code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : Optional[int] = sorted(numsa + numsa ) _lowercase , _lowercase : int = divmod(len(lowerCamelCase_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[str] = [float(x) for x in input("Enter the elements of first array: ").split()] SCREAMING_SNAKE_CASE : str = [float(x) for x in input("Enter the elements of second array: ").split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
21
'''simple docstring''' def _lowerCamelCase ( lowercase : str ) -> list: if n_term == "": return [] _a = [] for temp in range(int(lowercase ) ): series.append(F'1/{temp + 1}' if series else "1" ) return series if __name__ == "__main__": lowerCAmelCase_ : Union[str, Any] = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
63
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _UpperCAmelCase : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) _UpperCAmelCase : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def _UpperCAmelCase ( self ): '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices.' ) _UpperCAmelCase : Optional[Any] = ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ , env=os.environ.copy() ) @require_multi_gpu def _UpperCAmelCase ( self ): '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices.' ) _UpperCAmelCase : Union[str, Any] = ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(f'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ , env=os.environ.copy() ) @require_multi_gpu def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ , env=os.environ.copy() ) @require_multi_gpu def _UpperCAmelCase ( self ): '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices, using 2 devices only' ) _UpperCAmelCase : Dict = ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = Accelerator() SCREAMING_SNAKE_CASE_ = (accelerator.state.process_index + 2, 10) SCREAMING_SNAKE_CASE_ = torch.randint(0, 10, shape).to(accelerator.device) SCREAMING_SNAKE_CASE_ = "" SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
368
from typing import Any class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = data _UpperCAmelCase : Any = None class a : def __init__( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase : str = temp.next print() def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[int] = Node(A_ ) _UpperCAmelCase : Tuple = self.head _UpperCAmelCase : Tuple = new_node def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if node_data_a == node_data_a: return else: _UpperCAmelCase : int = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : Tuple = node_a.next _UpperCAmelCase : Dict = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : List[Any] = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase : Optional[int] = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
189
0
import os from distutils.util import strtobool def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' for e in env_keys: _UpperCAmelCase = int(os.environ.get(a_ , -1 ) ) if val >= 0: return val return default def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str=False ) -> Tuple: '''simple docstring''' _UpperCAmelCase = os.environ.get(a_ , str(a_ ) ) return strtobool(a_ ) == 1 # As its name indicates `strtobool` actually returns an int... def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]="no" ) -> int: '''simple docstring''' _UpperCAmelCase = os.environ.get(a_ , str(a_ ) ) return value
339
from torch import nn class __A ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" super().__init__() __UpperCamelCase : Dict =class_size __UpperCamelCase : Any =embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __UpperCamelCase : Any =nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =self.mlp(lowerCamelCase__ ) return logits
71
0
class UpperCamelCase__ : def __init__(self : Tuple ): __a : Tuple = {} def lowerCAmelCase (self : Union[str, Any] ): print(self.vertex ) for i in self.vertex: print(lowerCAmelCase__ , ''' -> ''' , ''' -> '''.join([str(lowerCAmelCase__ ) for j in self.vertex[i]] ) ) def lowerCAmelCase (self : Dict , snake_case_ : int , snake_case_ : int ): if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCAmelCase__ ) else: # else make a new vertex __a : List[Any] = [to_vertex] def lowerCAmelCase (self : Any ): __a : str = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase (self : str , snake_case_ : int , snake_case_ : list ): __a : int = True print(lowerCAmelCase__ , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ =Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
367
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
90
0
"""simple docstring""" from cva import destroyAllWindows, imread, imshow, waitKey def lowercase_ ( _snake_case ): # getting number of pixels in the image SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_snake_case ): for j in range(_snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase__ : Union[str, Any] = imread('image_data/lena.jpg', 1) # convert to its negative UpperCAmelCase__ : List[str] = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
25
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : int = '''yolos''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=[5_12, 8_64] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : int = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE__ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[str] = image_size SCREAMING_SNAKE_CASE__ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE__ : List[str] = num_channels SCREAMING_SNAKE_CASE__ : List[str] = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[int] = num_detection_tokens SCREAMING_SNAKE_CASE__ : Optional[Any] = use_mid_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = auxiliary_loss # Hungarian matcher SCREAMING_SNAKE_CASE__ : Optional[Any] = class_cost SCREAMING_SNAKE_CASE__ : List[str] = bbox_cost SCREAMING_SNAKE_CASE__ : List[Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : List[str] = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : int = eos_coefficient class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __magic_name__ (self ) -> float: """simple docstring""" return 1E-4 @property def __magic_name__ (self ) -> int: """simple docstring""" return 12
25
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: Any = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = '''nllb-moe''' lowercase__ : Optional[Any] = ['''past_key_values'''] lowercase__ : Union[str, Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCAmelCase__=12_81_12 , lowerCAmelCase__=10_24 , lowerCAmelCase__=12 , lowerCAmelCase__=40_96 , lowerCAmelCase__=16 , lowerCAmelCase__=12 , lowerCAmelCase__=40_96 , lowerCAmelCase__=16 , lowerCAmelCase__=0.0_5 , lowerCAmelCase__=0.0_5 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=10_24 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="float32" , lowerCAmelCase__=False , lowerCAmelCase__=1_28 , lowerCAmelCase__=64 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=0.0_0_1 , lowerCAmelCase__=0.0_0_1 , lowerCAmelCase__="all" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=1.0 , lowerCAmelCase__=0.2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = vocab_size __magic_name__ : List[str] = max_position_embeddings __magic_name__ : Optional[int] = d_model __magic_name__ : Dict = encoder_ffn_dim __magic_name__ : Optional[Any] = encoder_layers __magic_name__ : Optional[Any] = encoder_attention_heads __magic_name__ : int = decoder_ffn_dim __magic_name__ : List[str] = decoder_layers __magic_name__ : List[Any] = decoder_attention_heads __magic_name__ : Union[str, Any] = dropout __magic_name__ : Optional[int] = attention_dropout __magic_name__ : Optional[Any] = activation_dropout __magic_name__ : Union[str, Any] = activation_function __magic_name__ : int = init_std __magic_name__ : Any = encoder_layerdrop __magic_name__ : List[Any] = decoder_layerdrop __magic_name__ : Tuple = use_cache __magic_name__ : str = encoder_layers __magic_name__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __magic_name__ : Dict = router_z_loss_coef __magic_name__ : Any = router_aux_loss_coef __magic_name__ : Dict = decoder_sparse_step __magic_name__ : Optional[int] = encoder_sparse_step __magic_name__ : List[Any] = num_experts __magic_name__ : Optional[int] = expert_capacity __magic_name__ : str = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) __magic_name__ : List[Any] = router_dtype __magic_name__ : Optional[Any] = router_ignore_padding_tokens __magic_name__ : Optional[int] = batch_prioritized_routing __magic_name__ : Union[str, Any] = second_expert_policy __magic_name__ : List[Any] = normalize_router_prob_before_dropping __magic_name__ : int = moe_eval_capacity_token_fraction __magic_name__ : int = moe_token_dropout __magic_name__ : Tuple = output_router_logits super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
138
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __magic_name__: str = logging.getLogger(__name__) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : int = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""", type=_A, default="""data/dump.txt""", help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""", type=_A, default="""bert""", choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""", type=_A, default="""bert-base-uncased""", help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""", type=_A, default="""data/dump""", help="""The dump file prefix.""" ) __magic_name__ : Dict = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": __magic_name__ : Tuple = BertTokenizer.from_pretrained(args.tokenizer_name ) __magic_name__ : List[Any] = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` __magic_name__ : Optional[int] = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": __magic_name__ : Optional[int] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __magic_name__ : List[Any] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` __magic_name__ : Any = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": __magic_name__ : Any = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __magic_name__ : int = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` __magic_name__ : Optional[int] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path, """r""", encoding="""utf8""" ) as fp: __magic_name__ : Tuple = fp.readlines() logger.info("""Start encoding""" ) logger.info(f'{len(_A )} examples to process.' ) __magic_name__ : List[Any] = [] __magic_name__ : str = 0 __magic_name__ : str = 10000 __magic_name__ : Dict = time.time() for text in data: __magic_name__ : Tuple = f'{bos} {text.strip()} {sep}' __magic_name__ : Optional[int] = tokenizer.encode(_A, add_special_tokens=_A ) rslt.append(_A ) iter += 1 if iter % interval == 0: __magic_name__ : Union[str, Any] = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) __magic_name__ : Any = time.time() logger.info("""Finished binarization""" ) logger.info(f'{len(_A )} examples processed.' ) __magic_name__ : Tuple = f'{args.dump_file}.{args.tokenizer_name}.pickle' __magic_name__ : Tuple = tokenizer.vocab_size if vocab_size < (1 << 16): __magic_name__ : Optional[int] = [np.uintaa(_A ) for d in rslt] else: __magic_name__ : str = [np.intaa(_A ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(_A, """wb""" ) as handle: pickle.dump(rslt_, _A, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
138
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( A__ ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = PegasusTokenizer UpperCamelCase = PegasusTokenizerFast UpperCamelCase = True UpperCamelCase = True def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Any = PegasusTokenizer(_A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self : List[str] ): '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def snake_case__ ( self : Union[str, Any] , **a_ : Optional[int] ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_A ) def snake_case__ ( self : List[Any] , a_ : Union[str, Any] ): '''simple docstring''' return ("This is a test", "This is a test") def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : int = "</s>" __UpperCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(_A ) , 11_03 ) def snake_case__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[int] = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) __UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A ).input_ids[0] __UpperCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A ).input_ids[0] self.assertListEqual(_A , _A ) def snake_case__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __UpperCAmelCase : Union[str, Any] = "<mask_1> To ensure a <mask_2> flow of bank resolutions." __UpperCAmelCase : List[str] = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __UpperCAmelCase : Dict = tokenizer([raw_input_str] , return_tensors=_A ).input_ids[0] self.assertListEqual(_A , _A ) def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 __UpperCAmelCase : str = "To ensure a smooth flow of bank resolutions." __UpperCAmelCase : Dict = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_A ).input_ids[0] self.assertListEqual(_A , _A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = ["This is going to be way too long." * 1_50, "short example"] __UpperCAmelCase : Any = ["not super long but more than 5 tokens", "tiny"] __UpperCAmelCase : Tuple = self._large_tokenizer(_A , padding=_A , truncation=_A , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = self._large_tokenizer( text_target=_A , max_length=5 , padding=_A , truncation=_A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(_A ) == 2 # input_ids, attention_mask. @slow def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Tuple = {"input_ids": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( A__ ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = PegasusTokenizer UpperCamelCase = PegasusTokenizerFast UpperCamelCase = True UpperCamelCase = True def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Optional[Any] = PegasusTokenizer(_A , offset=0 , mask_token_sent=_A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self : List[str] ): '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def snake_case__ ( self : List[str] , **a_ : List[str] ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_A ) def snake_case__ ( self : List[str] , a_ : str ): '''simple docstring''' return ("This is a test", "This is a test") def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : List[Any] = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) __UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A ).input_ids[0] __UpperCAmelCase : Dict = py_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A ).input_ids[0] self.assertListEqual(_A , _A ) @require_torch def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = ["This is going to be way too long." * 10_00, "short example"] __UpperCAmelCase : Dict = ["not super long but more than 5 tokens", "tiny"] __UpperCAmelCase : int = self._large_tokenizer(_A , padding=_A , truncation=_A , return_tensors='''pt''' ) __UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=_A , max_length=5 , padding=_A , truncation=_A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(_A ) == 2 # input_ids, attention_mask. def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) __UpperCAmelCase : Any = self._large_tokenizer(_A ).input_ids self.assertListEqual( _A , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
226
def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" while b: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = b, a % b return a def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase , a % b ) def _snake_case ( ): """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
18
0
from typing import Dict from .base import GenericTensor, Pipeline class a_ ( a__ ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: if tokenize_kwargs is None: SCREAMING_SNAKE_CASE : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) SCREAMING_SNAKE_CASE : Optional[Any] = truncation SCREAMING_SNAKE_CASE : List[Any] = tokenize_kwargs SCREAMING_SNAKE_CASE : Optional[int] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE : int = return_tensors return preprocess_params, {}, postprocess_params def __lowerCAmelCase ( self , _lowerCamelCase , **_lowerCamelCase ) ->Dict[str, GenericTensor]: SCREAMING_SNAKE_CASE : List[str] = self.framework SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) return model_inputs def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = self.model(**_lowerCamelCase ) return model_outputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_lowerCamelCase , **_lowerCamelCase ) ->Any: return super().__call__(*_lowerCamelCase , **_lowerCamelCase )
19
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
1
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : int | float | str , SCREAMING_SNAKE_CASE : int | float | str ): '''simple docstring''' if nth_term == "": return [""] lowerCAmelCase : Optional[int] = int(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = int(SCREAMING_SNAKE_CASE ) lowerCAmelCase : list[str] = [] for temp in range(int(SCREAMING_SNAKE_CASE ) ): series.append(f"""1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE ) )}""" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter the last number (nth term) of the P-Series''')) lowerCAmelCase__ = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
108
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase__ = get_logger(__name__) class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : Optional[Any] ="dummy_data" a : int ="datasets" a : Tuple =False def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = False , snake_case__ = True , snake_case__ = None , ): """simple docstring""" lowerCAmelCase : Tuple = 0 lowerCAmelCase : int = dataset_name lowerCAmelCase : List[Any] = cache_dir lowerCAmelCase : List[str] = use_local_dummy_data lowerCAmelCase : List[str] = config # download_callbacks take a single url as input lowerCAmelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCAmelCase : Tuple = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCAmelCase : Union[str, Any] = str(snake_case__ ) # to be downloaded lowerCAmelCase : List[Any] = None lowerCAmelCase : List[Any] = None @property def lowercase__ ( self ): """simple docstring""" if self._dummy_file is None: lowerCAmelCase : Any = self.download_dummy_data() return self._dummy_file @property def lowercase__ ( self ): """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def lowercase__ ( self ): """simple docstring""" return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCAmelCase : str = cached_path( snake_case__ , cache_dir=self.cache_dir , extract_compressed_file=snake_case__ , force_extract=snake_case__ ) return os.path.join(snake_case__ , self.dummy_file_name ) @property def lowercase__ ( self ): """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowercase__ ( self ): """simple docstring""" if self._bucket_url is None: lowerCAmelCase : Union[str, Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def lowercase__ ( self ): """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def lowercase__ ( self , snake_case__ , *snake_case__ ): """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCAmelCase : int = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCAmelCase : List[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(snake_case__ , snake_case__ ): return self.create_dummy_data_dict(snake_case__ , snake_case__ ) elif isinstance(snake_case__ , (list, tuple) ): return self.create_dummy_data_list(snake_case__ , snake_case__ ) else: return self.create_dummy_data_single(snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , *snake_case__ ): """simple docstring""" return self.download_and_extract(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" return self.download_and_extract(snake_case__ ) def lowercase__ ( self , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" return path def lowercase__ ( self ): """simple docstring""" return {} def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(snake_case__ , snake_case__ ): for single_url in single_urls: download_callback(snake_case__ ) else: lowerCAmelCase : List[str] = single_urls download_callback(snake_case__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = [os.path.join(snake_case__ , urllib.parse.quote_plus(Path(snake_case__ ).name ) ) for x in single_urls] else: lowerCAmelCase : int = single_urls lowerCAmelCase : Any = os.path.join(snake_case__ , urllib.parse.quote_plus(Path(snake_case__ ).name ) ) lowerCAmelCase : Union[str, Any] = value # make sure that values are unique if all(isinstance(snake_case__ , snake_case__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowerCAmelCase : Union[str, Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCAmelCase : Optional[Any] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , snake_case__ ) ) for url in data_url ) lowerCAmelCase : Any = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowerCAmelCase : int = [data_url[0]] * len(snake_case__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(snake_case__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase : Dict = os.path.join(snake_case__ , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(snake_case__ ) return dummy_data_list def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" for download_callback in self.download_callbacks: download_callback(snake_case__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase : Tuple = os.path.join(snake_case__ , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(snake_case__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self , snake_case__ ): """simple docstring""" def _iter_archive_members(snake_case__ ): # this preserves the order of the members inside the ZIP archive lowerCAmelCase : str = Path(self.dummy_file ).parent lowerCAmelCase : Optional[Any] = path.relative_to(snake_case__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowerCAmelCase : List[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(snake_case__ ) lowerCAmelCase : List[Any] = Path(snake_case__ ) lowerCAmelCase : str = _iter_archive_members(snake_case__ ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(snake_case__ ).as_posix(), file_path.open("rb" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = [paths] for path in paths: if os.path.isfile(snake_case__ ): if os.path.basename(snake_case__ ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(snake_case__ ): if os.path.basename(snake_case__ ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(snake_case__ ): if filename.startswith((".", "__") ): continue yield os.path.join(snake_case__ , snake_case__ )
108
1
'''simple docstring''' from __future__ import annotations def _snake_case ( A , A ) -> list[tuple[int, int]]: lowerCAmelCase__ , lowerCAmelCase__ = position lowerCAmelCase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCAmelCase__ = [] for position in positions: lowerCAmelCase__ , lowerCAmelCase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(A ) return permissible_positions def _snake_case ( A ) -> bool: return not any(elem == 0 for row in board for elem in row ) def _snake_case ( A , A , A ) -> bool: if is_complete(A ): return True for position in get_valid_pos(A , len(A ) ): lowerCAmelCase__ , lowerCAmelCase__ = position if board[y][x] == 0: lowerCAmelCase__ = curr + 1 if open_knight_tour_helper(A , A , curr + 1 ): return True lowerCAmelCase__ = 0 return False def _snake_case ( A ) -> list[list[int]]: lowerCAmelCase__ = [[0 for i in range(A )] for j in range(A )] for i in range(A ): for j in range(A ): lowerCAmelCase__ = 1 if open_knight_tour_helper(A , (i, j) , 1 ): return board lowerCAmelCase__ = 0 lowerCAmelCase__ = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(A ) if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] __UpperCAmelCase = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def _snake_case ( A , A ) -> Optional[Any]: lowerCAmelCase__ = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase__ = int(re.match(R'''.*layer_(\d*).*''' , A )[1] ) layer_number -= 3 return F"""h.{layer_number}.""" + key def _snake_case ( A ) -> Optional[int]: if dtype == torch.bool: return 1 / 8 lowerCAmelCase__ = re.search(R'''[^\d](\d+)$''' , str(A ) ) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" ) lowerCAmelCase__ = int(bit_search.groups()[0] ) return bit_size // 8 def _snake_case ( A , A , A , A , A ) -> Dict: # Construct model if bloom_config_file == "": lowerCAmelCase__ = BloomConfig() else: lowerCAmelCase__ = BloomConfig.from_json_file(A ) if shard_model: lowerCAmelCase__ = os.listdir(A ) lowerCAmelCase__ = sorted(filter(lambda A : s.startswith('''layer''' ) and "model_00" in s , A ) ) lowerCAmelCase__ = {'''weight_map''': {}, '''metadata''': {}} lowerCAmelCase__ = 0 lowerCAmelCase__ = None lowerCAmelCase__ = BloomConfig() for j, file in enumerate(A ): print('''Processing file: {}'''.format(A ) ) lowerCAmelCase__ = None for i in range(A ): # load all TP files lowerCAmelCase__ = file.replace('''model_00''' , F"""model_0{i}""" ) lowerCAmelCase__ = torch.load(os.path.join(A , A ) , map_location='''cpu''' ) # Rename keys in the transformers names lowerCAmelCase__ = list(temp.keys() ) for key in keys: lowerCAmelCase__ = temp.pop(A ) if tensors is None: lowerCAmelCase__ = temp else: for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase__ = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase__ = tensors[key] / pretraining_tp torch.save( A , os.path.join( A , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCAmelCase__ = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase__ = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) lowerCAmelCase__ = BloomConfig() lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME lowerCAmelCase__ = total_size with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(A , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ = json.dumps(A , indent=2 , sort_keys=A ) + '''\n''' f.write(A ) else: lowerCAmelCase__ = BloomModel(A ) lowerCAmelCase__ = os.listdir(A ) lowerCAmelCase__ = sorted(filter(lambda A : s.startswith('''layer''' ) and "model_00" in s , A ) ) lowerCAmelCase__ = None for i, file in enumerate(A ): lowerCAmelCase__ = None for i in range(A ): # load all TP files lowerCAmelCase__ = file.replace('''model_00''' , F"""model_0{i}""" ) lowerCAmelCase__ = torch.load(os.path.join(A , A ) , map_location='''cpu''' ) # Rename keys in the transformers names lowerCAmelCase__ = list(temp.keys() ) for key in keys: lowerCAmelCase__ = temp.pop(A ) if tensors is None: lowerCAmelCase__ = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase__ = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase__ = tensors[key] / pretraining_tp lowerCAmelCase__ = model.load_state_dict(A , strict=A ) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: lowerCAmelCase__ = set(other_keys.missing_keys ) else: lowerCAmelCase__ = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(A , exist_ok=A ) lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: lowerCAmelCase__ = model.to(config.torch_dtype ) torch.save(model.state_dict() , A ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) __UpperCAmelCase = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
228
0
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _a = True except ImportError: _a = False _a = logging.get_logger(__name__) # pylint: disable=invalid-name def _A ( UpperCamelCase_ : Namespace) -> List[Any]: '''simple docstring''' return AddNewModelCommand(args.testing, args.testing_file, path=args.path) class _lowerCAmelCase ( lowercase ): """simple docstring""" @staticmethod def _lowercase ( UpperCAmelCase__ : ArgumentParser ): __lowercase = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing", action="store_true", help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file", type=UpperCAmelCase__, help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path", type=UpperCAmelCase__, help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self : Tuple, UpperCAmelCase__ : bool, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[Any]=None, *UpperCAmelCase__ : Union[str, Any] ): __lowercase = testing __lowercase = testing_file __lowercase = path def _lowercase ( self : Any ): warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __lowercase = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:2_2]] if len(UpperCAmelCase__ ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) __lowercase = ( Path(UpperCAmelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __lowercase = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCAmelCase__ ) ) else: with open(self._testing_file, "r" ) as configuration_file: __lowercase = json.load(UpperCAmelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ), no_input=UpperCAmelCase__, extra_context=UpperCAmelCase__, ) __lowercase = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:2_2]][0] # Retrieve configuration with open(directory + "/configuration.json", "r" ) as configuration_file: __lowercase = json.load(UpperCAmelCase__ ) __lowercase = configuration["lowercase_modelname"] __lowercase = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(F"""{directory}/configuration.json""" ) __lowercase = "PyTorch" in generate_tensorflow_pytorch_and_flax __lowercase = "TensorFlow" in generate_tensorflow_pytorch_and_flax __lowercase = "Flax" in generate_tensorflow_pytorch_and_flax __lowercase = F"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) os.makedirs(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""", exist_ok=UpperCAmelCase__ ) # Tests require submodules as they have parent imports with open(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""", "w" ): pass shutil.move( F"""{directory}/__init__.py""", F"""{model_dir}/__init__.py""", ) shutil.move( F"""{directory}/configuration_{lowercase_model_name}.py""", F"""{model_dir}/configuration_{lowercase_model_name}.py""", ) def remove_copy_lines(UpperCAmelCase__ : int ): with open(UpperCAmelCase__, "r" ) as f: __lowercase = f.readlines() with open(UpperCAmelCase__, "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCAmelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(F"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_{lowercase_model_name}.py""", F"""{model_dir}/modeling_{lowercase_model_name}.py""", ) shutil.move( F"""{directory}/test_modeling_{lowercase_model_name}.py""", F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""", ) else: os.remove(F"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_tf_{lowercase_model_name}.py""", F"""{model_dir}/modeling_tf_{lowercase_model_name}.py""", ) shutil.move( F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""", F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""", ) else: os.remove(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_flax_{lowercase_model_name}.py""", F"""{model_dir}/modeling_flax_{lowercase_model_name}.py""", ) shutil.move( F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""", F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""", ) else: os.remove(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/{lowercase_model_name}.md""", F"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""", ) shutil.move( F"""{directory}/tokenization_{lowercase_model_name}.py""", F"""{model_dir}/tokenization_{lowercase_model_name}.py""", ) shutil.move( F"""{directory}/tokenization_fast_{lowercase_model_name}.py""", F"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""", ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCAmelCase__ : str, UpperCAmelCase__ : str, UpperCAmelCase__ : List[str] ): # Create temp file __lowercase ,__lowercase = mkstemp() __lowercase = False with fdopen(UpperCAmelCase__, "w" ) as new_file: with open(UpperCAmelCase__ ) as old_file: for line in old_file: new_file.write(UpperCAmelCase__ ) if line_to_copy_below in line: __lowercase = True for line_to_copy in lines_to_copy: new_file.write(UpperCAmelCase__ ) if not line_found: raise ValueError(F"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(UpperCAmelCase__, UpperCAmelCase__ ) # Remove original file remove(UpperCAmelCase__ ) # Move new file move(UpperCAmelCase__, UpperCAmelCase__ ) def skip_units(UpperCAmelCase__ : Any ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCAmelCase__ : Optional[Any] ): with open(UpperCAmelCase__ ) as datafile: __lowercase = [] __lowercase = False __lowercase = False for line in datafile: if "# To replace in: " in line and "##" not in line: __lowercase = line.split("\"" )[1] __lowercase = skip_units(UpperCAmelCase__ ) elif "# Below: " in line and "##" not in line: __lowercase = line.split("\"" )[1] __lowercase = skip_units(UpperCAmelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = [] elif "# Replace with" in line and "##" not in line: __lowercase = [] elif "##" not in line: lines_to_copy.append(UpperCAmelCase__ ) remove(UpperCAmelCase__ ) replace_in_files(F"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(UpperCAmelCase__ )
17
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('.' ): snake_case = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: snake_case = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(_UpperCamelCase )[0].split('.' )[-2] snake_case = mapped_key.replace('*' , _UpperCamelCase ) if "weight_g" in name: snake_case = 'weight_g' elif "weight_v" in name: snake_case = 'weight_v' elif "weight" in name: snake_case = 'weight' elif "bias" in name: snake_case = 'bias' else: snake_case = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: """simple docstring""" snake_case = full_name.split('conv_layers.' )[-1] snake_case = name.split('.' ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Any , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Any=None , _UpperCamelCase : Union[str, Any]=True ) -> List[Any]: """simple docstring""" if config_path is not None: snake_case = HubertConfig.from_pretrained(_UpperCamelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(_UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(_UpperCamelCase , 'vocab.json' ) if not os.path.isdir(_UpperCamelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCamelCase ) ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _UpperCamelCase ) snake_case = WavaVecaCTCTokenizer( _UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCamelCase , ) snake_case = True if config.feat_extract_norm == 'layer' else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) snake_case = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) snake_case = HubertForCTC(_UpperCamelCase ) else: snake_case = HubertModel(_UpperCamelCase ) if is_finetuned: snake_case ,snake_case ,snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: snake_case ,snake_case ,snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
150
0
from ...configuration_utils import PretrainedConfig a : Dict = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class _a ( _lowerCAmelCase ): A = '''tapas''' def __init__(self, SCREAMING_SNAKE_CASE_=30522, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=[3, 256, 256, 2, 256, 256, 10], SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=1E-12, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=1_0.0, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=1.0, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=1.0, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=1.0, SCREAMING_SNAKE_CASE_=1.0, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_="ratio", SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase_: Any = vocab_size UpperCAmelCase_: Optional[Any] = hidden_size UpperCAmelCase_: Any = num_hidden_layers UpperCAmelCase_: Any = num_attention_heads UpperCAmelCase_: List[str] = hidden_act UpperCAmelCase_: Tuple = intermediate_size UpperCAmelCase_: List[Any] = hidden_dropout_prob UpperCAmelCase_: Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_: Dict = max_position_embeddings UpperCAmelCase_: Union[str, Any] = type_vocab_sizes UpperCAmelCase_: Tuple = initializer_range UpperCAmelCase_: Tuple = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase_: Tuple = positive_label_weight UpperCAmelCase_: Union[str, Any] = num_aggregation_labels UpperCAmelCase_: List[str] = aggregation_loss_weight UpperCAmelCase_: Any = use_answer_as_supervision UpperCAmelCase_: Tuple = answer_loss_importance UpperCAmelCase_: Union[str, Any] = use_normalized_answer_loss UpperCAmelCase_: List[Any] = huber_loss_delta UpperCAmelCase_: int = temperature UpperCAmelCase_: Union[str, Any] = aggregation_temperature UpperCAmelCase_: Any = use_gumbel_for_cells UpperCAmelCase_: str = use_gumbel_for_aggregation UpperCAmelCase_: Tuple = average_approximation_function UpperCAmelCase_: int = cell_selection_preference UpperCAmelCase_: Optional[Any] = answer_loss_cutoff UpperCAmelCase_: Union[str, Any] = max_num_rows UpperCAmelCase_: str = max_num_columns UpperCAmelCase_: Any = average_logits_per_cell UpperCAmelCase_: List[Any] = select_one_column UpperCAmelCase_: Union[str, Any] = allow_empty_column_selection UpperCAmelCase_: Optional[Any] = init_cell_selection_weights_to_zero UpperCAmelCase_: List[str] = reset_position_index_per_cell UpperCAmelCase_: Tuple = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase_: List[str] = aggregation_labels UpperCAmelCase_: Any = no_aggregation_label_index if isinstance(self.aggregation_labels, SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: List[str] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in aggregation_labels.items()}
82
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _a ( unittest.TestCase , _lowerCAmelCase ): def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Optional[int] = load_tool("""text-classification""" ) self.tool.setup() UpperCAmelCase_: str = load_tool("""text-classification""", remote=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = self.tool("""That's quite cool""", ["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[str] = self.remote_tool("""That's quite cool""", ["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" ) def __snake_case (self ) -> Any: UpperCAmelCase_: Tuple = self.tool(text="""That's quite cool""", labels=["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" ) def __snake_case (self ) -> int: UpperCAmelCase_: Dict = self.remote_tool(text="""That's quite cool""", labels=["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" )
82
1
"""simple docstring""" import os from distutils.util import strtobool def lowercase ( __snake_case : List[Any] , __snake_case : List[str] ): for e in env_keys: lowercase_ : Optional[int] = int(os.environ.get(_A , -1 ) ) if val >= 0: return val return default def lowercase ( __snake_case : List[Any] , __snake_case : List[str]=False ): lowercase_ : int = os.environ.get(_A , str(_A ) ) return strtobool(_A ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase ( __snake_case : int , __snake_case : int="no" ): lowercase_ : List[str] = os.environ.get(_A , str(_A ) ) return value
33
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a__( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = StableUnCLIPImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def lowercase_ ( self : int ): a : Dict = 32 a : str = embedder_hidden_size # image encoding components a : List[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) a : Dict = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__snake_case , projection_dim=__snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) a : Dict = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) a : Optional[int] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) a : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) a : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) a : Union[str, Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) a : List[Any] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL() a : str = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def lowercase_ ( self : Tuple , __snake_case : List[str] , __snake_case : Union[str, Any]=0 , __snake_case : Tuple=True ): if str(__snake_case ).startswith('mps' ): a : Tuple = torch.manual_seed(__snake_case ) else: a : List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if pil_image: a : Optional[Any] = input_image * 0.5 + 0.5 a : Optional[Any] = input_image.clamp(0 , 1 ) a : Dict = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a : int = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowercase_ ( self : Optional[Any] ): a : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : Union[str, Any] = self.get_dummy_components() a : Any = StableUnCLIPImgaImgPipeline(**__snake_case ) a : Tuple = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) a : Union[str, Any] = self.get_dummy_inputs(__snake_case ) inputs.update({'image_embeds': None} ) a : str = sd_pipe(**__snake_case ).images a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a : Optional[int] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : List[str] ): a : int = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def lowercase_ ( self : int ): a : Optional[int] = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase_ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case ) @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any] ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) a : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) a : Optional[int] = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Optional[int] ): a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) a : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) a : str = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Any ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) a : Optional[Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = pipe( __snake_case , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) a : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
85
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __a , unittest.TestCase ): """simple docstring""" lowercase__ = LongformerTokenizer lowercase__ = True lowercase__ = LongformerTokenizerFast lowercase__ = True def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCamelCase =dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __UpperCamelCase =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase ={'''unk_token''': '''<unk>'''} __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] , **UpperCamelCase__ : str ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , **UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase ='''lower newer''' __UpperCamelCase ='''lower newer''' return input_text, output_text def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase ='''lower newer''' __UpperCamelCase =['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCamelCase =tokenizer.tokenize(UpperCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokens + [tokenizer.unk_token] __UpperCamelCase =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCamelCase =tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() __UpperCamelCase ='''Encode this sequence.''' __UpperCamelCase =tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing spaces after special tokens __UpperCamelCase ='''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )} ) # mask token has a left space __UpperCamelCase =tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) __UpperCamelCase ='''Encode <mask> sequence''' __UpperCamelCase ='''Encode <mask>sequence''' __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) __UpperCamelCase =encoded.index(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase ='''A, <mask> AllenNLP sentence.''' __UpperCamelCase =tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) __UpperCamelCase =tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , UpperCamelCase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase ='''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCamelCase =f"""{text_of_1_token} {text_of_1_token}""" __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) __UpperCamelCase =tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , )
85
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : Optional[Any] = LEDConfig __lowerCAmelCase : Any = {} __lowerCAmelCase : Optional[Any] = 'gelu' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=4 , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : str = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : Optional[Any] = seq_length UpperCAmelCase : List[str] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Any = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Optional[int] = eos_token_id UpperCAmelCase : str = pad_token_id UpperCAmelCase : Tuple = bos_token_id UpperCAmelCase : Optional[Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase : int = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase : str = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase : Optional[int] = prepare_led_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = tf.concat( [tf.zeros_like(_SCREAMING_SNAKE_CASE )[:, :-1], tf.ones_like(_SCREAMING_SNAKE_CASE )[:, -1:]] , axis=-1 , ) UpperCAmelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Tuple = TFLEDModel(config=_SCREAMING_SNAKE_CASE ).get_decoder() UpperCAmelCase : Optional[Any] = inputs_dict["""input_ids"""] UpperCAmelCase : Any = input_ids[:1, :] UpperCAmelCase : int = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : Optional[Any] = 1 # first forward pass UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : int = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : int = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-3 ) def _snake_case ( UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str]=None , UpperCamelCase : str=None , UpperCamelCase : Dict=None , UpperCamelCase : List[Any]=None , ): if attention_mask is None: UpperCAmelCase : int = tf.cast(tf.math.not_equal(UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __lowerCAmelCase : Dict = (TFLEDForConditionalGeneration,) if is_tf_available() else () __lowerCAmelCase : int = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __lowerCAmelCase : Any = True __lowerCAmelCase : Tuple = False __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Dict = False def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[int] = TFLEDModelTester(self ) UpperCAmelCase : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = tf.zeros_like(inputs_dict["""attention_mask"""] ) UpperCAmelCase : Tuple = 2 UpperCAmelCase : Tuple = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) UpperCAmelCase : List[Any] = True UpperCAmelCase : int = self.model_tester.seq_length UpperCAmelCase : Optional[int] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : str = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[Any] = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase : int = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = True UpperCAmelCase : List[str] = False UpperCAmelCase : str = False UpperCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Tuple = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: UpperCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase : List[str] = True UpperCAmelCase : int = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Dict = True UpperCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' pass def _snake_case ( UpperCamelCase : Optional[Any] ): return tf.constant(UpperCamelCase , dtype=tf.intaa ) A: Tuple = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here UpperCAmelCase : int = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : List[Any] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Union[str, Any] = prepare_led_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = model(**_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : List[str] = (1, 1024, 768) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here UpperCAmelCase : Dict = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here UpperCAmelCase : Optional[Any] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : List[str] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Optional[Any] = prepare_led_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = model(**_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : List[Any] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-3 , rtol=1E-3 )
