] = batch['ids'] if num_return_sequences > 1: UpperCamelCase : Any = chunks(snake_case__ , snake_case__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case__ ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(snake_case__ , snake_case__ ) return results, sampler.num_replicas def UpperCamelCase ( ) -> Optional[Any]: UpperCamelCase : List[str] = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=snake_case__ , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=snake_case__ , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=snake_case__ , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=snake_case__ , default=snake_case__ ) parser.add_argument( '--type_path' , type=snake_case__ , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=snake_case__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=snake_case__ , default=8 , required=snake_case__ , help='batch size' ) parser.add_argument( '--local_rank' , type=snake_case__ , default=-1 , required=snake_case__ , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=snake_case__ , default=snake_case__ , required=snake_case__ , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=snake_case__ , default=1 , required=snake_case__ , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=snake_case__ , default=600 , required=snake_case__ , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=snake_case__ , default=snake_case__ , required=snake_case__ ) parser.add_argument('--tgt_lang' , type=snake_case__ , default=snake_case__ , required=snake_case__ ) parser.add_argument( '--prefix' , type=snake_case__ , required=snake_case__ , default=snake_case__ , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) UpperCamelCase : str = time.time() UpperCamelCase , UpperCamelCase : str = parser.parse_known_args() UpperCamelCase : str = parse_numeric_n_bool_cl_kwargs(snake_case__ ) if generate_kwargs and args.local_rank <= 0: print(F"""parsed the following generate kwargs: {generate_kwargs}""" ) UpperCamelCase : List[Any] = Path(args.save_dir + '_tmp' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) # this handles locking. UpperCamelCase : List[Any] = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(F"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCamelCase : Union[str, Any] = {} if args.src_lang is not None: UpperCamelCase : Any = args.src_lang if args.tgt_lang is not None: UpperCamelCase : str = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case__ ) UpperCamelCase , UpperCamelCase : List[str] = eval_data_dir( args.data_dir , snake_case__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=snake_case__ , **snake_case__ , ) if args.local_rank <= 0: UpperCamelCase : Tuple = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case__ ) UpperCamelCase : Tuple = gather_results_from_each_node(snake_case__ , snake_case__ , args.sync_timeout ) UpperCamelCase : Tuple = combine_partial_results(snake_case__ ) if args.num_return_sequences > 1: UpperCamelCase : Tuple = save_dir.joinpath('pseudolabel_results.json' ) print(F"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(snake_case__ , snake_case__ ) return UpperCamelCase : Tuple = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(snake_case__ ) as f: UpperCamelCase : Any = [x.rstrip() for x in f.readlines()][: len(snake_case__ )] # Calculate metrics, save metrics, and save _generations.txt UpperCamelCase : Tuple = 'translation' in args.task UpperCamelCase : Any = calculate_bleu if calc_bleu else calculate_rouge UpperCamelCase : Tuple = 'bleu' if calc_bleu else 'rouge' UpperCamelCase : Dict = score_fn(snake_case__ , snake_case__ ) UpperCamelCase : Optional[Any] = len(snake_case__ ) UpperCamelCase : str = time.time() - start_time UpperCamelCase : Union[str, Any] = round(runtime / metrics['n_obs'] , 4 ) UpperCamelCase : Any = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCamelCase : Tuple = save_dir.joinpath(F"""{args.type_path}_{metric_name}.json""" ) save_json(snake_case__ , snake_case__ , indent=snake_case__ ) print(snake_case__ ) write_txt_file(snake_case__ , save_dir.joinpath(F"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(snake_case__ , save_dir.joinpath(F"""{args.type_path}.target""" ) ) else: shutil.rmtree(snake_case__ ) def UpperCamelCase ( snake_case__ : List[Any] ) -> List: UpperCamelCase : Optional[int] = [] for partial_result in partial_results: records.extend(snake_case__ ) UpperCamelCase : List[str] = sorted(snake_case__ , key=lambda snake_case__ : x["id"] ) UpperCamelCase : Dict = [x['pred'] for x in records] return preds def UpperCamelCase ( snake_case__ : Dict , snake_case__ : int , snake_case__ : Union[str, Any] ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files UpperCamelCase : List[Any] = time.time() logger.info('waiting for all nodes to finish' ) UpperCamelCase : Dict = None while (time.time() - start_wait) < timeout: UpperCamelCase : str = list(save_dir.glob('rank_*.json' ) ) if len(snake_case__ ) < num_replicas: continue try: # make sure all json files are fully saved UpperCamelCase : Optional[Any] = lmap(snake_case__ , snake_case__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
103
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase_ ( a__ ): @staticmethod @abstractmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: raise NotImplementedError() @abstractmethod def snake_case_ ( self ) -> str: raise NotImplementedError()
103
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class _lowercase ( unittest.TestCase ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=512 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ): """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def UpperCamelCase_ (self ): """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ (self ): """simple docstring""" a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def UpperCamelCase_ (self ): """simple docstring""" a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = True a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = True __A = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ (self ): """simple docstring""" a = FlaxBertModelTester(self ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = FlaxBertModel.from_pretrained("bert-base-cased" ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
227
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" a = tempfile.mkdtemp() a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) a = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], "do_convert_rgb": True, } a = os.path.join(self.tmpdirname , lowerCamelCase_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self , **lowerCamelCase_ ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def UpperCamelCase_ (self , **lowerCamelCase_ ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def UpperCamelCase_ (self , **lowerCamelCase_ ): """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ (self ): """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ (self ): """simple docstring""" a = self.get_tokenizer() a = self.get_rust_tokenizer() a = self.get_image_processor() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase_ ) a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) a = self.get_image_processor(do_normalize=lowerCamelCase_ ) a = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=lowerCamelCase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) a = self.prepare_image_inputs() a = image_processor(lowerCamelCase_ , return_tensors="np" ) a = processor(images=lowerCamelCase_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ (self ): """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) a = "Alexandra,T-shirt的价格是15便士。" a = processor(text=lowerCamelCase_ ) a = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ (self ): """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) a = "Alexandra,T-shirt的价格是15便士。" a = self.prepare_image_inputs() a = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def UpperCamelCase_ (self ): """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(lowerCamelCase_ ) a = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) a = "Alexandra,T-shirt的价格是15便士。" a = self.prepare_image_inputs() a = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
227
1
def A__ ( __lowerCamelCase ): return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") __UpperCAmelCase = int(input("Enter number: ").strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
257