109
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def _snake_case ( UpperCamelCase : int = 1000000 , UpperCamelCase : int = 10 ): UpperCAmelCase : defaultdict = defaultdict(UpperCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase : str = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase : Optional[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (__lowercase ): def __init__( self , *_a , **_a ) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , _a , ) super().__init__(*_a , **_a )
366
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
0
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowerCamelCase_ : Union[str, Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowerCamelCase_ : Dict = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print("""\n""".join(upper_files) + """\n""") lowerCamelCase_ : Any = [file for file in filepaths if """ """ in file] if space_files: print(F'{len(space_files)} files contain space characters:') print("""\n""".join(space_files) + """\n""") lowerCamelCase_ : Dict = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print("""\n""".join(hyphen_files) + """\n""") lowerCamelCase_ : Union[str, Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print("""\n""".join(nodir_files) + """\n""") lowerCamelCase_ : Optional[int] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
81
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) SCREAMING_SNAKE_CASE__ = _symbol_database.Default() SCREAMING_SNAKE_CASE__ = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) SCREAMING_SNAKE_CASE__ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" SCREAMING_SNAKE_CASE__ = 4_5 SCREAMING_SNAKE_CASE__ = 1_5_8_1 SCREAMING_SNAKE_CASE__ = 1_5_1_7 SCREAMING_SNAKE_CASE__ = 1_5_7_0 SCREAMING_SNAKE_CASE__ = 1_5_8_4 SCREAMING_SNAKE_CASE__ = 1_7_9_3 SCREAMING_SNAKE_CASE__ = 1_7_9_5 SCREAMING_SNAKE_CASE__ = 1_9_1_6 SCREAMING_SNAKE_CASE__ = 1_8_6_4 SCREAMING_SNAKE_CASE__ = 1_9_0_5 SCREAMING_SNAKE_CASE__ = 1_9_1_9 SCREAMING_SNAKE_CASE__ = 2_4_2_9 SCREAMING_SNAKE_CASE__ = 2_2_0_8 SCREAMING_SNAKE_CASE__ = 2_4_1_8 SCREAMING_SNAKE_CASE__ = 2_3_2_3 SCREAMING_SNAKE_CASE__ = 2_4_0_7 # @@protoc_insertion_point(module_scope)
321
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[int] = [] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__UpperCAmelCase ) ) elif isinstance(__UpperCAmelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__UpperCAmelCase ) ) elif isinstance(__UpperCAmelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : str = [] for d in reversed(__UpperCAmelCase ): idx.append(flat_idx % d ) snake_case_ : Optional[Any] = flat_idx // d return tuple(reversed(__UpperCAmelCase ) ) @torch.jit.ignore def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a = None , __a = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(__a ) -> None: snake_case_ : Tuple = True for i in range(len(__UpperCAmelCase ) ): snake_case_ : Optional[Any] = -1 * (i + 1) l[reversed_idx] &= tally snake_case_ : Dict = l[reversed_idx] if start_edges is None: snake_case_ : Optional[int] = [s == 0 for s in start] reduce_edge_list(__UpperCAmelCase ) if end_edges is None: snake_case_ : Optional[int] = [e == (d - 1) for e, d in zip(__UpperCAmelCase , __UpperCAmelCase )] reduce_edge_list(__UpperCAmelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__UpperCAmelCase ) == 0: return [()] elif len(__UpperCAmelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] snake_case_ : List[Tuple[slice, ...]] = [] snake_case_ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__UpperCAmelCase , __UpperCAmelCase ): if s == e: path_list.append(slice(__UpperCAmelCase , s + 1 ) ) else: break snake_case_ : Tuple[slice, ...] = tuple(__UpperCAmelCase ) snake_case_ : int = len(__UpperCAmelCase ) # start == end, and we're done if divergence_idx == len(__UpperCAmelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None snake_case_ : int = start[divergence_idx] return tuple( path + (slice(__UpperCAmelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None snake_case_ : Dict = end[divergence_idx] return tuple( path + (slice(__UpperCAmelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) snake_case_ : Optional[int] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : List[Any] = t.shape[:no_batch_dims] snake_case_ : Optional[Any] = list(_flat_idx_to_idx(__UpperCAmelCase , __UpperCAmelCase ) ) # _get_minimal_slice_set is inclusive snake_case_ : Dict = list(_flat_idx_to_idx(flat_end - 1 , __UpperCAmelCase ) ) # Get an ordered list of slices to perform snake_case_ : int = _get_minimal_slice_set( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) snake_case_ : Tuple = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a = False , __a = None , __a = False , ): if not (len(__UpperCAmelCase ) > 0): raise ValueError('Must provide at least one input' ) snake_case_ : List[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(__UpperCAmelCase )] snake_case_ : int = tuple([max(__UpperCAmelCase ) for s in zip(*__UpperCAmelCase )] ) def _prep_inputs(__a ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: snake_case_ : Any = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) snake_case_ : List[str] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: snake_case_ : Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t snake_case_ : Dict[str, Any] = tensor_tree_map(_prep_inputs , __UpperCAmelCase ) snake_case_ : int = None if _out is not None: snake_case_ : str = tensor_tree_map(lambda __a : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) snake_case_ : Optional[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d snake_case_ : Any = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__a ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t snake_case_ : Optional[Any] = 0 snake_case_ : int = prepped_outputs for _ in range(__UpperCAmelCase ): # Chunk the input if not low_mem: snake_case_ : int = _select_chunk else: snake_case_ : Optional[Any] = partial( _chunk_slice , flat_start=__UpperCAmelCase , flat_end=min(__UpperCAmelCase , i + chunk_size ) , no_batch_dims=len(__UpperCAmelCase ) , ) snake_case_ : Dict[str, Any] = tensor_tree_map(__UpperCAmelCase , __UpperCAmelCase ) # Run the layer on the chunk snake_case_ : Optional[Any] = layer(**__UpperCAmelCase ) # Allocate space for the output if out is None: snake_case_ : Any = tensor_tree_map(lambda __a : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __UpperCAmelCase ) # Put the chunk in its pre-allocated space if isinstance(__UpperCAmelCase , __UpperCAmelCase ): def assign(__a , __a ) -> None: for k, v in da.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): assign(__UpperCAmelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: snake_case_ : Optional[int] = da[k] assign(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): for xa, xa in zip(__UpperCAmelCase , __UpperCAmelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: snake_case_ : Optional[int] = xa elif isinstance(__UpperCAmelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: snake_case_ : Union[str, Any] = output_chunk else: raise ValueError('Not supported' ) i += chunk_size snake_case_ : Any = tensor_tree_map(lambda __a : t.view(orig_batch_dims + t.shape[1:] ) , __UpperCAmelCase ) return out class SCREAMING_SNAKE_CASE_ : def __init__( self : Any , _A : List[str] = 512 , ) -> Optional[Any]: """simple docstring""" snake_case_ : int = max_chunk_size snake_case_ : Optional[int] = None snake_case_ : Optional[tuple] = None def UpperCAmelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : List[str] , _A : Optional[Any] ) -> Any: """simple docstring""" logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size snake_case_ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] snake_case_ : List[Any] = [c for c in candidates if c > min_chunk_size] snake_case_ : str = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_A : Any ) -> bool: try: with torch.no_grad(): fn(*_UpperCAmelCase , chunk_size=_UpperCAmelCase ) return True except RuntimeError: return False snake_case_ : Any = 0 snake_case_ : Any = len(_UpperCAmelCase ) - 1 while i > min_viable_chunk_size_index: snake_case_ : List[str] = test_chunk_size(candidates[i] ) if not viable: snake_case_ : Optional[int] = (min_viable_chunk_size_index + i) // 2 else: snake_case_ : Dict = i snake_case_ : Union[str, Any] = (i + len(_UpperCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCAmelCase_ ( self : Any , _A : List[str] , _A : List[str] ) -> Optional[int]: """simple docstring""" snake_case_ : Tuple = True for aa, aa in zip(_UpperCAmelCase , _UpperCAmelCase ): assert type(_UpperCAmelCase ) == type(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case_ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda _A : x[0] )] snake_case_ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda _A : x[0] )] consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) else: consistent &= aa == aa return consistent def UpperCAmelCase_ ( self : Union[str, Any] , _A : Dict , _A : Any , _A : Optional[Any] , ) -> Any: """simple docstring""" snake_case_ : str = True snake_case_ : tuple = tree_map(lambda _A : a.shape if isinstance(_UpperCAmelCase , torch.Tensor ) else a , _UpperCAmelCase , _UpperCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_UpperCAmelCase ) snake_case_ : str = self._compare_arg_caches(self.cached_arg_data , _UpperCAmelCase ) else: # Otherwise, we can reuse the precomputed value snake_case_ : Optional[int] = False if not consistent: snake_case_ : List[Any] = self._determine_favorable_chunk_size( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) snake_case_ : str = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
352
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __UpperCAmelCase = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' __UpperCAmelCase = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' __UpperCAmelCase = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=4 , _UpperCamelCase=False ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = compute_bleu( reference_corpus=_UpperCamelCase , translation_corpus=_UpperCamelCase , max_order=_UpperCamelCase , smooth=_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
29
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Optional[Any] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
85
0
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __A : Tuple = Vector() def UpperCamelCase__( self ): '''simple docstring''' __A : int = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__lowerCamelCase ) , '''(0,0,0,0,0,1)''' ) def UpperCamelCase__( self ): '''simple docstring''' __A : int = Vector([1, 2, 3, 4] ) self.assertEqual(len(__lowerCamelCase ) , 4 ) def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = Vector([1, 2] ) __A : List[str] = Vector([1, 2, 3, 4, 5] ) __A : List[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __A : Union[str, Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = Vector([1, 2, 3] ) __A : Tuple = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCamelCase__( self ): '''simple docstring''' __A : int = Vector([1, 2, 3] ) __A : str = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = Vector([1, 2, 3] ) __A : List[str] = Vector([2, -1, 4] ) # for test of dot product __A : Union[str, Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def UpperCamelCase__( self ): '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def UpperCamelCase__( self ): '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def UpperCamelCase__( self ): '''simple docstring''' __A : str = Vector([1, 2, 3] ) __A : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __lowerCamelCase , __lowerCamelCase ) ) , '''(3,4,7)''' ) def UpperCamelCase__( self ): '''simple docstring''' __A : int = Vector([1, 0, 0, 0, 0, 0] ) __A : List[Any] = x.copy() self.assertEqual(str(__lowerCamelCase ) , str(__lowerCamelCase ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__lowerCamelCase ) , '''(0,1,0)''' ) def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(__lowerCamelCase ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __A : int = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__lowerCamelCase , __lowerCamelCase ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __A : Optional[Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__lowerCamelCase , __lowerCamelCase ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __A : Dict = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(__lowerCamelCase ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __A : str = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __A : str = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def UpperCamelCase__( self ): '''simple docstring''' self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
361
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ = logging.get_logger(__name__) a_ = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """dinat""" _lowerCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __lowerCamelCase=4 , __lowerCamelCase=3 , __lowerCamelCase=64 , __lowerCamelCase=[3, 4, 6, 5] , __lowerCamelCase=[2, 4, 8, 16] , __lowerCamelCase=7 , __lowerCamelCase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __lowerCamelCase=3.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0 , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) __A : Dict = patch_size __A : Union[str, Any] = num_channels __A : str = embed_dim __A : Optional[Any] = depths __A : int = len(__lowerCamelCase ) __A : Union[str, Any] = num_heads __A : Tuple = kernel_size __A : Optional[int] = dilations __A : Tuple = mlp_ratio __A : Optional[int] = qkv_bias __A : int = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : int = drop_path_rate __A : Dict = hidden_act __A : Any = layer_norm_eps __A : Tuple = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __A : str = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) __A : List[Any] = layer_scale_init_value __A : Any = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(__lowerCamelCase ) + 1 )] __A , __A : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
291
0
import argparse from collections import defaultdict import yaml A__ = """docs/source/en/_toctree.yml""" def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = defaultdict(snake_case ) _lowerCAmelCase = [] _lowerCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(snake_case ) _lowerCAmelCase = new_doc_list _lowerCAmelCase = [key for key, value in counts.items() if value > 1] _lowerCAmelCase = [] for duplicate_key in duplicates: _lowerCAmelCase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(snake_case ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) _lowerCAmelCase = sorted(snake_case , key=lambda snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(snake_case ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(snake_case ) # Sort return overview_doc def _UpperCAmelCase ( snake_case=False ): """simple docstring""" with open(snake_case , encoding="""utf-8""" ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _lowerCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase = api_doc[scheduler_idx]["""sections"""] _lowerCAmelCase = clean_doc_toc(snake_case ) _lowerCAmelCase = False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_scheduler_doc if diff: if overwrite: _lowerCAmelCase = api_doc with open(snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def _UpperCAmelCase ( snake_case=False ): """simple docstring""" with open(snake_case , encoding="""utf-8""" ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _lowerCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase = False _lowerCAmelCase = api_doc[pipeline_idx]["""sections"""] _lowerCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase = pipeline_doc["""section"""] _lowerCAmelCase = clean_doc_toc(snake_case ) if overwrite: _lowerCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(snake_case ) # sort overall pipeline doc _lowerCAmelCase = clean_doc_toc(snake_case ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_pipeline_docs if diff: if overwrite: _lowerCAmelCase = api_doc with open(snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
82
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
82
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A (__lowerCamelCase :Any , __lowerCamelCase :str ): _lowerCAmelCase = checkpoint _lowerCAmelCase = {} _lowerCAmelCase = vae_state_dict["""encoder.conv_in.weight"""] _lowerCAmelCase = vae_state_dict["""encoder.conv_in.bias"""] _lowerCAmelCase = vae_state_dict["""encoder.conv_out.weight"""] _lowerCAmelCase = vae_state_dict["""encoder.conv_out.bias"""] _lowerCAmelCase = vae_state_dict["""encoder.norm_out.weight"""] _lowerCAmelCase = vae_state_dict["""encoder.norm_out.bias"""] _lowerCAmelCase = vae_state_dict["""decoder.conv_in.weight"""] _lowerCAmelCase = vae_state_dict["""decoder.conv_in.bias"""] _lowerCAmelCase = vae_state_dict["""decoder.conv_out.weight"""] _lowerCAmelCase = vae_state_dict["""decoder.conv_out.bias"""] _lowerCAmelCase = vae_state_dict["""decoder.norm_out.weight"""] _lowerCAmelCase = vae_state_dict["""decoder.norm_out.bias"""] _lowerCAmelCase = vae_state_dict["""quant_conv.weight"""] _lowerCAmelCase = vae_state_dict["""quant_conv.bias"""] _lowerCAmelCase = vae_state_dict["""post_quant_conv.weight"""] _lowerCAmelCase = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only _lowerCAmelCase = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) _lowerCAmelCase = { layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(lowercase_ ) } # Retrieves the keys for the decoder up blocks only _lowerCAmelCase = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) _lowerCAmelCase = { layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(lowercase_ ) } for i in range(lowercase_ ): _lowerCAmelCase = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key] if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: _lowerCAmelCase = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.weight' ) _lowerCAmelCase = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.bias' ) _lowerCAmelCase = renew_vae_resnet_paths(lowercase_ ) _lowerCAmelCase = {"""old""": f'down.{i}.block', """new""": f'down_blocks.{i}.resnets'} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) _lowerCAmelCase = [key for key in vae_state_dict if """encoder.mid.block""" in key] _lowerCAmelCase = 2 for i in range(1 , num_mid_res_blocks + 1 ): _lowerCAmelCase = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key] _lowerCAmelCase = renew_vae_resnet_paths(lowercase_ ) _lowerCAmelCase = {"""old""": f'mid.block_{i}', """new""": f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) _lowerCAmelCase = [key for key in vae_state_dict if """encoder.mid.attn""" in key] _lowerCAmelCase = renew_vae_attention_paths(lowercase_ ) _lowerCAmelCase = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) conv_attn_to_linear(lowercase_ ) for i in range(lowercase_ ): _lowerCAmelCase = num_up_blocks - 1 - i _lowerCAmelCase = [ key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key ] if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: _lowerCAmelCase = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.weight' ] _lowerCAmelCase = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.bias' ] _lowerCAmelCase = renew_vae_resnet_paths(lowercase_ ) _lowerCAmelCase = {"""old""": f'up.{block_id}.block', """new""": f'up_blocks.{i}.resnets'} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) _lowerCAmelCase = [key for key in vae_state_dict if """decoder.mid.block""" in key] _lowerCAmelCase = 2 for i in range(1 , num_mid_res_blocks + 1 ): _lowerCAmelCase = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key] _lowerCAmelCase = renew_vae_resnet_paths(lowercase_ ) _lowerCAmelCase = {"""old""": f'mid.block_{i}', """new""": f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) _lowerCAmelCase = [key for key in vae_state_dict if """decoder.mid.attn""" in key] _lowerCAmelCase = renew_vae_attention_paths(lowercase_ ) _lowerCAmelCase = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) conv_attn_to_linear(lowercase_ ) return new_checkpoint def A (__lowerCamelCase :str , __lowerCamelCase :str , ): # Only support V1 _lowerCAmelCase = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) _lowerCAmelCase = io.BytesIO(r.content ) _lowerCAmelCase = OmegaConf.load(lowercase_ ) _lowerCAmelCase = 512 _lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open _lowerCAmelCase = {} with safe_open(lowercase_ , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): _lowerCAmelCase = f.get_tensor(lowercase_ ) else: _lowerCAmelCase = torch.load(lowercase_ , map_location=lowercase_ )["""state_dict"""] # Convert the VAE model. _lowerCAmelCase = create_vae_diffusers_config(lowercase_ , image_size=lowercase_ ) _lowerCAmelCase = custom_convert_ldm_vae_checkpoint(lowercase_ , lowercase_ ) _lowerCAmelCase = AutoencoderKL(**lowercase_ ) vae.load_state_dict(lowercase_ ) vae.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") _lowercase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
357
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) _lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowercase = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _lowercase = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def A (__lowerCamelCase :str ): _lowerCAmelCase = None # source code of `config_class` _lowerCAmelCase = inspect.getsource(__lowerCamelCase ) _lowerCAmelCase = _re_checkpoint.findall(__lowerCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): _lowerCAmelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _lowerCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _lowerCAmelCase = ckpt_name break return checkpoint def A (): _lowerCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _lowerCAmelCase = get_checkpoint_from_config_class(__lowerCamelCase ) _lowerCAmelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: _lowerCAmelCase = """\n""".join(sorted(__lowerCamelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
229
0
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[int] ) -> bool: """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCAmelCase__ ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> bool: """simple docstring""" if curr_ind == len(_UpperCamelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_UpperCamelCase ) ): if valid_connection(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): # Insert current vertex into path as next transition snake_case = next_ver # Validate created path if util_hamilton_cycle(_UpperCamelCase , _UpperCamelCase , curr_ind + 1 ): return True # Backtrack snake_case = -1 return False def lowerCAmelCase__ ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : int = 0 ) -> list[int]: """simple docstring""" snake_case = [-1] * (len(_UpperCamelCase ) + 1) # initialize start and end of path with starting index snake_case = snake_case = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_UpperCamelCase , _UpperCamelCase , 1 ) else []
150
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : str=False , _UpperCamelCase : str=False ) -> Optional[Any]: """simple docstring""" snake_case = 'backbone.' if is_semantic else '' snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", 'beit.embeddings.cls_token'), (f"""{prefix}patch_embed.proj.weight""", 'beit.embeddings.patch_embeddings.projection.weight'), (f"""{prefix}patch_embed.proj.bias""", 'beit.embeddings.patch_embeddings.projection.bias'), (f"""{prefix}pos_embed""", 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Tuple=False , _UpperCamelCase : Union[str, Any]=False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): snake_case = 'backbone.' if is_semantic else '' # queries, keys and values snake_case = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) snake_case = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) snake_case = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) snake_case = in_proj_weight[ : config.hidden_size, : ] snake_case = q_bias snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case = in_proj_weight[ -config.hidden_size :, : ] snake_case = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained snake_case = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) snake_case = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) snake_case = gamma_a snake_case = gamma_a def lowerCAmelCase__ ( _UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict ) -> Dict: """simple docstring""" snake_case = dct.pop(_UpperCamelCase ) snake_case = val def lowerCAmelCase__ ( ) -> int: """simple docstring""" snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" snake_case = False if 'rvlcdip' in checkpoint_url else True snake_case = BeitConfig(use_absolute_position_embeddings=_UpperCamelCase , use_mask_token=_UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: snake_case = 1_0_2_4 snake_case = 4_0_9_6 snake_case = 2_4 snake_case = 1_6 # labels if "rvlcdip" in checkpoint_url: snake_case = 1_6 snake_case = 'huggingface/label-files' snake_case = 'rvlcdip-id2label.json' snake_case = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) snake_case = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys snake_case = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location='cpu' )['model'] snake_case = create_rename_keys(_UpperCamelCase , has_lm_head=_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase , has_lm_head=_UpperCamelCase ) # load HuggingFace model snake_case = BeitForMaskedImageModeling(_UpperCamelCase ) if has_lm_head else BeitForImageClassification(_UpperCamelCase ) model.eval() model.load_state_dict(_UpperCamelCase ) # Check outputs on an image snake_case = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_UpperCamelCase ) snake_case = prepare_img() snake_case = image_processor(images=_UpperCamelCase , return_tensors='pt' ) snake_case = encoding['pixel_values'] snake_case = model(_UpperCamelCase ) snake_case = outputs.logits # verify logits snake_case = [1, 1_6] if 'rvlcdip' in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(_UpperCamelCase ), "Shape of logits not as expected" Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: if has_lm_head: snake_case = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: snake_case = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCamelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
150
1
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case ( A__ ,A__ ): UpperCAmelCase_ : int = old_name if "patch_embed" in old_name: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = old_name.split("." ) if layer == "0": UpperCAmelCase_ : List[str] = old_name.replace("0" ,"convolution1" ) elif layer == "1": UpperCAmelCase_ : Any = old_name.replace("1" ,"batchnorm_before" ) elif layer == "3": UpperCAmelCase_ : int = old_name.replace("3" ,"convolution2" ) else: UpperCAmelCase_ : int = old_name.replace("4" ,"batchnorm_after" ) if "network" in old_name and re.search(r"\d\.\d" ,A__ ): UpperCAmelCase_ : Tuple = r"\b\d{2}\b" if bool(re.search(A__ ,A__ ) ): UpperCAmelCase_ : Any = re.search(r"\d\.\d\d." ,A__ ).group() else: UpperCAmelCase_ : Any = re.search(r"\d\.\d." ,A__ ).group() if int(match[0] ) < 6: UpperCAmelCase_ : Optional[Any] = old_name.replace(A__ ,"" ) UpperCAmelCase_ : Optional[int] = trimmed_name.replace("network" ,match[0] + ".meta4D_layers.blocks." + match[2:-1] ) UpperCAmelCase_ : Dict = "intermediate_stages." + trimmed_name else: UpperCAmelCase_ : Optional[Any] = old_name.replace(A__ ,"" ) if int(match[2] ) < num_meta4D_last_stage: UpperCAmelCase_ : List[str] = trimmed_name.replace("network" ,"meta4D_layers.blocks." + match[2] ) else: UpperCAmelCase_ : Dict = str(int(match[2] ) - num_meta4D_last_stage ) UpperCAmelCase_ : List[str] = trimmed_name.replace("network" ,"meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: UpperCAmelCase_ : List[Any] = trimmed_name.replace("norm1" ,"layernorm1" ) elif "norm2" in old_name: UpperCAmelCase_ : Dict = trimmed_name.replace("norm2" ,"layernorm2" ) elif "fc1" in old_name: UpperCAmelCase_ : Optional[Any] = trimmed_name.replace("fc1" ,"linear_in" ) elif "fc2" in old_name: UpperCAmelCase_ : str = trimmed_name.replace("fc2" ,"linear_out" ) UpperCAmelCase_ : List[str] = "last_stage." + trimmed_name elif "network" in old_name and re.search(r".\d." ,A__ ): UpperCAmelCase_ : Optional[int] = old_name.replace("network" ,"intermediate_stages" ) if "fc" in new_name: UpperCAmelCase_ : Optional[int] = new_name.replace("fc" ,"convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): UpperCAmelCase_ : Optional[Any] = new_name.replace("norm1" ,"batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): UpperCAmelCase_ : List[str] = new_name.replace("norm2" ,"batchnorm_after" ) if "proj" in new_name: UpperCAmelCase_ : List[Any] = new_name.replace("proj" ,"projection" ) if "dist_head" in new_name: UpperCAmelCase_ : Union[str, Any] = new_name.replace("dist_head" ,"distillation_classifier" ) elif "head" in new_name: UpperCAmelCase_ : Tuple = new_name.replace("head" ,"classifier" ) elif "patch_embed" in new_name: UpperCAmelCase_ : Any = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": UpperCAmelCase_ : List[str] = new_name.replace("norm" ,"layernorm" ) UpperCAmelCase_ : str = "efficientformer." + new_name else: UpperCAmelCase_ : Union[str, Any] = "efficientformer.encoder." + new_name return new_name def snake_case ( A__ ,A__ ): for key in checkpoint.copy().keys(): UpperCAmelCase_ : Optional[int] = checkpoint.pop(A__ ) UpperCAmelCase_ : Dict = val return checkpoint def snake_case ( ): UpperCAmelCase_ : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Any = Image.open(requests.get(A__ ,stream=A__ ).raw ) return image def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : List[Any] = torch.load(A__ ,map_location="cpu" )["model"] UpperCAmelCase_ : Optional[Any] = EfficientFormerConfig.from_json_file(A__ ) UpperCAmelCase_ : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(A__ ) UpperCAmelCase_ : List[Any] = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) UpperCAmelCase_ : Dict = config.depths[-1] - config.num_metaad_blocks + 1 UpperCAmelCase_ : Union[str, Any] = convert_torch_checkpoint(A__ ,A__ ) model.load_state_dict(A__ ) model.eval() UpperCAmelCase_ : Optional[int] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : int = 2_56 UpperCAmelCase_ : int = 2_24 UpperCAmelCase_ : Any = EfficientFormerImageProcessor( size={"shortest_edge": image_size} ,crop_size={"height": crop_size, "width": crop_size} ,resample=pillow_resamplings["bicubic"] ,) UpperCAmelCase_ : List[str] = processor(images=A__ ,return_tensors="pt" ).pixel_values # original processing pipeline UpperCAmelCase_ : int = Compose( [ Resize(A__ ,interpolation=pillow_resamplings["bicubic"] ), CenterCrop(A__ ), ToTensor(), Normalize(A__ ,A__ ), ] ) UpperCAmelCase_ : List[Any] = image_transforms(A__ ).unsqueeze(0 ) assert torch.allclose(A__ ,A__ ) UpperCAmelCase_ : Dict = model(A__ ) UpperCAmelCase_ : Any = outputs.logits UpperCAmelCase_ : int = (1, 10_00) if "l1" in model_name: UpperCAmelCase_ : int = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] ,A__ ,atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: UpperCAmelCase_ : str = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] ,A__ ,atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: UpperCAmelCase_ : int = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(A__ ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" ,commit_message="Add model" ,use_temp_dir=A__ ,) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" ,commit_message="Add image processor" ,use_temp_dir=A__ ,) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) lowerCamelCase_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
253
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase_ = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } lowerCamelCase_ = {'''bert_for_seq_generation''': 512} class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = [] __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : int="<unk>" , lowerCAmelCase_ : Tuple="<pad>" , lowerCAmelCase_ : Tuple="<::::>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> None: UpperCAmelCase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) UpperCAmelCase_ : List[str] = vocab_file UpperCAmelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ : List[str] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : List[Any] = None return state def __setstate__( self : Dict , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Dict: return self.sp_model.piece_to_id(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : int ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase_ ) + token UpperCAmelCase_ : Tuple = [] else: current_sub_tokens.append(lowerCAmelCase_ ) out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Tuple = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , "wb" ) as fi: UpperCAmelCase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
253
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr _UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(_SCREAMING_SNAKE_CASE )] # Reverse whole list _UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(_SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": __A : List[str] = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
260
"""simple docstring""" def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _UpperCAmelCase = 6 _UpperCAmelCase = 1 _UpperCAmelCase = 1901 _UpperCAmelCase = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _UpperCAmelCase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _UpperCAmelCase = day - 29 else: if day > days_per_month[month - 1]: month += 1 _UpperCAmelCase = day - days_per_month[month - 2] if month > 12: year += 1 _UpperCAmelCase = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
260
1
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCAmelCase: Tuple = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , ): output_path.parent.mkdir(parents=UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , use_external_data_format=UpperCAmelCase__ , enable_onnx_checker=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , ) else: export( UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): _lowercase : List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowercase : Optional[Any] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowercase : Any = """cpu""" _lowercase : List[Any] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ , torch_dtype=UpperCAmelCase__ ).to(UpperCAmelCase__ ) _lowercase : Any = Path(UpperCAmelCase__ ) # TEXT ENCODER _lowercase : int = pipeline.text_encoder.config.max_position_embeddings _lowercase : str = pipeline.text_encoder.config.hidden_size _lowercase : List[str] = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCAmelCase__ , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCAmelCase__ , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=UpperCAmelCase__ , ) del pipeline.text_encoder # UNET _lowercase : Dict = pipeline.unet.config.in_channels _lowercase : Union[str, Any] = pipeline.unet.config.sample_size _lowercase : Optional[int] = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), torch.randn(2 ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), torch.randn(2 , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), False, ) , output_path=UpperCAmelCase__ , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=UpperCAmelCase__ , use_external_data_format=UpperCAmelCase__ , ) _lowercase : Any = str(unet_path.absolute().as_posix() ) _lowercase : List[str] = os.path.dirname(UpperCAmelCase__ ) _lowercase : List[Any] = onnx.load(UpperCAmelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCAmelCase__ ) os.mkdir(UpperCAmelCase__ ) # collate external tensor files into one onnx.save_model( UpperCAmelCase__ , UpperCAmelCase__ , save_as_external_data=UpperCAmelCase__ , all_tensors_to_one_file=UpperCAmelCase__ , location="""weights.pb""" , convert_attribute=UpperCAmelCase__ , ) del pipeline.unet # VAE ENCODER _lowercase : Optional[Any] = pipeline.vae _lowercase : Any = vae_encoder.config.in_channels _lowercase : Tuple = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder _lowercase : int = lambda __UpperCAmelCase , __UpperCAmelCase : vae_encoder.encode(UpperCAmelCase__ , UpperCAmelCase__ )[0].sample() onnx_export( UpperCAmelCase__ , model_args=( torch.randn(1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=UpperCAmelCase__ , ) # VAE DECODER _lowercase : List[Any] = pipeline.vae _lowercase : Optional[int] = vae_decoder.config.latent_channels _lowercase : Optional[int] = vae_decoder.config.out_channels # forward only through the decoder part _lowercase : List[str] = vae_encoder.decode onnx_export( UpperCAmelCase__ , model_args=( torch.randn(1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=UpperCAmelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: _lowercase : Dict = pipeline.safety_checker _lowercase : Tuple = safety_checker.config.vision_config.num_channels _lowercase : Union[str, Any] = safety_checker.config.vision_config.image_size _lowercase : str = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), torch.randn(1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=UpperCAmelCase__ , ) del pipeline.safety_checker _lowercase : Optional[Any] = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) _lowercase : str = pipeline.feature_extractor else: _lowercase : int = None _lowercase : int = None _lowercase : List[str] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCAmelCase__ ) print("""ONNX pipeline saved to""" , UpperCAmelCase__ ) del pipeline del onnx_pipeline _lowercase : str = OnnxStableDiffusionPipeline.from_pretrained(UpperCAmelCase__ , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": UpperCAmelCase: Any = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") UpperCAmelCase: Dict = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
363
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( A , unittest.TestCase ): lowerCAmelCase_ = LxmertTokenizer lowerCAmelCase_ = LxmertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True def snake_case ( self : Union[str, Any] ): """simple docstring""" super().setUp() __lowercase =[ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def snake_case ( self : List[Any] , __lowercase : List[Any] ): """simple docstring""" __lowercase ='UNwant\u00E9d,running' __lowercase ='unwanted, running' return input_text, output_text def snake_case ( self : Union[str, Any] ): """simple docstring""" __lowercase =self.tokenizer_class(self.vocab_file ) __lowercase =tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__lowercase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [7, 4, 5, 10, 8, 9] ) def snake_case ( self : int ): """simple docstring""" if not self.test_rust_tokenizer: return __lowercase =self.get_tokenizer() __lowercase =self.get_rust_tokenizer() __lowercase ='I was born in 92000, and this is falsé.' __lowercase =tokenizer.tokenize(__lowercase ) __lowercase =rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowercase =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __lowercase =rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowercase =self.get_rust_tokenizer() __lowercase =tokenizer.encode(__lowercase ) __lowercase =rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
141
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFImgaImgSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case ( self : int ): """simple docstring""" return self._get_superresolution_dummy_components() def snake_case ( self : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : List[str]=0 ): """simple docstring""" if str(__lowercase ).startswith('mps' ): __lowercase =torch.manual_seed(__lowercase ) else: __lowercase =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowercase =floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase =floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case ( self : Union[str, Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def snake_case ( self : Optional[int] ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def snake_case ( self : int ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case ( self : Optional[int] ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case ( self : str ): """simple docstring""" self._test_save_load_local() def snake_case ( self : Optional[Any] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
141
1
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis A_ : int = [ 2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981, ] A_ : Optional[Any] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(SCREAMING_SNAKE_CASE , 1 ): if n < _p: # then we have our last prime to check A_ : Union[str, Any] = primes[:idx] break A_ , A_ : List[Any] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: A_ : Union[str, Any] = False for r in range(SCREAMING_SNAKE_CASE ): A_ : Dict = pow(SCREAMING_SNAKE_CASE , d * 2**r , SCREAMING_SNAKE_CASE ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): A_ : Optional[int] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _SCREAMING_SNAKE_CASE ( ): assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838_201 ) assert miller_rabin(838_207 ) # 1_373_653 assert not miller_rabin(17_316_001 ) assert miller_rabin(17_316_017 ) # 25_326_001 assert not miller_rabin(3_078_386_641 ) assert miller_rabin(3_078_386_653 ) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801 ) assert miller_rabin(1_713_045_574_819 ) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307 ) assert miller_rabin(2_779_799_728_327 ) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441 ) assert miller_rabin(113_850_023_909_527 ) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351 ) assert miller_rabin(1_275_041_018_848_804_391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867 ) assert miller_rabin(79_666_464_458_507_787_791_951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333 ) assert miller_rabin(552_840_677_446_647_897_660_359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
65
from manim import * class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Optional[int] = Rectangle(height=0.5 , width=0.5 ) A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) A_ : Any = [mem.copy() for i in range(6 )] A_ : Tuple = [mem.copy() for i in range(6 )] A_ : str = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Optional[Any] = Text('''CPU''' , font_size=24 ) A_ : Union[str, Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = [mem.copy() for i in range(1 )] A_ : Any = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Dict = Text('''GPU''' , font_size=24 ) A_ : List[str] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) gpu.align_to(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) gpu.set_x(gpu.get_x() - 1 ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = [mem.copy() for i in range(6 )] A_ : List[str] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = Text('''Model''' , font_size=24 ) A_ : List[Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.play( Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , ) A_ : int = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) A_ : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ : Any = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=2.5 ) , Write(_SCREAMING_SNAKE_CASE ) , Write(_SCREAMING_SNAKE_CASE ) ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Dict = [] A_ : int = [] A_ : Optional[Any] = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE , opacity=0.7 ) cpu_target.move_to(_SCREAMING_SNAKE_CASE ) cpu_target.generate_target() A_ : Union[str, Any] = 0.4_6 / 4 A_ : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=_SCREAMING_SNAKE_CASE ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) cpu_targs.append(_SCREAMING_SNAKE_CASE ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_SCREAMING_SNAKE_CASE ) ) second_animations.append(MoveToTarget(_SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*_SCREAMING_SNAKE_CASE ) self.play(*_SCREAMING_SNAKE_CASE ) self.wait()
65
1
'''simple docstring''' def _A ( snake_case ) -> Optional[Any]: if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) _lowercase : List[Any] = sorted(string.lower() ) return len(lowercase__ ) == len(set(lowercase__ ) ) if __name__ == "__main__": _snake_case = input('Enter a string ').strip() _snake_case = is_isogram(input_str) print(F'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
250
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class lowerCAmelCase ( A ): def __init__( self : Optional[Any] , *__lowercase : str , **__lowercase : Union[str, Any] ): """simple docstring""" super().__init__(*__lowercase , **__lowercase ) __lowercase ={} def snake_case ( self : Union[str, Any] , __lowercase : List[Any] , *__lowercase : Optional[int] , **__lowercase : int ): """simple docstring""" __lowercase =super().add_tokens(__lowercase , *__lowercase , **__lowercase ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ' `placeholder_token` that is not already in the tokenizer.' ) def snake_case ( self : int , __lowercase : List[Any] , *__lowercase : Union[str, Any] , __lowercase : Dict=1 , **__lowercase : Dict ): """simple docstring""" __lowercase =[] if num_vec_per_token == 1: self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase ) output.append(__lowercase ) else: __lowercase =[] for i in range(__lowercase ): __lowercase =placeholder_token + f'''_{i}''' self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase ) output.append(__lowercase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) __lowercase =output def snake_case ( self : Tuple , __lowercase : Optional[int] , __lowercase : Optional[int]=False , __lowercase : Optional[int]=1.0 ): """simple docstring""" if isinstance(__lowercase , __lowercase ): __lowercase =[] for i in range(len(__lowercase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__lowercase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __lowercase =self.token_map[placeholder_token] __lowercase =tokens[: 1 + int(len(__lowercase ) * prop_tokens_to_load )] if vector_shuffle: __lowercase =copy.copy(__lowercase ) random.shuffle(__lowercase ) __lowercase =text.replace(__lowercase , ' '.join(__lowercase ) ) return text def __call__( self : int , __lowercase : List[Any] , *__lowercase : Tuple , __lowercase : Optional[Any]=False , __lowercase : Dict=1.0 , **__lowercase : List[Any] ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase ) , *__lowercase , **__lowercase , ) def snake_case ( self : Dict , __lowercase : List[str] , *__lowercase : Tuple , __lowercase : Dict=False , __lowercase : List[str]=1.0 , **__lowercase : Optional[int] ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase ) , *__lowercase , **__lowercase , )
141
0
"""simple docstring""" from numpy import exp, pi, sqrt def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
272
"""simple docstring""" import numpy as np from PIL import Image def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : int =0 lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Union[str, Any] =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase__ : Union[str, Any] =np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase__ : str =np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : Optional[int] =0 return updated_arr def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : str =0 lowerCamelCase__ : List[Any] =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Dict =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase__ : Optional[Any] =np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase__ : Optional[int] =int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[Any] =0 lowerCamelCase__ : int =0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image _lowercase : int = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
272
1
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = torch.nn.Linear(10 , 10) a_ = torch.optim.SGD(model.parameters() , 0.1) a_ = Accelerator() a_ = accelerator.prepare(__lowercase) try: pickle.loads(pickle.dumps(__lowercase)) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''') AcceleratorState._reset_state()
243
'''simple docstring''' import requests a_ = 'YOUR API KEY' def _a( UpperCamelCase__ : str, UpperCamelCase__ : str = giphy_api_key ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any ='''+'''.join(query.split() ) SCREAMING_SNAKE_CASE__ : int =f"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}" SCREAMING_SNAKE_CASE__ : Dict =requests.get(UpperCamelCase__ ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
152
0
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase =fname.split(os.path.sep )[-1] return re.search(R"""^(.*)_\d+\.jpg$""" , __UpperCamelCase ).groups()[0] class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Union[str, Any]: _lowerCAmelCase =file_names _lowerCAmelCase =image_transform _lowerCAmelCase =label_to_id def __len__( self ) -> Union[str, Any]: return len(self.file_names ) def __getitem__( self , __UpperCAmelCase ) -> List[Any]: _lowerCAmelCase =self.file_names[idx] _lowerCAmelCase =PIL.Image.open(__UpperCAmelCase ) _lowerCAmelCase =raw_image.convert("""RGB""" ) if self.image_transform is not None: _lowerCAmelCase =self.image_transform(__UpperCAmelCase ) _lowerCAmelCase =extract_label(__UpperCAmelCase ) if self.label_to_id is not None: _lowerCAmelCase =self.label_to_id[label] return {"image": image, "label": label} def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any: # Initialize accelerator if args.with_tracking: _lowerCAmelCase =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: _lowerCAmelCase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase =config["""lr"""] _lowerCAmelCase =int(config["""num_epochs"""] ) _lowerCAmelCase =int(config["""seed"""] ) _lowerCAmelCase =int(config["""batch_size"""] ) _lowerCAmelCase =config["""image_size"""] if not isinstance(__UpperCamelCase , (list, tuple) ): _lowerCAmelCase =(image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": _lowerCAmelCase =args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _lowerCAmelCase =int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: _lowerCAmelCase =None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _lowerCAmelCase =os.path.split(__UpperCamelCase )[-1].split(""".""" )[0] accelerator.init_trackers(__UpperCamelCase , __UpperCamelCase ) # Grab all the image filenames _lowerCAmelCase =[os.path.join(args.data_dir , __UpperCamelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences _lowerCAmelCase =[extract_label(__UpperCamelCase ) for fname in file_names] _lowerCAmelCase =list(set(__UpperCamelCase ) ) id_to_label.sort() _lowerCAmelCase ={lbl: i for i, lbl in enumerate(__UpperCamelCase )} # Set the seed before splitting the data. np.random.seed(__UpperCamelCase ) torch.manual_seed(__UpperCamelCase ) torch.cuda.manual_seed_all(__UpperCamelCase ) # Split our filenames between train and validation _lowerCAmelCase =np.random.permutation(len(__UpperCamelCase ) ) _lowerCAmelCase =int(0.8 * len(__UpperCamelCase ) ) _lowerCAmelCase =random_perm[:cut] _lowerCAmelCase =random_perm[cut:] # For training we use a simple RandomResizedCrop _lowerCAmelCase =Compose([RandomResizedCrop(__UpperCamelCase , scale=(0.5, 1.0) ), ToTensor()] ) _lowerCAmelCase =PetsDataset( [file_names[i] for i in train_split] , image_transform=__UpperCamelCase , label_to_id=__UpperCamelCase ) # For evaluation, we use a deterministic Resize _lowerCAmelCase =Compose([Resize(__UpperCamelCase ), ToTensor()] ) _lowerCAmelCase =PetsDataset([file_names[i] for i in eval_split] , image_transform=__UpperCamelCase , label_to_id=__UpperCamelCase ) # Instantiate dataloaders. _lowerCAmelCase =DataLoader(__UpperCamelCase , shuffle=__UpperCamelCase , batch_size=__UpperCamelCase , num_workers=4 ) _lowerCAmelCase =DataLoader(__UpperCamelCase , shuffle=__UpperCamelCase , batch_size=__UpperCamelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase =create_model("""resnet50d""" , pretrained=__UpperCamelCase , num_classes=len(__UpperCamelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase =model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _lowerCAmelCase =False for param in model.get_classifier().parameters(): _lowerCAmelCase =True # We normalize the batches of images to be a bit faster. _lowerCAmelCase =torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) _lowerCAmelCase =torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase =torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _lowerCAmelCase =OneCycleLR(optimizer=__UpperCamelCase , max_lr=__UpperCamelCase , epochs=__UpperCamelCase , steps_per_epoch=len(__UpperCamelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # We need to keep track of how many total steps we have iterated over _lowerCAmelCase =0 # We also need to keep track of the starting epoch so files are named properly _lowerCAmelCase =0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) _lowerCAmelCase =os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _lowerCAmelCase =[f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _lowerCAmelCase =dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _lowerCAmelCase =os.path.splitext(__UpperCamelCase )[0] if "epoch" in training_difference: _lowerCAmelCase =int(training_difference.replace("""epoch_""" , """""" ) ) + 1 _lowerCAmelCase =None else: _lowerCAmelCase =int(training_difference.replace("""step_""" , """""" ) ) _lowerCAmelCase =resume_step // len(__UpperCamelCase ) resume_step -= starting_epoch * len(__UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase , __UpperCamelCase ): model.train() if args.with_tracking: _lowerCAmelCase =0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _lowerCAmelCase =accelerator.skip_first_batches(__UpperCamelCase , __UpperCamelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _lowerCAmelCase =train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _lowerCAmelCase ={k: v.to(accelerator.device ) for k, v in batch.items()} _lowerCAmelCase =(batch["""image"""] - mean) / std _lowerCAmelCase =model(__UpperCamelCase ) _lowerCAmelCase =torch.nn.functional.cross_entropy(__UpperCamelCase , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__UpperCamelCase , __UpperCamelCase ): _lowerCAmelCase =F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _lowerCAmelCase =os.path.join(args.output_dir , __UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) model.eval() _lowerCAmelCase =0 _lowerCAmelCase =0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. _lowerCAmelCase ={k: v.to(accelerator.device ) for k, v in batch.items()} _lowerCAmelCase =(batch["""image"""] - mean) / std with torch.no_grad(): _lowerCAmelCase =model(__UpperCamelCase ) _lowerCAmelCase =outputs.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase =accelerator.gather_for_metrics((predictions, batch["""label"""]) ) _lowerCAmelCase =predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _lowerCAmelCase =accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { """accuracy""": 100 * eval_metric, """train_loss""": total_loss.item() / len(__UpperCamelCase ), """epoch""": epoch, } , step=__UpperCamelCase , ) if checkpointing_steps == "epoch": _lowerCAmelCase =F'''epoch_{epoch}''' if args.output_dir is not None: _lowerCAmelCase =os.path.join(args.output_dir , __UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) if args.with_tracking: accelerator.end_training() def _lowerCamelCase() -> Optional[Any]: _lowerCAmelCase =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=__UpperCamelCase , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=__UpperCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=__UpperCamelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase ={"""lr""": 3E-2, """num_epochs""": 3, """seed""": 42, """batch_size""": 64, """image_size""": 224} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
341
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCamelCase(__UpperCamelCase ) -> List[Any]: if len(__UpperCamelCase ) <= 1: return arr, 0 _lowerCAmelCase =len(__UpperCamelCase ) // 2 _lowerCAmelCase =arr[0:mid] _lowerCAmelCase =arr[mid:] _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any: _lowerCAmelCase =[] _lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCamelCase() -> str: _lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) # an empty list should also have zero inversions _lowerCAmelCase =[] _lowerCAmelCase =count_inversions_bf(__UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) if __name__ == "__main__": main()
341
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels snake_case : Optional[int] = object() # For specifying empty leaf dict `{}` snake_case : Any = object() def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str ): a__ = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): a__ = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def __lowercase ( __lowerCAmelCase : Any ): def replace(__lowerCAmelCase : Tuple , __lowerCAmelCase : str ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def __lowercase ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __lowercase ( __lowerCAmelCase : str ): a__ = _get_partition_rules() a__ = _replacement_rules(__lowerCAmelCase ) a__ = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} a__ = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
240
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets snake_case : List[Any] = datasets.logging.get_logger(__name__) snake_case : List[str] = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' snake_case : Tuple = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' snake_case : str = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Any="dummy_doc" ): a__ = {doc: key_lines} a__ = {doc: sys_lines} a__ = {} a__ = 0 a__ = 0 a__ = 0 a__ = 0 a__ = 0 a__ = 0 a__ , a__ = reader.get_doc_mentions(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase ) key_singletons_num += singletons_num if NP_only or min_span: a__ = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) a__ , a__ = reader.get_doc_mentions(__lowerCAmelCase , sys_doc_lines[doc] , __lowerCAmelCase ) sys_singletons_num += singletons_num if NP_only or min_span: a__ = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) if remove_nested: a__ , a__ = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters a__ , a__ = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters a__ = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) a__ = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) a__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( 'Number of resulting singleton clusters in the key ' F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' 'files, respectively' ) return doc_coref_infos def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any ): a__ = get_coref_infos(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = {} a__ = 0 a__ = 0 for name, metric in metrics: a__ , a__ , a__ = evaluator.evaluate_documents(__lowerCAmelCase , __lowerCAmelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , F'Recall: {recall * 1_0_0:.2f}' , F' Precision: {precision * 1_0_0:.2f}' , F' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: a__ = (conll / 3) * 1_0_0 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({'conll_score': conll} ) return output_scores def __lowercase ( __lowerCAmelCase : str ): a__ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: a__ = line.split()[5] if not parse_col == "-": a__ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :Optional[int] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) ,codebase_urls=['https://github.com/ns-moosavi/coval'] ,reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] ,) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Dict=True ,__snake_case :Union[str, Any]=False ,__snake_case :Dict=False ,__snake_case :Union[str, Any]=False ) -> Tuple: a__ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: a__ = util.check_gold_parse_annotation(__snake_case ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" a__ = evaluate( key_lines=__snake_case ,sys_lines=__snake_case ,metrics=__snake_case ,NP_only=__snake_case ,remove_nested=__snake_case ,keep_singletons=__snake_case ,min_span=__snake_case ,) return score
240
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a :Dict = "pt" elif is_tf_available(): a :int = "tf" else: a :Optional[int] = "jax" class __a (UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Any = ByTaTokenizer _SCREAMING_SNAKE_CASE :List[str] = False def _a ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ : List[Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _a ( self ) -> str: """simple docstring""" return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def _a ( self , **_a ) -> ByTaTokenizer: """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def _a ( self , _a , _a=False , _a=20 , _a=5 ) -> Tuple[str, list]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = [] for i in range(len(_a ) ): try: SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=_a ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE__ : List[str] = list(filter(lambda _a : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , _a ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(filter(lambda _a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_a ) , _a ) ) if max_length is not None and len(_a ) > max_length: SCREAMING_SNAKE_CASE__ : Any = toks[:max_length] if min_length is not None and len(_a ) < min_length and len(_a ) > 0: while len(_a ) < min_length: SCREAMING_SNAKE_CASE__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE__ : Tuple = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) if " " not in output_txt and len(_a ) > 1: SCREAMING_SNAKE_CASE__ : str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_a ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_a ) ) if with_prefix_space: SCREAMING_SNAKE_CASE__ : List[str] = """ """ + output_txt SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode(_a , add_special_tokens=_a ) return output_txt, output_ids def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.ta_base_tokenizer SCREAMING_SNAKE_CASE__ : Dict = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.ta_base_tokenizer SCREAMING_SNAKE_CASE__ : Any = """Unicode €.""" SCREAMING_SNAKE_CASE__ : Dict = tokenizer(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , _a ) # decoding SCREAMING_SNAKE_CASE__ : Dict = tokenizer.decode(_a ) self.assertEqual(_a , """Unicode €.</s>""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer("""e è é ê ë""" ) SCREAMING_SNAKE_CASE__ : Any = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , _a ) # decoding SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.decode(_a ) self.assertEqual(_a , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.ta_base_tokenizer SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off SCREAMING_SNAKE_CASE__ : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer(_a , padding=_a , return_tensors=_a ) self.assertIsInstance(_a , _a ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE__ : str = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE__ : str = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_a , _a ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.ta_base_tokenizer SCREAMING_SNAKE_CASE__ : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_a , padding=_a , return_tensors=_a ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , _a ) self.assertIn("""attention_mask""" , _a ) self.assertNotIn("""decoder_input_ids""" , _a ) self.assertNotIn("""decoder_attention_mask""" , _a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.ta_base_tokenizer SCREAMING_SNAKE_CASE__ : List[Any] = [ """Summary of the text.""", """Another summary.""", ] SCREAMING_SNAKE_CASE__ : Dict = tokenizer( text_target=_a , max_length=32 , padding="""max_length""" , truncation=_a , return_tensors=_a ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.ta_base_tokenizer SCREAMING_SNAKE_CASE__ : List[str] = ["""A long paragraph for summarization. </s>"""] SCREAMING_SNAKE_CASE__ : Tuple = ["""Summary of the text. </s>"""] # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE__ : int = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE__ : Dict = tokenizer(_a , text_target=_a ) self.assertEqual(_a , batch["""input_ids"""][0] ) self.assertEqual(_a , batch["""labels"""][0] ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__ : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : str = """ He is very happy, UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE__ : Any = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.__class__.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : str = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) shutil.rmtree(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__ : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Any = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.__class__.from_pretrained(_a ) SCREAMING_SNAKE_CASE__ : List[str] = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE__ : str = tokenizer.__class__.from_pretrained(_a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_a ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_a ) with open(os.path.join(_a , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: SCREAMING_SNAKE_CASE__ : int = json.load(_a ) with open(os.path.join(_a , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: SCREAMING_SNAKE_CASE__ : int = json.load(_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [f'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE__ : List[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] SCREAMING_SNAKE_CASE__ : Any = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(_a , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_a , _a ) with open(os.path.join(_a , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_a , _a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer_class.from_pretrained( _a , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE__ : List[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=_a )] SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer_class.from_pretrained( _a , additional_special_tokens=_a , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_a ) SCREAMING_SNAKE_CASE__ : str = tokenizer_class.from_pretrained(_a ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def _a ( self ) -> Any: """simple docstring""" pass def _a ( self ) -> int: """simple docstring""" pass def _a ( self ) -> Tuple: """simple docstring""" pass def _a ( self ) -> List[str]: """simple docstring""" pass def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_tokenizers(fast=_a , do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] SCREAMING_SNAKE_CASE__ : str = tokenizer.convert_tokens_to_string(_a ) self.assertIsInstance(_a , _a ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE__ : List[Any] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.convert_ids_to_tokens( _a , skip_special_tokens=_a ) for attr in attributes_list: setattr(_a , attr + """_id""" , _a ) self.assertEqual(getattr(_a , _a ) , _a ) self.assertEqual(getattr(_a , attr + """_id""" ) , _a ) setattr(_a , attr + """_id""" , _a ) self.assertEqual(getattr(_a , _a ) , _a ) self.assertEqual(getattr(_a , attr + """_id""" ) , _a ) setattr(_a , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(_a , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(_a , """additional_special_tokens_ids""" ) , [] ) setattr(_a , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(_a , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(_a , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
56
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return number | (1 << position) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return number & ~(1 << position) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return number ^ (1 << position) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: return ((number >> position) & 1) == 1 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' from math import factorial, pi def _UpperCamelCase ( __A , __A = 30 ) -> float: '''simple docstring''' if not isinstance(__A , (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) UpperCamelCase__ = float(__A ) UpperCamelCase__ = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__A ) ) def _UpperCamelCase ( __A , __A = 30 ) -> float: '''simple docstring''' if not isinstance(__A , (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) UpperCamelCase__ = float(__A ) UpperCamelCase__ = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
80
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCAmelCase : int = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" a__ : Optional[int] =XLNetConfig.from_json_file(SCREAMING_SNAKE_CASE ) a__ : Dict =finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) a__ : List[str] =finetuning_task a__ : Tuple =GLUE_TASKS_NUM_LABELS[finetuning_task] a__ : List[Any] =XLNetForSequenceClassification(SCREAMING_SNAKE_CASE ) elif "squad" in finetuning_task: a__ : Optional[int] =finetuning_task a__ : Dict =XLNetForQuestionAnswering(SCREAMING_SNAKE_CASE ) else: a__ : List[Any] =XLNetLMHeadModel(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model a__ : Dict =os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Dict =os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'''Save PyTorch model to {os.path.abspath(SCREAMING_SNAKE_CASE )}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) print(f'''Save configuration file to {os.path.abspath(SCREAMING_SNAKE_CASE )}''' ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) UpperCAmelCase : int = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
95
0
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class snake_case ( nn.Module): def __init__( self : Optional[Any] ) -> Any: '''simple docstring''' super().__init__() _A = nn.Linear(3 , 4 ) _A = nn.BatchNormad(4 ) _A = nn.Linear(4 , 5 ) def a_ ( self : Optional[Any] , a__ : Dict ) -> Optional[int]: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(a__ ) ) ) class snake_case ( _UpperCamelCase): def a_ ( self : List[str] , a__ : str , *a__ : Tuple , **a__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class snake_case ( _UpperCamelCase): def a_ ( self : Optional[Any] , a__ : Dict , a__ : List[str] ) -> Union[str, Any]: '''simple docstring''' return output + 1 class snake_case ( unittest.TestCase): def a_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _A = ModelForTest() _A = ModelHook() add_hook_to_module(a__ , a__ ) self.assertEqual(test_model._hf_hook , a__ ) self.assertTrue(hasattr(a__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(a__ ) self.assertFalse(hasattr(a__ , "_hf_hook" ) ) self.assertFalse(hasattr(a__ , "_old_forward" ) ) def a_ ( self : Dict ) -> List[Any]: '''simple docstring''' _A = ModelForTest() _A = ModelHook() add_hook_to_module(a__ , a__ ) add_hook_to_module(a__ , a__ , append=a__ ) self.assertEqual(isinstance(test_model._hf_hook , a__ ) , a__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(a__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(a__ ) self.assertFalse(hasattr(a__ , "_hf_hook" ) ) self.assertFalse(hasattr(a__ , "_old_forward" ) ) def a_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' _A = ModelForTest() _A = torch.randn(2 , 3 ) _A = test_model(x + 1 ) _A = test_model(x + 2 ) _A = PreForwardHook() add_hook_to_module(a__ , a__ ) _A = test_model(a__ ) self.assertTrue(torch.allclose(a__ , a__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _A = PreForwardHook() add_hook_to_module(a__ , a__ ) _A = test_model(a__ ) self.assertTrue(torch.allclose(a__ , a__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _A = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(a__ , a__ ) _A = test_model(a__ ) assert torch.allclose(a__ , a__ , atol=1E-5 ) def a_ ( self : Any ) -> str: '''simple docstring''' _A = ModelForTest() _A = torch.randn(2 , 3 ) _A = test_model(a__ ) _A = PostForwardHook() add_hook_to_module(a__ , a__ ) _A = test_model(a__ ) self.assertTrue(torch.allclose(a__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _A = PostForwardHook() add_hook_to_module(a__ , a__ ) _A = test_model(a__ ) self.assertTrue(torch.allclose(a__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _A = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(a__ , a__ ) _A = test_model(a__ ) assert torch.allclose(a__ , output + 2 , atol=1E-5 ) def a_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _A = ModelForTest() _A = torch.randn(2 , 3 ) _A = test_model(a__ ) _A = PostForwardHook() add_hook_to_module(a__ , a__ ) _A = test_model(a__ ) self.assertTrue(torch.allclose(a__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _A = True _A = test_model(a__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _A = torch.randn(2 , 3 ) _A = model(a__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(a__ , AlignDevicesHook(io_same_device=a__ ) ) _A = torch.randn(2 , 3 ).to(0 ) _A = model(a__ ) self.assertEqual(output.device , torch.device(0 ) ) def a_ ( self : Union[str, Any] ) -> str: '''simple docstring''' _A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices _A = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara , AlignDevicesHook(**a__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**a__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**a__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _A = torch.device(hook_kwargs["execution_device"] ) self.assertEqual(model.batchnorm.running_mean.device , a__ ) _A = torch.randn(2 , 3 ) _A = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload _A = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**a__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**a__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**a__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) _A = torch.randn(2 , 3 ) _A = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def a_ ( self : str ) -> List[Any]: '''simple docstring''' _A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices _A = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(a__ , execution_device=a__ , offload=a__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _A = torch.device(a__ ) self.assertEqual(model.batchnorm.running_mean.device , a__ ) _A = torch.randn(2 , 3 ) _A = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook(a__ , execution_device=a__ , offload=a__ , offload_buffers=a__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) _A = torch.randn(2 , 3 ) _A = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def a_ ( self : str ) -> Optional[int]: '''simple docstring''' _A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices _A = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( a__ , execution_device=a__ , offload=a__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _A = torch.device(a__ ) self.assertEqual(model.batchnorm.running_mean.device , a__ ) _A = torch.randn(2 , 3 ) _A = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook( a__ , execution_device=a__ , offload=a__ , weights_map=model.state_dict() , offload_buffers=a__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) _A = torch.randn(2 , 3 ) _A = model(a__ ) self.assertEqual(output.device , a__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
163
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def a__ ( __lowercase ) -> List[Any]: _A = 384 if "tiny" in model_name: _A = [3, 3, 9, 3] _A = [96, 192, 384, 768] if "small" in model_name: _A = [3, 3, 27, 3] _A = [96, 192, 384, 768] if "base" in model_name: _A = [3, 3, 27, 3] _A = [128, 256, 512, 1024] _A = 512 if "large" in model_name: _A = [3, 3, 27, 3] _A = [192, 384, 768, 1536] _A = 768 if "xlarge" in model_name: _A = [3, 3, 27, 3] _A = [256, 512, 1024, 2048] _A = 1024 # set label information _A = 150 _A = "huggingface/label-files" _A = "ade20k-id2label.json" _A = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _A = {int(__lowercase ): v for k, v in idalabel.items()} _A = {v: k for k, v in idalabel.items()} _A = ConvNextConfig( depths=__lowercase , hidden_sizes=__lowercase , out_features=["stage1", "stage2", "stage3", "stage4"] ) _A = UperNetConfig( backbone_config=__lowercase , auxiliary_in_channels=__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase , ) return config def a__ ( __lowercase ) -> List[Any]: _A = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a__ ( __lowercase , __lowercase , __lowercase ) -> List[Any]: _A = dct.pop(__lowercase ) _A = val def a__ ( __lowercase , __lowercase , __lowercase ) -> Optional[Any]: _A = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } _A = model_name_to_url[model_name] _A = torch.hub.load_state_dict_from_url(__lowercase , map_location="cpu" )["state_dict"] _A = get_upernet_config(__lowercase ) _A = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _A = state_dict.pop(__lowercase ) if "bn" in key: _A = key.replace("bn" , "batch_norm" ) _A = val # rename keys _A = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) model.load_state_dict(__lowercase ) # verify on image _A = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert("RGB" ) _A = SegformerImageProcessor() _A = processor(__lowercase , return_tensors="pt" ).pixel_values with torch.no_grad(): _A = model(__lowercase ) if model_name == "upernet-convnext-tiny": _A = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _A = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _A = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _A = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _A = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__lowercase ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f'''upernet-convnext-{size}''' for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
163
1
import re def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" _a : List[str] = re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(_lowerCamelCase ,_lowerCamelCase ) ) if __name__ == "__main__": a__ = '0094702343221' print(is_sri_lankan_phone_number(phone))
235
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def __init__( self :List[str] , a :Any , a :List[Any]=1_3 , a :Any=3_0 , a :Dict=2 , a :List[str]=3 , a :Union[str, Any]=True , a :Optional[int]=True , a :Tuple=3_2 , a :Any=5 , a :List[str]=4 , a :Optional[Any]=3_7 , a :List[Any]="gelu" , a :Any=0.1 , a :Any=0.1 , a :List[str]=1_0 , a :str=0.02 , ) -> Union[str, Any]: __UpperCamelCase : int = parent __UpperCamelCase : List[Any] = batch_size __UpperCamelCase : Optional[Any] = image_size __UpperCamelCase : int = patch_size __UpperCamelCase : Optional[Any] = num_channels __UpperCamelCase : Optional[int] = is_training __UpperCamelCase : Union[str, Any] = use_labels __UpperCamelCase : Tuple = hidden_size __UpperCamelCase : List[Any] = num_hidden_layers __UpperCamelCase : List[Any] = num_attention_heads __UpperCamelCase : Dict = intermediate_size __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : List[Any] = hidden_dropout_prob __UpperCamelCase : str = attention_probs_dropout_prob __UpperCamelCase : List[str] = type_sequence_label_size __UpperCamelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase : Union[str, Any] = (image_size // patch_size) ** 2 __UpperCamelCase : Optional[int] = num_patches + 1 def _lowerCamelCase ( self :Optional[int] ) -> Union[str, Any]: __UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase : Tuple = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) return config, pixel_values def _lowerCamelCase ( self :Tuple , a :Optional[int] , a :Optional[int] ) -> Optional[int]: __UpperCamelCase : Optional[Any] = FlaxViTModel(config=a ) __UpperCamelCase : int = model(a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase : Any = (self.image_size, self.image_size) __UpperCamelCase : Optional[int] = (self.patch_size, self.patch_size) __UpperCamelCase : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowerCamelCase ( self :Dict , a :List[str] , a :Any ) -> str: __UpperCamelCase : Dict = self.type_sequence_label_size __UpperCamelCase : Dict = FlaxViTForImageClassification(config=a ) __UpperCamelCase : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase : Dict = 1 __UpperCamelCase : Optional[Any] = FlaxViTForImageClassification(a ) __UpperCamelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase : str = model(a ) def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : str = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : List[Any] = config_and_inputs __UpperCamelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class lowerCamelCase__ ( __lowercase , unittest.TestCase): '''simple docstring''' _A = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowerCamelCase ( self :Optional[int] ) -> None: __UpperCamelCase : int = FlaxViTModelTester(self ) __UpperCamelCase : Any = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _lowerCamelCase ( self :List[Any] ) -> str: self.config_tester.run_common_tests() def _lowerCamelCase ( self :List[Any] ) -> List[str]: __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self :List[str] ) -> Union[str, Any]: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def _lowerCamelCase ( self :Tuple ) -> Any: __UpperCamelCase , __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : List[Any] = model_class(a ) __UpperCamelCase : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase : Dict = [*signature.parameters.keys()] __UpperCamelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def _lowerCamelCase ( self :str ) -> Any: __UpperCamelCase , __UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase : List[Any] = self._prepare_for_class(a , a ) __UpperCamelCase : List[Any] = model_class(a ) @jax.jit def model_jitted(a :List[str] , **a :List[Any] ): return model(pixel_values=a , **a ) with self.subTest("JIT Enabled" ): __UpperCamelCase : int = model_jitted(**a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __UpperCamelCase : Optional[Any] = model_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCamelCase ( self :Dict ) -> str: for model_class_name in self.all_model_classes: __UpperCamelCase : List[Any] = model_class_name.from_pretrained("google/vit-base-patch16-224" ) __UpperCamelCase : Optional[int] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(a )
232
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = inspect.getfile(accelerate.test_utils) _UpperCamelCase = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py''']) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _UpperCamelCase = test_metrics @require_cpu def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1) @require_cpu def UpperCAmelCase ( self) -> int: '''simple docstring''' debug_launcher(self.test_metrics.main) @require_single_gpu def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' print(F'''Found {torch.cuda.device_count()} devices.''') _UpperCamelCase = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy())
365
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'dandelin/vilt-b32-finetuned-vqa' lowercase__ = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) lowercase__ = 'image_qa' lowercase__ = AutoProcessor lowercase__ = AutoModelForVisualQuestionAnswering lowercase__ = ['image', 'text'] lowercase__ = ['text'] def __init__( self , *__a , **__a) -> int: '''simple docstring''' requires_backends(self , ['''vision''']) super().__init__(*__a , **__a) def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' return self.pre_processor(__a , __a , return_tensors='''pt''') def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' with torch.no_grad(): return self.model(**__a).logits def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = outputs.argmax(-1).item() return self.model.config.idalabel[idx]
100
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase__ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
"""simple docstring""" import math def _snake_case ( lowercase__ ): return math.sqrt(lowercase__ ) * math.sqrt(lowercase__ ) == num def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[Any] = n while left <= right: _lowerCamelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _lowerCamelCase : str = mid - 1 else: _lowerCamelCase : Optional[int] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
96
1
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowercase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowercase : List[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowercase : str = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, float]: _snake_case = len([g for position, g in enumerate(__A ) if g == main_target[position]] ) return (item, float(__A )) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[str, str]: _snake_case = random.randint(0 , len(__A ) - 1 ) _snake_case = parent_a[:random_slice] + parent_a[random_slice:] _snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str: _snake_case = list(__A ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _snake_case = random.choice(__A ) return "".join(__A ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , ) -> list[str]: _snake_case = [] # Generate more children proportionally to the fitness score. _snake_case = int(parent_a[1] * 100 ) + 1 _snake_case = 10 if child_n >= 10 else child_n for _ in range(__A ): _snake_case = population_score[random.randint(0 , __A )][0] _snake_case , _snake_case = crossover(parent_a[0] , __A ) # Append new string to the population list. pop.append(mutate(__A , __A ) ) pop.append(mutate(__A , __A ) ) return pop def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _snake_case = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(__A ) # Verify that the target contains no genes besides the ones inside genes variable. _snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _snake_case = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(__A ) # Generate random starting population. _snake_case = [] for _ in range(__A ): population.append(''.join([random.choice(__A ) for i in range(len(__A ) )] ) ) # Just some logs to know what the algorithms is doing. _snake_case , _snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__A ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _snake_case = [evaluate(__A , __A ) for item in population] # Check if there is a matching evolution. _snake_case = sorted(__A , key=lambda __A : x[1] , reverse=__A ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__A ) # Normalize population score to be between 0 and 1. _snake_case = [ (item, score / len(__A )) for item, score in population_score ] # This is selection for i in range(__A ): population.extend(select(population_score[int(__A )] , __A , __A ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__A ) > N_POPULATION: break if __name__ == "__main__": lowercase : Tuple = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowercase : Tuple = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowercase : int = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
356
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) _snake_case = img _snake_case = img.shape[1] _snake_case = img.shape[0] _snake_case = dst_width _snake_case = dst_height _snake_case = self.src_w / self.dst_w _snake_case = self.src_h / self.dst_h _snake_case = _snake_case = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def lowerCamelCase ( self ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): _snake_case = self.img[self.get_y(lowerCAmelCase_ )][self.get_x(lowerCAmelCase_ )] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return int(self.ratio_x * x ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": lowercase , lowercase : Optional[Any] = 800, 600 lowercase : Tuple = imread("image_data/lena.jpg", 1) lowercase : Any = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
160
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def A (__A : List[str] ) -> Any: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = image.size UpperCAmelCase_ , UpperCAmelCase_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase_ = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) UpperCAmelCase_ = np.array(__A ).astype(np.floataa ) / 255.0 UpperCAmelCase_ = image[None].transpose(0 , 3 , 1 , 2 ) UpperCAmelCase_ = torch.from_numpy(__A ) return 2.0 * image - 1.0 class __snake_case ( a ): def __init__( self : int , _snake_case : VQModel , _snake_case : UNetaDModel , _snake_case : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): """simple docstring""" super().__init__() self.register_modules(vqvae=_snake_case , unet=_snake_case , scheduler=_snake_case) @torch.no_grad() def __call__( self : List[Any] , _snake_case : Union[torch.Tensor, PIL.Image.Image] = None , _snake_case : Optional[int] = 1 , _snake_case : Optional[int] = 100 , _snake_case : Optional[float] = 0.0 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , ): """simple docstring""" if isinstance(_snake_case , PIL.Image.Image): UpperCAmelCase_ = 1 elif isinstance(_snake_case , torch.Tensor): UpperCAmelCase_ = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_snake_case)}""") if isinstance(_snake_case , PIL.Image.Image): UpperCAmelCase_ = preprocess(_snake_case) UpperCAmelCase_ , UpperCAmelCase_ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCAmelCase_ = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCAmelCase_ = next(self.unet.parameters()).dtype UpperCAmelCase_ = randn_tensor(_snake_case , generator=_snake_case , device=self.device , dtype=_snake_case) UpperCAmelCase_ = image.to(device=self.device , dtype=_snake_case) # set timesteps and move to the correct device self.scheduler.set_timesteps(_snake_case , device=self.device) UpperCAmelCase_ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) UpperCAmelCase_ = {} if accepts_eta: UpperCAmelCase_ = eta for t in self.progress_bar(_snake_case): # concat latents and low resolution image in the channel dimension. UpperCAmelCase_ = torch.cat([latents, image] , dim=1) UpperCAmelCase_ = self.scheduler.scale_model_input(_snake_case , _snake_case) # predict the noise residual UpperCAmelCase_ = self.unet(_snake_case , _snake_case).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample # decode the image latents with the VQVAE UpperCAmelCase_ = self.vqvae.decode(_snake_case).sample UpperCAmelCase_ = torch.clamp(_snake_case , -1.0 , 1.0) UpperCAmelCase_ = image / 2 + 0.5 UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(_snake_case) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case)
51
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE = 1000000 ) ->int: a__: int = limit + 1 a__: Optional[int] = [0] * limit for first_term in range(1 , _SCREAMING_SNAKE_CASE ): for n in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a__: Any = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
290
0
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent SCREAMING_SNAKE_CASE_: Optional[Any] ={'UserAgent': UserAgent().random} def lowerCAmelCase_ ( snake_case_ : int ) -> dict: '''simple docstring''' UpperCAmelCase_ = script.contents[0] UpperCAmelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __A : def __init__(self : Any , __a : Union[str, Any] ): UpperCAmelCase_ = f"""https://www.instagram.com/{username}/""" UpperCAmelCase_ = self.get_json() def _lowercase (self : Any ): UpperCAmelCase_ = requests.get(self.url , headers=__a ).text UpperCAmelCase_ = BeautifulSoup(__a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self : int ): return f"""{self.__class__.__name__}('{self.username}')""" def __str__(self : Union[str, Any] ): return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def _lowercase (self : Dict ): return self.user_data["username"] @property def _lowercase (self : Dict ): return self.user_data["full_name"] @property def _lowercase (self : str ): return self.user_data["biography"] @property def _lowercase (self : Optional[Any] ): return self.user_data["business_email"] @property def _lowercase (self : Dict ): return self.user_data["external_url"] @property def _lowercase (self : Union[str, Any] ): return self.user_data["edge_followed_by"]["count"] @property def _lowercase (self : Optional[int] ): return self.user_data["edge_follow"]["count"] @property def _lowercase (self : Optional[Any] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _lowercase (self : int ): return self.user_data["profile_pic_url_hd"] @property def _lowercase (self : List[Any] ): return self.user_data["is_verified"] @property def _lowercase (self : Optional[Any] ): return self.user_data["is_private"] def lowerCAmelCase_ ( snake_case_ : str = "github" ) -> None: '''simple docstring''' import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCAmelCase_ = InstagramUser(snake_case_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , snake_case_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_: int =InstagramUser('github') print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
106