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , **_A ) -> Union[str, Any]: super().__init__(**_A ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(_A ) def __call__( self , _A , _A = None , **_A , ) -> str: if "text_queries" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs.pop('''text_queries''' ) if isinstance(_A , (str, Image.Image) ): SCREAMING_SNAKE_CASE_ = {'''image''': image, '''candidate_labels''': candidate_labels} else: SCREAMING_SNAKE_CASE_ = image SCREAMING_SNAKE_CASE_ = super().__call__(_A , **_A ) return results def _UpperCamelCase ( self , **_A ) -> str: SCREAMING_SNAKE_CASE_ = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs['''threshold'''] if "top_k" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs['''top_k'''] return {}, {}, postprocess_params def _UpperCamelCase ( self , _A ) -> Any: SCREAMING_SNAKE_CASE_ = load_image(inputs['''image'''] ) SCREAMING_SNAKE_CASE_ = inputs['''candidate_labels'''] if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = candidate_labels.split(''',''' ) SCREAMING_SNAKE_CASE_ = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_A ): SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , return_tensors=self.framework ) SCREAMING_SNAKE_CASE_ = self.image_processor(_A , return_tensors=self.framework ) yield { "is_last": i == len(_A ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _UpperCamelCase ( self , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = model_inputs.pop('''target_size''' ) SCREAMING_SNAKE_CASE_ = model_inputs.pop('''candidate_label''' ) SCREAMING_SNAKE_CASE_ = model_inputs.pop('''is_last''' ) SCREAMING_SNAKE_CASE_ = self.model(**_A ) SCREAMING_SNAKE_CASE_ = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def _UpperCamelCase ( self , _A , _A=0.1 , _A=None ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE_ = model_output['''candidate_label'''] SCREAMING_SNAKE_CASE_ = BaseModelOutput(_A ) SCREAMING_SNAKE_CASE_ = self.image_processor.post_process_object_detection( outputs=_A , threshold=_A , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE_ = outputs['''scores'''][index].item() SCREAMING_SNAKE_CASE_ = self._get_bounding_box(outputs['''boxes'''][index][0] ) SCREAMING_SNAKE_CASE_ = {'''score''': score, '''label''': label, '''box''': box} results.append(_A ) SCREAMING_SNAKE_CASE_ = sorted(_A , key=lambda _A : x["score"] , reverse=_A ) if top_k: SCREAMING_SNAKE_CASE_ = results[:top_k] return results def _UpperCamelCase ( self , _A ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = box.int().tolist() SCREAMING_SNAKE_CASE_ = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
257
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __magic_name__ ( __a : Tuple ): '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __magic_name__ ( __a : List[str] ): '''simple docstring''' UpperCamelCase__ = create_tensor(__a ) UpperCamelCase__ = gather(__a ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __magic_name__ ( __a : Any ): '''simple docstring''' UpperCamelCase__ = [state.process_index] UpperCamelCase__ = gather_object(__a ) assert len(__a ) == state.num_processes, f"{gathered_obj}, {len(__a )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), f"{gathered_obj} != {list(range(state.num_processes ) )}" def __magic_name__ ( __a : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ = create_tensor(__a ) UpperCamelCase__ = broadcast(__a ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __magic_name__ ( __a : Tuple ): '''simple docstring''' if state.is_main_process: UpperCamelCase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: UpperCamelCase__ = torch.arange(state.num_processes ).to(state.device ) UpperCamelCase__ = pad_across_processes(__a ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' if state.num_processes != 2: return UpperCamelCase__ = create_tensor(__a ) UpperCamelCase__ = reduce(__a , """sum""" ) UpperCamelCase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__a , __a ), f"{reduced_tensor} != {truth_tensor}" def __magic_name__ ( __a : Any ): '''simple docstring''' if state.num_processes != 2: return UpperCamelCase__ = create_tensor(__a ) UpperCamelCase__ = reduce(__a , """mean""" ) UpperCamelCase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__a , __a ), f"{reduced_tensor} != {truth_tensor}" def __magic_name__ ( __a : List[Any] ): '''simple docstring''' main() def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = PartialState() state.print(f"State: {state}" ) state.print("""testing gather""" ) test_gather(__a ) state.print("""testing gather_object""" ) test_gather_object(__a ) state.print("""testing broadcast""" ) test_broadcast(__a ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__a ) state.print("""testing reduce_sum""" ) test_reduce_sum(__a ) state.print("""testing reduce_mean""" ) test_reduce_mean(__a ) if __name__ == "__main__": main()
244
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
0
import sys from collections import defaultdict class UpperCamelCase__ : '''simple docstring''' def __init__( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : List[Any] ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : str ,lowerCamelCase__ : List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = pos def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Any ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: SCREAMING_SNAKE_CASE = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: SCREAMING_SNAKE_CASE = 2 * start + 1 else: SCREAMING_SNAKE_CASE = 2 * start + 2 if heap[smallest_child] < heap[start]: SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child] SCREAMING_SNAKE_CASE = ( heap[start], positions[start], ) SCREAMING_SNAKE_CASE = temp, tempa SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,snake_case_ ) self.top_to_bottom(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = position[index] while index != 0: SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: SCREAMING_SNAKE_CASE = heap[parent] SCREAMING_SNAKE_CASE = position[parent] self.set_position(position[parent] ,snake_case_ ) else: SCREAMING_SNAKE_CASE = val SCREAMING_SNAKE_CASE = temp self.set_position(snake_case_ ,snake_case_ ) break SCREAMING_SNAKE_CASE = parent else: SCREAMING_SNAKE_CASE = val SCREAMING_SNAKE_CASE = temp self.set_position(snake_case_ ,0 ) def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ ,-1 ,-1 ): self.top_to_bottom(snake_case_ ,snake_case_ ,len(snake_case_ ) ,snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : int ,lowerCamelCase__ : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = positions[0] SCREAMING_SNAKE_CASE = sys.maxsize self.top_to_bottom(snake_case_ ,0 ,len(snake_case_ ) ,snake_case_ ) return temp def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = Heap() SCREAMING_SNAKE_CASE = [0] * len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [-1] * len(lowerCAmelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex SCREAMING_SNAKE_CASE = [] for vertex in range(len(lowerCAmelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(lowerCAmelCase__ ) heap.node_position.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = sys.maxsize for neighbor, distance in adjacency_list[0]: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = distance heap.heapify(lowerCAmelCase__ , lowerCAmelCase__ ) for _ in range(1 , len(lowerCAmelCase__ ) ): SCREAMING_SNAKE_CASE = heap.delete_minimum(lowerCAmelCase__ , lowerCAmelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) SCREAMING_SNAKE_CASE = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowerCAmelCase__ )] ): SCREAMING_SNAKE_CASE = distance heap.bottom_to_top( lowerCAmelCase__ , heap.get_position(lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > SCREAMING_SNAKE_CASE_ = int(input("""Enter number of edges: """).strip()) SCREAMING_SNAKE_CASE_ = defaultdict(list) for _ in range(edges_number): SCREAMING_SNAKE_CASE_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
352
from __future__ import annotations import math def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = str(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [n] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if len(str(_SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(_SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(_SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def __lowercase ( _SCREAMING_SNAKE_CASE = 11 ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 13 while len(_SCREAMING_SNAKE_CASE ) != count: if validate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = list_truncated_nums(_SCREAMING_SNAKE_CASE ) if all(is_prime(_SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(_SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def __lowercase ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(1_1)) = }''')
193
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Dict = '''T5Config''' def SCREAMING_SNAKE_CASE_ ( __magic_name__ : jnp.array , __magic_name__ : int , __magic_name__ : int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase :List[str] = jnp.zeros_like(__magic_name__ ) UpperCamelCase :str = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCamelCase :Tuple = shifted_input_ids.at[:, 0].set(__magic_name__ ) UpperCamelCase :int = jnp.where(shifted_input_ids == -100 , __magic_name__ , __magic_name__ ) return shifted_input_ids class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : List[Any] = """mt5""" snake_case__ : Optional[Any] = MTaConfig class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[int] = """mt5""" snake_case__ : Any = MTaConfig class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[Any] = """mt5""" snake_case__ : List[Any] = MTaConfig
38
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : List[str] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
232