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch SCREAMING_SNAKE_CASE_: Dict =True except ImportError: SCREAMING_SNAKE_CASE_: str =False try: from torch.hub import _get_torch_home SCREAMING_SNAKE_CASE_: Optional[Any] =_get_torch_home() except ImportError: SCREAMING_SNAKE_CASE_: Union[str, Any] =os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) SCREAMING_SNAKE_CASE_: int =os.path.join(torch_cache_home, 'transformers') SCREAMING_SNAKE_CASE_: Tuple ='https://cdn.huggingface.co' SCREAMING_SNAKE_CASE_: str ='https://s3.amazonaws.com/models.huggingface.co/bert' SCREAMING_SNAKE_CASE_: str ='/'.join(str(Path(__file__).resolve()).split('/')[:-1]) SCREAMING_SNAKE_CASE_: Optional[Any] =os.path.join(PATH, 'config.yaml') SCREAMING_SNAKE_CASE_: Optional[Any] =os.path.join(PATH, 'attributes.txt') SCREAMING_SNAKE_CASE_: Any =os.path.join(PATH, 'objects.txt') SCREAMING_SNAKE_CASE_: Optional[int] =os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) SCREAMING_SNAKE_CASE_: int =os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) SCREAMING_SNAKE_CASE_: List[str] =os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) SCREAMING_SNAKE_CASE_: str ='pytorch_model.bin' SCREAMING_SNAKE_CASE_: Dict ='config.yaml' def lowerCAmelCase_ ( snake_case_ : Optional[int]=OBJECTS , snake_case_ : Optional[Any]=ATTRIBUTES ) -> Any: '''simple docstring''' UpperCAmelCase_ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) UpperCAmelCase_ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = OrderedDict() with open(snake_case_ , "rb" ) as f: UpperCAmelCase_ = pkl.load(snake_case_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): UpperCAmelCase_ = ckp.pop(snake_case_ ) if isinstance(snake_case_ , np.ndarray ): UpperCAmelCase_ = torch.tensor(snake_case_ ) else: assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ ) UpperCAmelCase_ = v return r class __A : a__ : Optional[Any] = {} def __init__(self : Union[str, Any] , __a : dict , __a : str = "root" , __a : str=0 ): UpperCAmelCase_ = name UpperCAmelCase_ = level UpperCAmelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() UpperCAmelCase_ = copy.deepcopy(__a ) UpperCAmelCase_ = copy.deepcopy(__a ) if isinstance(__a , __a ): UpperCAmelCase_ = Config(__a , name=__a , level=level + 1 ) UpperCAmelCase_ = v setattr(self , __a , __a ) UpperCAmelCase_ = d def __repr__(self : List[Any] ): return str(list((self._pointer.keys()) ) ) def __setattr__(self : int , __a : str , __a : Dict ): UpperCAmelCase_ = val UpperCAmelCase_ = val UpperCAmelCase_ = key.split("." ) UpperCAmelCase_ = len(__a ) - 1 UpperCAmelCase_ = self._pointer if len(__a ) > 1: for i, l in enumerate(__a ): if hasattr(self , __a ) and isinstance(getattr(self , __a ) , __a ): setattr(getattr(self , __a ) , ".".join(levels[i:] ) , __a ) if l == last_level: UpperCAmelCase_ = val else: UpperCAmelCase_ = pointer[l] def _lowercase (self : Optional[Any] ): return self._pointer def _lowercase (self : int , __a : Union[str, Any] , __a : str ): with open(f"""{file_name}""" , "w" ) as stream: dump(__a , __a ) def _lowercase (self : Any , __a : Optional[Any] , __a : List[str] ): with open(f"""{file_name}""" , "w" ) as stream: json.dump(__a , __a ) @staticmethod def _lowercase (__a : str ): with open(__a ) as stream: UpperCAmelCase_ = load(__a , Loader=__a ) return data def __str__(self : Dict ): UpperCAmelCase_ = " " if self._name != "root": UpperCAmelCase_ = f"""{t * (self._level-1)}{self._name}:\n""" else: UpperCAmelCase_ = "" UpperCAmelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__a , __a ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(__a ).__name__})\n""" UpperCAmelCase_ = level return r[:-1] @classmethod def _lowercase (cls : Tuple , __a : str , **__a : Dict ): UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(__a , **__a ) return cls(__a ) @classmethod def _lowercase (cls : Any , __a : str , **__a : Dict ): UpperCAmelCase_ = kwargs.pop("cache_dir" , __a ) UpperCAmelCase_ = kwargs.pop("force_download" , __a ) UpperCAmelCase_ = kwargs.pop("resume_download" , __a ) UpperCAmelCase_ = kwargs.pop("proxies" , __a ) UpperCAmelCase_ = kwargs.pop("local_files_only" , __a ) if os.path.isdir(__a ): UpperCAmelCase_ = os.path.join(__a , __a ) elif os.path.isfile(__a ) or is_remote_url(__a ): UpperCAmelCase_ = pretrained_model_name_or_path else: UpperCAmelCase_ = hf_bucket_url(__a , filename=__a , use_cdn=__a ) try: # Load from URL or cache if already cached UpperCAmelCase_ = cached_path( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError UpperCAmelCase_ = Config.load_yaml(__a ) except EnvironmentError: UpperCAmelCase_ = "Can't load config for" raise EnvironmentError(__a ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(__a ), kwargs def lowerCAmelCase_ ( snake_case_ : str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = torch.load("dump.pt" , map_location=in_tensor.device ) UpperCAmelCase_ = in_tensor.numpy() UpperCAmelCase_ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), ( f"""{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %""" " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = urlparse(snake_case_ ) return parsed.scheme in ("http", "https") def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[int]=True ) -> str: '''simple docstring''' UpperCAmelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX UpperCAmelCase_ = "/" not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int]=None , snake_case_ : List[Any]=0 , snake_case_ : int=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case_ , snake_case_ ): ua += "; " + "; ".join("{}/{}".format(snake_case_ , snake_case_ ) for k, v in user_agent.items() ) elif isinstance(snake_case_ , snake_case_ ): ua += "; " + user_agent UpperCAmelCase_ = {"user-agent": ua} if resume_size > 0: UpperCAmelCase_ = "bytes=%d-" % (resume_size,) UpperCAmelCase_ = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ ) if response.status_code == 4_16: # Range not satisfiable return UpperCAmelCase_ = response.headers.get("Content-Length" ) UpperCAmelCase_ = resume_size + int(snake_case_ ) if content_length is not None else None UpperCAmelCase_ = tqdm( unit="B" , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case_ ) ) temp_file.write(snake_case_ ) progress.close() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : str=None , snake_case_ : List[str]=False , snake_case_ : List[str]=None , snake_case_ : int=10 , snake_case_ : Any=False , snake_case_ : int=None , snake_case_ : str=False , ) -> str: '''simple docstring''' if cache_dir is None: UpperCAmelCase_ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = str(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) UpperCAmelCase_ = None if not local_files_only: try: UpperCAmelCase_ = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ ) if response.status_code == 2_00: UpperCAmelCase_ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass UpperCAmelCase_ = url_to_filename(snake_case_ , snake_case_ ) # get cache path to put the file UpperCAmelCase_ = os.path.join(snake_case_ , snake_case_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case_ ): return cache_path else: UpperCAmelCase_ = [ file for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(snake_case_ ) > 0: return os.path.join(snake_case_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(snake_case_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. UpperCAmelCase_ = cache_path + ".lock" with FileLock(snake_case_ ): # If the download just completed while the lock was activated. if os.path.exists(snake_case_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: UpperCAmelCase_ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(snake_case_ , "a+b" ) as f: yield f UpperCAmelCase_ = _resumable_file_manager if os.path.exists(snake_case_ ): UpperCAmelCase_ = os.stat(snake_case_ ).st_size else: UpperCAmelCase_ = 0 else: UpperCAmelCase_ = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ ) UpperCAmelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , snake_case_ , temp_file.name , ) http_get( snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , ) os.replace(temp_file.name , snake_case_ ) UpperCAmelCase_ = {"url": url, "etag": etag} UpperCAmelCase_ = cache_path + ".json" with open(snake_case_ , "w" ) as meta_file: json.dump(snake_case_ , snake_case_ ) return cache_path def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Any=None ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = url.encode("utf-8" ) UpperCAmelCase_ = shaaaa(snake_case_ ) UpperCAmelCase_ = url_hash.hexdigest() if etag: UpperCAmelCase_ = etag.encode("utf-8" ) UpperCAmelCase_ = shaaaa(snake_case_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Tuple=None , snake_case_ : int=False , snake_case_ : Any=None , snake_case_ : List[Any]=False , snake_case_ : Any=None , snake_case_ : Any=False , snake_case_ : List[str]=False , snake_case_ : str=False , ) -> Union[str, Any]: '''simple docstring''' if cache_dir is None: UpperCAmelCase_ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = str(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = str(snake_case_ ) if is_remote_url(snake_case_ ): # URL, so get it from the cache (downloading if necessary) UpperCAmelCase_ = get_from_cache( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , ) elif os.path.exists(snake_case_ ): # File, and it exists. UpperCAmelCase_ = url_or_filename elif urlparse(snake_case_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(snake_case_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(snake_case_ ) ) if extract_compressed_file: if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" UpperCAmelCase_ , UpperCAmelCase_ = os.path.split(snake_case_ ) UpperCAmelCase_ = output_file.replace("." , "-" ) + "-extracted" UpperCAmelCase_ = os.path.join(snake_case_ , snake_case_ ) if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions UpperCAmelCase_ = output_path + ".lock" with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) os.makedirs(snake_case_ ) if is_zipfile(snake_case_ ): with ZipFile(snake_case_ , "r" ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() elif tarfile.is_tarfile(snake_case_ ): UpperCAmelCase_ = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(snake_case_ ) ) return output_path_extracted return output_path def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Optional[int]="," ) -> int: '''simple docstring''' assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): with open(snake_case_ ) as f: UpperCAmelCase_ = eval(f.read() ) else: UpperCAmelCase_ = requests.get(snake_case_ ) try: UpperCAmelCase_ = requests.json() except Exception: UpperCAmelCase_ = req.content.decode() assert data is not None, "could not connect" try: UpperCAmelCase_ = eval(snake_case_ ) except Exception: UpperCAmelCase_ = data.split("\n" ) req.close() return data def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ = requests.get(snake_case_ ) UpperCAmelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case_ ) with open(snake_case_ , "rb" ) as stream: UpperCAmelCase_ = pkl.load(snake_case_ ) UpperCAmelCase_ = weights.pop("model" ) UpperCAmelCase_ = {} for k, v in model.items(): UpperCAmelCase_ = torch.from_numpy(snake_case_ ) if "running_var" in k: UpperCAmelCase_ = torch.tensor([0] ) UpperCAmelCase_ = k.replace("running_var" , "num_batches_tracked" ) UpperCAmelCase_ = zero return new def lowerCAmelCase_ ( ) -> int: '''simple docstring''' print(f"""{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb""" ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any="RGB" ) -> Dict: '''simple docstring''' assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): UpperCAmelCase_ = cva.imread(snake_case_ ) else: UpperCAmelCase_ = get_image_from_url(snake_case_ ) assert img is not None, f"""could not connect to: {im}""" UpperCAmelCase_ = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": UpperCAmelCase_ = img[:, :, ::-1] return img def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Union[str, Any]=1 ) -> str: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ ))
106
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] =logging.get_logger(__name__) A__ : List[Any] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class UpperCAmelCase ( snake_case_ ): _lowercase: int = '''markuplm''' def __init__( self : Dict , __snake_case : Union[str, Any]=3_05_22 , __snake_case : Tuple=7_68 , __snake_case : Any=12 , __snake_case : List[str]=12 , __snake_case : str=30_72 , __snake_case : List[Any]="gelu" , __snake_case : List[str]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=5_12 , __snake_case : List[str]=2 , __snake_case : int=0.02 , __snake_case : List[str]=1E-1_2 , __snake_case : Optional[int]=0 , __snake_case : str=0 , __snake_case : Tuple=2 , __snake_case : Tuple=2_56 , __snake_case : int=10_24 , __snake_case : Union[str, Any]=2_16 , __snake_case : List[str]=10_01 , __snake_case : Any=32 , __snake_case : Tuple=50 , __snake_case : str="absolute" , __snake_case : Tuple=True , __snake_case : List[Any]=None , **__snake_case : Union[str, Any] , ) -> List[Any]: super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout # additional properties _lowerCAmelCase = max_depth _lowerCAmelCase = max_xpath_tag_unit_embeddings _lowerCAmelCase = max_xpath_subs_unit_embeddings _lowerCAmelCase = tag_pad_id _lowerCAmelCase = subs_pad_id _lowerCAmelCase = xpath_unit_hidden_size
70
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase : _lowercase: List[str] _lowercase: Optional[str] = None # Automatically constructed _lowercase: ClassVar[str] = "dict" _lowercase: ClassVar[Any] = None _lowercase: str = field(default='''Translation''' , init=snake_case_ , repr=snake_case_ ) def __call__( self : Optional[int] ) -> Optional[int]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase__ ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase : _lowercase: Optional[List] = None _lowercase: Optional[int] = None _lowercase: Optional[str] = None # Automatically constructed _lowercase: ClassVar[str] = "dict" _lowercase: ClassVar[Any] = None _lowercase: str = field(default='''TranslationVariableLanguages''' , init=snake_case_ , repr=snake_case_ ) def lowercase__ ( self : Any ) -> Optional[Any]: _lowerCAmelCase = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase = len(self.languages ) if self.languages else None def __call__( self : List[str] ) -> Optional[Any]: return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def lowercase__ ( self : Optional[Any] , __snake_case : Tuple ) -> Any: _lowerCAmelCase = set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase = [] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase = zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def lowercase__ ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
70
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCAmelCase__ ( ): '''simple docstring''' print('''Making key files...''') make_key_files('''rsa''' ,1024) print('''Key files generation successful.''') def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' print('''Generating prime p...''') lowerCAmelCase__ : Optional[int] = rabinMiller.generate_large_prime(lowerCamelCase_) print('''Generating prime q...''') lowerCAmelCase__ : List[str] = rabinMiller.generate_large_prime(lowerCamelCase_) lowerCAmelCase__ : str = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''') while True: lowerCAmelCase__ : str = random.randrange(2 ** (key_size - 1) ,2 ** (key_size)) if cryptoMath.gcd(lowerCamelCase_ ,(p - 1) * (q - 1)) == 1: break print('''Calculating d that is mod inverse of e...''') lowerCAmelCase__ : Any = cryptoMath.find_mod_inverse(lowerCamelCase_ ,(p - 1) * (q - 1)) lowerCAmelCase__ : Union[str, Any] = (n, e) lowerCAmelCase__ : List[Any] = (n, d) return (public_key, private_key) def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : int): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""") or os.path.exists(f"""{name}_privkey.txt"""): print('''\nWARNING:''') print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''') sys.exit() lowerCAmelCase__ : Tuple = generate_key(lowerCamelCase_) print(f"""\nWriting public key to file {name}_pubkey.txt...""") with open(f"""{name}_pubkey.txt""" ,'''w''') as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""") print(f"""Writing private key to file {name}_privkey.txt...""") with open(f"""{name}_privkey.txt""" ,'''w''') as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""") if __name__ == "__main__": main()
364
__snake_case : Any ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case : Tuple =[{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case : Tuple ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
94
0
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowercase__ = logging.get_logger(__name__) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = set() UpperCAmelCase : Optional[int] = [] def parse_line(UpperCAmelCase_ ): for line in fp: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(UpperCAmelCase_ ) > 0: UpperCAmelCase : str = '\n'.join(UpperCAmelCase_ ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(UpperCAmelCase_ ) buffer.clear() continue else: UpperCAmelCase : Union[str, Any] = line.strip() buffer.append(UpperCAmelCase_ ) if from_gh: for filename in os.listdir(UpperCAmelCase_ ): UpperCAmelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if not os.path.isdir(UpperCAmelCase_ ): # read the file if filename != "warnings.txt": continue with open(UpperCAmelCase_ ) as fp: parse_line(UpperCAmelCase_ ) else: try: with zipfile.ZipFile(UpperCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCAmelCase_ ): # read the file if filename != "warnings.txt": continue with z.open(UpperCAmelCase_ ) as fp: parse_line(UpperCAmelCase_ ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = set() UpperCAmelCase : int = [os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) for p in os.listdir(UpperCAmelCase_ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(UpperCAmelCase_ , UpperCAmelCase_ ) ) return selected_warnings if __name__ == "__main__": def UpperCamelCase( UpperCAmelCase_ ): return values.split(',' ) lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) lowercase__ = parser.parse_args() lowercase__ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowercase__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowercase__ = extract_warnings(args.output_dir, args.targets) lowercase__ = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
151
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = "▁" lowercase__ = {"vocab_file": "spiece.model"} lowercase__ = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } lowercase__ = { "google/reformer-crime-and-punishment": 524288, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowercase_ : Dict , lowercase_ : Tuple="</s>" , lowercase_ : Dict="<unk>" , lowercase_ : Tuple=[] , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : List[str] , ) -> None: UpperCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase : List[Any] = vocab_file UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self : List[str] ) -> Dict[str, int]: UpperCAmelCase : int = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> str: UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , lowercase_ : Any ) -> List[str]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase : Dict = {} UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple ) -> Optional[int]: return self.sp_model.piece_to_id(lowercase_ ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> List[str]: if index < self.sp_model.get_piece_size(): UpperCAmelCase : Tuple = self.sp_model.IdToPiece(lowercase_ ) return token def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> Optional[int]: UpperCAmelCase : Dict = [] UpperCAmelCase : int = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase : Any = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : int = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
151
1
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ ( _a, unittest.TestCase): UpperCamelCase__ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Tuple=0 ): lowercase_ : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case_ ) ) lowercase_ : List[str] = np.random.RandomState(snake_case_ ) lowercase_ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Tuple = self.get_dummy_inputs() lowercase_ : Union[str, Any] = pipe(**snake_case_ ).images lowercase_ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) lowercase_ : int = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Dict = self.get_dummy_inputs() lowercase_ : int = pipe(**snake_case_ ).images lowercase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Tuple = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) # warmup pass to apply optimizations lowercase_ : List[Any] = pipe(**self.get_dummy_inputs() ) lowercase_ : List[str] = self.get_dummy_inputs() lowercase_ : Optional[int] = pipe(**snake_case_ ).images lowercase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Any = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Union[str, Any] = self.get_dummy_inputs() lowercase_ : List[Any] = pipe(**snake_case_ ).images lowercase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Optional[Any] = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Tuple = self.get_dummy_inputs() lowercase_ : Tuple = pipe(**snake_case_ ).images lowercase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : int = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : List[str] = self.get_dummy_inputs() lowercase_ : List[str] = pipe(**snake_case_ ).images lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : List[str] = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ ( unittest.TestCase): @property def SCREAMING_SNAKE_CASE_ ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Tuple = ort.SessionOptions() lowercase_ : Optional[Any] = False return options def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase_ : str = init_image.resize((768, 512) ) # using the PNDM scheduler by default lowercase_ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Dict = """A fantasy landscape, trending on artstation""" lowercase_ : str = np.random.RandomState(0 ) lowercase_ : Union[str, Any] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type="""np""" , ) lowercase_ : str = output.images lowercase_ : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowercase_ : Optional[Any] = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase_ : List[Any] = init_image.resize((768, 512) ) lowercase_ : Tuple = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) lowercase_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Union[str, Any] = """A fantasy landscape, trending on artstation""" lowercase_ : Optional[int] = np.random.RandomState(0 ) lowercase_ : Optional[int] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case_ , output_type="""np""" , ) lowercase_ : Any = output.images lowercase_ : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowercase_ : Tuple = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
370
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int: lowercase_ : List[Any] = limit + 1 lowercase_ : Optional[Any] = [0] * limit for first_term in range(1 , UpperCAmelCase__ ): for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
21
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: int = ["pixel_values"] def __init__( self : int , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 255 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Any , ): super().__init__(**A ) _UpperCAmelCase : Dict = size if size is not None else {"shortest_edge": 256} _UpperCAmelCase : Optional[int] = get_size_dict(A , default_to_square=A ) _UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCAmelCase : List[str] = get_size_dict(A ) _UpperCAmelCase : str = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : Any = resample _UpperCAmelCase : int = do_center_crop _UpperCAmelCase : Union[str, Any] = crop_size _UpperCAmelCase : int = do_rescale _UpperCAmelCase : List[Any] = rescale_factor _UpperCAmelCase : List[Any] = do_normalize _UpperCAmelCase : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def _A ( self : Optional[int] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : Tuple , ): _UpperCAmelCase : List[Any] = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCAmelCase : int = get_resize_output_image_size(A , size=size["shortest_edge"] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def _A ( self : Optional[int] , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : str , ): _UpperCAmelCase : int = get_size_dict(A ) return center_crop(A , size=(size["height"], size["width"]) , data_format=A , **A ) def _A ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Any ): return rescale(A , scale=A , data_format=A , **A ) def _A ( self : List[Any] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : int , ): return normalize(A , mean=A , std=A , data_format=A , **A ) def _A ( self : Optional[int] , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : Dict , ): _UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Any = size if size is not None else self.size _UpperCAmelCase : List[str] = get_size_dict(A , default_to_square=A ) _UpperCAmelCase : Optional[int] = resample if resample is not None else self.resample _UpperCAmelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : Optional[int] = get_size_dict(A ) _UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std _UpperCAmelCase : List[Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase : Dict = [to_numpy_array(A ) for image in images] if do_resize: _UpperCAmelCase : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: _UpperCAmelCase : Optional[Any] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: _UpperCAmelCase : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: _UpperCAmelCase : Optional[Any] = [self.normalize(image=A , mean=A , std=A ) for image in images] _UpperCAmelCase : List[str] = [to_channel_dimension_format(A , A ) for image in images] _UpperCAmelCase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=A , tensor_type=A )
31
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase_ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _UpperCAmelCase : List[Any] = MaskFormerConfig(backbone_config=_UpperCAmelCase ) _UpperCAmelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _UpperCAmelCase : Dict = 847 _UpperCAmelCase : Any = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _UpperCAmelCase : Any = 150 _UpperCAmelCase : Any = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _UpperCAmelCase : Tuple = 171 _UpperCAmelCase : Union[str, Any] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _UpperCAmelCase : Any = 133 _UpperCAmelCase : int = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _UpperCAmelCase : Optional[int] = 19 _UpperCAmelCase : str = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _UpperCAmelCase : Optional[int] = 65 _UpperCAmelCase : Tuple = "mapillary-vistas-id2label.json" _UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Tuple = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} return config def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = dct.pop(_UpperCAmelCase ) _UpperCAmelCase : List[str] = val def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCAmelCase : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCAmelCase : Any = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _UpperCAmelCase : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[:dim, :] _UpperCAmelCase : Tuple = in_proj_bias[: dim] _UpperCAmelCase : List[Any] = in_proj_weight[ dim : dim * 2, : ] _UpperCAmelCase : List[str] = in_proj_bias[ dim : dim * 2 ] _UpperCAmelCase : Optional[Any] = in_proj_weight[ -dim :, : ] _UpperCAmelCase : Dict = in_proj_bias[-dim :] # fmt: on def UpperCamelCase_ ( _UpperCAmelCase : Dict , _UpperCAmelCase : str ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCAmelCase : Dict = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _UpperCAmelCase : Dict = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : int = in_proj_weight[: hidden_size, :] _UpperCAmelCase : Union[str, Any] = in_proj_bias[:config.hidden_size] _UpperCAmelCase : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCAmelCase : List[str] = in_proj_bias[hidden_size : hidden_size * 2] _UpperCAmelCase : int = in_proj_weight[-hidden_size :, :] _UpperCAmelCase : Optional[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCAmelCase : Optional[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _UpperCAmelCase : Tuple = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Any = in_proj_weight[: hidden_size, :] _UpperCAmelCase : Tuple = in_proj_bias[:config.hidden_size] _UpperCAmelCase : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCAmelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _UpperCAmelCase : Optional[int] = in_proj_weight[-hidden_size :, :] _UpperCAmelCase : Union[str, Any] = in_proj_bias[-hidden_size :] # fmt: on def UpperCamelCase_ ( ) -> torch.Tensor: """simple docstring""" _UpperCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = get_maskformer_config(_UpperCAmelCase ) # load original state_dict with open(_UpperCAmelCase , "rb" ) as f: _UpperCAmelCase : Optional[int] = pickle.load(_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _UpperCAmelCase : Any = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _UpperCAmelCase : Tuple = torch.from_numpy(_UpperCAmelCase ) # load 🤗 model _UpperCAmelCase : Union[str, Any] = MaskFormerForInstanceSegmentation(_UpperCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_UpperCAmelCase , param.shape ) _UpperCAmelCase , _UpperCAmelCase : Any = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_UpperCAmelCase ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _UpperCAmelCase : Optional[int] = prepare_img() if "vistas" in model_name: _UpperCAmelCase : int = 65 elif "cityscapes" in model_name: _UpperCAmelCase : Tuple = 65_535 else: _UpperCAmelCase : Any = 255 _UpperCAmelCase : Optional[Any] = True if "ade" in model_name else False _UpperCAmelCase : Optional[int] = MaskFormerImageProcessor(ignore_index=_UpperCAmelCase , reduce_labels=_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = image_processor(_UpperCAmelCase , return_tensors="pt" ) _UpperCAmelCase : List[Any] = model(**_UpperCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _UpperCAmelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
31
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __magic_name__ (__lowerCAmelCase ): lowerCamelCase__ = '''distilbert''' lowerCamelCase__ = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _a=30522 , _a=512 , _a=False , _a=6 , _a=12 , _a=768 , _a=4 * 768 , _a=0.1 , _a=0.1 , _a="gelu" , _a=0.0_2 , _a=0.1 , _a=0.2 , _a=0 , **_a , ) -> Tuple: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = sinusoidal_pos_embds lowerCAmelCase_ = n_layers lowerCAmelCase_ = n_heads lowerCAmelCase_ = dim lowerCAmelCase_ = hidden_dim lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation lowerCAmelCase_ = initializer_range lowerCAmelCase_ = qa_dropout lowerCAmelCase_ = seq_classif_dropout super().__init__(**lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ ) class __magic_name__ (__lowerCAmelCase ): @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
69
1
from ... import PretrainedConfig __a = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class __a( _a ): """simple docstring""" lowerCAmelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowerCAmelCase = '''nezha''' def __init__( self ,_SCREAMING_SNAKE_CASE=21_128 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=64 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-12 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=True ,**_SCREAMING_SNAKE_CASE ,) -> Optional[Any]: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : str = max_relative_position UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Tuple = layer_norm_eps UpperCAmelCase_ : Any = classifier_dropout UpperCAmelCase_ : List[str] = use_cache
369
from collections import defaultdict def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = first_str.lower().strip() UpperCAmelCase_ : Any = second_str.lower().strip() # Remove whitespace UpperCAmelCase_ : Any = first_str.replace(''' ''' , '''''' ) UpperCAmelCase_ : int = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(_lowercase ) != len(_lowercase ): return False # Default values for count should be 0 UpperCAmelCase_ : defaultdict[str, int] = defaultdict(_lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __a = input('Enter the first string ').strip() __a = input('Enter the second string ').strip() __a = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
235
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : str =logging.get_logger(__name__) lowerCamelCase : Any ={ "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __a ( UpperCAmelCase__ ): _lowerCAmelCase : Union[str, Any] = '''ibert''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=3_05_22 , SCREAMING_SNAKE_CASE : str=7_68 , SCREAMING_SNAKE_CASE : Any=12 , SCREAMING_SNAKE_CASE : Optional[int]=12 , SCREAMING_SNAKE_CASE : Union[str, Any]=30_72 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : str=5_12 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Dict=0.0_2 , SCREAMING_SNAKE_CASE : Dict=1e-1_2 , SCREAMING_SNAKE_CASE : Any=1 , SCREAMING_SNAKE_CASE : Optional[Any]=0 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Any="absolute" , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : List[str]="none" , **SCREAMING_SNAKE_CASE : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) UpperCamelCase__ : List[Any] = vocab_size UpperCamelCase__ : Optional[Any] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : Optional[int] = num_attention_heads UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : Tuple = intermediate_size UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : str = max_position_embeddings UpperCamelCase__ : Union[str, Any] = type_vocab_size UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : List[str] = layer_norm_eps UpperCamelCase__ : str = position_embedding_type UpperCamelCase__ : Tuple = quant_mode UpperCamelCase__ : Any = force_dequant class __a ( UpperCAmelCase__ ): @property def __lowercase ( self : int ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ : str = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__ : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
189
import functools def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if not isinstance(_A , _A ) or not all(isinstance(_A , _A ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_A ) != 3 or not all(isinstance(_A , _A ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_A ) == 0: return 0 if min(_A ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_A ) >= 366: raise ValueError("All days elements should be less than 366" ) snake_case_ = set(_A ) @functools.cache def dynamic_programming(_A ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
187
0
"""simple docstring""" __A = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.6_02_17_66_34E-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.355_818, } def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _lowerCAmelCase =( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {', '.join(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
341
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]: _lowerCAmelCase =[] for old_item in old_list: _lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" ) _lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" ) _lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" ) _lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" ) _lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" ) _lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple: _lowerCAmelCase =[] for old_item in old_list: _lowerCAmelCase =old_item _lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" ) _lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" ) _lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]: assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _lowerCAmelCase =old_checkpoint[path] _lowerCAmelCase =old_tensor.shape[0] // 3 _lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1) _lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3 _lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 ) _lowerCAmelCase =query.reshape(__UpperCamelCase ) _lowerCAmelCase =key.reshape(__UpperCamelCase ) _lowerCAmelCase =value.reshape(__UpperCamelCase ) for path in paths: _lowerCAmelCase =path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0] else: _lowerCAmelCase =old_checkpoint[path["""old"""]] def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: _lowerCAmelCase ={} _lowerCAmelCase =checkpoint["""time_embed.0.weight"""] _lowerCAmelCase =checkpoint["""time_embed.0.bias"""] _lowerCAmelCase =checkpoint["""time_embed.2.weight"""] _lowerCAmelCase =checkpoint["""time_embed.2.bias"""] _lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""] _lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""] _lowerCAmelCase =checkpoint["""out.0.weight"""] _lowerCAmelCase =checkpoint["""out.0.bias"""] _lowerCAmelCase =checkpoint["""out.2.weight"""] _lowerCAmelCase =checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the middle blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the output blocks only _lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _lowerCAmelCase ={ layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } for i in range(1 , __UpperCamelCase ): _lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1) _lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1) _lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] _lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: _lowerCAmelCase =checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] _lowerCAmelCase =checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} _lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase ) if len(__UpperCamelCase ): _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """old""": F'''input_blocks.{i}.1''', """new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCAmelCase ={ F'''input_blocks.{i}.1.qkv.bias''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , ) _lowerCAmelCase =middle_blocks[0] _lowerCAmelCase =middle_blocks[1] _lowerCAmelCase =middle_blocks[2] _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase ) for i in range(__UpperCamelCase ): _lowerCAmelCase =i // (config["""num_res_blocks"""] + 1) _lowerCAmelCase =i % (config["""num_res_blocks"""] + 1) _lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]] _lowerCAmelCase ={} for layer in output_block_layers: _lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__UpperCamelCase ) else: _lowerCAmelCase =[layer_name] if len(__UpperCamelCase ) > 1: _lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] _lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase ) _lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _lowerCAmelCase =checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] _lowerCAmelCase =checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(__UpperCamelCase ) == 2: _lowerCAmelCase =[] if len(__UpperCamelCase ): _lowerCAmelCase =renew_attention_paths(__UpperCamelCase ) _lowerCAmelCase ={ """old""": F'''output_blocks.{i}.1''', """new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } _lowerCAmelCase ={ F'''output_blocks.{i}.1.qkv.bias''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , ) else: _lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] ) _lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] ) _lowerCAmelCase =checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __A = parser.parse_args() __A = torch.load(args.checkpoint_path) with open(args.config_file) as f: __A = json.loads(f.read()) __A = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __A = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) __A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) __A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
341
1
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __UpperCAmelCase ( lowercase ): """simple docstring""" random.seed(UpperCAmelCase_ ) np.random.seed(UpperCAmelCase_ ) torch.manual_seed(UpperCAmelCase_ ) torch.cuda.manual_seed_all(UpperCAmelCase_ ) # ^^ safe to call this function even if cuda is not available class a : def __init__( self : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple = 0.9_999 , __lowerCAmelCase : Any = 0.0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Any = False , __lowerCAmelCase : int = 1.0 , __lowerCAmelCase : Dict = 2 / 3 , __lowerCAmelCase : Optional[Any] = None , __lowerCAmelCase : Dict = None , **__lowerCAmelCase : Optional[int] , ): if isinstance(_lowerCamelCase , torch.nn.Module ): _UpperCAmelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase , ) _UpperCAmelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _UpperCAmelCase = True if kwargs.get("""max_value""" , _lowerCamelCase ) is not None: _UpperCAmelCase = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate("""max_value""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase ) _UpperCAmelCase = kwargs['''max_value'''] if kwargs.get("""min_value""" , _lowerCamelCase ) is not None: _UpperCAmelCase = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate("""min_value""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase ) _UpperCAmelCase = kwargs['''min_value'''] _UpperCAmelCase = list(_lowerCamelCase ) _UpperCAmelCase = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , _lowerCamelCase ) is not None: _UpperCAmelCase = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate("""device""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase ) self.to(device=kwargs["""device"""] ) _UpperCAmelCase = None _UpperCAmelCase = decay _UpperCAmelCase = min_decay _UpperCAmelCase = update_after_step _UpperCAmelCase = use_ema_warmup _UpperCAmelCase = inv_gamma _UpperCAmelCase = power _UpperCAmelCase = 0 _UpperCAmelCase = None # set in `step()` _UpperCAmelCase = model_cls _UpperCAmelCase = model_config @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int ): _UpperCAmelCase = model_cls.load_config(_lowerCamelCase , return_unused_kwargs=_lowerCamelCase ) _UpperCAmelCase = model_cls.from_pretrained(_lowerCamelCase ) _UpperCAmelCase = cls(model.parameters() , model_cls=_lowerCamelCase , model_config=model.config ) ema_model.load_state_dict(_lowerCamelCase ) return ema_model def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Tuple ): if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) _UpperCAmelCase = self.model_cls.from_config(self.model_config ) _UpperCAmelCase = self.state_dict() state_dict.pop("""shadow_params""" , _lowerCamelCase ) model.register_to_config(**_lowerCamelCase ) self.copy_to(model.parameters() ) model.save_pretrained(_lowerCamelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : int ): _UpperCAmelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _UpperCAmelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: _UpperCAmelCase = (1 + step) / (10 + step) _UpperCAmelCase = min(_lowerCamelCase , self.decay ) # make sure decay is not smaller than min_decay _UpperCAmelCase = max(_lowerCamelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Any ): if isinstance(_lowerCamelCase , torch.nn.Module ): _UpperCAmelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase , ) _UpperCAmelCase = parameters.parameters() _UpperCAmelCase = list(_lowerCamelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _UpperCAmelCase = self.get_decay(self.optimization_step ) _UpperCAmelCase = decay _UpperCAmelCase = 1 - decay _UpperCAmelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _lowerCamelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _UpperCAmelCase = deepspeed.zero.GatheredParameters(_lowerCamelCase , modifier_rank=_lowerCamelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_lowerCamelCase ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = list(_lowerCamelCase ) for s_param, param in zip(self.shadow_params , _lowerCamelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Any=None , __lowerCAmelCase : Union[str, Any]=None ): _UpperCAmelCase = [ p.to(device=_lowerCamelCase , dtype=_lowerCamelCase ) if p.is_floating_point() else p.to(device=_lowerCamelCase ) for p in self.shadow_params ] def lowerCAmelCase_ ( self : int ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : List[str] ): _UpperCAmelCase = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Optional[int] ): if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , _lowerCamelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _UpperCAmelCase = None def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = copy.deepcopy(_lowerCamelCase ) _UpperCAmelCase = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) _UpperCAmelCase = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , _lowerCamelCase ): raise ValueError("""Invalid min_decay""" ) _UpperCAmelCase = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , _lowerCamelCase ): raise ValueError("""Invalid optimization_step""" ) _UpperCAmelCase = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , _lowerCamelCase ): raise ValueError("""Invalid update_after_step""" ) _UpperCAmelCase = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _lowerCamelCase ): raise ValueError("""Invalid use_ema_warmup""" ) _UpperCAmelCase = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) _UpperCAmelCase = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) _UpperCAmelCase = state_dict.get("""shadow_params""" , _lowerCamelCase ) if shadow_params is not None: _UpperCAmelCase = shadow_params if not isinstance(self.shadow_params , _lowerCamelCase ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(_lowerCamelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
289
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(self , **_lowerCamelCase ) a :Union[str, Any] = repo_info a :int = token a :int = None def SCREAMING_SNAKE_CASE__ ( self ): if self.dir_cache is None: a :Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a :List[Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_lowerCamelCase ): {'''name''': str(_lowerCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , **_lowerCamelCase , ): if not isinstance(self.repo_info , _lowerCamelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) a :Optional[int] = hf_hub_url(self.repo_info.id , _lowerCamelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCamelCase , mode=_lowerCamelCase , headers=get_authentication_headers_for_url(_lowerCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , **_lowerCamelCase ): self._get_dirs() a :Union[str, Any] = self._strip_protocol(_lowerCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ): self._get_dirs() a :str = PurePosixPath(path.strip('''/''' ) ) a :Tuple = {} for p, f in self.dir_cache.items(): a :Optional[int] = PurePosixPath(p.strip('''/''' ) ) a :str = p.parent if root == path: a :List[str] = f a :Any = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
94
0
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = ['model.decoder.embed_positions.weights'] def lowercase__ ( __UpperCamelCase )-> Tuple: if "emb" in name: UpperCamelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: UpperCamelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: UpperCamelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: UpperCamelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: UpperCamelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: UpperCamelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: UpperCamelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: UpperCamelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: UpperCamelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: UpperCamelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCamelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Tuple[Dict, Dict]: UpperCamelCase = list(state_dict.keys() ) UpperCamelCase = {} for key in keys: UpperCamelCase = state_dict.pop(__UpperCamelCase ) UpperCamelCase = rename_keys(__UpperCamelCase ) if "in_proj_weight" in key: # split fused qkv proj UpperCamelCase = val[:hidden_size, :] UpperCamelCase = val[hidden_size : 2 * hidden_size, :] UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCamelCase = val else: UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( __UpperCamelCase )-> MusicgenDecoderConfig: if checkpoint == "small": # default config values UpperCamelCase = 1024 UpperCamelCase = 24 UpperCamelCase = 16 elif checkpoint == "medium": UpperCamelCase = 1536 UpperCamelCase = 48 UpperCamelCase = 24 elif checkpoint == "large": UpperCamelCase = 2048 UpperCamelCase = 48 UpperCamelCase = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) UpperCamelCase = MusicgenDecoderConfig( hidden_size=__UpperCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , ) return config @torch.no_grad() def lowercase__ ( __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="cpu" )-> Optional[int]: UpperCamelCase = MusicGen.get_pretrained(__UpperCamelCase , device=__UpperCamelCase ) UpperCamelCase = decoder_config_from_checkpoint(__UpperCamelCase ) UpperCamelCase = fairseq_model.lm.state_dict() UpperCamelCase ,UpperCamelCase = rename_state_dict( __UpperCamelCase , hidden_size=decoder_config.hidden_size ) UpperCamelCase = TaEncoderModel.from_pretrained("""t5-base""" ) UpperCamelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) UpperCamelCase = MusicgenForCausalLM(__UpperCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCamelCase ,UpperCamelCase = decoder.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(__UpperCamelCase ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=__UpperCamelCase , audio_encoder=__UpperCamelCase , decoder=__UpperCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__UpperCamelCase ) # check we can do a forward pass UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCamelCase = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor UpperCamelCase = AutoTokenizer.from_pretrained("""t5-base""" ) UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) UpperCamelCase = MusicgenProcessor(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase ) # set the appropriate bos/pad token ids UpperCamelCase = 2048 UpperCamelCase = 2048 # set other default generation config params UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) UpperCamelCase = True UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(__UpperCamelCase ) processor.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
183
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-1' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-2' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-3' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-4' class a_ ( lowerCamelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> int: """simple docstring""" super()._init_() UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=_SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , _SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(_SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
183
1
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = IFPipeline A = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} A = TEXT_TO_IMAGE_BATCH_PARAMS A = PipelineTesterMixin.required_optional_params - {"latents"} def a_ (self ) -> List[Any]: return self._get_dummy_components() def a_ (self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> Optional[Any]: if str(_UpperCAmelCase ).startswith("mps" ): __UpperCamelCase : str = torch.manual_seed(_UpperCAmelCase ) else: __UpperCamelCase : str = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __UpperCamelCase : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def a_ (self ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def a_ (self ) -> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def a_ (self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a_ (self ) -> Union[str, Any]: self._test_save_load_local() def a_ (self ) -> Any: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def a_ (self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def a_ (self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ (self ) -> Dict: # if __UpperCamelCase : Optional[Any] = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) __UpperCamelCase : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) __UpperCamelCase , __UpperCamelCase : Optional[int] = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __UpperCamelCase : Any = None __UpperCamelCase : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __UpperCamelCase : List[Any] = IFImgaImgPipeline(**pipe_a.components ) __UpperCamelCase : Tuple = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __UpperCamelCase : str = IFInpaintingPipeline(**pipe_a.components ) __UpperCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: # pipeline 1 _start_torch_memory_measurement() __UpperCamelCase : int = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase : Dict = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , num_inference_steps=2 , generator=_UpperCAmelCase , output_type="np" , ) __UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (6_4, 6_4, 3) __UpperCamelCase : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 __UpperCamelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() __UpperCamelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) __UpperCamelCase : int = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="np" , ) __UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __UpperCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __UpperCamelCase : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: # pipeline 1 _start_torch_memory_measurement() __UpperCamelCase : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase : List[Any] = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , image=_UpperCAmelCase , num_inference_steps=2 , generator=_UpperCAmelCase , output_type="np" , ) __UpperCamelCase : str = output.images[0] assert image.shape == (6_4, 6_4, 3) __UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __UpperCamelCase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() __UpperCamelCase : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase : Tuple = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) __UpperCamelCase : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , image=_UpperCAmelCase , original_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="np" , ) __UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __UpperCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __UpperCamelCase : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: # pipeline 1 _start_torch_memory_measurement() __UpperCamelCase : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) __UpperCamelCase : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(_UpperCAmelCase ) __UpperCamelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase : List[Any] = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , num_inference_steps=2 , generator=_UpperCAmelCase , output_type="np" , ) __UpperCamelCase : Any = output.images[0] assert image.shape == (6_4, 6_4, 3) __UpperCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __UpperCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() __UpperCamelCase : Optional[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) __UpperCamelCase : str = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(_UpperCAmelCase ) __UpperCamelCase : Dict = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , original_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="np" , ) __UpperCamelCase : Dict = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __UpperCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __UpperCamelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def __lowerCAmelCase ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
298
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = ["image_processor", "tokenizer"] A = "OwlViTImageProcessor" A = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ) -> str: __UpperCamelCase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCAmelCase , ) __UpperCamelCase : str = kwargs.pop("feature_extractor" ) __UpperCamelCase : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__(self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="max_length" , _UpperCAmelCase="np" , **_UpperCAmelCase ) -> str: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not isinstance(text[0] , _UpperCAmelCase )): __UpperCamelCase : Tuple = [self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )] elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(text[0] , _UpperCAmelCase ): __UpperCamelCase : List[str] = [] # Maximum number of queries across batch __UpperCamelCase : List[str] = max([len(_UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCAmelCase ) != max_num_queries: __UpperCamelCase : Any = t + [" "] * (max_num_queries - len(_UpperCAmelCase )) __UpperCamelCase : int = self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) encodings.append(_UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __UpperCamelCase : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCamelCase : int = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase : Tuple = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCamelCase : Optional[Any] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase : Any = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __UpperCamelCase : List[Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCamelCase : Optional[Any] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __UpperCamelCase : Optional[Any] = BatchEncoding() __UpperCamelCase : Union[str, Any] = input_ids __UpperCamelCase : List[str] = attention_mask if query_images is not None: __UpperCamelCase : str = BatchEncoding() __UpperCamelCase : Any = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ).pixel_values __UpperCamelCase : List[Any] = query_pixel_values if images is not None: __UpperCamelCase : Dict = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase : Optional[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase : Union[str, Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def a_ (self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]: return self.image_processor.post_process(*_UpperCAmelCase , **_UpperCAmelCase ) def a_ (self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[str]: return self.image_processor.post_process_object_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def a_ (self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def a_ (self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a_ (self , *_UpperCAmelCase , **_UpperCAmelCase ) -> int: return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a_ (self ) -> Tuple: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCAmelCase , ) return self.image_processor_class @property def a_ (self ) -> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCAmelCase , ) return self.image_processor
298
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowerCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __snake_case : lowerCAmelCase__ = field( default=_a , metadata={"help": "Model type selected in the list: " + ", ".join(_a )} ) lowerCAmelCase__ = field( default=_a , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) lowerCAmelCase__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase__ = field( default=1_2_8 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) lowerCAmelCase__ = field( default=6_4 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) lowerCAmelCase__ = field( default=3_0 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) lowerCAmelCase__ = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCAmelCase__ = field( default=_a , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) lowerCAmelCase__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase__ = field( default=2_0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) lowerCAmelCase__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class __snake_case (_a ): lowerCAmelCase__ = "train" lowerCAmelCase__ = "dev" class __snake_case (_a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self : Tuple , _UpperCAmelCase : SquadDataTrainingArguments , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Union[str, Split] = Split.train , _UpperCAmelCase : Optional[bool] = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = "pt" , ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = args _lowerCAmelCase : Union[str, Any] = is_language_sensitive _lowerCAmelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: _lowerCAmelCase : List[str] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase : List[str] = mode # Load data features from cache or dataset file _lowerCAmelCase : List[Any] = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase : Any = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase : Union[str, Any] = cached_features_file + """.lock""" with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: _lowerCAmelCase : Dict = time.time() _lowerCAmelCase : Any = torch.load(_UpperCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase : List[str] = self.old_features["""features"""] _lowerCAmelCase : List[Any] = self.old_features.get("""dataset""" , _UpperCAmelCase ) _lowerCAmelCase : int = self.old_features.get("""examples""" , _UpperCAmelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase : Optional[Any] = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase : Optional[Any] = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase : List[str] = squad_convert_examples_to_features( examples=self.examples , tokenizer=_UpperCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_UpperCAmelCase , ) _lowerCAmelCase : List[str] = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _UpperCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return len(self.features ) def __getitem__( self : Any , _UpperCAmelCase : Dict ) -> Dict[str, torch.Tensor]: '''simple docstring''' _lowerCAmelCase : str = self.features[i] _lowerCAmelCase : Tuple = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase : Tuple = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase : Union[str, Any] = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase : int = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase : Optional[int] = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase : Tuple = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase : Union[str, Any] = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase : Union[str, Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
159
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCamelCase : str = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __snake_case (unittest.TestCase , _a ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[Any] = load_tool("""text-question-answering""" ) self.tool.setup() _lowerCAmelCase : Optional[Any] = load_tool("""text-question-answering""" , remote=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tool(_UpperCAmelCase , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : List[Any] = self.remote_tool(_UpperCAmelCase , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : List[Any] = self.tool(text=_UpperCAmelCase , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : List[Any] = self.remote_tool(text=_UpperCAmelCase , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" )
159
1
'''simple docstring''' import warnings from .generation import TFGenerationMixin class UpperCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , SCREAMING_SNAKE_CASE__ , )
271
def __UpperCamelCase ( _lowerCAmelCase = 100_0000 ) -> int: """simple docstring""" A : str = limit + 1 A : Tuple = [0] * limit for first_term in range(1 , _lowerCAmelCase ): for n in range(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): A : Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a A : Optional[int] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
116
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np __lowerCAmelCase = re.compile(r'\b(a|an|the)\b', re.UNICODE) __lowerCAmelCase = None def __SCREAMING_SNAKE_CASE ( ): _snake_case = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=_SCREAMING_SNAKE_CASE , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=_SCREAMING_SNAKE_CASE , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _snake_case = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): def remove_articles(_SCREAMING_SNAKE_CASE ): return ARTICLES_REGEX.sub(""" """ , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE ): _snake_case = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not s: return [] return normalize_answer(_SCREAMING_SNAKE_CASE ).split() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = get_tokens(_SCREAMING_SNAKE_CASE ) _snake_case = get_tokens(_SCREAMING_SNAKE_CASE ) _snake_case = collections.Counter(_SCREAMING_SNAKE_CASE ) & collections.Counter(_SCREAMING_SNAKE_CASE ) _snake_case = sum(common.values() ) if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _snake_case = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) _snake_case = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) _snake_case = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = {} _snake_case = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _snake_case = qa["""id"""] _snake_case = [t for t in qa["""answers"""]["""text"""] if normalize_answer(_SCREAMING_SNAKE_CASE )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _snake_case = [""""""] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue _snake_case = preds[qid] # Take max over all gold answers _snake_case = max(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) _snake_case = max(compute_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) return exact_scores, fa_scores def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = {} for qid, s in scores.items(): _snake_case = na_probs[qid] > na_prob_thresh if pred_na: _snake_case = float(not qid_to_has_ans[qid] ) else: _snake_case = s return new_scores def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if not qid_list: _snake_case = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: _snake_case = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for k in new_eval: _snake_case = new_eval[k] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): plt.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_SCREAMING_SNAKE_CASE ) plt.savefig(_SCREAMING_SNAKE_CASE ) plt.clf() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): _snake_case = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) _snake_case = 0.0 _snake_case = 1.0 _snake_case = 0.0 _snake_case = [1.0] _snake_case = [0.0] _snake_case = 0.0 for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid_to_has_ans[qid]: true_pos += scores[qid] _snake_case = true_pos / float(i + 1 ) _snake_case = true_pos / float(_SCREAMING_SNAKE_CASE ) if i == len(_SCREAMING_SNAKE_CASE ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_SCREAMING_SNAKE_CASE ) recalls.append(_SCREAMING_SNAKE_CASE ) if out_image: plot_pr_curve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {"ap": 100.0 * avg_prec} def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if out_image_dir and not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _snake_case = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _snake_case = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) _snake_case = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) _snake_case = {k: float(_SCREAMING_SNAKE_CASE ) for k, v in qid_to_has_ans.items()} _snake_case = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """pr_exact""" ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """pr_f1""" ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """pr_oracle""" ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not qid_list: return _snake_case = [na_probs[k] for k in qid_list] _snake_case = np.ones_like(_SCREAMING_SNAKE_CASE ) / float(len(_SCREAMING_SNAKE_CASE ) ) plt.hist(_SCREAMING_SNAKE_CASE , weights=_SCREAMING_SNAKE_CASE , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(_SCREAMING_SNAKE_CASE , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _snake_case = num_no_ans _snake_case = cur_score _snake_case = 0.0 _snake_case = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid not in scores: continue if qid_to_has_ans[qid]: _snake_case = scores[qid] else: if preds[qid]: _snake_case = -1 else: _snake_case = 0 cur_score += diff if cur_score > best_score: _snake_case = cur_score _snake_case = na_probs[qid] return 100.0 * best_score / len(_SCREAMING_SNAKE_CASE ), best_thresh def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case, _snake_case = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case, _snake_case = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = best_exact _snake_case = exact_thresh _snake_case = best_fa _snake_case = fa_thresh def __SCREAMING_SNAKE_CASE ( ): with open(OPTS.data_file ) as f: _snake_case = json.load(_SCREAMING_SNAKE_CASE ) _snake_case = dataset_json["""data"""] with open(OPTS.pred_file ) as f: _snake_case = json.load(_SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _snake_case = json.load(_SCREAMING_SNAKE_CASE ) else: _snake_case = {k: 0.0 for k in preds} _snake_case = make_qid_to_has_ans(_SCREAMING_SNAKE_CASE ) # maps qid to True/False _snake_case = [k for k, v in qid_to_has_ans.items() if v] _snake_case = [k for k, v in qid_to_has_ans.items() if not v] _snake_case, _snake_case = get_raw_scores(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) _snake_case = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) _snake_case = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if has_ans_qids: _snake_case = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """HasAns""" ) if no_ans_qids: _snake_case = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: print(json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) ) if __name__ == "__main__": __lowerCAmelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
270
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _snake_case = 0 _snake_case = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _snake_case = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _snake_case = i _snake_case = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
270
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[Any] = '''t5''' lowerCamelCase : Optional[Any] = ['''past_key_values'''] lowerCamelCase : List[str] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : str , UpperCAmelCase__ : int=3_2_1_2_8 , UpperCAmelCase__ : Optional[int]=5_1_2 , UpperCAmelCase__ : Tuple=6_4 , UpperCAmelCase__ : Union[str, Any]=2_0_4_8 , UpperCAmelCase__ : str=6 , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : int=8 , UpperCAmelCase__ : Tuple=3_2 , UpperCAmelCase__ : Dict=1_2_8 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[Any]=1E-6 , UpperCAmelCase__ : str=1.0 , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Dict=0 , UpperCAmelCase__ : Tuple=1 , **UpperCAmelCase__ : str , ) -> Optional[int]: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = d_kv lowerCAmelCase = d_ff lowerCAmelCase = num_layers lowerCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase = num_heads lowerCAmelCase = relative_attention_num_buckets lowerCAmelCase = relative_attention_max_distance lowerCAmelCase = dropout_rate lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_factor lowerCAmelCase = feed_forward_proj lowerCAmelCase = use_cache lowerCAmelCase = self.feed_forward_proj.split('-' ) lowerCAmelCase = act_info[-1] lowerCAmelCase = act_info[0] == 'gated' if len(UpperCAmelCase__ ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase__ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCAmelCase = 'gelu_new' super().__init__( pad_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ , ) class UpperCAmelCase_ ( __lowercase ): @property def __UpperCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowerCAmelCase = 'past_encoder_sequence + sequence' lowerCAmelCase = {0: 'batch'} lowerCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowerCAmelCase = {0: 'batch', 1: 'decoder_sequence'} lowerCAmelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase__ , direction='inputs' ) return common_inputs @property def __UpperCAmelCase ( self : Optional[Any] ) -> int: return 1_3
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _A : Dict ={'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] =['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _A : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
"""simple docstring""" from __future__ import annotations import math def _A ( _a : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCAmelCase =[num for num in range(3, 100_001, 2) if not is_prime(num)] def _A ( _a : int ): """simple docstring""" if not isinstance(_a , _a ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A = [] for num in range(len(_a ) ): A = 0 while 2 * i * i <= odd_composites[num]: A = odd_composites[num] - 2 * i * i if is_prime(_a ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_a ) == n: return list_nums return [] def _A ( ): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
360
"""simple docstring""" import random def _A ( _a : list , _a : Any ): """simple docstring""" A , A , A = [], [], [] for element in data: if element < pivot: less.append(_a ) elif element > pivot: greater.append(_a ) else: equal.append(_a ) return less, equal, greater def _A ( _a : list , _a : int ): """simple docstring""" if index >= len(_a ) or index < 0: return None A = items[random.randint(0 , len(_a ) - 1 )] A = 0 A , A , A = _partition(_a , _a ) A = len(_a ) A = len(_a ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_a , _a ) # must be in larger else: return quick_select(_a , index - (m + count) )
77
0
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> List[str]: SCREAMING_SNAKE_CASE = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: SCREAMING_SNAKE_CASE = 1_28 elif "12-12" in model_name: SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 12 elif "14-14" in model_name: SCREAMING_SNAKE_CASE = 14 SCREAMING_SNAKE_CASE = 14 elif "16-16" in model_name: SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 16 else: raise ValueError('Model not supported' ) SCREAMING_SNAKE_CASE = 'huggingface/label-files' if "speech-commands" in model_name: SCREAMING_SNAKE_CASE = 35 SCREAMING_SNAKE_CASE = 'speech-commands-v2-id2label.json' else: SCREAMING_SNAKE_CASE = 5_27 SCREAMING_SNAKE_CASE = 'audioset-id2label.json' SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: if "module.v" in name: SCREAMING_SNAKE_CASE = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: SCREAMING_SNAKE_CASE = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: SCREAMING_SNAKE_CASE = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: SCREAMING_SNAKE_CASE = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: SCREAMING_SNAKE_CASE = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: SCREAMING_SNAKE_CASE = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: SCREAMING_SNAKE_CASE = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def lowercase (SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: SCREAMING_SNAKE_CASE = key.split('.' ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[:dim] SCREAMING_SNAKE_CASE = val[dim : dim * 2] SCREAMING_SNAKE_CASE = val[-dim:] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: SCREAMING_SNAKE_CASE = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> Optional[int]: SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict SCREAMING_SNAKE_CASE = model_name_to_url[model_name] SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE_ ) # rename some keys SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load 🤗 model SCREAMING_SNAKE_CASE = ASTForAudioClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 SCREAMING_SNAKE_CASE = -4.2_67_73_93 if 'speech-commands' not in model_name else -6.84_59_78 SCREAMING_SNAKE_CASE = 4.5_68_99_74 if 'speech-commands' not in model_name else 5.5_65_45_26 SCREAMING_SNAKE_CASE = 10_24 if 'speech-commands' not in model_name else 1_28 SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) if "speech-commands" in model_name: SCREAMING_SNAKE_CASE = load_dataset('speech_commands' , 'v0.02' , split='validation' ) SCREAMING_SNAKE_CASE = dataset[0]['audio']['array'] else: SCREAMING_SNAKE_CASE = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torchaudio.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = waveform.squeeze().numpy() SCREAMING_SNAKE_CASE = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": SCREAMING_SNAKE_CASE = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": SCREAMING_SNAKE_CASE = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": SCREAMING_SNAKE_CASE = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": SCREAMING_SNAKE_CASE = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": SCREAMING_SNAKE_CASE = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": SCREAMING_SNAKE_CASE = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": SCREAMING_SNAKE_CASE = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": SCREAMING_SNAKE_CASE = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
113
"""simple docstring""" __UpperCamelCase = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset(['''image''']) __UpperCamelCase = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''image''']) __UpperCamelCase = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''image''', '''negative_prompt''']) __UpperCamelCase = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) __UpperCamelCase = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''image''', '''mask_image''']) __UpperCamelCase = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''example_image''', '''image''', '''mask_image''']) __UpperCamelCase = frozenset(['''class_labels''']) __UpperCamelCase = frozenset(['''class_labels''']) __UpperCamelCase = frozenset(['''batch_size''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset(['''batch_size''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) __UpperCamelCase = frozenset(['''input_tokens''']) __UpperCamelCase = frozenset(['''input_tokens'''])
113
1
import logging from transformers import PretrainedConfig lowerCamelCase_ = logging.getLogger(__name__) lowerCamelCase_ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Tuple = 'bertabs' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=512 , lowerCamelCase=6 , lowerCamelCase=512 , lowerCamelCase=8 , lowerCamelCase=512 , lowerCamelCase=0.2 , lowerCamelCase=6 , lowerCamelCase=768 , lowerCamelCase=8 , lowerCamelCase=2048 , lowerCamelCase=0.2 , **lowerCamelCase , ) -> str: super().__init__(**lowerCamelCase ) snake_case_ = vocab_size snake_case_ = max_pos snake_case_ = enc_layers snake_case_ = enc_hidden_size snake_case_ = enc_heads snake_case_ = enc_ff_size snake_case_ = enc_dropout snake_case_ = dec_layers snake_case_ = dec_hidden_size snake_case_ = dec_heads snake_case_ = dec_ff_size snake_case_ = dec_dropout
370
from torch import nn def UpperCamelCase( lowercase_ ) -> Tuple: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
34
0
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __a: Tuple = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = field(default=A__ , metadata={"help": "Whether to use SortishSampler or not."} ) SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) SCREAMING_SNAKE_CASE = field( default=A__ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) SCREAMING_SNAKE_CASE = field( default=A__ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) SCREAMING_SNAKE_CASE = field( default=A__ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[Any] = super().to_dict() for k, v in d.items(): if isinstance(a_ , a_ ): lowercase__ : Tuple = v.to_dict() return d
198
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : int = 3 lowerCAmelCase_ : Dict = (32, 32) lowerCAmelCase_ : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a_ ) return image @property def lowerCamelCase ( self : List[Any] ): torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def lowerCamelCase ( self : Tuple ): torch.manual_seed(0 ) lowerCAmelCase_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowerCamelCase ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(a_ ) @property def lowerCamelCase ( self : Union[str, Any] ): def extract(*a_ : Tuple , **a_ : Tuple ): class __lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = torch.ones([0] ) def lowerCamelCase ( self : str , a_ : Optional[int] ): self.pixel_values.to(a_ ) return self return Out() return extract def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : List[Any] = self.dummy_cond_unet lowerCAmelCase_ : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_one=a_ , ) lowerCAmelCase_ : List[Any] = self.dummy_vae lowerCAmelCase_ : List[str] = self.dummy_text_encoder lowerCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ : Optional[Any] = StableDiffusionPipeline( unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : str = "A painting of a squirrel eating a burger" lowerCAmelCase_ : Any = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = sd_pipe([prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ : str = output.images lowerCAmelCase_ : Dict = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : str = sd_pipe( [prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=a_ , )[0] lowerCAmelCase_ : str = image[0, -3:, -3:, -1] lowerCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Any = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Union[str, Any] = self.dummy_cond_unet lowerCAmelCase_ : Any = PNDMScheduler(skip_prk_steps=a_ ) lowerCAmelCase_ : List[Any] = self.dummy_vae lowerCAmelCase_ : List[str] = self.dummy_text_encoder lowerCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ : List[str] = StableDiffusionPipeline( unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Optional[Any] = "A painting of a squirrel eating a burger" lowerCAmelCase_ : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : Any = sd_pipe([prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ : Union[str, Any] = output.images lowerCAmelCase_ : List[str] = torch.Generator(device=a_ ).manual_seed(0 ) lowerCAmelCase_ : Optional[int] = sd_pipe( [prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=a_ , )[0] lowerCAmelCase_ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=a_ ) assert isinstance(a_ , a_ ) assert isinstance(pipe.scheduler , a_ ) assert pipe.safety_checker is None lowerCAmelCase_ : str = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) lowerCAmelCase_ : List[str] = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase_ : Any = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : str = self.dummy_cond_unet lowerCAmelCase_ : str = PNDMScheduler(skip_prk_steps=a_ ) lowerCAmelCase_ : Tuple = self.dummy_vae lowerCAmelCase_ : Dict = self.dummy_text_encoder lowerCAmelCase_ : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 lowerCAmelCase_ : int = unet.half() lowerCAmelCase_ : Dict = vae.half() lowerCAmelCase_ : List[Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ : Optional[int] = StableDiffusionPipeline( unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : List[str] = "A painting of a squirrel eating a burger" lowerCAmelCase_ : Optional[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=a_ ) lowerCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : List[str] = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) lowerCAmelCase_ : Optional[int] = 40_03_66_03_46 lowerCAmelCase_ : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) lowerCAmelCase_ : Union[str, Any] = torch.manual_seed(a_ ) lowerCAmelCase_ : Union[str, Any] = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCAmelCase_ : Union[str, Any] = output.images lowerCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Union[str, Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) lowerCAmelCase_ : List[str] = torch.manual_seed(a_ ) lowerCAmelCase_ : Any = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ : Optional[Any] = output.images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Optional[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : str ): lowerCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=a_ ) lowerCAmelCase_ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Union[str, Any] = "padme amidala taking a bath artwork, safe for work, no nudity" lowerCAmelCase_ : Union[str, Any] = 27_34_97_17_55 lowerCAmelCase_ : Union[str, Any] = 7 lowerCAmelCase_ : str = torch.manual_seed(a_ ) lowerCAmelCase_ : Dict = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCAmelCase_ : Any = output.images lowerCAmelCase_ : int = image[0, -3:, -3:, -1] lowerCAmelCase_ : int = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 lowerCAmelCase_ : Optional[int] = torch.manual_seed(a_ ) lowerCAmelCase_ : Union[str, Any] = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ : Any = output.images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) lowerCAmelCase_ : Any = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Tuple = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) lowerCAmelCase_ : List[Any] = 10_44_35_52_34 lowerCAmelCase_ : Dict = 12 lowerCAmelCase_ : int = torch.manual_seed(a_ ) lowerCAmelCase_ : List[str] = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowerCAmelCase_ : int = output.images lowerCAmelCase_ : int = image[0, -3:, -3:, -1] lowerCAmelCase_ : int = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 lowerCAmelCase_ : int = torch.manual_seed(a_ ) lowerCAmelCase_ : Any = sd_pipe( [prompt] , generator=a_ , guidance_scale=a_ , num_inference_steps=50 , output_type="np" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ : Optional[Any] = output.images lowerCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : str = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
241
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase : List[str] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for attribute in key.split("." ): SCREAMING_SNAKE_CASE_: Tuple = getattr(a__ , a__ ) if weight_type is not None: SCREAMING_SNAKE_CASE_: List[Any] = getattr(a__ , a__ ).shape else: SCREAMING_SNAKE_CASE_: Any = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE_: List[str] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_: Any = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_: List[str] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_: Union[str, Any] = value else: SCREAMING_SNAKE_CASE_: Dict = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = [] SCREAMING_SNAKE_CASE_: Dict = fairseq_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE_: Optional[int] = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE_: Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE_: List[Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_: Any = name.split(a__ )[0].split("." )[-2] SCREAMING_SNAKE_CASE_: str = mapped_key.replace("*" , a__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE_: int = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: SCREAMING_SNAKE_CASE_: str = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE_: Optional[Any] = "weight" else: SCREAMING_SNAKE_CASE_: List[str] = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(f"Unused weights: {unused_weights}" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE_: Optional[Any] = name.split("." ) SCREAMING_SNAKE_CASE_: Optional[int] = int(items[0] ) SCREAMING_SNAKE_CASE_: Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE_: Any = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE_: str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE_: Dict = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE_: Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a__ ) @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: int = torch.load(a__ ) SCREAMING_SNAKE_CASE_: Optional[Any] = WavLMConfigOrig(checkpoint["cfg"] ) SCREAMING_SNAKE_CASE_: str = WavLMOrig(a__ ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] = WavLMConfig.from_pretrained(a__ ) else: SCREAMING_SNAKE_CASE_: Dict = WavLMConfig() SCREAMING_SNAKE_CASE_: Any = WavLMModel(a__ ) recursively_load_weights(a__ , a__ ) hf_wavlm.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
369
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.txt"""} lowerCAmelCase : List[str] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } lowerCAmelCase : List[Any] = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } lowerCAmelCase : Tuple = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = VOCAB_FILES_NAMES _UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Dict = ConvBertTokenizer def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Any="[UNK]" , lowerCAmelCase__ : Optional[Any]="[SEP]" , lowerCAmelCase__ : Any="[PAD]" , lowerCAmelCase__ : Dict="[CLS]" , lowerCAmelCase__ : Dict="[MASK]" , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Dict , ): super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , lowerCAmelCase__) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase__) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase__) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_: Optional[int] = getattr(lowerCAmelCase__ , normalizer_state.pop("type")) SCREAMING_SNAKE_CASE_: Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE_: List[str] = strip_accents SCREAMING_SNAKE_CASE_: Optional[Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE_: Optional[int] = normalizer_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = do_lower_case def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]=None): SCREAMING_SNAKE_CASE_: List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): SCREAMING_SNAKE_CASE_: Any = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__) return tuple(lowerCAmelCase__)
127
0
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return 1 if input_a == input_a else 0 def lowerCamelCase__ (): assert xnor_gate(0 , 0) == 1 assert xnor_gate(0 , 1) == 0 assert xnor_gate(1 , 0) == 0 assert xnor_gate(1 , 1) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
137
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __UpperCAmelCase = 1.054571817e-34 # unit of ℏ : J * s __UpperCAmelCase = 3e8 # unit of c : m * s^-1 def _snake_case ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> dict[str, float]: '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: lowerCAmelCase_ :Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCAmelCase_ :Optional[Any] = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCAmelCase_ :Any = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
84
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __snake_case : Optional[Any] ={ "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Any): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase__ : Optional[int] = False elif args.student_type == "gpt2": lowerCAmelCase__ : Tuple = False def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : List[str]): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase__ : Dict = False def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Any = argparse.ArgumentParser(description='''Training''') parser.add_argument('''--force''' ,action='''store_true''' ,help='''Overwrite dump_path if it already exists.''') parser.add_argument( '''--dump_path''' ,type=lowerCamelCase_ ,required=lowerCamelCase_ ,help='''The output directory (log, checkpoints, parameters, etc.)''') parser.add_argument( '''--data_file''' ,type=lowerCamelCase_ ,required=lowerCamelCase_ ,help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' ,) parser.add_argument( '''--student_type''' ,type=lowerCamelCase_ ,choices=['''distilbert''', '''roberta''', '''gpt2'''] ,required=lowerCamelCase_ ,help='''The student type (DistilBERT, RoBERTa).''' ,) parser.add_argument('''--student_config''' ,type=lowerCamelCase_ ,required=lowerCamelCase_ ,help='''Path to the student configuration.''') parser.add_argument( '''--student_pretrained_weights''' ,default=lowerCamelCase_ ,type=lowerCamelCase_ ,help='''Load student initialization checkpoint.''') parser.add_argument( '''--teacher_type''' ,choices=['''bert''', '''roberta''', '''gpt2'''] ,required=lowerCamelCase_ ,help='''Teacher type (BERT, RoBERTa).''') parser.add_argument('''--teacher_name''' ,type=lowerCamelCase_ ,required=lowerCamelCase_ ,help='''The teacher model.''') parser.add_argument('''--temperature''' ,default=2.0 ,type=lowerCamelCase_ ,help='''Temperature for the softmax temperature.''') parser.add_argument( '''--alpha_ce''' ,default=0.5 ,type=lowerCamelCase_ ,help='''Linear weight for the distillation loss. Must be >=0.''') parser.add_argument( '''--alpha_mlm''' ,default=0.0 ,type=lowerCamelCase_ ,help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' ,) parser.add_argument('''--alpha_clm''' ,default=0.5 ,type=lowerCamelCase_ ,help='''Linear weight for the CLM loss. Must be >=0.''') parser.add_argument('''--alpha_mse''' ,default=0.0 ,type=lowerCamelCase_ ,help='''Linear weight of the MSE loss. Must be >=0.''') parser.add_argument( '''--alpha_cos''' ,default=0.0 ,type=lowerCamelCase_ ,help='''Linear weight of the cosine embedding loss. Must be >=0.''') parser.add_argument( '''--mlm''' ,action='''store_true''' ,help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''') parser.add_argument( '''--mlm_mask_prop''' ,default=0.15 ,type=lowerCamelCase_ ,help='''Proportion of tokens for which we need to make a prediction.''' ,) parser.add_argument('''--word_mask''' ,default=0.8 ,type=lowerCamelCase_ ,help='''Proportion of tokens to mask out.''') parser.add_argument('''--word_keep''' ,default=0.1 ,type=lowerCamelCase_ ,help='''Proportion of tokens to keep.''') parser.add_argument('''--word_rand''' ,default=0.1 ,type=lowerCamelCase_ ,help='''Proportion of tokens to randomly replace.''') parser.add_argument( '''--mlm_smoothing''' ,default=0.7 ,type=lowerCamelCase_ ,help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' ,) parser.add_argument('''--token_counts''' ,type=lowerCamelCase_ ,help='''The token counts in the data_file for MLM.''') parser.add_argument( '''--restrict_ce_to_mask''' ,action='''store_true''' ,help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' ,) parser.add_argument( '''--freeze_pos_embs''' ,action='''store_true''' ,help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' ,) parser.add_argument( '''--freeze_token_type_embds''' ,action='''store_true''' ,help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' ,) parser.add_argument('''--n_epoch''' ,type=lowerCamelCase_ ,default=3 ,help='''Number of pass on the whole dataset.''') parser.add_argument('''--batch_size''' ,type=lowerCamelCase_ ,default=5 ,help='''Batch size (for each process).''') parser.add_argument( '''--group_by_size''' ,action='''store_false''' ,help='''If true, group sequences that have similar length into the same batch. Default is true.''' ,) parser.add_argument( '''--gradient_accumulation_steps''' ,type=lowerCamelCase_ ,default=50 ,help='''Gradient accumulation for larger training batches.''' ,) parser.add_argument('''--warmup_prop''' ,default=0.05 ,type=lowerCamelCase_ ,help='''Linear warmup proportion.''') parser.add_argument('''--weight_decay''' ,default=0.0 ,type=lowerCamelCase_ ,help='''Weight decay if we apply some.''') parser.add_argument('''--learning_rate''' ,default=5E-4 ,type=lowerCamelCase_ ,help='''The initial learning rate for Adam.''') parser.add_argument('''--adam_epsilon''' ,default=1E-6 ,type=lowerCamelCase_ ,help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' ,default=5.0 ,type=lowerCamelCase_ ,help='''Max gradient norm.''') parser.add_argument('''--initializer_range''' ,default=0.02 ,type=lowerCamelCase_ ,help='''Random initialization range.''') parser.add_argument( '''--fp16''' ,action='''store_true''' ,help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' ,) parser.add_argument( '''--fp16_opt_level''' ,type=lowerCamelCase_ ,default='''O1''' ,help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) ,) parser.add_argument('''--n_gpu''' ,type=lowerCamelCase_ ,default=1 ,help='''Number of GPUs in the node.''') parser.add_argument('''--local_rank''' ,type=lowerCamelCase_ ,default=-1 ,help='''Distributed training - Local rank''') parser.add_argument('''--seed''' ,type=lowerCamelCase_ ,default=56 ,help='''Random seed''') parser.add_argument('''--log_interval''' ,type=lowerCamelCase_ ,default=500 ,help='''Tensorboard logging interval.''') parser.add_argument('''--checkpoint_interval''' ,type=lowerCamelCase_ ,default=4000 ,help='''Checkpoint interval.''') lowerCAmelCase__ : str = parser.parse_args() sanity_checks(lowerCamelCase_) # ARGS # init_gpu_params(lowerCamelCase_) set_seed(lowerCamelCase_) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''') else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""") # SAVE PARAMS # logger.info(f"""Param: {args}""") with open(os.path.join(args.dump_path ,'''parameters.json''') ,'''w''') as f: json.dump(vars(lowerCamelCase_) ,lowerCamelCase_ ,indent=4) git_log(args.dump_path) lowerCAmelCase__ : Optional[Any] = MODEL_CLASSES[args.student_type] lowerCAmelCase__ : Optional[int] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowerCAmelCase__ : int = teacher_tokenizer_class.from_pretrained(args.teacher_name) lowerCAmelCase__ : int = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowerCAmelCase__ : Optional[int] = tokenizer.all_special_tokens.index(lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""") lowerCAmelCase__ : Tuple = special_tok_ids lowerCAmelCase__ : int = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file ,'''rb''') as fp: lowerCAmelCase__ : Any = pickle.load(lowerCamelCase_) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""") with open(args.token_counts ,'''rb''') as fp: lowerCAmelCase__ : Optional[Any] = pickle.load(lowerCamelCase_) lowerCAmelCase__ : str = np.maximum(lowerCamelCase_ ,1) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowerCAmelCase__ : List[Any] = 0.0 # do not predict special tokens lowerCAmelCase__ : Optional[Any] = torch.from_numpy(lowerCamelCase_) else: lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Union[str, Any] = LmSeqsDataset(params=lowerCamelCase_ ,data=lowerCamelCase_) logger.info('''Data loader created.''') # STUDENT # logger.info(f"""Loading student config from {args.student_config}""") lowerCAmelCase__ : List[str] = student_config_class.from_pretrained(args.student_config) lowerCAmelCase__ : str = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""") lowerCAmelCase__ : Optional[int] = student_model_class.from_pretrained(args.student_pretrained_weights ,config=lowerCamelCase_) else: lowerCAmelCase__ : int = student_model_class(lowerCamelCase_) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""") logger.info('''Student loaded.''') # TEACHER # lowerCAmelCase__ : Any = teacher_model_class.from_pretrained(args.teacher_name ,output_hidden_states=lowerCamelCase_) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""") logger.info(f"""Teacher loaded from {args.teacher_name}.""") # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowerCamelCase_ ,lowerCamelCase_) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowerCamelCase_ ,lowerCamelCase_) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowerCAmelCase__ : List[Any] = Distiller( params=lowerCamelCase_ ,dataset=lowerCamelCase_ ,token_probs=lowerCamelCase_ ,student=lowerCamelCase_ ,teacher=lowerCamelCase_) distiller.train() logger.info('''Let\'s go get some drinks.''') if __name__ == "__main__": main()