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=18 , __magic_name__=30 , __magic_name__=400 , __magic_name__=True , __magic_name__=None , __magic_name__=True , __magic_name__=None , __magic_name__=True , __magic_name__=[0.5, 0.5, 0.5] , __magic_name__=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = size if size is not None else {'''shortest_edge''': 18} snake_case_ : Tuple = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} snake_case_ : Any = parent snake_case_ : Optional[Any] = batch_size snake_case_ : Optional[int] = num_channels snake_case_ : int = image_size snake_case_ : Any = min_resolution snake_case_ : List[Any] = max_resolution snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : int = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Any = do_normalize snake_case_ : List[str] = image_mean snake_case_ : Union[str, Any] = image_std def lowerCamelCase (self ) -> Tuple: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( A__, unittest.TestCase ): lowerCamelCase_ : Union[str, Any] = LevitImageProcessor if is_vision_available() else None def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = LevitImageProcessingTester(self ) @property def lowerCamelCase (self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) snake_case_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' pass def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case_ : Any = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input snake_case_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case_ : Tuple = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case_ : int = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
357
def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) snake_case_ : List[Any] = 0 snake_case_ : Tuple = str(_UpperCamelCase ) while len(_UpperCamelCase ) != 1: snake_case_ : Tuple = [int(_UpperCamelCase ) for i in num_string] snake_case_ : Dict = 1 for i in range(0 , len(_UpperCamelCase ) ): total *= numbers[i] snake_case_ : str = str(_UpperCamelCase ) steps += 1 return steps def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) snake_case_ : Any = 0 snake_case_ : Tuple = str(_UpperCamelCase ) while len(_UpperCamelCase ) != 1: snake_case_ : List[str] = [int(_UpperCamelCase ) for i in num_string] snake_case_ : Optional[int] = 0 for i in range(0 , len(_UpperCamelCase ) ): total += numbers[i] snake_case_ : Tuple = str(_UpperCamelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
279
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests SCREAMING_SNAKE_CASE__:Dict = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user SCREAMING_SNAKE_CASE__:Optional[int] = BASE_URL + '/user' # https://github.com/settings/tokens SCREAMING_SNAKE_CASE__:Optional[Any] = os.environ.get("""USER_TOKEN""", """""") def _lowerCamelCase( a ): __a = { "Authorization": F"token {auth_token}", "Accept": "application/vnd.github.v3+json", } return requests.get(__snake_case , headers=__snake_case ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError("""\'USER_TOKEN\' field cannot be empty.""")
261
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __snake_case : Optional[int] = 50_000 __snake_case : Dict = 5_000 __snake_case , __snake_case : Union[str, Any] = os.path.split(__file__) __snake_case : Any = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _lowercase ( __snake_case ,__snake_case ) -> Dict: for i in range(__snake_case ): __lowerCAmelCase : Union[str, Any] = dataset[i] @get_duration def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Dict: for i in range(0 ,len(__snake_case ) ,__snake_case ): __lowerCAmelCase : List[str] = dataset[i : i + batch_size] @get_duration def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Dict: with dataset.formatted_as(type=__snake_case ): for i in range(__snake_case ): __lowerCAmelCase : Union[str, Any] = dataset[i] @get_duration def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ) -> str: with dataset.formatted_as(type=__snake_case ): for i in range(0 ,__snake_case ,__snake_case ): __lowerCAmelCase : Optional[int] = dataset[i : i + batch_size] def _lowercase ( ) -> Union[str, Any]: __lowerCAmelCase : Optional[int] = {"num examples": SPEED_TEST_N_EXAMPLES} __lowerCAmelCase : Optional[int] = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] __lowerCAmelCase : Any = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) __lowerCAmelCase : int = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) __lowerCAmelCase : str = generate_example_dataset( os.path.join(__snake_case ,"dataset.arrow" ) ,__snake_case ,num_examples=__snake_case ,seq_shapes={"list": (100,)} ,) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ ,str(__snake_case ) ) __lowerCAmelCase : str = func(__snake_case ,**__snake_case ) print("shuffling dataset" ) __lowerCAmelCase : Optional[int] = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " ,func.__name__ ,str(__snake_case ) ) __lowerCAmelCase : List[str] = func( __snake_case ,**__snake_case ) with open(__snake_case ,"wb" ) as f: f.write(json.dumps(__snake_case ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
269
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = UNetaDModel( sample_size=(32, 64) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") ,) return model @property def _snake_case ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase : str = UNetaDConditionModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") ,cross_attention_dim=10 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = AutoencoderKL( sample_size=(128, 64) ,in_channels=1 ,out_channels=1 ,latent_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") ,up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") ,) _UpperCAmelCase : Tuple = UNetaDModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(128, 128) ,down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") ,up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") ,) return vqvae, unet @slow def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] ,y_res=self.dummy_unet.config.sample_size[0] ,) _UpperCAmelCase : Any = DDPMScheduler() _UpperCAmelCase : List[Any] = AudioDiffusionPipeline(vqvae=a_ ,unet=self.dummy_unet ,mel=a_ ,scheduler=a_ ) _UpperCAmelCase : str = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Dict = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : Optional[int] = pipe(generator=a_ ,steps=4 ) _UpperCAmelCase : Any = output.audios[0] _UpperCAmelCase : Optional[int] = output.images[0] _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : Dict = pipe(generator=a_ ,steps=4 ,return_dict=a_ ) _UpperCAmelCase : List[str] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _UpperCAmelCase : str = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Optional[Any] = np.frombuffer(image_from_tuple.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _UpperCAmelCase : Optional[int] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] ,y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] ,) _UpperCAmelCase : Any = DDIMScheduler() _UpperCAmelCase : Any = self.dummy_vqvae_and_unet _UpperCAmelCase : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=dummy_vqvae_and_unet[1] ,mel=a_ ,scheduler=a_ ) _UpperCAmelCase : List[Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) np.random.seed(0 ) _UpperCAmelCase : Optional[Any] = np.random.uniform(-1 ,1 ,((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _UpperCAmelCase : Optional[Any] = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : int = pipe(raw_audio=a_ ,generator=a_ ,start_step=5 ,steps=10 ) _UpperCAmelCase : List[Any] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _UpperCAmelCase : Optional[int] = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Optional[int] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _UpperCAmelCase : Tuple = self.dummy_unet_condition _UpperCAmelCase : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=a_ ,mel=a_ ,scheduler=a_ ) _UpperCAmelCase : int = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) np.random.seed(0 ) _UpperCAmelCase : Optional[Any] = torch.rand((1, 1, 10) ) _UpperCAmelCase : Optional[Any] = pipe(generator=a_ ,encoding=a_ ) _UpperCAmelCase : Dict = output.images[0] _UpperCAmelCase : List[str] = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Optional[int] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Tuple = torch_device _UpperCAmelCase : List[Any] = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) _UpperCAmelCase : Union[str, Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = torch.Generator(device=a_ ).manual_seed(42 ) _UpperCAmelCase : Any = pipe(generator=a_ ) _UpperCAmelCase : str = output.audios[0] _UpperCAmelCase : int = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _UpperCAmelCase : int = np.frombuffer(image.tobytes() ,dtype="""uint8""" )[:10] _UpperCAmelCase : Union[str, Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
349
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
1
"""simple docstring""" def _lowerCAmelCase ( lowercase_ = 1000000 ): UpperCAmelCase = set(range(3 , lowercase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowercase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowercase_ , lowercase_ ) ) ) UpperCAmelCase = [float(lowercase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase_ , limit + 1 , lowercase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