360
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase__ ( lowerCamelCase_ : ndarray): '''simple docstring''' return np.dot(lowerCamelCase_ ,lowerCamelCase_) class lowerCamelCase__ : '''simple docstring''' def __init__(self ,*, __lowerCamelCase = np.inf ,__lowerCamelCase = "linear" ,__lowerCamelCase = 0.0 ,) -> None: """simple docstring""" lowerCAmelCase__ : Any = regularization lowerCAmelCase__ : str = gamma if kernel == "linear": lowerCAmelCase__ : Dict = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma ,(float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) lowerCAmelCase__ : Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCAmelCase__ : List[str] = f"""Unknown kernel: {kernel}""" raise ValueError(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> float: """simple docstring""" return np.dot(__lowerCamelCase ,__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : str = observations lowerCAmelCase__ : Optional[int] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowerCAmelCase__) , ) : List[str] = np.shape(__lowerCamelCase ) def to_minimize(__lowerCamelCase ) -> float: lowerCAmelCase__ : List[str] = 0 ((lowerCAmelCase__) , ) : str = np.shape(__lowerCamelCase ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] ,observations[j] ) ) return 1 / 2 * s - sum(__lowerCamelCase ) lowerCAmelCase__ : List[str] = LinearConstraint(__lowerCamelCase ,0 ,0 ) lowerCAmelCase__ : List[str] = Bounds(0 ,self.regularization ) lowerCAmelCase__ : int = minimize( __lowerCamelCase ,np.ones(__lowerCamelCase ) ,bounds=__lowerCamelCase ,constraints=[ly_contraint] ).x lowerCAmelCase__ : List[Any] = l_star # calculating mean offset of separation plane to points lowerCAmelCase__ : Optional[Any] = 0 for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] ,observations[j] ) lowerCAmelCase__ : Dict = s / n def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : str = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] ,__lowerCamelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
94
0
class A__ : def __init__( self , A_ , A_=None , A_=None ): '''simple docstring''' UpperCamelCase : List[str] = data UpperCamelCase : Optional[int] = previous UpperCamelCase : Optional[Any] = next_node def __str__( self ): '''simple docstring''' return F"""{self.data}""" def __UpperCamelCase( self ): '''simple docstring''' return self.data def __UpperCamelCase( self ): '''simple docstring''' return self.next def __UpperCamelCase( self ): '''simple docstring''' return self.previous class A__ : def __init__( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = head def __iter__( self ): '''simple docstring''' return self def __UpperCamelCase( self ): '''simple docstring''' if not self.current: raise StopIteration else: UpperCamelCase : Optional[Any] = self.current.get_data() UpperCamelCase : List[str] = self.current.get_next() return value class A__ : def __init__( self ): '''simple docstring''' UpperCamelCase : Any = None # First node in list UpperCamelCase : Optional[int] = None # Last node in list def __str__( self ): '''simple docstring''' UpperCamelCase : str = self.head UpperCamelCase : Tuple = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase : Dict = current.get_next() return " ".join(str(A_ ) for node in nodes ) def __contains__( self , A_ ): '''simple docstring''' UpperCamelCase : int = self.head while current: if current.get_data() == value: return True UpperCamelCase : Tuple = current.get_next() return False def __iter__( self ): '''simple docstring''' return LinkedListIterator(self.head ) def __UpperCamelCase( self ): '''simple docstring''' if self.head: return self.head.get_data() return None def __UpperCamelCase( self ): '''simple docstring''' if self.tail: return self.tail.get_data() return None def __UpperCamelCase( self , A_ ): '''simple docstring''' if self.head is None: UpperCamelCase : List[Any] = node UpperCamelCase : Union[str, Any] = node else: self.insert_before_node(self.head , A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' if self.head is None: self.set_head(A_ ) else: self.insert_after_node(self.tail , A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = Node(A_ ) if self.head is None: self.set_head(A_ ) else: self.set_tail(A_ ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = node UpperCamelCase : List[Any] = node.previous if node.get_previous() is None: UpperCamelCase : str = node_to_insert else: UpperCamelCase : Dict = node_to_insert UpperCamelCase : Optional[Any] = node_to_insert def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : int = node UpperCamelCase : Optional[Any] = node.next if node.get_next() is None: UpperCamelCase : List[str] = node_to_insert else: UpperCamelCase : int = node_to_insert UpperCamelCase : Union[str, Any] = node_to_insert def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = 1 UpperCamelCase : Tuple = Node(A_ ) UpperCamelCase : Optional[int] = self.head while node: if current_position == position: self.insert_before_node(A_ , A_ ) return current_position += 1 UpperCamelCase : Union[str, Any] = node.next self.insert_after_node(self.tail , A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.head while node: if node.get_data() == item: return node UpperCamelCase : int = node.get_next() raise Exception("Node not found" ) def __UpperCamelCase( self , A_ ): '''simple docstring''' if (node := self.get_node(A_ )) is not None: if node == self.head: UpperCamelCase : Optional[Any] = self.head.get_next() if node == self.tail: UpperCamelCase : Dict = self.tail.get_previous() self.remove_node_pointers(A_ ) @staticmethod def __UpperCamelCase( A_ ): '''simple docstring''' if node.get_next(): UpperCamelCase : List[str] = node.previous if node.get_previous(): UpperCamelCase : Dict = node.next UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = None def __UpperCamelCase( self ): '''simple docstring''' return self.head is None def A_ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
52
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] __lowerCamelCase = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
162
0
"""simple docstring""" import math import sys import cva import numpy as np def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: # For applying gaussian function for each element in matrix. lowercase__ : Optional[Any] = math.sqrt(__lowerCamelCase ) lowercase__ : List[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: lowercase__ : List[str] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> np.ndarray: # Creates a gaussian kernel of given dimension. lowercase__ : Tuple = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __lowerCamelCase ): for j in range(0 , __lowerCamelCase ): lowercase__ : Tuple = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> np.ndarray: lowercase__ : Tuple = np.zeros(img.shape ) lowercase__ : Any = get_gauss_kernel(__lowerCamelCase , __lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowercase__ : List[str] = get_slice(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : str = img_s - img_s[kernel_size // 2, kernel_size // 2] lowercase__ : Optional[Any] = vec_gaussian(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[str] = np.multiply(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = np.multiply(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[str] = np.sum(__lowerCamelCase ) / np.sum(__lowerCamelCase ) lowercase__ : List[Any] = val return imga def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : Optional[int] = args[1] if args[1:] else '''../image_data/lena.jpg''' lowercase__ : Optional[Any] = float(args[2] ) if args[2:] else 1.0 lowercase__ : Optional[Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowercase__ : Optional[int] = int(args[4] ) lowercase__ : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowercase__ : Optional[Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = parse_args(sys.argv) lowerCAmelCase_ = cva.imread(filename, 0) cva.imshow('input image', img) lowerCAmelCase_ = img / 255 lowerCAmelCase_ = out.astype('float32') lowerCAmelCase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCAmelCase_ = out * 255 lowerCAmelCase_ = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
302
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase_ = _symbol_database.Default() lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase_ = None lowerCAmelCase_ = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase_ = 45 lowerCAmelCase_ = 1_581 lowerCAmelCase_ = 1_517 lowerCAmelCase_ = 1_570 lowerCAmelCase_ = 1_584 lowerCAmelCase_ = 1_793 lowerCAmelCase_ = 1_795 lowerCAmelCase_ = 1_916 lowerCAmelCase_ = 1_864 lowerCAmelCase_ = 1_905 lowerCAmelCase_ = 1_919 lowerCAmelCase_ = 2_429 lowerCAmelCase_ = 2_208 lowerCAmelCase_ = 2_418 lowerCAmelCase_ = 2_323 lowerCAmelCase_ = 2_407 # @@protoc_insertion_point(module_scope)
302
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __UpperCamelCase : A_ = field( metadata={"help": "The output directory where the model will be written."} , ) A_ = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } , ) A_ = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } , ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def lowerCamelCase (): __a : Dict = HfArgumentParser((ModelArguments,) ) ((__a) , ) : Tuple = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: __a : int = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: __a : List[str] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: __a : Dict = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: __a : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed __a : Dict = True __a : List[Any] = True __a : List[str] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=_SCREAMING_SNAKE_CASE , decoder_config=_SCREAMING_SNAKE_CASE , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens __a : Dict = decoder_config.decoder_start_token_id __a : Any = decoder_config.pad_token_id if decoder_start_token_id is None: __a : List[Any] = decoder_config.bos_token_id if pad_token_id is None: __a : Union[str, Any] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work __a : List[str] = decoder_config.eos_token_id __a : int = decoder_start_token_id __a : List[str] = pad_token_id __a : Tuple = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) __a : str = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) __a : List[str] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
27
"""simple docstring""" def lowercase (_lowerCAmelCase = 100_0000 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
301
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class lowerCamelCase ( A_ ): UpperCAmelCase__ : Optional[Any] = "swin2sr" UpperCAmelCase__ : int = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self : List[str] , _A : int=6_4 , _A : str=1 , _A : Dict=3 , _A : Dict=1_8_0 , _A : Tuple=[6, 6, 6, 6, 6, 6] , _A : List[str]=[6, 6, 6, 6, 6, 6] , _A : str=8 , _A : Tuple=2.0 , _A : List[Any]=True , _A : List[str]=0.0 , _A : Optional[int]=0.0 , _A : List[str]=0.1 , _A : Optional[int]="gelu" , _A : str=False , _A : int=0.02 , _A : int=1E-5 , _A : Union[str, Any]=2 , _A : Optional[int]=1.0 , _A : List[Any]="1conv" , _A : List[str]="pixelshuffle" , **_A : Union[str, Any] , ) -> List[str]: super().__init__(**_A ) snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = embed_dim snake_case = depths snake_case = len(_A ) snake_case = num_heads snake_case = window_size snake_case = mlp_ratio snake_case = qkv_bias snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = drop_path_rate snake_case = hidden_act snake_case = use_absolute_embeddings snake_case = layer_norm_eps snake_case = initializer_range snake_case = upscale snake_case = img_range snake_case = resi_connection snake_case = upsampler
362
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _A = logging.get_logger(__name__) _A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _A = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } _A = { "bert-base-uncased": 5_12, "bert-large-uncased": 5_12, "bert-base-cased": 5_12, "bert-large-cased": 5_12, "bert-base-multilingual-uncased": 5_12, "bert-base-multilingual-cased": 5_12, "bert-base-chinese": 5_12, "bert-base-german-cased": 5_12, "bert-large-uncased-whole-word-masking": 5_12, "bert-large-cased-whole-word-masking": 5_12, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_12, "bert-large-cased-whole-word-masking-finetuned-squad": 5_12, "bert-base-cased-finetuned-mrpc": 5_12, "bert-base-german-dbmdz-cased": 5_12, "bert-base-german-dbmdz-uncased": 5_12, "TurkuNLP/bert-base-finnish-cased-v1": 5_12, "TurkuNLP/bert-base-finnish-uncased-v1": 5_12, "wietsedv/bert-base-dutch-cased": 5_12, } _A = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class lowerCamelCase ( A_ ): UpperCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : int = BertTokenizer def __init__(self : Union[str, Any] , _A : Union[str, Any]=None , _A : Optional[int]=None , _A : List[str]=True , _A : List[Any]="[UNK]" , _A : Union[str, Any]="[SEP]" , _A : List[Any]="[PAD]" , _A : List[Any]="[CLS]" , _A : Union[str, Any]="[MASK]" , _A : int=True , _A : Tuple=None , **_A : Optional[int] , ) -> int: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _A ) != do_lower_case or normalizer_state.get("strip_accents" , _A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _A ) != tokenize_chinese_chars ): snake_case = getattr(_A , normalizer_state.pop("type" ) ) snake_case = do_lower_case snake_case = strip_accents snake_case = tokenize_chinese_chars snake_case = normalizer_class(**_A ) snake_case = do_lower_case def UpperCAmelCase(self : str , _A : Union[str, Any] , _A : int=None ) -> Any: snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase(self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase(self : Union[str, Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
137
0
'''simple docstring''' import numpy class __UpperCAmelCase : '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : numpy.ndarray ): A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. A = numpy.random.rand(3 , 1 ) # Real output values provided. A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. A = numpy.zeros(output_array.shape ) def A (self : Tuple ): A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def A (self : List[Any] ): A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def A (self : Union[str, Any] , _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : int , _lowerCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): A = self.feedforward() self.back_propagation() if give_loss: A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def A (self : Union[str, Any] , _lowerCAmelCase : numpy.ndarray ): A = input_arr A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def __a ( UpperCAmelCase ) ->numpy.ndarray: """simple docstring""" return 1 / (1 + numpy.exp(-value )) def __a ( UpperCAmelCase ) ->numpy.ndarray: """simple docstring""" return (value) * (1 - (value)) def __a ( ) ->int: """simple docstring""" A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. A = TwoHiddenLayerNeuralNetwork( input_array=UpperCAmelCase , output_array=UpperCAmelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=UpperCAmelCase , iterations=10 , give_loss=UpperCAmelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
258
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
258
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __magic_name__ ( unittest.TestCase ): UpperCAmelCase =MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase =TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] =TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case) return generator, ["Something to write", "Something else"] def lowerCAmelCase ( self , snake_case , snake_case) -> List[str]: '''simple docstring''' _UpperCAmelCase : Tuple =generator('Something there') self.assertEqual(snake_case , [{'generated_text': ANY(snake_case)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there')) _UpperCAmelCase : Optional[int] =generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case)}, {'generated_text': ANY(snake_case)}], [{'generated_text': ANY(snake_case)}, {'generated_text': ANY(snake_case)}], ] , ) _UpperCAmelCase : Optional[int] =generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case)}, {'generated_text': ANY(snake_case)}], [{'generated_text': ANY(snake_case)}, {'generated_text': ANY(snake_case)}], ] , ) with self.assertRaises(snake_case): generator(4) @require_torch def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt') # do_sample=False necessary for reproducibility _UpperCAmelCase : Optional[int] =generator('Something there' , do_sample=snake_case) self.assertEqual(snake_case , [{'generated_text': ''}]) _UpperCAmelCase : List[str] =3 _UpperCAmelCase : str =generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase : str =[ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case) _UpperCAmelCase : str =generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ] , ) _UpperCAmelCase : str =generator.model.config.eos_token_id _UpperCAmelCase : Optional[int] ='<pad>' _UpperCAmelCase : Dict =generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], ] , ) @require_tf def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any =pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf') # do_sample=False necessary for reproducibility _UpperCAmelCase : Dict =generator('Something there' , do_sample=snake_case) self.assertEqual(snake_case , [{'generated_text': ''}])
242
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowercase =logging.getLogger(__name__) class __magic_name__ ( lowerCAmelCase ): def __init__( self , snake_case , snake_case , snake_case , snake_case=None) -> List[Any]: '''simple docstring''' super().__init__( snake_case , question_encoder_tokenizer=snake_case , generator_tokenizer=snake_case , index=snake_case , init_retrieval=snake_case , ) _UpperCAmelCase : Union[str, Any] =None def lowerCAmelCase ( self , snake_case) -> Optional[Any]: '''simple docstring''' logger.info('initializing retrieval') # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('dist initialized') # needs to be set manually _UpperCAmelCase : Optional[Any] =self._infer_socket_ifname() # avoid clash with the NCCL port _UpperCAmelCase : Optional[int] =str(distributed_port + 1) _UpperCAmelCase : Any =dist.new_group(ranks=snake_case , backend='gloo') # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('dist not initialized / main') self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' return dist.get_rank(group=self.process_group) == 0 def lowerCAmelCase ( self , snake_case , snake_case , snake_case=torch.floataa) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict =torch.empty(snake_case , dtype=snake_case) dist.scatter(snake_case , src=0 , scatter_list=snake_case , group=self.process_group) return target_tensor def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict =psutil.net_if_addrs() # a hacky way to deal with varying network interface names _UpperCAmelCase : str =next((addr for addr in addrs if addr.startswith('e')) , snake_case) return ifname def lowerCAmelCase ( self , snake_case , snake_case) -> Tuple[np.ndarray, List[dict]]: '''simple docstring''' # single GPU training if not dist.is_initialized(): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =self._main_retrieve(snake_case , snake_case) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(snake_case) # distributed training _UpperCAmelCase : Optional[int] =dist.get_world_size(group=self.process_group) # gather logic _UpperCAmelCase : str =None if self._is_main(): _UpperCAmelCase : Union[str, Any] =[torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(snake_case)] dist.gather(torch.tensor(snake_case) , dst=0 , gather_list=snake_case , group=self.process_group) # scatter logic _UpperCAmelCase : Optional[Any] =question_hidden_states.shape[0] _UpperCAmelCase : List[Any] =[] _UpperCAmelCase : Any =[] if self._is_main(): assert len(snake_case) == world_size _UpperCAmelCase , _UpperCAmelCase : Tuple =self._main_retrieve(torch.cat(snake_case).numpy() , snake_case) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] =torch.tensor(snake_case), torch.tensor(snake_case) _UpperCAmelCase : List[str] =self._chunk_tensor(snake_case , snake_case) _UpperCAmelCase : Union[str, Any] =self._chunk_tensor(snake_case , snake_case) _UpperCAmelCase : int =self._scattered(snake_case , [n_queries, n_docs] , target_type=torch.intaa) _UpperCAmelCase : Dict =self._scattered(snake_case , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(snake_case)
242
1
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowercase : List[Any] = 'bart' __lowercase : Union[str, Any] = True @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : List[Any] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) __a : Dict = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) __a : Optional[int] = qar_model.eval() else: __a , __a : str = (None, None) if MODEL_TYPE == "bart": __a : Union[str, Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) __a : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) __a : Optional[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) __a : str = sas_model.eval() else: __a , __a : Tuple = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : Optional[Any] = faiss.StandardGpuResources() __a : Dict = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] __a : int = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) __a : int = faiss.IndexFlatIP(128 ) __a : Any = faiss.index_cpu_to_gpu(_SCREAMING_SNAKE_CASE , 1 , _SCREAMING_SNAKE_CASE ) wikiaab_gpu_index_flat.add(_SCREAMING_SNAKE_CASE ) # TODO fix for larger GPU else: __a , __a : str = (None, None) __a : Optional[int] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : Dict = datasets.load_dataset('eli5' , name='LFQA_reddit' ) __a : Dict = elia['train_eli5'] __a : Optional[int] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) __a : str = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_SCREAMING_SNAKE_CASE ) return (elia_train, eli5_train_q_index) __lowercase , __lowercase , __lowercase : Any = load_indexes() __lowercase , __lowercase , __lowercase , __lowercase : Dict = load_models() __lowercase , __lowercase : int = load_train_data() def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str]=10 ): __a : Optional[int] = embed_questions_for_retrieval([question] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a , __a : Union[str, Any] = eli5_train_q_index.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = [elia_train[int(_SCREAMING_SNAKE_CASE )] for i in I[0]] return nn_examples def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str="wiki40b" , _SCREAMING_SNAKE_CASE : List[str]="dense" , _SCREAMING_SNAKE_CASE : Any=10 ): if source == "none": __a , __a : Any = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a , __a : str = query_qa_dense_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __a , __a : Union[str, Any] = query_es_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index_name='english_wiki40b_snippets_100w' , n_results=_SCREAMING_SNAKE_CASE , ) __a : Dict = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __a : Any = 'question: {} context: {}'.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _SCREAMING_SNAKE_CASE : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _SCREAMING_SNAKE_CASE : None), } ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict=64 , _SCREAMING_SNAKE_CASE : Dict=256 , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.9_5 , _SCREAMING_SNAKE_CASE : str=0.8 ): with torch.no_grad(): __a : Union[str, Any] = qa_sas_generate( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_answers=1 , num_beams=_SCREAMING_SNAKE_CASE , min_len=_SCREAMING_SNAKE_CASE , max_len=_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , temp=_SCREAMING_SNAKE_CASE , top_p=_SCREAMING_SNAKE_CASE , top_k=_SCREAMING_SNAKE_CASE , max_input_length=1_024 , device='cuda:0' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar __lowercase : Optional[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' __lowercase : str = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowercase : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) __lowercase : Dict = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] __lowercase : Union[str, Any] = st.sidebar.checkbox('Demo options') if demo_options: __lowercase : Any = st.sidebar.selectbox( '', action_list, index=3, ) __lowercase : Tuple = action_list.index(action_st) __lowercase : Tuple = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) __lowercase : List[Any] = show_type == 'Show full text of passages' else: __lowercase : int = 3 __lowercase : str = True __lowercase : Tuple = st.sidebar.checkbox('Retrieval options') if retrieval_options: __lowercase : List[Any] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: __lowercase : str = 'wiki40b' __lowercase : List[Any] = 'dense' __lowercase : Dict = 'beam' __lowercase : Optional[int] = 2 __lowercase : List[str] = 64 __lowercase : Tuple = 2_56 __lowercase : List[str] = None __lowercase : Tuple = None __lowercase : List[Any] = st.sidebar.checkbox('Generation options') if generate_options: __lowercase : Optional[Any] = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) __lowercase : List[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) __lowercase : Tuple = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) __lowercase : int = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": __lowercase : Any = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowercase : Dict = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowercase : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowercase : List[str] = None # start main text __lowercase : int = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] __lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowercase : Any = st.text_input('Enter your question here:', '') else: __lowercase : Any = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": __lowercase , __lowercase : Optional[int] = make_support(question, source=wiki_source, method='dense', n_results=10) __lowercase , __lowercase : List[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) __lowercase : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowercase : str = support_list[:10] __lowercase : Optional[int] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: __lowercase , __lowercase : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowercase , __lowercase : int = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): __lowercase : str = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) __lowercase : Any = res[1].strip() if sec_titles == "": __lowercase : List[str] = '[{}]({})'.format(res[0], wiki_url) else: __lowercase : Union[str, Any] = sec_titles.split(' & ') __lowercase : str = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: __lowercase : str = find_nearest_training(question) __lowercase : Optional[int] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) __lowercase : Any = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) __lowercase : List[Any] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
27
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCamelCase : Tuple =False class __a ( unittest.TestCase ): pass @slow @require_torch_gpu class __a ( unittest.TestCase ): def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCamelCase__ : List[Any] = torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = pipe( image=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images UpperCamelCase__ : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ : Optional[Any] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
189
0
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( _UpperCamelCase ): def snake_case_ ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() _UpperCAmelCase : Union[str, Any] = 5 # Realm tok _UpperCAmelCase : Union[str, Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCAmelCase : int = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(A , exist_ok=A ) _UpperCAmelCase : Dict = os.path.join(A , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCAmelCase : Any = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(A , exist_ok=A ) def snake_case_ ( self : Optional[Any] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def snake_case_ ( self : str ): shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : Tuple ): _UpperCAmelCase : Tuple = RealmConfig(num_block_records=self.num_block_records ) return config def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : int = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def snake_case_ ( self : Tuple ): _UpperCAmelCase : Any = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=A , ) return block_records def snake_case_ ( self : str ): _UpperCAmelCase : Union[str, Any] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Optional[int] = self.get_config() _UpperCAmelCase : Any = self.get_dummy_retriever() _UpperCAmelCase : str = retriever.tokenizer _UpperCAmelCase : Tuple = np.array([0, 3] , dtype="long" ) _UpperCAmelCase : Any = tokenizer(["Test question"] ).input_ids _UpperCAmelCase : Any = tokenizer( ["the fourth"] , add_special_tokens=A , return_token_type_ids=A , return_attention_mask=A , ).input_ids _UpperCAmelCase : Dict = config.reader_seq_len _UpperCAmelCase : Union[str, Any] = retriever( A , A , answer_ids=A , max_length=A , return_tensors="np" ) self.assertEqual(len(A ) , 2 ) self.assertEqual(len(A ) , 2 ) self.assertEqual(len(A ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : Tuple = self.get_config() _UpperCAmelCase : List[str] = self.get_dummy_retriever() _UpperCAmelCase : Any = retriever.tokenizer _UpperCAmelCase : Union[str, Any] = np.array([0, 3, 5] , dtype="long" ) _UpperCAmelCase : Optional[Any] = tokenizer(["Test question"] ).input_ids _UpperCAmelCase : List[str] = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=A , return_token_type_ids=A , return_attention_mask=A , ).input_ids _UpperCAmelCase : str = config.reader_seq_len _UpperCAmelCase : Tuple = retriever( A , A , answer_ids=A , max_length=A , return_tensors="np" ) self.assertEqual([False, True, True] , A ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Dict = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCAmelCase : Dict = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCAmelCase : List[str] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCAmelCase : str = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
364
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : int = 'owlvit_text_model' def __init__( self : int , A : int=4_9_4_0_8 , A : Optional[Any]=5_1_2 , A : Optional[Any]=2_0_4_8 , A : str=1_2 , A : int=8 , A : Tuple=1_6 , A : List[Any]="quick_gelu" , A : Tuple=1e-5 , A : Union[str, Any]=0.0 , A : List[Any]=0.02 , A : str=1.0 , A : str=0 , A : List[str]=4_9_4_0_6 , A : str=4_9_4_0_7 , **A : Optional[Any] , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : List[str] = attention_dropout _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : List[Any] = initializer_factor @classmethod def snake_case_ ( cls : Any , A : Union[str, os.PathLike] , **A : Dict ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : List[str] = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = 'owlvit_vision_model' def __init__( self : Union[str, Any] , A : Optional[int]=7_6_8 , A : int=3_0_7_2 , A : List[str]=1_2 , A : List[str]=1_2 , A : Optional[int]=3 , A : Optional[int]=7_6_8 , A : str=3_2 , A : Tuple="quick_gelu" , A : Dict=1e-5 , A : Optional[int]=0.0 , A : List[Any]=0.02 , A : str=1.0 , **A : Tuple , ): super().__init__(**A ) _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Any = attention_dropout _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Tuple = initializer_factor @classmethod def snake_case_ ( cls : Optional[int] , A : Union[str, os.PathLike] , **A : int ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : Dict = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = 'owlvit' __SCREAMING_SNAKE_CASE : Optional[Any] = True def __init__( self : Optional[Any] , A : Dict=None , A : Tuple=None , A : Optional[Any]=5_1_2 , A : Optional[Any]=2.6_592 , A : int=True , **A : Tuple , ): super().__init__(**A ) if text_config is None: _UpperCAmelCase : List[Any] = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: _UpperCAmelCase : Tuple = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) _UpperCAmelCase : str = OwlViTTextConfig(**A ) _UpperCAmelCase : int = OwlViTVisionConfig(**A ) _UpperCAmelCase : Optional[Any] = projection_dim _UpperCAmelCase : str = logit_scale_init_value _UpperCAmelCase : Optional[Any] = return_dict _UpperCAmelCase : str = 1.0 @classmethod def snake_case_ ( cls : Dict , A : Union[str, os.PathLike] , **A : Any ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : str = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) @classmethod def snake_case_ ( cls : Optional[int] , A : Dict , A : Dict , **A : Optional[Any] ): _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : int = text_config _UpperCAmelCase : Dict = vision_config return cls.from_dict(A , **A ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.text_config.to_dict() _UpperCAmelCase : Optional[int] = self.vision_config.to_dict() _UpperCAmelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _UpperCamelCase ): @property def snake_case_ ( self : List[str] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def snake_case_ ( self : Optional[int] ): return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def snake_case_ ( self : str ): return 1e-4 def snake_case_ ( self : str , A : "ProcessorMixin" , A : int = -1 , A : int = -1 , A : Optional["TensorType"] = None , ): _UpperCAmelCase : Optional[Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) _UpperCAmelCase : Union[str, Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def snake_case_ ( self : List[Any] ): return 1_4
202
0
from __future__ import annotations _UpperCAmelCase : Union[str, Any] ='''#''' class snake_case__: '''simple docstring''' def __init__( self ) -> Dict: lowerCAmelCase_ : dict = {} def lowercase_ ( self , __lowercase ) -> Union[str, Any]: lowerCAmelCase_ : int = self._trie for char in text: if char not in trie: lowerCAmelCase_ : Union[str, Any] = {} lowerCAmelCase_ : List[Any] = trie[char] lowerCAmelCase_ : Tuple = True def lowercase_ ( self , __lowercase ) -> Any: lowerCAmelCase_ : Union[str, Any] = self._trie for char in prefix: if char in trie: lowerCAmelCase_ : int = trie[char] else: return [] return self._elements(lowercase_ ) def lowercase_ ( self , __lowercase ) -> Optional[Any]: lowerCAmelCase_ : Optional[Any] = [] for c, v in d.items(): lowerCAmelCase_ : int = [''' '''] if c == END else [(c + s) for s in self._elements(lowercase_ )] result.extend(lowercase_ ) return tuple(lowercase_ ) _UpperCAmelCase : Union[str, Any] =Trie() _UpperCAmelCase : Optional[Any] =('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: lowerCAmelCase_ : Union[str, Any] = trie.find_word(_a ) return tuple(string + word for word in suffixes ) def lowerCAmelCase ( )-> Any: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
262
"""simple docstring""" import sys lowercase__ : Dict = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __lowercase ( _a ): snake_case_ : List[Any] = 1 for digit in s: product *= int(_a ) return product def __lowercase ( _a = N ): snake_case_ : Optional[int] = -sys.maxsize - 1 snake_case_ : str = n[:13] snake_case_ : List[Any] = 13 while cur_index < len(_a ) - 13: if int(n[cur_index] ) >= int(substr[0] ): snake_case_ : int = substr[1:] + n[cur_index] cur_index += 1 else: snake_case_ : Optional[Any] = max(_a , str_eval(_a ) ) snake_case_ : Any = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'{solution() = }')
264
0
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } __A : List[str] = { 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = EfficientNetConfig() A = CONFIG_MAP[model_name]["hidden_dim"] A = CONFIG_MAP[model_name]["width_coef"] A = CONFIG_MAP[model_name]["depth_coef"] A = CONFIG_MAP[model_name]["image_size"] A = CONFIG_MAP[model_name]["dropout_rate"] A = CONFIG_MAP[model_name]["dw_padding"] A = "huggingface/label-files" A = "imagenet-1k-id2label.json" A = 1_000 A = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) A = {int(lowercase__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = "http://images.cocodataset.org/val2017/000000039769.jpg" A = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = CONFIG_MAP[model_name]["image_size"] A = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=lowercase__ , ) return preprocessor def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] A = sorted(set(lowercase__ ) ) A = len(lowercase__ ) A = {b: str(lowercase__ ) for b, i in zip(lowercase__ , range(lowercase__ ) )} A = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: A = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) A = {} for item in rename_keys: if item[0] in original_param_names: A = "efficientnet." + item[1] A = "classifier.weight" A = "classifier.bias" return key_mapping def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue A = key_mapping[key] if "_conv" in key and "kernel" in key: A = torch.from_numpy(lowercase__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: A = torch.from_numpy(lowercase__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: A = torch.from_numpy(np.transpose(lowercase__ ) ) else: A = torch.from_numpy(lowercase__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = model_classes[model_name]( include_top=lowercase__ , weights="imagenet" , input_tensor=lowercase__ , input_shape=lowercase__ , pooling=lowercase__ , classes=1_000 , classifier_activation="softmax" , ) A = original_model.trainable_variables A = original_model.non_trainable_variables A = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A = param.numpy() A = list(tf_params.keys() ) # Load HuggingFace model A = get_efficientnet_config(lowercase__ ) A = EfficientNetForImageClassification(lowercase__ ).eval() A = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) A = rename_keys(lowercase__ ) replace_params(lowercase__ , lowercase__ , lowercase__ ) # Initialize preprocessor and preprocess input image A = convert_image_processor(lowercase__ ) A = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): A = hf_model(**lowercase__ ) A = outputs.logits.detach().numpy() # Original model inference A = False A = CONFIG_MAP[model_name]["image_size"] A = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) A = image.img_to_array(lowercase__ ) A = np.expand_dims(lowercase__ , axis=0 ) A = original_model.predict(lowercase__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase__ , lowercase__ , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase__ ): os.mkdir(lowercase__ ) # Save converted model and image processor hf_model.save_pretrained(lowercase__ ) preprocessor.save_pretrained(lowercase__ ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) A = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(lowercase__ ) hf_model.push_to_hub(lowercase__ ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') __A : List[str] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
355
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowercase__ = 600_851_475_143 ): """simple docstring""" try: A = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A = 2 A = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A = i while n % i == 0: A = n // i i += 1 return int(lowercase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
57
0
"""simple docstring""" def _A (__a = 1_00_00_00 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 1 SCREAMING_SNAKE_CASE_ : str = 1 SCREAMING_SNAKE_CASE_ : List[str] = {1: 1} for inputa in range(2 , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : int = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: SCREAMING_SNAKE_CASE_ : Union[str, Any] = counter if counter > pre_counter: SCREAMING_SNAKE_CASE_ : List[str] = inputa SCREAMING_SNAKE_CASE_ : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
91
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Dict: _lowerCAmelCase : List[Any] = torch.exp(_lowerCamelCase ) _lowerCAmelCase : List[Any] = torch.sum(_lowerCamelCase ,dim=1 ) # sum of exp(x_i) _lowerCAmelCase : Dict = torch.sum(x * exp_x ,dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowerCamelCase ) - B / A class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : int = config.output_attentions _lowerCAmelCase : Any = config.output_hidden_states _lowerCAmelCase : List[Any] = nn.ModuleList([BertLayer(a__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase : Any = nn.ModuleList([BertHighway(a__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase : str = [-1 for _ in range(config.num_hidden_layers )] def __A ( self , a__ ): if (type(a__ ) is float) or (type(a__ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowerCAmelCase : Tuple = x else: _lowerCAmelCase : Optional[int] = x def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __A ( self , a__ , a__=None , a__=None , a__=None , a__=None , ): _lowerCAmelCase : Any = () _lowerCAmelCase : Optional[int] = () _lowerCAmelCase : List[Any] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowerCAmelCase : str = all_hidden_states + (hidden_states,) _lowerCAmelCase : List[str] = layer_module( a__ , a__ , head_mask[i] , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = layer_outputs[0] if self.output_attentions: _lowerCAmelCase : Dict = all_attentions + (layer_outputs[1],) _lowerCAmelCase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase : Union[str, Any] = current_outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase : Optional[int] = current_outputs + (all_attentions,) _lowerCAmelCase : Optional[Any] = self.highway[i](a__ ) # logits, pooled_output if not self.training: _lowerCAmelCase : Tuple = highway_exit[0] _lowerCAmelCase : Any = entropy(a__ ) _lowerCAmelCase : Optional[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowerCAmelCase : Union[str, Any] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowerCAmelCase : List[str] = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(a__ , i + 1 ) else: _lowerCAmelCase : Dict = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowerCAmelCase : List[Any] = all_hidden_states + (hidden_states,) _lowerCAmelCase : List[Any] = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase : List[str] = outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase : Any = outputs + (all_attentions,) _lowerCAmelCase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , SCREAMING_SNAKE_CASE_ , ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : Any = config _lowerCAmelCase : Tuple = BertEmbeddings(a__ ) _lowerCAmelCase : Tuple = DeeBertEncoder(a__ ) _lowerCAmelCase : List[str] = BertPooler(a__ ) self.init_weights() def __A ( self ): self.encoder.init_highway_pooler(self.pooler ) def __A ( self ): return self.embeddings.word_embeddings def __A ( self , a__ ): _lowerCAmelCase : Dict = value def __A ( self , a__ ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(a__ ) @add_start_docstrings_to_model_forward(a__ ) def __A ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: _lowerCAmelCase : Any = input_ids.size() elif inputs_embeds is not None: _lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) _lowerCAmelCase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowerCAmelCase : List[Any] = torch.ones(a__ , device=a__ ) if encoder_attention_mask is None: _lowerCAmelCase : Optional[Any] = torch.ones(a__ , device=a__ ) if token_type_ids is None: _lowerCAmelCase : Dict = torch.zeros(a__ , dtype=torch.long , device=a__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(a__ , a__ , a__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowerCAmelCase : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowerCAmelCase : Tuple = encoder_attention_mask[:, None, None, :] _lowerCAmelCase : Union[str, Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowerCAmelCase : Optional[Any] = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowerCAmelCase : Optional[int] = self.get_head_mask(a__ , self.config.num_hidden_layers ) _lowerCAmelCase : Dict = self.embeddings( input_ids=a__ , position_ids=a__ , token_type_ids=a__ , inputs_embeds=a__ ) _lowerCAmelCase : Union[str, Any] = self.encoder( a__ , attention_mask=a__ , head_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) _lowerCAmelCase : Dict = encoder_outputs[0] _lowerCAmelCase : Union[str, Any] = self.pooler(a__ ) _lowerCAmelCase : Dict = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ ): _lowerCAmelCase : str = message _lowerCAmelCase : str = exit_layer # start from 1! class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : Any = BertPooler(a__ ) _lowerCAmelCase : str = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.num_labels ) def __A ( self , a__ ): # Pooler _lowerCAmelCase : Tuple = encoder_outputs[0] _lowerCAmelCase : int = self.pooler(a__ ) # "return" pooler_output # BertModel _lowerCAmelCase : Union[str, Any] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowerCAmelCase : Optional[int] = bmodel_output[1] _lowerCAmelCase : Tuple = self.dropout(a__ ) _lowerCAmelCase : Dict = self.classifier(a__ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , SCREAMING_SNAKE_CASE_ , ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : List[str] = config.num_labels _lowerCAmelCase : Optional[Any] = config.num_hidden_layers _lowerCAmelCase : str = DeeBertModel(a__ ) _lowerCAmelCase : Tuple = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase : List[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(a__ ) def __A ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=-1 , a__=False , ): _lowerCAmelCase : Dict = self.num_layers try: _lowerCAmelCase : str = self.bert( a__ , attention_mask=a__ , token_type_ids=a__ , position_ids=a__ , head_mask=a__ , inputs_embeds=a__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowerCAmelCase : Any = outputs[1] _lowerCAmelCase : Optional[int] = self.dropout(a__ ) _lowerCAmelCase : List[str] = self.classifier(a__ ) _lowerCAmelCase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase : Tuple = e.message _lowerCAmelCase : int = e.exit_layer _lowerCAmelCase : Union[str, Any] = outputs[0] if not self.training: _lowerCAmelCase : Tuple = entropy(a__ ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase : Tuple = MSELoss() _lowerCAmelCase : int = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase : Any = CrossEntropyLoss() _lowerCAmelCase : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowerCAmelCase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowerCAmelCase : Dict = highway_exit[0] if not self.training: highway_logits_all.append(a__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCAmelCase : List[Any] = MSELoss() _lowerCAmelCase : int = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase : Optional[int] = CrossEntropyLoss() _lowerCAmelCase : List[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(a__ ) if train_highway: _lowerCAmelCase : List[Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCAmelCase : Any = (loss,) + outputs if not self.training: _lowerCAmelCase : Dict = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
44
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _lowerCAmelCase : Any = (3, 9, -11, 0, 7, 5, 1, -1) _lowerCAmelCase : Any = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __magic_name__ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class __magic_name__ : """simple docstring""" def __init__( self :str , snake_case :Iterable[int] ): '''simple docstring''' A_ : Node | None = None for i in sorted(snake_case , reverse=snake_case ): A_ : str = Node(snake_case , self.head ) def __iter__( self :Any ): '''simple docstring''' A_ : List[Any] = self.head while node: yield node.data A_ : Optional[int] = node.next_node def __len__( self :Tuple ): '''simple docstring''' return sum(1 for _ in self ) def __str__( self :Tuple ): '''simple docstring''' return " -> ".join([str(snake_case ) for node in self] ) def __snake_case ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : int = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
70
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = [5, 11, 17, 23] __lowerCAmelCase = [256, 512, 1024, 1024] __lowerCAmelCase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __lowerCAmelCase = 768 __lowerCAmelCase = [1, 1, 1, 0.5] __lowerCAmelCase = [256, 512, 768, 768] __lowerCAmelCase = 150 __lowerCAmelCase = 16 __lowerCAmelCase = (1, 384, 384) __lowerCAmelCase = False __lowerCAmelCase = "project" if "ade" in checkpoint_url: __lowerCAmelCase = True __lowerCAmelCase = 768 __lowerCAmelCase = [1, 1, 1, 0.5] __lowerCAmelCase = 150 __lowerCAmelCase = 16 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "ade20k-id2label.json" __lowerCAmelCase = json.load(open(cached_download(hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) ) , "r" ) ) __lowerCAmelCase = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = [1, 150, 480, 480] return config, expected_shape def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowerCAmelCase = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: __lowerCAmelCase = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: __lowerCAmelCase = name.replace("patch_embed" , "" ) if "pos_embed" in name: __lowerCAmelCase = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: __lowerCAmelCase = name.replace("proj" , "projection" ) if "blocks" in name: __lowerCAmelCase = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: __lowerCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: __lowerCAmelCase = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: __lowerCAmelCase = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: __lowerCAmelCase = name.replace("scratch" , "neck" ) if "layer1_rn" in name: __lowerCAmelCase = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: __lowerCAmelCase = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: __lowerCAmelCase = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: __lowerCAmelCase = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: __lowerCAmelCase = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowerCAmelCase = name.replace(f"refinenet{layer_idx}" , f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: __lowerCAmelCase = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: __lowerCAmelCase = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: __lowerCAmelCase = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: __lowerCAmelCase = name.replace("conv1" , "convolution1" ) if "conv2" in name: __lowerCAmelCase = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowerCAmelCase = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: __lowerCAmelCase = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: __lowerCAmelCase = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: __lowerCAmelCase = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowerCAmelCase = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: __lowerCAmelCase = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: __lowerCAmelCase = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: __lowerCAmelCase = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: __lowerCAmelCase = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: __lowerCAmelCase = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: __lowerCAmelCase = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: __lowerCAmelCase = name.replace("pretrained" , "dpt" ) if "bn" in name: __lowerCAmelCase = name.replace("bn" , "batch_norm" ) if "head" in name: __lowerCAmelCase = name.replace("head" , "head.head" ) if "encoder.norm" in name: __lowerCAmelCase = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: __lowerCAmelCase = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: __lowerCAmelCase = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: __lowerCAmelCase = name.replace(".." , "." ) if "stem.conv" in name: __lowerCAmelCase = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: __lowerCAmelCase = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: __lowerCAmelCase = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: __lowerCAmelCase = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: __lowerCAmelCase = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: __lowerCAmelCase = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: __lowerCAmelCase = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) __lowerCAmelCase = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: config.hidden_size, :] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = get_dpt_config(_UpperCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __lowerCAmelCase = torch.load(_UpperCamelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(_UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): __lowerCAmelCase = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase = val # read in qkv matrices read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) # load HuggingFace model __lowerCAmelCase = DPTForSemanticSegmentation(_UpperCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Check outputs on an image __lowerCAmelCase = 480 if "ade" in checkpoint_url else 384 __lowerCAmelCase = DPTImageProcessor(size=_UpperCamelCase ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(_UpperCamelCase , return_tensors="pt" ) # forward pass __lowerCAmelCase = model(**_UpperCamelCase ).logits if "ade" in checkpoint_url else model(**_UpperCamelCase ).predicted_depth if show_prediction: __lowerCAmelCase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=_UpperCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) A : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
57
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __magic_name__ : def __init__( self : str , lowercase_ : Dict ): if isinstance(lowercase_ , lowercase_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowercase_ : List[Any] = deepcopy(lowercase_ ) elif os.path.exists(lowercase_ ): with io.open(lowercase_ , """r""" , encoding="""utf-8""" ) as f: lowercase_ : Union[str, Any] = json.load(lowercase_ ) else: try: lowercase_ : int = baseaa.urlsafe_baadecode(lowercase_ ).decode("""utf-8""" ) lowercase_ : str = json.loads(lowercase_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) lowercase_ : Any = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowercase_ : Tuple = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowercase_ : str = False if self.is_zeroa() or self.is_zeroa(): lowercase_ : Dict = set(["""cpu""", """nvme"""] ) lowercase_ : List[Any] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowercase_ : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Any ): lowercase_ : Optional[Any] = self.config # find the config node of interest if it exists lowercase_ : Tuple = ds_key_long.split(""".""" ) lowercase_ : Union[str, Any] = nodes.pop() for node in nodes: lowercase_ : List[str] = config.get(lowercase_ ) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : List[str]=None ): lowercase_ , lowercase_ : List[Any] = self.find_config_node(lowercase_ ) if config is None: return default return config.get(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : int=False ): lowercase_ : int = self.config # find the config node of interest if it exists lowercase_ : Dict = ds_key_long.split(""".""" ) for node in nodes: lowercase_ : List[Any] = config lowercase_ : Dict = config.get(lowercase_ ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Tuple ): lowercase_ : str = self.get_value(lowercase_ ) return False if value is None else bool(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Union[str, Any] ): lowercase_ : Union[str, Any] = self.get_value(lowercase_ ) return False if value is None else not bool(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Any ): return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return self._offload class __magic_name__ : def __init__( self : Any , lowercase_ : Union[str, Any] ): lowercase_ : Any = engine def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : int , **lowercase_ : str ): # runs backpropagation and handles mixed precision self.engine.backward(lowercase_ , **lowercase_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __magic_name__ ( _UpperCAmelCase): def __init__( self : Optional[Any] , lowercase_ : Tuple ): super().__init__(lowercase_ , device_placement=lowercase_ , scaler=lowercase_ ) lowercase_ : Any = hasattr(self.optimizer , """overflow""" ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Tuple=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): if self.__has_overflow__: return self.optimizer.overflow return False class __magic_name__ ( _UpperCAmelCase): def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Tuple ): super().__init__(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __magic_name__ : def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str]=0.0_01 , lowercase_ : List[str]=0 , **lowercase_ : List[Any] ): lowercase_ : str = params lowercase_ : List[Any] = lr lowercase_ : int = weight_decay lowercase_ : Union[str, Any] = kwargs class __magic_name__ : def __init__( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : List[str]=None , lowercase_ : int=0 , **lowercase_ : int ): lowercase_ : Union[str, Any] = optimizer lowercase_ : List[str] = total_num_steps lowercase_ : Dict = warmup_num_steps lowercase_ : Dict = kwargs
239
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __lowerCamelCase ( UpperCAmelCase_ : str = "laptop" ): """simple docstring""" a :Optional[int] = F'''https://www.amazon.in/laptop/s?k={product}''' a :Any = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } a :Optional[int] = BeautifulSoup(requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).text ) # Initialize a Pandas dataframe with the column titles a :int = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: a :Tuple = item.ha.text a :Union[str, Any] = '''https://www.amazon.in/''' + item.ha.a['''href'''] a :List[str] = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: a :Tuple = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: a :Optional[int] = '''Not available''' try: a :List[str] = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: a :Union[str, Any] = '''''' try: a :Tuple = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: a :Optional[Any] = float('''nan''' ) except AttributeError: pass a :Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] a :Union[str, Any] = ''' ''' a :Any = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": snake_case : List[str] = '''headphones''' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
281
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case : List[Any] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = BartphoTokenizer SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() a :Dict = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] a :Optional[Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :Tuple = {'''unk_token''': '''<unk>'''} a :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) a :Any = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :int = '''This is a là test''' a :str = '''This is a<unk><unk> test''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) a :Optional[Any] = '''This is a là test''' a :Tuple = '''▁This ▁is ▁a ▁l à ▁t est'''.split() a :int = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :Union[str, Any] = tokens + [tokenizer.unk_token] a :str = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
281
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class lowercase__ ( unittest.TestCase ): lowercase__ = StableDiffusionLDMaDPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _UpperCamelCase : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=lowerCAmelCase_ ,set_alpha_to_one=lowerCAmelCase_ ,) torch.manual_seed(0 ) _UpperCamelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=6 ,out_channels=6 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) _UpperCamelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _UpperCamelCase : Any = CLIPTextModel(lowerCAmelCase_ ) _UpperCamelCase : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _UpperCamelCase : str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int]=0 ): '''simple docstring''' if str(lowerCAmelCase_ ).startswith('mps' ): _UpperCamelCase : Optional[int] = torch.manual_seed(lowerCAmelCase_ ) else: _UpperCamelCase : List[str] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _UpperCamelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Any = self.get_dummy_components() _UpperCamelCase : Dict = StableDiffusionLDMaDPipeline(**lowerCAmelCase_ ) _UpperCamelCase : Union[str, Any] = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCamelCase : List[str] = self.get_dummy_inputs(lowerCAmelCase_ ) _UpperCamelCase : Union[str, Any] = ldmad_pipe(**lowerCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Dict = output.rgb, output.depth _UpperCamelCase : int = rgb[0, -3:, -3:, -1] _UpperCamelCase : Optional[int] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCamelCase : int = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) _UpperCamelCase : Union[str, Any] = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : int = self.get_dummy_components() _UpperCamelCase : List[str] = StableDiffusionLDMaDPipeline(**lowerCAmelCase_ ) _UpperCamelCase : Tuple = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCamelCase : Dict = self.get_dummy_inputs(lowerCAmelCase_ ) _UpperCamelCase : int = 3 * [inputs['prompt']] # forward _UpperCamelCase : Tuple = ldmad_pipe(**lowerCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = output.rgb, output.depth _UpperCamelCase : Any = rgb_slice_a[0, -3:, -3:, -1] _UpperCamelCase : Optional[Any] = depth_slice_a[0, -3:, -1] _UpperCamelCase : int = self.get_dummy_inputs(lowerCAmelCase_ ) _UpperCamelCase : Union[str, Any] = 3 * [inputs.pop('prompt' )] _UpperCamelCase : Tuple = ldmad_pipe.tokenizer( lowerCAmelCase_ ,padding='max_length' ,max_length=ldmad_pipe.tokenizer.model_max_length ,truncation=lowerCAmelCase_ ,return_tensors='pt' ,) _UpperCamelCase : Union[str, Any] = text_inputs['input_ids'].to(lowerCAmelCase_ ) _UpperCamelCase : Dict = ldmad_pipe.text_encoder(lowerCAmelCase_ )[0] _UpperCamelCase : Any = prompt_embeds # forward _UpperCamelCase : List[str] = ldmad_pipe(**lowerCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Dict = output.rgb, output.depth _UpperCamelCase : int = rgb_slice_a[0, -3:, -3:, -1] _UpperCamelCase : List[str] = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Tuple = self.get_dummy_components() _UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) _UpperCamelCase : str = StableDiffusionLDMaDPipeline(**lowerCAmelCase_ ) _UpperCamelCase : List[str] = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCamelCase : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase_ ) _UpperCamelCase : Optional[int] = 'french fries' _UpperCamelCase : str = ldmad_pipe(**lowerCAmelCase_ ,negative_prompt=lowerCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : List[str] = output.rgb, output.depth _UpperCamelCase : Optional[Any] = rgb[0, -3:, -3:, -1] _UpperCamelCase : List[str] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCamelCase : List[str] = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) _UpperCamelCase : Tuple = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : int ,lowerCamelCase__ : Dict="cpu" ,lowerCamelCase__ : Optional[int]=torch.floataa ,lowerCamelCase__ : Union[str, Any]=0 ): '''simple docstring''' _UpperCamelCase : Dict = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _UpperCamelCase : List[str] = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 64, 64) ) _UpperCamelCase : List[str] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ,dtype=lowerCAmelCase_ ) _UpperCamelCase : str = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : Optional[int] = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) _UpperCamelCase : List[Any] = ldmad_pipe.to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCamelCase : str = self.get_inputs(lowerCAmelCase_ ) _UpperCamelCase : List[str] = ldmad_pipe(**lowerCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Dict = output.rgb, output.depth _UpperCamelCase : List[str] = rgb[0, -3:, -3:, -1].flatten() _UpperCamelCase : Union[str, Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) _UpperCamelCase : Tuple = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) _UpperCamelCase : int = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : int ,lowerCamelCase__ : Optional[Any]="cpu" ,lowerCamelCase__ : List[Any]=torch.floataa ,lowerCamelCase__ : Dict=0 ): '''simple docstring''' _UpperCamelCase : Optional[int] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _UpperCamelCase : Dict = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 64, 64) ) _UpperCamelCase : Dict = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ,dtype=lowerCAmelCase_ ) _UpperCamelCase : List[str] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : str = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCamelCase : Dict = self.get_inputs(lowerCAmelCase_ ) _UpperCamelCase : Union[str, Any] = ldmad_pipe(**lowerCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Union[str, Any] = output.rgb, output.depth _UpperCamelCase : Dict = 0.4_9_5_5_8_6 _UpperCamelCase : Tuple = 0.3_3_7_9_5_5_1_5 _UpperCamelCase : Tuple = 1_1_2.4_8_5_1_8 _UpperCamelCase : Union[str, Any] = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Optional[int] = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(lowerCAmelCase_ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCamelCase : Union[str, Any] = self.get_inputs(lowerCAmelCase_ ) _UpperCamelCase : Optional[Any] = ldmad_pipe(**lowerCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Union[str, Any] = output.rgb, output.depth _UpperCamelCase : Optional[Any] = 0.4_1_9_4_1_2_7 _UpperCamelCase : Union[str, Any] = 0.3_5_3_7_5_5_8_6 _UpperCamelCase : Any = 0.5_6_3_8_5_0_2 _UpperCamelCase : Tuple = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
83
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=3 , lowerCAmelCase_=("DownEncoderBlock2D",) , lowerCAmelCase_=(64,) , lowerCAmelCase_=2 , lowerCAmelCase_=32 , lowerCAmelCase_="silu" , lowerCAmelCase_=True , ): """simple docstring""" super().__init__() _snake_case = layers_per_block _snake_case = torch.nn.Convad( lowerCAmelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case = None _snake_case = nn.ModuleList([] ) # down _snake_case = block_out_channels[0] for i, down_block_type in enumerate(lowerCAmelCase_ ): _snake_case = output_channel _snake_case = block_out_channels[i] _snake_case = i == len(lowerCAmelCase_ ) - 1 _snake_case = get_down_block( lowerCAmelCase_ , num_layers=self.layers_per_block , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) self.down_blocks.append(lowerCAmelCase_ ) # mid _snake_case = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) # out _snake_case = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCAmelCase_ , eps=1E-6 ) _snake_case = nn.SiLU() _snake_case = 2 * out_channels if double_z else out_channels _snake_case = nn.Convad(block_out_channels[-1] , lowerCAmelCase_ , 3 , padding=1 ) _snake_case = False def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = x _snake_case = self.conv_in(lowerCAmelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase_ ): def custom_forward(*lowerCAmelCase_ ): return module(*lowerCAmelCase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) else: for down_block in self.down_blocks: _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ ) # middle _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCAmelCase_ ) else: # down for down_block in self.down_blocks: _snake_case = down_block(lowerCAmelCase_ ) # middle _snake_case = self.mid_block(lowerCAmelCase_ ) # post-process _snake_case = self.conv_norm_out(lowerCAmelCase_ ) _snake_case = self.conv_act(lowerCAmelCase_ ) _snake_case = self.conv_out(lowerCAmelCase_ ) return sample class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=3 , lowerCAmelCase_=("UpDecoderBlock2D",) , lowerCAmelCase_=(64,) , lowerCAmelCase_=2 , lowerCAmelCase_=32 , lowerCAmelCase_="silu" , lowerCAmelCase_="group" , ): """simple docstring""" super().__init__() _snake_case = layers_per_block _snake_case = nn.Convad( lowerCAmelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case = None _snake_case = nn.ModuleList([] ) _snake_case = in_channels if norm_type == 'spatial' else None # mid _snake_case = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , ) # up _snake_case = list(reversed(lowerCAmelCase_ ) ) _snake_case = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): _snake_case = output_channel _snake_case = reversed_block_out_channels[i] _snake_case = i == len(lowerCAmelCase_ ) - 1 _snake_case = get_up_block( lowerCAmelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , prev_output_channel=lowerCAmelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowerCAmelCase_ , resnet_groups=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , temb_channels=lowerCAmelCase_ , resnet_time_scale_shift=lowerCAmelCase_ , ) self.up_blocks.append(lowerCAmelCase_ ) _snake_case = output_channel # out if norm_type == "spatial": _snake_case = SpatialNorm(block_out_channels[0] , lowerCAmelCase_ ) else: _snake_case = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCAmelCase_ , eps=1E-6 ) _snake_case = nn.SiLU() _snake_case = nn.Convad(block_out_channels[0] , lowerCAmelCase_ , 3 , padding=1 ) _snake_case = False def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" _snake_case = z _snake_case = self.conv_in(lowerCAmelCase_ ) _snake_case = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase_ ): def custom_forward(*lowerCAmelCase_ ): return module(*lowerCAmelCase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ , use_reentrant=lowerCAmelCase_ ) else: # middle _snake_case = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ ) else: # middle _snake_case = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = sample.to(lowerCAmelCase_ ) # up for up_block in self.up_blocks: _snake_case = up_block(lowerCAmelCase_ , lowerCAmelCase_ ) # post-process if latent_embeds is None: _snake_case = self.conv_norm_out(lowerCAmelCase_ ) else: _snake_case = self.conv_norm_out(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.conv_act(lowerCAmelCase_ ) _snake_case = self.conv_out(lowerCAmelCase_ ) return sample class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="random" , lowerCAmelCase_=False , lowerCAmelCase_=True ): """simple docstring""" super().__init__() _snake_case = n_e _snake_case = vq_embed_dim _snake_case = beta _snake_case = legacy _snake_case = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _snake_case = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) _snake_case = self.used.shape[0] _snake_case = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _snake_case = self.re_embed _snake_case = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: _snake_case = n_e _snake_case = sane_index_shape def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = inds.shape assert len(lowerCAmelCase_ ) > 1 _snake_case = inds.reshape(ishape[0] , -1 ) _snake_case = self.used.to(lowerCAmelCase_ ) _snake_case = (inds[:, :, None] == used[None, None, ...]).long() _snake_case = match.argmax(-1 ) _snake_case = match.sum(2 ) < 1 if self.unknown_index == "random": _snake_case = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _snake_case = self.unknown_index return new.reshape(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = inds.shape assert len(lowerCAmelCase_ ) > 1 _snake_case = inds.reshape(ishape[0] , -1 ) _snake_case = self.used.to(lowerCAmelCase_ ) if self.re_embed > self.used.shape[0]: # extra token _snake_case = 0 # simply set to zero _snake_case = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCAmelCase_ ) return back.reshape(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = z.permute(0 , 2 , 3 , 1 ).contiguous() _snake_case = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _snake_case = torch.argmin(torch.cdist(lowerCAmelCase_ , self.embedding.weight ) , dim=1 ) _snake_case = self.embedding(lowerCAmelCase_ ).view(z.shape ) _snake_case = None _snake_case = None # compute loss for embedding if not self.legacy: _snake_case = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _snake_case = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _snake_case = z + (z_q - z).detach() # reshape back to match original input shape _snake_case = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _snake_case = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _snake_case = self.remap_to_used(lowerCAmelCase_ ) _snake_case = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _snake_case = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if self.remap is not None: _snake_case = indices.reshape(shape[0] , -1 ) # add batch axis _snake_case = self.unmap_to_all(lowerCAmelCase_ ) _snake_case = indices.reshape(-1 ) # flatten again # get quantized latent vectors _snake_case = self.embedding(lowerCAmelCase_ ) if shape is not None: _snake_case = z_q.view(lowerCAmelCase_ ) # reshape back to match original input shape _snake_case = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case = parameters _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , dim=1 ) _snake_case = torch.clamp(self.logvar , -30.0 , 20.0 ) _snake_case = deterministic _snake_case = torch.exp(0.5 * self.logvar ) _snake_case = torch.exp(self.logvar ) if self.deterministic: _snake_case = _snake_case = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase ( self , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = randn_tensor( self.mean.shape , generator=lowerCAmelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) _snake_case = self.mean + self.std * sample return x def lowerCamelCase ( self , lowerCAmelCase_=None ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=[1, 2, 3] ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) _snake_case = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" return self.mean
42
0
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _snake_case : List[str] = 'pytorch_model.bin' _snake_case : str = 'pytorch_model.bin.index.json' _snake_case : Dict = 'adapter_config.json' _snake_case : Tuple = 'adapter_model.bin' _snake_case : int = 'adapter_model.safetensors' _snake_case : List[str] = 'tf_model.h5' _snake_case : Optional[int] = 'tf_model.h5.index.json' _snake_case : Optional[int] = 'model.ckpt' _snake_case : List[Any] = 'flax_model.msgpack' _snake_case : Dict = 'flax_model.msgpack.index.json' _snake_case : List[str] = 'model.safetensors' _snake_case : Optional[int] = 'model.safetensors.index.json' _snake_case : Optional[int] = 'config.json' _snake_case : Any = 'preprocessor_config.json' _snake_case : str = FEATURE_EXTRACTOR_NAME _snake_case : Optional[Any] = 'generation_config.json' _snake_case : Optional[int] = 'modelcard.json' _snake_case : Tuple = '▁' _snake_case : Any = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _snake_case : str = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _snake_case : Union[str, Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _snake_case : Optional[int] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def snake_case_ (UpperCamelCase : str ): '''simple docstring''' if version.parse(UpperCamelCase ) < version.parse(UpperCamelCase ): if "dev" in min_version: _a = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: _a = f'This example requires a minimum version of {min_version},' error_message += f' but the version found is {__version__}.\n' raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
179
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def snake_case_ (UpperCamelCase : Dict ): '''simple docstring''' _a = {} _a = job['''started_at'''] _a = job['''completed_at'''] _a = date_parser.parse(UpperCamelCase ) _a = date_parser.parse(UpperCamelCase ) _a = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _a = start _a = end _a = duration_in_min return job_info def snake_case_ (UpperCamelCase : int , UpperCamelCase : int=None ): '''simple docstring''' _a = None if token is not None: _a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'} _a = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' _a = requests.get(UpperCamelCase , headers=UpperCamelCase ).json() _a = {} try: job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase ) for job in result['''jobs''']} ) _a = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(UpperCamelCase ): _a = requests.get(url + f'&page={i + 2}' , headers=UpperCamelCase ).json() job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase ) for job in result['''jobs''']} ) return job_time except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _snake_case : Tuple = parser.parse_args() _snake_case : int = get_job_time(args.workflow_run_id) _snake_case : int = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
179
1
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( _lowerCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = XLMTokenizer SCREAMING_SNAKE_CASE_ = False def a_ ( self) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] snake_case_ = dict(zip(a_, range(len(a_)))) snake_case_ = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w') as fp: fp.write(json.dumps(a_)) with open(self.merges_file, 'w') as fp: fp.write('\n'.join(a_)) def a_ ( self, lowerCAmelCase__) -> str: snake_case_ = """lower newer""" snake_case_ = """lower newer""" return input_text, output_text def a_ ( self) -> int: snake_case_ = XLMTokenizer(self.vocab_file, self.merges_file) snake_case_ = """lower""" snake_case_ = ["""low""", """er</w>"""] snake_case_ = tokenizer.tokenize(a_) self.assertListEqual(a_, a_) snake_case_ = tokens + ["""<unk>"""] snake_case_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_), a_) @slow def a_ ( self) -> Union[str, Any]: snake_case_ = XLMTokenizer.from_pretrained('xlm-mlm-en-2048') snake_case_ = tokenizer.encode('sequence builders', add_special_tokens=a_) snake_case_ = tokenizer.encode('multi-sequence build', add_special_tokens=a_) snake_case_ = tokenizer.build_inputs_with_special_tokens(a_) snake_case_ = tokenizer.build_inputs_with_special_tokens(a_, a_) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
69
'''simple docstring''' from __future__ import annotations import queue class lowercase : """simple docstring""" def __init__( self ,a_ ) -> str: _UpperCAmelCase : Optional[Any] = data _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Union[str, Any] = None def snake_case_ ( )-> TreeNode: '''simple docstring''' print("""\n********Press N to stop entering at any point of time********\n""" ) _UpperCAmelCase : Any = input("""Enter the value of the root node: """ ).strip().lower() _UpperCAmelCase : queue.Queue = queue.Queue() _UpperCAmelCase : List[str] = TreeNode(int(lowerCAmelCase_ ) ) q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : str = q.get() _UpperCAmelCase : Any = F'''Enter the left node of {node_found.data}: ''' _UpperCAmelCase : Union[str, Any] = input(lowerCAmelCase_ ).strip().lower() or """n""" if check == "n": return tree_node _UpperCAmelCase : List[str] = TreeNode(int(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[int] = left_node q.put(lowerCAmelCase_ ) _UpperCAmelCase : Dict = F'''Enter the right node of {node_found.data}: ''' _UpperCAmelCase : Tuple = input(lowerCAmelCase_ ).strip().lower() or """n""" if check == "n": return tree_node _UpperCAmelCase : Any = TreeNode(int(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = right_node q.put(lowerCAmelCase_ ) raise def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : Dict = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : Optional[int] = [] while not q.empty(): _UpperCAmelCase : Optional[int] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = n.left # end of while means current node doesn't have left child _UpperCAmelCase : int = stack.pop() # start to traverse its right child _UpperCAmelCase : Any = n.right def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : Optional[Any] = node while n or stack: while n: stack.append(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = n.left _UpperCAmelCase : Union[str, Any] = stack.pop() print(n.data , end=""",""" ) _UpperCAmelCase : Any = n.right def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase ,_UpperCAmelCase : str = [], [] _UpperCAmelCase : Dict = node stacka.append(lowerCAmelCase_ ) while stacka: # to find the reversed order of post order, store it in stack2 _UpperCAmelCase : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowerCAmelCase_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def snake_case_ ( lowerCAmelCase_ = "" , lowerCAmelCase_=50 , lowerCAmelCase_="*" )-> str: '''simple docstring''' if not s: return "\n" + width * char _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = divmod(width - len(lowerCAmelCase_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) A_ : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
215
0
import numpy as np def lowerCAmelCase_ ( __UpperCAmelCase: np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
247
from __future__ import annotations import bisect def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> int: if hi < 0: UpperCamelCase__ : Union[str, Any] = len(__UpperCAmelCase ) while lo < hi: UpperCamelCase__ : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: UpperCamelCase__ : Optional[int] = mid + 1 else: UpperCamelCase__ : Tuple = mid return lo def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> int: if hi < 0: UpperCamelCase__ : int = len(__UpperCAmelCase ) while lo < hi: UpperCamelCase__ : List[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: UpperCamelCase__ : Optional[int] = mid + 1 else: UpperCamelCase__ : int = mid return lo def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> None: sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int = 0 , __UpperCAmelCase: int = -1 ) -> None: sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int ) -> int | None: UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : List[str] = len(__UpperCAmelCase ) - 1 while left <= right: UpperCamelCase__ : List[str] = left + (right - left) // 2 UpperCamelCase__ : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: UpperCamelCase__ : List[str] = midpoint - 1 else: UpperCamelCase__ : List[str] = midpoint + 1 return None def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int ) -> int | None: UpperCamelCase__ : Union[str, Any] = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def lowerCAmelCase_ ( __UpperCAmelCase: list[int] , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int | None: if right < left: return None UpperCamelCase__ : Optional[int] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = input('Enter numbers separated by comma:\n').strip() UpperCAmelCase_ = sorted(int(item) for item in user_input.split(',')) UpperCAmelCase_ = int(input('Enter a single number to be found in the list:\n')) UpperCAmelCase_ = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
247
1
import argparse from collections import defaultdict import yaml __UpperCamelCase : List[Any] = "docs/source/en/_toctree.yml" def __A ( __lowerCamelCase ) -> Tuple: a = defaultdict(_SCREAMING_SNAKE_CASE ) for doc in model_doc: counts[doc["local"]] += 1 a = [key for key, value in counts.items() if value > 1] a = [] for duplicate_key in duplicates: a = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(_SCREAMING_SNAKE_CASE ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(_SCREAMING_SNAKE_CASE , key=lambda __lowerCamelCase : s["title"].lower() ) def __A ( __lowerCamelCase=False ) -> Dict: with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as f: a = yaml.safe_load(f.read() ) # Get to the API doc a = 0 while content[api_idx]["title"] != "API": api_idx += 1 a = content[api_idx]['sections'] # Then to the model doc a = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 a = api_doc[model_idx]['sections'] a = [(idx, section) for idx, section in enumerate(_SCREAMING_SNAKE_CASE ) if 'sections' in section] a = False for idx, modality_doc in modalities_docs: a = modality_doc['sections'] a = clean_model_doc_toc(_SCREAMING_SNAKE_CASE ) if old_modality_doc != new_modality_doc: a = True if overwrite: a = new_modality_doc if diff: if overwrite: a = model_doc a = api_doc with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(_SCREAMING_SNAKE_CASE , allow_unicode=_SCREAMING_SNAKE_CASE ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCamelCase : Optional[int] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
228
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
293
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Any = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'fnet' def __init__( self : int , lowerCamelCase : List[str]=3_20_00 , lowerCamelCase : str=7_68 , lowerCamelCase : Tuple=12 , lowerCamelCase : List[Any]=30_72 , lowerCamelCase : Optional[Any]="gelu_new" , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Any=5_12 , lowerCamelCase : List[str]=4 , lowerCamelCase : Any=0.02 , lowerCamelCase : Union[str, Any]=1E-12 , lowerCamelCase : Optional[int]=False , lowerCamelCase : Optional[int]=5_12 , lowerCamelCase : Any=3 , lowerCamelCase : Tuple=1 , lowerCamelCase : Optional[int]=2 , **lowerCamelCase : Dict , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Dict = vocab_size lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : Tuple = layer_norm_eps lowerCAmelCase_ : Union[str, Any] = use_tpu_fourier_optimizations lowerCAmelCase_ : Dict = tpu_short_seq_length
354
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __A : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCAmelCase_ : str = get_sagemaker_input() else: lowerCAmelCase_ : Optional[int] = get_cluster_input() return config def UpperCamelCase_ ( A__ : Optional[Any]=None ): '''simple docstring''' if subparsers is not None: lowerCAmelCase_ : List[str] = subparsers.add_parser("""config""" , description=A__ ) else: lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser("""Accelerate config command""" , description=A__ ) parser.add_argument( """--config_file""" , default=A__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def UpperCamelCase_ ( A__ : Any ): '''simple docstring''' lowerCAmelCase_ : Dict = get_user_input() if args.config_file is not None: lowerCAmelCase_ : List[str] = args.config_file else: if not os.path.isdir(A__ ): os.makedirs(A__ ) lowerCAmelCase_ : List[Any] = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(A__ ) else: config.to_yaml_file(A__ ) print(f'accelerate configuration saved at {config_file}' ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : str = config_command_parser() lowerCAmelCase_ : Tuple = parser.parse_args() config_command(A__ ) if __name__ == "__main__": main()
89
0
import random from typing import Any def __lowerCamelCase ( UpperCAmelCase_ : list ): """simple docstring""" for _ in range(len(UpperCAmelCase_ ) ): a :str = random.randint(0 , len(UpperCAmelCase_ ) - 1 ) a :Dict = random.randint(0 , len(UpperCAmelCase_ ) - 1 ) a , a :str = data[b], data[a] return data if __name__ == "__main__": snake_case : List[str] = [0, 1, 2, 3, 4, 5, 6, 7] snake_case : List[Any] = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
94
'''simple docstring''' from sklearn.metrics import fa_score import datasets _UpperCamelCase = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' _UpperCamelCase = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' _UpperCamelCase = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __A ( self ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase="binary" , __UpperCAmelCase=None ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = fa_score( __UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase , pos_label=__UpperCAmelCase , average=__UpperCAmelCase , sample_weight=__UpperCAmelCase ) return {"f1": float(__UpperCAmelCase ) if score.size == 1 else score}
254
0
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __lowerCamelCase ( lowerCAmelCase__ ): return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCAmelCase__ = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) lowerCAmelCase__ = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) lowerCAmelCase__ = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) lowerCAmelCase__ = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) lowerCAmelCase__ = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) lowerCAmelCase__ = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) lowerCAmelCase__ = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) lowerCAmelCase__ = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) lowerCAmelCase__ = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) lowerCAmelCase__ = key.replace('image_encoder.module' , 'flava.image_model' ) lowerCAmelCase__ = key.replace('text_encoder.module' , 'flava.text_model' ) lowerCAmelCase__ = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) lowerCAmelCase__ = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) lowerCAmelCase__ = key.replace('text_projection' , 'flava.text_projection' ) lowerCAmelCase__ = key.replace('image_projection' , 'flava.image_projection' ) lowerCAmelCase__ = value.float() for key, value in codebook_state_dict.items(): lowerCAmelCase__ = value return upgrade @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): if config_path is not None: lowerCAmelCase__ = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ = FlavaConfig() lowerCAmelCase__ = FlavaForPreTraining(SCREAMING_SNAKE_CASE_ ).eval() lowerCAmelCase__ = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , save_checkpoint=SCREAMING_SNAKE_CASE_ ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) else: lowerCAmelCase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) lowerCAmelCase__ = upgrade_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = hf_model.state_dict() lowerCAmelCase__ = count_parameters(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = count_parameters(SCREAMING_SNAKE_CASE_ ) + count_parameters(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowerCAmelCase__ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
366