78
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Tuple = BarthezTokenizer A: Tuple = BarthezTokenizerFast A: List[str] = True A: Union[str, Any] = True def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().setUp() UpperCamelCase__ : Tuple = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCamelCase__ ) UpperCamelCase__ : Dict = tokenizer def UpperCAmelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ : str = '''<pad>''' UpperCamelCase__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase__ ) , 101122 ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCamelCase__ : Tuple = [0, 57, 3018, 70307, 91, 2] UpperCamelCase__ : Any = self.tokenizer( lowerCamelCase__ , max_length=len(lowerCamelCase__ ) , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='''pt''' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase__ : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase__ : List[Any] = self.get_tokenizer() UpperCamelCase__ : Optional[int] = self.get_rust_tokenizer() UpperCamelCase__ : Optional[int] = '''I was born in 92000, and this is falsé.''' UpperCamelCase__ : Optional[Any] = tokenizer.tokenize(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Tuple = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : int = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Tuple = self.get_rust_tokenizer() UpperCamelCase__ : Tuple = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : List[Any] = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase__ : int = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=lowerCamelCase__ , )
51
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple=7 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[int]=18 , lowerCamelCase__ : Any=30 , lowerCamelCase__ : int=400 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase__ : str=[0.5, 0.5, 0.5] , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : Dict = batch_size UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : str = min_resolution UpperCamelCase__ : str = max_resolution UpperCamelCase__ : Tuple = do_resize UpperCamelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 20} UpperCamelCase__ : Optional[Any] = do_thumbnail UpperCamelCase__ : int = do_align_axis UpperCamelCase__ : List[Any] = do_pad UpperCamelCase__ : List[Any] = do_normalize UpperCamelCase__ : Dict = image_mean UpperCamelCase__ : List[Any] = image_std def UpperCAmelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Tuple = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : str ) -> int: '''simple docstring''' UpperCamelCase__ : int = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_thumbnail''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) UpperCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def UpperCAmelCase__ ( self : Any ) -> str: '''simple docstring''' pass @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[Any] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase__ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
51
1
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : Optional[int] = [1] __a , __a , __a : Tuple = 0, 0, 0 __a : Dict = ugly_nums[ia] * 2 __a : Tuple = ugly_nums[ia] * 3 __a : int = ugly_nums[ia] * 5 for _ in range(1 , lowerCamelCase__ ): __a : Optional[Any] = min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ugly_nums.append(lowerCamelCase__ ) if next_num == next_a: ia += 1 __a : List[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __a : List[Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __a : Optional[int] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_00) = }''')
27
import enum import shutil import sys UpperCAmelCase, UpperCAmelCase : Union[str, Any] = shutil.get_terminal_size() UpperCAmelCase : Dict = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class __lowercase ( enum.Enum ): """simple docstring""" UpperCamelCase : Any = 0 UpperCamelCase : int = 1 def __lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any="" ): '''simple docstring''' sys.stdout.write(str(lowerCamelCase__ ) + end ) sys.stdout.flush() def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple="" ): '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' forceWrite("""\r""" ) def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : str ): '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __lowerCamelCase ( ): '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def __lowerCamelCase ( ): '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
252
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = SwinConfig(image_size=192 ) if "base" in model_name: __lowerCAmelCase = 6 __lowerCAmelCase = 128 __lowerCAmelCase = (2, 2, 18, 2) __lowerCAmelCase = (4, 8, 16, 32) elif "large" in model_name: __lowerCAmelCase = 12 __lowerCAmelCase = 192 __lowerCAmelCase = (2, 2, 18, 2) __lowerCAmelCase = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) __lowerCAmelCase = window_size __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = num_heads return config def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if "encoder.mask_token" in name: __lowerCAmelCase = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowerCAmelCase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowerCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowerCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": __lowerCAmelCase = "layernorm.weight" if name == "encoder.norm.bias": __lowerCAmelCase = "layernorm.bias" if "decoder" in name: pass else: __lowerCAmelCase = "swin." + name return name def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(_UpperCamelCase ) if "attn_mask" in key: pass elif "qkv" in key: __lowerCAmelCase = key.split("." ) __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = int(key_split[4] ) __lowerCAmelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[ :dim ] __lowerCAmelCase = val[ dim : dim * 2 ] __lowerCAmelCase = val[ -dim: ] else: __lowerCAmelCase = val return orig_state_dict def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = torch.load(_UpperCamelCase , map_location="cpu" )["model"] __lowerCAmelCase = get_swin_config(_UpperCamelCase ) __lowerCAmelCase = SwinForMaskedImageModeling(_UpperCamelCase ) model.eval() __lowerCAmelCase = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = ViTImageProcessor(size={"height": 192, "width": 192} ) __lowerCAmelCase = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) __lowerCAmelCase = image_processor(images=_UpperCamelCase , return_tensors="pt" ) with torch.no_grad(): __lowerCAmelCase = model(**_UpperCamelCase ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print(f"Pushing model and image processor for {model_name} to hub" ) model.push_to_hub(f"microsoft/{model_name}" ) image_processor.push_to_hub(f"microsoft/{model_name}" ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A : List[str] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
363
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : List[str] = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] ="""distilbert""" __UpperCAmelCase : int ={ """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self , __a=3_05_22 , __a=5_12 , __a=False , __a=6 , __a=12 , __a=7_68 , __a=4 * 7_68 , __a=0.1 , __a=0.1 , __a="gelu" , __a=0.0_2 , __a=0.1 , __a=0.2 , __a=0 , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = sinusoidal_pos_embds __lowerCAmelCase = n_layers __lowerCAmelCase = n_heads __lowerCAmelCase = dim __lowerCAmelCase = hidden_dim __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation __lowerCAmelCase = initializer_range __lowerCAmelCase = qa_dropout __lowerCAmelCase = seq_classif_dropout super().__init__(**__a , pad_token_id=__a ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @property def snake_case ( self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
259