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowerCAmelCase__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = {} with open(lowerCAmelCase__ , 'r' ) as file: for line_number, line in enumerate(lowerCAmelCase__ ): lowerCAmelCase__ = line.strip() if line: lowerCAmelCase__ = line.split() lowerCAmelCase__ = line_number lowerCAmelCase__ = words[0] lowerCAmelCase__ = value return result def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split('.' ): lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase__ ): lowerCAmelCase__ = PARAM_MAPPING[full_name.split('.' )[-1]] lowerCAmelCase__ = 'param' if weight_type is not None and weight_type != "param": lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape elif weight_type is not None and weight_type == "param": lowerCAmelCase__ = hf_pointer for attribute in hf_param_name.split('.' ): lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = shape_pointer.shape # let's reduce dimension lowerCAmelCase__ = value[0] else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): lowerCAmelCase__ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase__ ): lowerCAmelCase__ = PARAM_MAPPING[full_name.split('.' )[-1]] lowerCAmelCase__ = 'param' if weight_type is not None and weight_type != "param": lowerCAmelCase__ = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCAmelCase__ = '.'.join([key, hf_param_name] ) else: lowerCAmelCase__ = key lowerCAmelCase__ = value if 'lm_head' in full_key else value[0] lowerCAmelCase__ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): lowerCAmelCase__ = False for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(lowerCAmelCase__ )[0].split('.' )[-2] lowerCAmelCase__ = mapped_key.replace('*' , lowerCAmelCase__ ) if "weight_g" in name: lowerCAmelCase__ = 'weight_g' elif "weight_v" in name: lowerCAmelCase__ = 'weight_v' elif "bias" in name: lowerCAmelCase__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = 'weight' else: lowerCAmelCase__ = None if hf_dict is not None: rename_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return is_used return is_used def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) lowerCAmelCase__ = True else: lowerCAmelCase__ = load_wavaveca_layer(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = full_name.split('conv_layers.' )[-1] lowerCAmelCase__ = name.split('.' ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=False ): if config_path is not None: lowerCAmelCase__ = WavaVecaConfig.from_pretrained(lowerCAmelCase__ ) else: lowerCAmelCase__ = WavaVecaConfig() if is_seq_class: lowerCAmelCase__ = read_txt_into_dict(lowerCAmelCase__ ) lowerCAmelCase__ = idalabel lowerCAmelCase__ = WavaVecaForSequenceClassification(lowerCAmelCase__ ) lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) feature_extractor.save_pretrained(lowerCAmelCase__ ) elif is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(lowerCAmelCase__ , 'vocab.json' ) if not os.path.isdir(lowerCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase__ , ) lowerCAmelCase__ = True if config.feat_extract_norm == 'layer' else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase__ = WavaVecaForCTC(lowerCAmelCase__ ) else: lowerCAmelCase__ = WavaVecaForPreTraining(lowerCAmelCase__ ) if is_finetuned or is_seq_class: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCAmelCase__ = argparse.Namespace(task='audio_pretraining' ) lowerCAmelCase__ = fairseq.tasks.setup_task(lowerCAmelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
119
0
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _snake_case ( ): UpperCAmelCase : List[Any] = torch.nn.Linear(2 , 4 ) UpperCAmelCase : Optional[int] = torch.optim.AdamW(model.parameters() , lr=1.0 ) UpperCAmelCase : int = torch.optim.lr_scheduler.OneCycleLR(UpperCamelCase , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) UpperCAmelCase : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) UpperCAmelCase : Tuple = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _snake_case ( UpperCamelCase : int ): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _snake_case ( UpperCamelCase : List[Any] ): UpperCAmelCase : Tuple = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): @require_cuda def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[int] = Accelerator(cpu=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any = Accelerator() UpperCAmelCase : List[str] = GradientState() assert state.num_steps == 1 UpperCAmelCase : Optional[Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCAmelCase : List[str] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = create_components() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Union[str, Any] = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = create_components() accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): pass with patch("""torch.cuda.set_device""" , _SCREAMING_SNAKE_CASE ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): UpperCAmelCase : List[str] = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Any = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = create_components() accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = get_signature(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_SCREAMING_SNAKE_CASE ) # make sure random weights don't match load_random_weights(_SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(_SCREAMING_SNAKE_CASE ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(_SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(_SCREAMING_SNAKE_CASE ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = create_components() accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = get_signature(_SCREAMING_SNAKE_CASE ) # saving hook def save_config(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(_SCREAMING_SNAKE_CASE , """data.json""" ) , """w""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # loading hook def load_config(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with open(os.path.join(_SCREAMING_SNAKE_CASE , """data.json""" ) , """r""" ) as f: UpperCAmelCase : Union[str, Any] = json.load(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = config["""class_name"""] UpperCAmelCase : Union[str, Any] = accelerator.register_save_state_pre_hook(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = accelerator.register_load_state_pre_hook(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_SCREAMING_SNAKE_CASE ) # make sure random weights don't match with hooks load_random_weights(_SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(_SCREAMING_SNAKE_CASE ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase : Union[str, Any] = """random""" # make sure loaded weights match with hooks accelerator.load_state(_SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(_SCREAMING_SNAKE_CASE ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_SCREAMING_SNAKE_CASE ) # make sure random weights don't match with hooks removed load_random_weights(_SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(_SCREAMING_SNAKE_CASE ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase : List[Any] = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(_SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(_SCREAMING_SNAKE_CASE ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[str] = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = create_components() UpperCAmelCase : List[str] = None # This should work UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = create_components() UpperCAmelCase : Union[str, Any] = [1, 2, 3] # This should work UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual( getattr(_SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(_SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' from transformers import AutoModelForCausalLM UpperCAmelCase : Any = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_SCREAMING_SNAKE_CASE , device_map={"""""": 0} , ) UpperCAmelCase : Union[str, Any] = Accelerator() # This should work UpperCAmelCase : str = accelerator.prepare(_SCREAMING_SNAKE_CASE ) @slow @require_bnb def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' from transformers import AutoModelForCausalLM UpperCAmelCase : Any = Accelerator() with init_empty_weights(): UpperCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() UpperCAmelCase : Any = infer_auto_device_map(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = """cpu""" UpperCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , llm_inta_enable_fpaa_cpu_offload=_SCREAMING_SNAKE_CASE ) # This should not work and get value error with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Union[str, Any] = accelerator.prepare(_SCREAMING_SNAKE_CASE ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' from transformers import AutoModelForCausalLM UpperCAmelCase : Dict = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): UpperCAmelCase : Tuple = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() UpperCAmelCase : List[str] = infer_auto_device_map(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = 1 UpperCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_SCREAMING_SNAKE_CASE , device_map=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Optional[int] = Accelerator() # This should not work and get value error with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Union[str, Any] = accelerator.prepare(_SCREAMING_SNAKE_CASE ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) UpperCAmelCase : str = infer_auto_device_map(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = 1 UpperCAmelCase : int = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_SCREAMING_SNAKE_CASE , device_map=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : int = Accelerator() # This should work UpperCAmelCase : List[str] = accelerator.prepare(_SCREAMING_SNAKE_CASE ) @require_cuda def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] = torch.nn.Linear(10 , 10 ) UpperCAmelCase : int = torch.optim.SGD(model.parameters() , lr=0.01 ) UpperCAmelCase : str = Accelerator(cpu=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = accelerator.prepare(_SCREAMING_SNAKE_CASE )
109
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __a ( A__ ): def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : List[str] = tempfile.mkdtemp() UpperCamelCase__ : Any = 8 # DPR tok UpperCamelCase__ : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase__ : Any = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok UpperCamelCase__ : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase__ : int = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase__ : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__ : Union[str, Any] = {"unk_token": "<unk>"} UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ : str = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def __lowercase ( self : int ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __lowercase ( self : Tuple ): '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __lowercase ( self : Optional[int] ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : int = self.get_dummy_dataset() UpperCamelCase__ : List[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: UpperCamelCase__ : str = dataset UpperCamelCase__ : Optional[int] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __lowercase ( self : int , SCREAMING_SNAKE_CASE : bool ): '''simple docstring''' UpperCamelCase__ : Dict = self.get_dummy_dataset() UpperCamelCase__ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , "dataset" ) UpperCamelCase__ : List[str] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset UpperCamelCase__ : str = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCamelCase__ : List[Any] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) , ) return retriever def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase__ : List[str] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) UpperCamelCase__ : Tuple = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE , open(SCREAMING_SNAKE_CASE , "wb" ) ) UpperCamelCase__ : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) UpperCamelCase__ : List[str] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Tuple = self.get_dummy_canonical_hf_index_retriever() UpperCamelCase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: UpperCamelCase__ : Optional[int] = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Any = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : int = 1 UpperCamelCase__ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Any = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : int = 1 UpperCamelCase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : List[str] = 1 UpperCamelCase__ : Any = self.get_dummy_legacy_index_retriever() UpperCamelCase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : int = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase ( self : int ): '''simple docstring''' import torch UpperCamelCase__ : Optional[Any] = 1 UpperCamelCase__ : Optional[int] = self.get_dummy_canonical_hf_index_retriever() UpperCamelCase__ : Optional[Any] = [[5, 7], [10, 11]] UpperCamelCase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : int = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) UpperCamelCase__ : List[Any] = retriever( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = [[5, 7], [10, 11]] UpperCamelCase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Optional[int] = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual( len(SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
189
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ ( lowerCAmelCase_ ): _lowerCamelCase : UNetaDModel _lowerCamelCase : ScoreSdeVeScheduler def __init__( self : Tuple , snake_case_ : UNetaDModel , snake_case_ : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self : List[Any] , snake_case_ : int = 1 , snake_case_ : int = 2_0_0_0 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , **snake_case_ : List[str] , ): _UpperCAmelCase = self.unet.config.sample_size _UpperCAmelCase = (batch_size, 3, img_size, img_size) _UpperCAmelCase = self.unet _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ ) * self.scheduler.init_noise_sigma _UpperCAmelCase = sample.to(self.device ) self.scheduler.set_timesteps(snake_case_ ) self.scheduler.set_sigmas(snake_case_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _UpperCAmelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): _UpperCAmelCase = self.unet(snake_case_ , snake_case_ ).sample _UpperCAmelCase = self.scheduler.step_correct(snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample # prediction step _UpperCAmelCase = model(snake_case_ , snake_case_ ).sample _UpperCAmelCase = self.scheduler.step_pred(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = output.prev_sample, output.prev_sample_mean _UpperCAmelCase = sample_mean.clamp(0 , 1 ) _UpperCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=snake_case_ )
156
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Dict ) -> Dict: '''simple docstring''' assert isinstance(__lowercase , __lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Optional[int] , __lowercase : List[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : str , __lowercase : int ) -> int: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader(__lowercase , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Optional[Any] , __lowercase : Optional[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , split=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : Tuple ) -> Tuple: '''simple docstring''' if issubclass(__lowercase , __lowercase ): _UpperCAmelCase = parquet_path elif issubclass(__lowercase , __lowercase ): _UpperCAmelCase = [parquet_path] _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : Any , __lowercase : Union[str, Any]=("train",) ) -> List[str]: '''simple docstring''' assert isinstance(__lowercase , __lowercase ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : str , __lowercase : Dict ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader( {"train": parquet_path} , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : List[str] , __lowercase : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader({"train": parquet_path} , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : int ) -> List[Any]: '''simple docstring''' if split: _UpperCAmelCase = {split: parquet_path} else: _UpperCAmelCase = "train" _UpperCAmelCase = {"train": parquet_path, "test": parquet_path} _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = ParquetDatasetWriter(__lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase = pq.ParquetFile(tmp_path / "foo.parquet" ) _UpperCAmelCase = pf.read() assert dataset.data.table == output_table def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = str(shared_datadir / "test_image_rgb.jpg" ) _UpperCAmelCase = {"image": [image_path]} _UpperCAmelCase = Features({"image": Image()} ) _UpperCAmelCase = Dataset.from_dict(__lowercase , features=__lowercase ) _UpperCAmelCase = ParquetDatasetWriter(__lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _UpperCAmelCase = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Tuple ) -> Optional[int]: '''simple docstring''' assert get_writer_batch_size(__lowercase ) == expected
156
1
'''simple docstring''' import functools def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ) or not all(isinstance(UpperCamelCase , UpperCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(UpperCamelCase ) != 3 or not all(isinstance(UpperCamelCase , UpperCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(UpperCamelCase ) == 0: return 0 if min(UpperCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(UpperCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) lowerCAmelCase__ : Any = set(UpperCamelCase ) @functools.cache def dynamic_programming(UpperCamelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
37
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCAmelCase__ = 'http://www.mocksite.com/file1.txt' UpperCAmelCase__ = '"text": ["foo", "foo"]' UpperCAmelCase__ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class lowerCAmelCase__ : __a = 200 __a = {"""Content-Length""": """100"""} __a = {} def lowercase ( self : List[str] , **_lowerCamelCase : List[str] ): return [bytes(_lowerCamelCase , '''utf-8''' )] def _UpperCAmelCase ( *__lowerCamelCase : List[str] , **__lowerCamelCase : Dict ) -> Dict: return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str ) -> int: import requests monkeypatch.setattr(__lowerCamelCase , '''request''' , __lowerCamelCase ) _snake_case = URL if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = url elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [url] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': url} _snake_case = '''dummy''' _snake_case = '''downloads''' _snake_case = tmp_path _snake_case = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase , __lowerCamelCase ) , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.download(__lowerCamelCase ) _snake_case = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [downloaded_paths] _snake_case = [urls] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in downloaded_paths.keys() _snake_case = downloaded_paths.values() _snake_case = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase , __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case = Path(__lowerCamelCase ) _snake_case = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case = downloaded_path.read_text() assert content == CONTENT _snake_case = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() _snake_case = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ) -> int: _snake_case = str(__lowerCamelCase ) if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = filename elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [filename] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': filename} _snake_case = '''dummy''' _snake_case = xz_file.parent _snake_case = '''extracted''' _snake_case = DownloadConfig( cache_dir=__lowerCamelCase , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.extract(__lowerCamelCase ) _snake_case = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [extracted_paths] _snake_case = [paths] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in extracted_paths.keys() _snake_case = extracted_paths.values() _snake_case = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase , __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case = Path(__lowerCamelCase ) _snake_case = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase , etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case = extracted_path.read_text() _snake_case = text_file.read_text() assert extracted_file_content == expected_file_content def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ) -> Dict: assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__lowerCamelCase , start=1 ): _snake_case = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : str ) -> Dict: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : List[Any] ) -> Tuple: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> List[Any]: _snake_case = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ) , start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
288
0
def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''only integers accepted as input''' ) else: snake_case_ : Any = str(abs(_UpperCamelCase ) ) snake_case_ : Union[str, Any] = [list(_UpperCamelCase ) for char in range(len(_UpperCamelCase ) )] for index in range(len(_UpperCamelCase ) ): num_transpositions[index].pop(_UpperCamelCase ) return max( int(''''''.join(list(_UpperCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
369
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase_ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCAmelCase_ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class __lowerCAmelCase ( _a ): lowerCamelCase_ : int = VOCAB_FILES_NAMES lowerCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Optional[Any] = BlenderbotSmallTokenizer def __init__(self , __magic_name__=None , __magic_name__=None , __magic_name__="<|endoftext|>" , __magic_name__="<|endoftext|>" , __magic_name__="<|endoftext|>" , __magic_name__=False , __magic_name__=True , **__magic_name__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=__magic_name__ , merges=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , ) , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , **__magic_name__ , ) snake_case_ : Optional[int] = add_prefix_space def lowerCamelCase (self , __magic_name__ , __magic_name__=None ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' snake_case_ : List[str] = [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
279
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Optional[int] = filter(lambda snake_case__ : p.requires_grad , model.parameters() ) __UpperCamelCase : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params _lowerCAmelCase = logging.getLogger(__name__) def __lowerCAmelCase ( snake_case__ , snake_case__ ): if metric == "rouge2": __UpperCamelCase : Optional[Any] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": __UpperCamelCase : int = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": __UpperCamelCase : Optional[Any] = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": __UpperCamelCase : List[Any] = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" " function." ) __UpperCamelCase : int = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=F"val_{metric}" , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase ( snake_case__ , snake_case__ ): return EarlyStopping( monitor=F"val_{metric}" , mode="min" if "loss" in metric else "max" , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class A ( pl.Callback ): '''simple docstring''' def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> str: __UpperCamelCase : Optional[int] = {f"lr_group_{i}": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_UpperCAmelCase ) @rank_zero_only def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=True ) -> None: logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" ) __UpperCamelCase : Optional[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results __UpperCamelCase : Any = Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase : Tuple = od / "test_results.txt" __UpperCamelCase : int = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase : Optional[int] = od / f"{type_path}_results/{trainer.global_step:05d}.txt" __UpperCamelCase : Optional[Any] = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=_UpperCAmelCase ) generations_file.parent.mkdir(exist_ok=_UpperCAmelCase ) with open(_UpperCAmelCase , "a+" ) as writer: for key in sorted(_UpperCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase : Optional[Any] = metrics[key] if isinstance(_UpperCAmelCase , torch.Tensor ): __UpperCamelCase : Optional[Any] = val.item() __UpperCamelCase : List[Any] = f"{key}: {val:.6f}\n" writer.write(_UpperCAmelCase ) if not save_generations: return if "preds" in metrics: __UpperCamelCase : Optional[int] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(_UpperCAmelCase ) @rank_zero_only def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> str: try: __UpperCamelCase : str = pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase : Any = pl_module.model.num_parameters() __UpperCamelCase : List[Any] = count_trainable_parameters(_UpperCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_UpperCAmelCase , _UpperCAmelCase , "test" ) @rank_zero_only def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
298
from __future__ import annotations UpperCAmelCase__ = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def A ( _UpperCAmelCase : Matrix , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def A ( _UpperCAmelCase : Matrix ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def A ( _UpperCAmelCase : Matrix ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(_UpperCAmelCase ): _UpperCAmelCase , _UpperCAmelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = digit if sudoku(_UpperCAmelCase ) is not None: return grid _UpperCAmelCase = 0 return None def A ( _UpperCAmelCase : Matrix ) -> None: '''simple docstring''' for row in grid: for cell in row: print(_UpperCAmelCase , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") UpperCAmelCase__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
339
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = """▁""" snake_case_ = {"""vocab_file""": """sentencepiece.bpe.model"""} snake_case_ = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } snake_case_ = { """facebook/xglm-564M""": 2048, } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :str , lowercase_ :Optional[Any] , lowercase_ :Tuple="<s>" , lowercase_ :Any="</s>" , lowercase_ :str="</s>" , lowercase_ :Any="<s>" , lowercase_ :Optional[Any]="<unk>" , lowercase_ :Optional[int]="<pad>" , lowercase_ :Optional[Dict[str, Any]] = None , **lowercase_ :int , ) -> None: UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase = 7 UpperCAmelCase = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCAmelCase = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowercase_ ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :Any ) -> int: UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self :List[str] , lowercase_ :Dict ) -> Optional[Any]: UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__ ( self :Tuple , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None , lowercase_ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__ ( self :Any ) -> Tuple: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__ ( self :Union[str, Any] ) -> Dict: UpperCAmelCase = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self :Any , lowercase_ :str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Tuple ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowercase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self :Tuple , lowercase_ :Tuple ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self :Dict , lowercase_ :List[str] ) -> List[str]: UpperCAmelCase = ''.join(lowercase_ ).replace(lowercase_ , ' ' ).strip() return out_string def UpperCAmelCase__ ( self :List[str] , lowercase_ :str , lowercase_ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
181
"""simple docstring""" def _lowerCAmelCase ( lowercase_ ): if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase_ ) if number < 1: UpperCAmelCase = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowercase_ ) UpperCAmelCase = 1 for i in range(1 , lowercase_ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
181
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __A (unittest.TestCase): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : Union[str, Any]=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Any=0.9 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , ) ->Optional[Any]: """simple docstring""" snake_case_ = size if size is not None else {"""shortest_edge""": 30} snake_case_ = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize_and_center_crop snake_case_ = size snake_case_ = crop_pct snake_case_ = crop_size snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std def lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __A (_lowerCamelCase , unittest.TestCase): '''simple docstring''' __lowercase: Union[str, Any] = PoolFormerImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" snake_case_ = PoolFormerImageProcessingTester(self ) @property def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """crop_pct""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""" ) ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase ( self : Union[str, Any] ) ->Any: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
347
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A = 1_000_000 ) -> int: _snake_case = limit + 1 _snake_case = [0] * limit for first_term in range(1 , __A ): for n in range(__A , __A , __A ): _snake_case = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _snake_case = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
42
0
from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
369
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' while b: UpperCAmelCase__ , UpperCAmelCase__ = b, a % b return a def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(SCREAMING_SNAKE_CASE__ , a % b ) def _UpperCamelCase ( ): '''simple docstring''' print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
61
0
'''simple docstring''' import math def lowercase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): """simple docstring""" if ( not isinstance(lowerCAmelCase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def lowercase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): """simple docstring""" if ( not isinstance(lowerCAmelCase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
254
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): """simple docstring""" return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any="attention" ): """simple docstring""" __UpperCAmelCase : int = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) __UpperCAmelCase : Tuple = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __UpperCAmelCase : Tuple = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) __UpperCAmelCase : List[str] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __UpperCAmelCase : List[str] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) __UpperCAmelCase : List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __UpperCAmelCase : Optional[Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) __UpperCAmelCase : Dict = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any]=False ): """simple docstring""" if split_mlp_wi: __UpperCAmelCase : List[str] = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] __UpperCAmelCase : Union[str, Any] = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] __UpperCAmelCase : Dict = (wi_a, wi_a) else: __UpperCAmelCase : Union[str, Any] = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] __UpperCAmelCase : Tuple = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def lowercase_ ( lowerCAmelCase__ : dict , *, lowerCAmelCase__ : int , lowerCAmelCase__ : bool , lowerCAmelCase__ : bool = False ): """simple docstring""" __UpperCAmelCase : Tuple = traverse_util.flatten_dict(variables["""target"""] ) __UpperCAmelCase : Union[str, Any] = {"""/""".join(lowerCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCAmelCase : Any = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase__ ) __UpperCAmelCase : Any = collections.OrderedDict() # Shared embeddings. __UpperCAmelCase : int = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : Union[str, Any] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """attention""" ) __UpperCAmelCase : Any = layer_norm __UpperCAmelCase : List[Any] = k.T __UpperCAmelCase : Optional[int] = o.T __UpperCAmelCase : str = q.T __UpperCAmelCase : Any = v.T # Block i, layer 1 (MLP). __UpperCAmelCase : List[str] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_mlp_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase : int = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = layer_norm if split_mlp_wi: __UpperCAmelCase : List[Any] = wi[0].T __UpperCAmelCase : Any = wi[1].T else: __UpperCAmelCase : Tuple = wi.T __UpperCAmelCase : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Dict = tax_relpos_bias_lookup( lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" ).T __UpperCAmelCase : Optional[int] = old["""encoder/encoder_norm/scale"""] if not scalable_attention: __UpperCAmelCase : Any = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """encoder""" ).T __UpperCAmelCase : Dict = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : str = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_self_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """self_attention""" ) __UpperCAmelCase : int = layer_norm __UpperCAmelCase : Optional[Any] = k.T __UpperCAmelCase : Dict = o.T __UpperCAmelCase : int = q.T __UpperCAmelCase : List[str] = v.T # Block i, layer 1 (Cross Attention). __UpperCAmelCase : Any = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """encoder_decoder_attention""" ) __UpperCAmelCase : Union[str, Any] = layer_norm __UpperCAmelCase : List[Any] = k.T __UpperCAmelCase : int = o.T __UpperCAmelCase : Optional[int] = q.T __UpperCAmelCase : Optional[int] = v.T # Block i, layer 2 (MLP). __UpperCAmelCase : Tuple = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_mlp_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase : Any = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = layer_norm if split_mlp_wi: __UpperCAmelCase : Optional[Any] = wi[0].T __UpperCAmelCase : Optional[int] = wi[1].T else: __UpperCAmelCase : str = wi.T __UpperCAmelCase : int = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Union[str, Any] = tax_relpos_bias_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" ).T __UpperCAmelCase : Dict = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCAmelCase : List[str] = old["""decoder/logits_dense/kernel"""].T return new def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : bool ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : str = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : List[str] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __UpperCAmelCase : Union[str, Any] = state_dict["""shared.weight"""] return state_dict def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Tuple = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) __UpperCAmelCase : Any = convert_tax_to_pytorch( lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ , scalable_attention=lowerCAmelCase__ ) __UpperCAmelCase : str = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , ): """simple docstring""" __UpperCAmelCase : Optional[int] = MTaConfig.from_json_file(lowerCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCAmelCase : List[Any] = UMTaEncoderModel(lowerCAmelCase__ ) else: __UpperCAmelCase : Dict = UMTaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase__ ) print("""Done""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) _UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
254
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = RobertaTokenizer _snake_case = RobertaTokenizerFast _snake_case = True _snake_case = {"""cls_token""": """<s>"""} def UpperCAmelCase ( self ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case : List[str] = dict(zip(A , range(len(A ) ) ) ) snake_case : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case : Union[str, Any] = {"""unk_token""": """<unk>"""} snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def UpperCAmelCase ( self , **A ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase ( self , **A ) -> str: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase ( self , A ) -> Optional[Any]: snake_case : Optional[Any] = """lower newer""" snake_case : List[Any] = """lower newer""" return input_text, output_text def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case : Optional[Any] = """lower newer""" snake_case : List[str] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case : List[str] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A , A ) snake_case : Dict = tokens + [tokenizer.unk_token] snake_case : Dict = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def UpperCAmelCase ( self ) -> Any: snake_case : Any = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=A ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=A ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[int] = self.tokenizer_class.from_pretrained("""roberta-base""" ) snake_case : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) snake_case : int = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) snake_case : Optional[int] = tokenizer.encode( """sequence builders""" , add_special_tokens=A , add_prefix_space=A ) snake_case : Optional[int] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=A , add_prefix_space=A ) snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A ) snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase ( self ) -> Dict: snake_case : int = self.get_tokenizer() snake_case : str = """Encode this sequence.""" snake_case : Optional[int] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments snake_case : Optional[Any] = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) snake_case : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A , A ) snake_case : int = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) snake_case : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A , A ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) snake_case : List[str] = tokenizer.encode(A , add_special_tokens=A ) snake_case : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A , A ) # Testing spaces after special tokens snake_case : Union[str, Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(A , lstrip=A , rstrip=A )} ) # mask token has a left space snake_case : List[str] = tokenizer.convert_tokens_to_ids(A ) snake_case : Optional[Any] = """Encode <mask> sequence""" snake_case : List[Any] = """Encode <mask>sequence""" snake_case : Union[str, Any] = tokenizer.encode(A ) snake_case : List[str] = encoded.index(A ) snake_case : Tuple = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A , A ) snake_case : str = tokenizer.encode(A ) snake_case : Tuple = encoded.index(A ) snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A , A ) def UpperCAmelCase ( self ) -> int: pass def UpperCAmelCase ( self ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : Tuple = self.rust_tokenizer_class.from_pretrained(A , **A ) snake_case : Optional[Any] = self.tokenizer_class.from_pretrained(A , **A ) snake_case : Union[str, Any] = """A, <mask> AllenNLP sentence.""" snake_case : Optional[int] = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) snake_case : Tuple = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def UpperCAmelCase ( self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""trim_offsets"""] , A ) def UpperCAmelCase ( self ) -> List[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : Tuple = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case : int = f"""{text_of_1_token} {text_of_1_token}""" snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : Any = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : List[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : int = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : Optional[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) snake_case : Union[str, Any] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : List[str] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )) , ) snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : List[str] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , ) snake_case : Any = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : List[str] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , )
176
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """bart""" _snake_case = ["""past_key_values"""] _snake_case = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , A=5_0_2_6_5 , A=1_0_2_4 , A=1_2 , A=4_0_9_6 , A=1_6 , A=1_2 , A=4_0_9_6 , A=1_6 , A=0.0 , A=0.0 , A="gelu" , A=1_0_2_4 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=0.0 , A=False , A=True , A=3 , A=1 , A=0 , A=2 , A=True , A=2 , A=2 , **A , ) -> Any: snake_case : Optional[int] = vocab_size snake_case : Union[str, Any] = max_position_embeddings snake_case : List[str] = d_model snake_case : List[Any] = encoder_ffn_dim snake_case : Optional[Any] = encoder_layers snake_case : Union[str, Any] = encoder_attention_heads snake_case : str = decoder_ffn_dim snake_case : Union[str, Any] = decoder_layers snake_case : Any = decoder_attention_heads snake_case : Union[str, Any] = dropout snake_case : List[str] = attention_dropout snake_case : List[Any] = activation_dropout snake_case : Optional[int] = activation_function snake_case : Union[str, Any] = init_std snake_case : List[str] = encoder_layerdrop snake_case : int = decoder_layerdrop snake_case : str = classifier_dropout snake_case : List[str] = use_cache snake_case : Tuple = encoder_layers snake_case : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A , pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , forced_eos_token_id=A , **A , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , A ): snake_case : Any = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" ) class __lowercase (UpperCamelCase__ ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: snake_case : Optional[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case : Tuple = {0: """batch"""} snake_case : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: snake_case : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} snake_case : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case , snake_case : List[Any] = self.num_layers for i in range(A ): snake_case : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} snake_case : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} else: snake_case : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: snake_case : Any = super().outputs else: snake_case : Any = super(A , self ).outputs if self.use_past: snake_case , snake_case : Any = self.num_layers for i in range(A ): snake_case : Any = {0: """batch""", 2: """past_sequence + sequence"""} snake_case : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: snake_case : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) # Generate decoder inputs snake_case : Any = seq_length if not self.use_past else 1 snake_case : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) snake_case : Optional[int] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} snake_case : List[str] = dict(**A , **A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case , snake_case : Optional[int] = common_inputs["""input_ids"""].shape snake_case : Any = common_inputs["""decoder_input_ids"""].shape[1] snake_case , snake_case : Optional[Any] = self.num_attention_heads snake_case : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : Any = decoder_seq_length + 3 snake_case : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case : str = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(A , A )] , dim=1 ) snake_case : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case , snake_case : Any = self.num_layers snake_case : List[str] = min(A , A ) snake_case : Dict = max(A , A ) - min_num_layers snake_case : List[str] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(A ): common_inputs["past_key_values"].append( ( torch.zeros(A ), torch.zeros(A ), torch.zeros(A ), torch.zeros(A ), ) ) # TODO: test this. snake_case : Tuple = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(A , A ): common_inputs["past_key_values"].append((torch.zeros(A ), torch.zeros(A )) ) return common_inputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: snake_case : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case , snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case : Optional[int] = seqlen + 2 snake_case , snake_case : Tuple = self.num_layers snake_case , snake_case : Optional[Any] = self.num_attention_heads snake_case : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : Optional[Any] = common_inputs["""attention_mask"""].dtype snake_case : int = torch.cat( [common_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 ) snake_case : Union[str, Any] = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(A ) ] return common_inputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case : int = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case : int = tokenizer.num_special_tokens_to_add(A ) snake_case : Tuple = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A ) # Generate dummy inputs according to compute batch and sequence snake_case : int = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case : str = dict(tokenizer(A , return_tensors=A ) ) return common_inputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: snake_case : Optional[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) elif self.task == "causal-lm": snake_case : Optional[int] = self._generate_dummy_inputs_for_causal_lm( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) else: snake_case : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) return common_inputs def UpperCAmelCase ( self , A , A , A , A ) -> Union[str, Any]: if self.task in ["default", "seq2seq-lm"]: snake_case : Optional[Any] = super()._flatten_past_key_values_(A , A , A , A ) else: snake_case : Union[str, Any] = super(A , self )._flatten_past_key_values_( A , A , A , A )
176
1
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( A_ ): def __init__( self : Optional[Any] , _lowerCamelCase : Optional[int]=None , **_lowerCamelCase : Optional[int] ): warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , _lowerCamelCase , ) super().__init__(args=_lowerCamelCase , **_lowerCamelCase )
288
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : list , __lowerCamelCase : int = 0 ) -> list: _snake_case = length or len(__lowerCamelCase ) _snake_case = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _snake_case , _snake_case = list_data[i + 1], list_data[i] _snake_case = True return list_data if not swapped else bubble_sort(__lowerCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
288
1
"""simple docstring""" from math import ceil def A_ ( snake_case_ : int = 1_0_0_1 ): '''simple docstring''' UpperCamelCase : str = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): UpperCamelCase : Optional[Any] = 2 * i + 1 UpperCamelCase : List[str] = 2 * i UpperCamelCase : Optional[int] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __A : Dict = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
27
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A : int = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
27
1