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = AltDiffusionPipeline _a = TEXT_TO_IMAGE_PARAMS _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS def A__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _lowercase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _lowercase =DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) _lowercase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) _lowercase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) _lowercase =CLIPTextModel(lowerCAmelCase ) _lowercase =XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) _lowercase =77 _lowercase ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCAmelCase ).startswith('mps' ): _lowercase =torch.manual_seed(lowerCAmelCase ) else: _lowercase =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) _lowercase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A__ ( self ) -> Tuple: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def A__ ( self ) -> List[str]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase ='cpu' # ensure determinism for the device-dependent torch.Generator _lowercase =self.get_dummy_components() torch.manual_seed(0 ) _lowercase =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder _lowercase =RobertaSeriesModelWithTransformation(lowerCAmelCase ) _lowercase =text_encoder _lowercase =AltDiffusionPipeline(**lowerCAmelCase ) _lowercase =alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase =self.get_dummy_inputs(lowerCAmelCase ) _lowercase ='A photo of an astronaut' _lowercase =alt_pipe(**lowerCAmelCase ) _lowercase =output.images _lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase =np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase ='cpu' # ensure determinism for the device-dependent torch.Generator _lowercase =self.get_dummy_components() _lowercase =PNDMScheduler(skip_prk_steps=lowerCAmelCase ) torch.manual_seed(0 ) _lowercase =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder _lowercase =RobertaSeriesModelWithTransformation(lowerCAmelCase ) _lowercase =text_encoder _lowercase =AltDiffusionPipeline(**lowerCAmelCase ) _lowercase =alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase =self.get_dummy_inputs(lowerCAmelCase ) _lowercase =alt_pipe(**lowerCAmelCase ) _lowercase =output.images _lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase =np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Any: '''simple docstring''' _lowercase =AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=lowerCAmelCase ) _lowercase =alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase ='A painting of a squirrel eating a burger' _lowercase =torch.manual_seed(0 ) _lowercase =alt_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) _lowercase =output.images _lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase =np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) _lowercase =AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase ) _lowercase =alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase ='A painting of a squirrel eating a burger' _lowercase =torch.manual_seed(0 ) _lowercase =alt_pipe([prompt] , generator=lowerCAmelCase , num_inference_steps=2 , output_type='numpy' ) _lowercase =output.images _lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase =np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
205
from __future__ import annotations def a ( A__ : list[int] ) -> int: """simple docstring""" if not nums: return 0 _lowercase =nums[0] _lowercase =0 for num in nums[1:]: _lowercase , _lowercase =( max_excluding + num, max(A__ , A__ ), ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
205
1
'''simple docstring''' import sys import turtle def A_( A : tuple[float, float] , A : tuple[float, float]): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def A_( A : tuple[float, float] , A : tuple[float, float] , A : tuple[float, float] , A : int , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) if depth == 0: return triangle(A , get_mid(A , A) , get_mid(A , A) , depth - 1) triangle(A , get_mid(A , A) , get_mid(A , A) , depth - 1) triangle(A , get_mid(A , A) , get_mid(A , A) , depth - 1) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) lowerCAmelCase : Optional[int] = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') lowerCAmelCase : Optional[int] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
251
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A_( A : List[Any]): UpperCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A , A) def A_( A : Any): UpperCamelCase = list(s_dict.keys()) for key in keys: if "transformer_layers" in key: UpperCamelCase = s_dict.pop(A) elif "subsample" in key: UpperCamelCase = s_dict.pop(A) def A_( A : Optional[int]): UpperCamelCase , UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(A , A , bias=A) UpperCamelCase = emb.weight.data return lin_layer def A_( A : Optional[int] , A : List[str]): UpperCamelCase = torch.load(A , map_location='cpu') UpperCamelCase = mam_aaa['args'] UpperCamelCase = mam_aaa['model'] UpperCamelCase = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(A) rename_keys(A) UpperCamelCase = state_dict['decoder.embed_tokens.weight'].shape[0] UpperCamelCase = args.share_decoder_input_output_embed UpperCamelCase = [int(A) for i in args.conv_kernel_sizes.split(',')] UpperCamelCase = SpeechaTextConfig( vocab_size=A , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(A) , conv_channels=args.conv_channels , conv_kernel_sizes=A , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=A , num_beams=5 , max_length=200 , use_cache=A , decoder_start_token_id=2 , early_stopping=A , ) UpperCamelCase = SpeechaTextForConditionalGeneration(A) UpperCamelCase , UpperCamelCase = model.model.load_state_dict(A , strict=A) if len(A) > 0 and not set(A) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f''' but all the following weights are missing {missing}''') if tie_embeds: UpperCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens) else: UpperCamelCase = lm_head_weights model.save_pretrained(A) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase : List[str] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
251
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ =16 lowercase__ =32 def __UpperCamelCase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 1_6 ): __a : Tuple = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __a : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) __a : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __a : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a : int = 1_6 elif accelerator.mixed_precision != "no": __a : Optional[int] = 8 else: __a : Dict = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. __a : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ =mocked_dataloaders # noqa: F811 def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCAmelCase__ ) == "1": __a : Tuple = 2 # Initialize accelerator __a : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Optional[int] = config['''lr'''] __a : Dict = int(config['''num_epochs'''] ) __a : Optional[Any] = int(config['''seed'''] ) __a : Dict = int(config['''batch_size'''] ) __a : str = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __a : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __a : Any = batch_size // MAX_GPU_BATCH_SIZE __a : List[str] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) __a , __a : Any = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a : List[Any] = model.to(accelerator.device ) # Instantiate optimizer __a : Any = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler __a : Tuple = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : Any = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __a : str = model(**lowerCAmelCase__ ) __a : Tuple = outputs.loss __a : Any = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __a : List[str] = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a : Optional[Any] = model(**lowerCAmelCase__ ) __a : Dict = outputs.logits.argmax(dim=-1 ) __a , __a : int = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __a : int = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , lowerCAmelCase__ ) def __UpperCamelCase ( ): __a : Union[str, Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __a : Tuple = parser.parse_args() __a : List[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
216
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class UpperCamelCase__ : def __init__(self : List[Any] , snake_case_ : int , snake_case_ : List[str]=1_3 , snake_case_ : Tuple=7 , snake_case_ : List[Any]=True , snake_case_ : List[Any]=True , snake_case_ : Dict=True , snake_case_ : Optional[int]=True , snake_case_ : str=9_9 , snake_case_ : Dict=6_4 , snake_case_ : Any=3_2 , snake_case_ : str=5 , snake_case_ : int=4 , snake_case_ : List[Any]=3_7 , snake_case_ : Any="gelu" , snake_case_ : Dict=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : str=5_1_2 , snake_case_ : Any=1_6 , snake_case_ : str=2 , snake_case_ : int=0.02 , snake_case_ : Union[str, Any]=3 , snake_case_ : Optional[Any]=4 , snake_case_ : List[Any]=None , ): __a : Any = parent __a : Optional[int] = batch_size __a : Any = seq_length __a : int = is_training __a : Optional[int] = use_input_mask __a : List[Any] = use_token_type_ids __a : Dict = use_labels __a : Tuple = vocab_size __a : str = hidden_size __a : List[Any] = embedding_size __a : List[Any] = num_hidden_layers __a : str = num_attention_heads __a : str = intermediate_size __a : Union[str, Any] = hidden_act __a : Optional[Any] = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Union[str, Any] = max_position_embeddings __a : Any = type_vocab_size __a : int = type_sequence_label_size __a : int = initializer_range __a : int = num_labels __a : Union[str, Any] = num_choices __a : Dict = scope def lowerCAmelCase (self : str ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : List[Any] = None if self.use_input_mask: __a : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[Any] = None if self.use_token_type_ids: __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Dict = None __a : List[str] = None __a : Optional[Any] = None if self.use_labels: __a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __a : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase (self : int ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase (self : str , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : int , snake_case_ : int , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Any ): __a : Any = MobileBertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : List[str] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) __a : Optional[Any] = model(snake_case_ , token_type_ids=snake_case_ ) __a : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase (self : Any , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : str , snake_case_ : List[Any] ): __a : str = MobileBertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase (self : Tuple , snake_case_ : Any , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Dict ): __a : Optional[Any] = MobileBertForNextSentencePrediction(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : int = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase (self : Any , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[Any] ): __a : str = MobileBertForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Union[str, Any] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , next_sentence_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase (self : Dict , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Dict , snake_case_ : int , snake_case_ : int , snake_case_ : str , snake_case_ : str ): __a : str = MobileBertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Optional[Any] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase (self : Optional[int] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Optional[int] ): __a : Any = self.num_labels __a : Union[str, Any] = MobileBertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __a : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase (self : List[Any] , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Optional[int] ): __a : Union[str, Any] = self.num_labels __a : str = MobileBertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Any = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Union[str, Any] ): __a : Union[str, Any] = self.num_choices __a : List[str] = MobileBertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Any = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase (self : Optional[Any] ): __a : Optional[Any] = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : int = config_and_inputs __a : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __lowercase ,__lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Any = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = True def lowerCAmelCase (self : str , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=False ): __a : List[str] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): __a : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) __a : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowerCAmelCase (self : Tuple ): __a : List[Any] = MobileBertModelTester(self ) __a : int = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def lowerCAmelCase (self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCAmelCase (self : Optional[Any] ): __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case_ ) def lowerCAmelCase (self : str ): __a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case_ ) def lowerCAmelCase (self : Tuple ): __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case_ ) def lowerCAmelCase (self : Dict ): __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case_ ) def lowerCAmelCase (self : int ): __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case_ ) def lowerCAmelCase (self : List[Any] ): __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case_ ) def lowerCAmelCase (self : int ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case_ ) def lowerCAmelCase (self : Tuple ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case_ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): return torch.tensor( lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , ) lowercase__ =1e-3 @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase (self : Any ): __a : Dict = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(snake_case_ ) __a : Tuple = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): __a : str = model(snake_case_ )[0] __a : List[Any] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape , snake_case_ ) __a : Union[str, Any] = torch.tensor( [ [ [-2.473_6526E07, 8.269_1656E04, 1.652_1838E05], [-5.754_1704E-01, 3.905_6022E00, 4.401_1507E00], [2.604_7359E00, 1.567_7652E00, -1.732_4188E-01], ] ] , device=snake_case_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __a : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __a : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
216
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __lowerCAmelCase = None __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } __lowerCAmelCase = { "albert-base-v1": 5_1_2, "albert-large-v1": 5_1_2, "albert-xlarge-v1": 5_1_2, "albert-xxlarge-v1": 5_1_2, "albert-base-v2": 5_1_2, "albert-large-v2": 5_1_2, "albert-xlarge-v2": 5_1_2, "albert-xxlarge-v2": 5_1_2, } __lowerCAmelCase = "▁" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : int = AlbertTokenizer def __init__( self , _a=None , _a=None , _a=True , _a=True , _a=False , _a="[CLS]" , _a="[SEP]" , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
351
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'funnel' __UpperCAmelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = block_sizes __a = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __a = num_decoder_layers __a = d_model __a = n_head __a = d_head __a = d_inner __a = hidden_act __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = initializer_range __a = initializer_std __a = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __a = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __a = attention_type __a = separate_cls __a = truncate_seq __a = pool_q_only super().__init__(**_a ) @property def __UpperCAmelCase ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __UpperCAmelCase ( self ): return len(self.block_sizes ) @num_blocks.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
11
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class _lowerCamelCase( _a ): lowercase_ : Optional[int] = """falcon""" lowercase_ : Dict = ["""past_key_values"""] def __init__( self, lowerCamelCase=6_50_24, lowerCamelCase=45_44, lowerCamelCase=32, lowerCamelCase=71, lowerCamelCase=1E-5, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=None, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=11, lowerCamelCase=11, **lowerCamelCase, ) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = vocab_size # Backward compatibility with n_embed kwarg _lowercase : Tuple = kwargs.pop('n_embed', lowerCamelCase) _lowercase : Optional[int] = hidden_size if n_embed is None else n_embed _lowercase : Optional[Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : int = layer_norm_epsilon _lowercase : Any = initializer_range _lowercase : Tuple = use_cache _lowercase : List[Any] = hidden_dropout _lowercase : Tuple = attention_dropout _lowercase : Optional[int] = bos_token_id _lowercase : int = eos_token_id _lowercase : str = num_attention_heads if num_kv_heads is None else num_kv_heads _lowercase : Optional[Any] = alibi _lowercase : Dict = new_decoder_architecture _lowercase : Any = multi_query # Ignored when new_decoder_architecture is True _lowercase : Tuple = parallel_attn _lowercase : List[Any] = bias super().__init__(bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return not self.alibi
21
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A : Union[str, Any] ={ '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] =[ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _A : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
import unittest from transformers import DonutProcessor lowerCAmelCase__ = '''naver-clova-ix/donut-base''' class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Dict ): lowercase__ : Union[str, Any] = DonutProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) def snake_case ( self : Any ): lowercase__ : Union[str, Any] = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } lowercase__ : int = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) lowercase__ : List[Any] = self.processor.tokenajson(SCREAMING_SNAKE_CASE ) self.assertDictEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
121
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = [] lowercase__ : Tuple = [] lowercase__ : Any = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator lowercase__ : Any = len(lowerCamelCase__ ) if (len(lowerCamelCase__ ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(lowerCamelCase__ ) , "Postfix".center(lowerCamelCase__ ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCamelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCamelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCamelCase__ ) == 0: stack.append(lowerCamelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCamelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCamelCase__ ) # push x to stack print( x.center(8 ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , sep=" | " , ) # Output in tabular format while len(lowerCamelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , sep=" | " , ) # Output in tabular format return "".join(lowerCamelCase__ ) # return Postfix as str def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCamelCase__ ) ): if infix[i] == "(": lowercase__ : Tuple = ")" # change "(" to ")" elif infix[i] == ")": lowercase__ : Optional[Any] = "(" # change ")" to "(" return (infix_2_postfix("".join(lowerCamelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowerCAmelCase__ = input('''\nEnter an Infix Equation = ''') # Input an Infix equation lowerCAmelCase__ = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
121
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase__ = CLIPImageProcessor() lowerCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') lowerCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
11
from __future__ import annotations import time a =list[tuple[int, int]] a =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A_ : def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : Tuple = pos_x __lowerCamelCase : List[str] = pos_y __lowerCamelCase : str = (pos_y, pos_x) __lowerCamelCase : str = goal_x __lowerCamelCase : int = goal_y __lowerCamelCase : List[Any] = parent class A_ : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : tuple[int, int] ,SCREAMING_SNAKE_CASE__ : tuple[int, int]): __lowerCamelCase : Any = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = [self.start] __lowerCamelCase : List[str] = False def lowerCAmelCase ( self : List[Any]): while self.node_queue: __lowerCamelCase : Any = self.node_queue.pop(0) if current_node.pos == self.target.pos: __lowerCamelCase : Dict = True return self.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.get_successors(SCREAMING_SNAKE_CASE__) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.start.pos] return None def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : Union[str, Any] = [] for action in delta: __lowerCamelCase : Optional[Any] = parent.pos_x + action[1] __lowerCamelCase : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE__) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.target.pos_y ,self.target.pos_x ,SCREAMING_SNAKE_CASE__)) return successors def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : List[Any] = node __lowerCamelCase : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) __lowerCamelCase : int = current_node.parent path.reverse() return path class A_ : def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : int = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = False def lowerCAmelCase ( self : str): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __lowerCamelCase : Any = self.fwd_bfs.node_queue.pop(0) __lowerCamelCase : Any = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: __lowerCamelCase : List[str] = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = current_bwd_node __lowerCamelCase : int = current_fwd_node __lowerCamelCase : str = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Node ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : List[Any] = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) bwd_path.pop() bwd_path.reverse() __lowerCamelCase : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a =(0, 0) a =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a =time.time() a =BreadthFirstSearch(init, goal) a =bfs.search() a =time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) a =time.time() a =BidirectionalBreadthFirstSearch(init, goal) a =bd_bfs.search() a =time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
73
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
211
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase_ ( _a , _a=1_000 ): """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase__ : int = n - 1 lowerCAmelCase__ : Any = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase__ : Optional[Any] = 0 while count < prec: lowerCAmelCase__ : Optional[Any] = random.randint(2 , n - 1 ) lowerCAmelCase__ : List[Any] = bin_exp_mod(_a , _a , _a ) if b != 1: lowerCAmelCase__ : Dict = True for _ in range(_a ): if b == n - 1: lowerCAmelCase__ : Union[str, Any] = False break lowerCAmelCase__ : Tuple = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCamelCase = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
211
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor SCREAMING_SNAKE_CASE = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: if isinstance(UpperCamelCase__ , torch.Tensor ): return image elif isinstance(UpperCamelCase__ , PIL.Image.Image ): A__ = [image] A__ = [trans(img.convert("RGB" ) ) for img in image] A__ = torch.stack(UpperCamelCase__ ) return image class UpperCAmelCase_ ( a__ ): def __init__( self : Tuple , snake_case_ : str , snake_case_ : str ) -> Optional[int]: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM A__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) def __magic_name__ ( self : str , snake_case_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def __magic_name__ ( self : Dict , snake_case_ : List[str] , snake_case_ : Optional[Any] , snake_case_ : List[str] ) -> int: '''simple docstring''' A__ = min(int(num_inference_steps * strength ) , _lowerCamelCase ) A__ = max(num_inference_steps - init_timestep , 0 ) A__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __magic_name__ ( self : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Optional[int]=None ) -> Dict: '''simple docstring''' if not isinstance(_lowerCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowerCamelCase )}""" ) A__ = image.to(device=_lowerCamelCase , dtype=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) A__ = init_latents.shape A__ = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) # get latents print("add noise to latents at timestep" , _lowerCamelCase ) A__ = self.scheduler.add_noise(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = init_latents return latents @torch.no_grad() def __call__( self : Optional[Any] , snake_case_ : int = None , snake_case_ : Any = 0.8 , snake_case_ : Dict = 1 , snake_case_ : Any = None , snake_case_ : List[str] = 0.0 , snake_case_ : Tuple = 50 , snake_case_ : str = None , snake_case_ : Tuple = "pil" , snake_case_ : List[Any] = True , ) -> int: '''simple docstring''' self.check_inputs(_lowerCamelCase ) # 2. Preprocess image A__ = preprocess(_lowerCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(_lowerCamelCase , device=self.device ) A__ = self.get_timesteps(_lowerCamelCase , _lowerCamelCase , self.device ) A__ = timesteps[:1].repeat(_lowerCamelCase ) # 4. Prepare latent variables A__ = self.prepare_latents(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.unet.dtype , self.device , _lowerCamelCase ) A__ = latents # 5. Denoising loop for t in self.progress_bar(_lowerCamelCase ): # 1. predict noise model_output A__ = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , eta=_lowerCamelCase , use_clipped_model_output=_lowerCamelCase , generator=_lowerCamelCase , ).prev_sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowerCamelCase )
247
'''simple docstring''' import torch from torch import nn class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1 , _lowerCamelCase=False): super().__init__() UpperCAmelCase__ : List[Any] = n_token UpperCAmelCase__ : Tuple = d_embed UpperCAmelCase__ : str = d_proj UpperCAmelCase__ : str = cutoffs + [n_token] UpperCAmelCase__ : List[Any] = [0] + self.cutoffs UpperCAmelCase__ : Optional[Any] = div_val UpperCAmelCase__ : Optional[int] = self.cutoffs[0] UpperCAmelCase__ : Optional[int] = len(self.cutoffs) - 1 UpperCAmelCase__ : Union[str, Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) UpperCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters)) UpperCAmelCase__ : int = nn.ModuleList() UpperCAmelCase__ : List[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase))) else: self.out_projs.append(_lowerCamelCase) self.out_layers.append(nn.Linear(_lowerCamelCase , _lowerCamelCase)) else: for i in range(len(self.cutoffs)): UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Union[str, Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase))) self.out_layers.append(nn.Linear(_lowerCamelCase , r_idx - l_idx)) UpperCAmelCase__ : Optional[int] = keep_order def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): if proj is None: UpperCAmelCase__ : Dict = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase__ : Optional[int] = nn.functional.linear(_lowerCamelCase , proj.t().contiguous()) UpperCAmelCase__ : List[str] = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False): if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase__ : Optional[int] = hidden[..., :-1, :].contiguous() UpperCAmelCase__ : int = labels[..., 1:].contiguous() UpperCAmelCase__ : List[str] = hidden.view(-1 , hidden.size(-1)) UpperCAmelCase__ : Optional[int] = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: UpperCAmelCase__ : Optional[int] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: UpperCAmelCase__ : Tuple = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: UpperCAmelCase__ : Dict = labels != -100 UpperCAmelCase__ : Tuple = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device) UpperCAmelCase__ : List[Any] = ( -nn.functional.log_softmax(_lowerCamelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: UpperCAmelCase__ : List[str] = nn.functional.log_softmax(_lowerCamelCase , dim=-1) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Dict = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ : Union[str, Any] = self.out_layers[i].weight UpperCAmelCase__ : Any = self.out_layers[i].bias if i == 0: UpperCAmelCase__ : Optional[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0) UpperCAmelCase__ : List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_lowerCamelCase) biases.append(_lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ : Optional[int] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(_lowerCamelCase , dim=1) if labels is None: UpperCAmelCase__ : str = hidden.new_empty((head_logit.size(0), self.n_token)) else: UpperCAmelCase__ : Optional[Any] = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[str] = [0] + self.cutoffs for i in range(len(_lowerCamelCase) - 1): UpperCAmelCase__ , UpperCAmelCase__ : Dict = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase__ : List[str] = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase__ : str = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase__ : List[Any] = labels.index_select(0 , _lowerCamelCase) - l_idx UpperCAmelCase__ : List[str] = head_logprob.index_select(0 , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = hidden.index_select(0 , _lowerCamelCase) else: UpperCAmelCase__ : Any = hidden if i == 0: if labels is not None: UpperCAmelCase__ : List[Any] = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: UpperCAmelCase__ : Tuple = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ : int = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : str = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : int = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase__ : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: UpperCAmelCase__ : List[str] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase__ : Tuple = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , _lowerCamelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def snake_case__ ( self , _lowerCamelCase): if self.n_clusters == 0: UpperCAmelCase__ : Union[str, Any] = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(_lowerCamelCase , dim=-1) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ : int = self.out_layers[i].weight UpperCAmelCase__ : List[str] = self.out_layers[i].bias if i == 0: UpperCAmelCase__ : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0) UpperCAmelCase__ : Optional[int] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_lowerCamelCase) biases.append(_lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ : List[Any] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) UpperCAmelCase__ : int = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : str = [0] + self.cutoffs for i in range(len(_lowerCamelCase) - 1): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase__ : List[Any] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ : Union[str, Any] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : List[str] = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase__ : Dict = logprob_i return out
163
0
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image SCREAMING_SNAKE_CASE__ = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class a_ : lowercase = True lowercase = None # Automatically constructed lowercase = """PIL.Image.Image""" lowercase = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) lowercase = field(default="""Image""" , init=lowerCamelCase , repr=lowerCamelCase ) def __call__( self ) -> Dict: """simple docstring""" return self.pa_type def A__ ( self , _SCREAMING_SNAKE_CASE ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: UpperCamelCase = {} UpperCamelCase ,UpperCamelCase = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): UpperCamelCase = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase = path.split("""::""" )[-1] try: UpperCamelCase = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )["""repo_id"""] UpperCamelCase = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: UpperCamelCase = None with xopen(_SCREAMING_SNAKE_CASE , """rb""" , use_auth_token=_SCREAMING_SNAKE_CASE ) as f: UpperCamelCase = BytesIO(f.read() ) UpperCamelCase = PIL.Image.open(bytes_ ) else: UpperCamelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def A__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: UpperCamelCase = storage.field("""bytes""" ) else: UpperCamelCase = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: UpperCamelCase = storage.field("""path""" ) else: UpperCamelCase = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCamelCase = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE , """rb""" ) as f: UpperCamelCase = f.read() return bytes_ UpperCamelCase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def lowercase__ ( )-> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowercase__ ( __UpperCamelCase )-> bytes: UpperCamelCase = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase = image.format else: UpperCamelCase = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__UpperCamelCase , format=__UpperCamelCase ) return buffer.getvalue() def lowercase__ ( __UpperCamelCase )-> dict: if hasattr(__UpperCamelCase , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__UpperCamelCase )} def lowercase__ ( __UpperCamelCase )-> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) UpperCamelCase = array.dtype UpperCamelCase = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER UpperCamelCase = dtype.kind UpperCamelCase = dtype.itemsize UpperCamelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase = dtype_byteorder + dtype_kind + str(__UpperCamelCase ) UpperCamelCase = np.dtype(__UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) UpperCamelCase = PIL.Image.fromarray(array.astype(__UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(__UpperCamelCase )} def lowercase__ ( __UpperCamelCase )-> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: UpperCamelCase ,UpperCamelCase = first_non_null_value(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__UpperCamelCase , np.ndarray ): UpperCamelCase = no_op_if_value_is_null(__UpperCamelCase ) return [obj_to_image_dict_func(__UpperCamelCase ) for obj in objs] elif isinstance(__UpperCamelCase , PIL.Image.Image ): UpperCamelCase = no_op_if_value_is_null(__UpperCamelCase ) return [obj_to_image_dict_func(__UpperCamelCase ) for obj in objs] else: return objs else: return objs
357
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None )-> Dict: UpperCamelCase = tesseract_config if tesseract_config is not None else """""" # apply OCR UpperCamelCase = to_pil_image(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = pil_image.size UpperCamelCase = pytesseract.image_to_data(__UpperCamelCase , lang=__UpperCamelCase , output_type="""dict""" , config=__UpperCamelCase ) UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates UpperCamelCase = [idx for idx, word in enumerate(__UpperCamelCase ) if not word.strip()] UpperCamelCase = [word for idx, word in enumerate(__UpperCamelCase ) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(__UpperCamelCase ) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(__UpperCamelCase ) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(__UpperCamelCase ) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(__UpperCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase = [] for x, y, w, h in zip(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase = [x, y, x + w, y + h] actual_boxes.append(__UpperCamelCase ) # finally, normalize the bounding boxes UpperCamelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a_ ( lowerCamelCase ): lowercase = ["""pixel_values"""] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "" , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = size if size is not None else {"""height""": 224, """width""": 224} UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = apply_ocr UpperCamelCase = ocr_lang UpperCamelCase = tesseract_config def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) UpperCamelCase = (size["""height"""], size["""width"""]) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: """simple docstring""" UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) UpperCamelCase = [] UpperCamelCase = [] for image in images: UpperCamelCase ,UpperCamelCase = apply_tesseract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) words_batch.append(_SCREAMING_SNAKE_CASE ) boxes_batch.append(_SCREAMING_SNAKE_CASE ) if do_resize: UpperCamelCase = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCamelCase = [flip_channel_order(_SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase = BatchFeature(data={"""pixel_values""": images} , tensor_type=_SCREAMING_SNAKE_CASE ) if apply_ocr: UpperCamelCase = words_batch UpperCamelCase = boxes_batch return data
183
0