code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a): print("Loading config file...") def flatten_yaml_as_dict(_a , _a="" , _a="."): SCREAMING_SNAKE_CASE : Dict = [] for k, v in d.items(): SCREAMING_SNAKE_CASE : List[str] = parent_key + sep + k if parent_key else k if isinstance(_a , collections.abc.MutableMapping): items.extend(flatten_yaml_as_dict(_a , _a , sep=_a).items()) else: items.append((new_key, v)) return dict(_a) SCREAMING_SNAKE_CASE : Optional[int] = argparse.Namespace() with open(_a , "r") as yaml_file: try: SCREAMING_SNAKE_CASE : Union[str, Any] = yaml.load(_a , Loader=yaml.FullLoader) SCREAMING_SNAKE_CASE : Dict = flatten_yaml_as_dict(_a) for k, v in flat_cfg.items(): setattr(_a , _a , _a) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(_a , str(_a))) return config def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Dict = MobileViTVaConfig() SCREAMING_SNAKE_CASE : int = False # dataset if task_name.startswith("imagenet1k_"): SCREAMING_SNAKE_CASE : str = 1000 if int(task_name.strip().split("_")[-1]) == 384: SCREAMING_SNAKE_CASE : Dict = 384 else: SCREAMING_SNAKE_CASE : Tuple = 256 SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_"): SCREAMING_SNAKE_CASE : List[Any] = 21000 if int(task_name.strip().split("_")[-1]) == 384: SCREAMING_SNAKE_CASE : List[Any] = 384 else: SCREAMING_SNAKE_CASE : Optional[Any] = 256 SCREAMING_SNAKE_CASE : List[Any] = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_"): SCREAMING_SNAKE_CASE : str = 151 SCREAMING_SNAKE_CASE : Union[str, Any] = 512 SCREAMING_SNAKE_CASE : str = "ade20k-id2label.json" SCREAMING_SNAKE_CASE : Union[str, Any] = True elif task_name.startswith("voc_"): SCREAMING_SNAKE_CASE : Dict = 21 SCREAMING_SNAKE_CASE : Optional[int] = 512 SCREAMING_SNAKE_CASE : Dict = "pascal-voc-id2label.json" SCREAMING_SNAKE_CASE : Tuple = True # orig_config SCREAMING_SNAKE_CASE : Optional[Any] = load_orig_config_file(_a) assert getattr(_a , "model.classification.name" , -1) == "mobilevit_v2", "Invalid model" SCREAMING_SNAKE_CASE : Optional[int] = getattr(_a , "model.classification.mitv2.width_multiplier" , 1.0) assert ( getattr(_a , "model.classification.mitv2.attn_norm_layer" , -1) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" SCREAMING_SNAKE_CASE : List[Any] = getattr(_a , "model.classification.activation.name" , "swish") # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: SCREAMING_SNAKE_CASE : List[Any] = getattr(_a , "model.segmentation.output_stride" , 16) if "_deeplabv3" in task_name: SCREAMING_SNAKE_CASE : int = getattr(_a , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36]) SCREAMING_SNAKE_CASE : Optional[Any] = getattr(_a , "model.segmentation.deeplabv3.aspp_out_channels" , 512) SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_a , "model.segmentation.deeplabv3.aspp_dropout" , 0.1) # id2label SCREAMING_SNAKE_CASE : int = "huggingface/label-files" SCREAMING_SNAKE_CASE : Any = json.load(open(hf_hub_download(_a , _a , repo_type="dataset") , "r")) SCREAMING_SNAKE_CASE : Optional[int] = {int(_a): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : List[Any] = idalabel SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Tuple = dct.pop(_a) SCREAMING_SNAKE_CASE : int = val def lowerCamelCase__ ( _a , _a=False): if base_model: SCREAMING_SNAKE_CASE : int = "" else: SCREAMING_SNAKE_CASE : Optional[int] = "mobilevitv2." SCREAMING_SNAKE_CASE : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": SCREAMING_SNAKE_CASE : Optional[Any] = k[8:] else: SCREAMING_SNAKE_CASE : Optional[Any] = k if ".block." in k: SCREAMING_SNAKE_CASE : List[Any] = k_new.replace(".block." , ".") if ".conv." in k: SCREAMING_SNAKE_CASE : Tuple = k_new.replace(".conv." , ".convolution.") if ".norm." in k: SCREAMING_SNAKE_CASE : Dict = k_new.replace(".norm." , ".normalization.") if "conv_1." in k: SCREAMING_SNAKE_CASE : Optional[Any] = k_new.replace("conv_1." , f"{model_prefix}conv_stem.") for i in [1, 2]: if f"layer_{i}." in k: SCREAMING_SNAKE_CASE : Dict = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer.") if ".exp_1x1." in k: SCREAMING_SNAKE_CASE : Union[str, Any] = k_new.replace(".exp_1x1." , ".expand_1x1.") if ".red_1x1." in k: SCREAMING_SNAKE_CASE : Dict = k_new.replace(".red_1x1." , ".reduce_1x1.") for i in [3, 4, 5]: if f"layer_{i}.0." in k: SCREAMING_SNAKE_CASE : List[str] = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer.") if f"layer_{i}.1.local_rep.0." in k: SCREAMING_SNAKE_CASE : str = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk.") if f"layer_{i}.1.local_rep.1." in k: SCREAMING_SNAKE_CASE : List[str] = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1.") for i in [3, 4, 5]: if i == 3: SCREAMING_SNAKE_CASE : Dict = [0, 1] elif i == 4: SCREAMING_SNAKE_CASE : str = [0, 1, 2, 3] elif i == 5: SCREAMING_SNAKE_CASE : List[Any] = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: SCREAMING_SNAKE_CASE : List[str] = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.") if f"layer_{i}.1.global_rep.{j+1}." in k: SCREAMING_SNAKE_CASE : List[Any] = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm.") if f"layer_{i}.1.conv_proj." in k: SCREAMING_SNAKE_CASE : List[str] = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection.") if "pre_norm_attn.0." in k: SCREAMING_SNAKE_CASE : Tuple = k_new.replace("pre_norm_attn.0." , "layernorm_before.") if "pre_norm_attn.1." in k: SCREAMING_SNAKE_CASE : int = k_new.replace("pre_norm_attn.1." , "attention.") if "pre_norm_ffn.0." in k: SCREAMING_SNAKE_CASE : Any = k_new.replace("pre_norm_ffn.0." , "layernorm_after.") if "pre_norm_ffn.1." in k: SCREAMING_SNAKE_CASE : List[Any] = k_new.replace("pre_norm_ffn.1." , "ffn.conv1.") if "pre_norm_ffn.3." in k: SCREAMING_SNAKE_CASE : Any = k_new.replace("pre_norm_ffn.3." , "ffn.conv2.") if "classifier.1." in k: SCREAMING_SNAKE_CASE : Optional[Any] = k_new.replace("classifier.1." , "classifier.") if "seg_head." in k: SCREAMING_SNAKE_CASE : List[Any] = k_new.replace("seg_head." , "segmentation_head.") if ".aspp_layer." in k: SCREAMING_SNAKE_CASE : int = k_new.replace(".aspp_layer." , ".") if ".aspp_pool." in k: SCREAMING_SNAKE_CASE : Tuple = k_new.replace(".aspp_pool." , ".") rename_keys.append((k, k_new)) return rename_keys def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[str] = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head."): keys_to_ignore.append(_a) for k in keys_to_ignore: state_dict.pop(_a , _a) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(_a , stream=_a).raw) return im @torch.no_grad() def lowerCamelCase__ ( _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Union[str, Any] = get_mobilevitva_config(_a , _a) # load original state_dict SCREAMING_SNAKE_CASE : Any = torch.load(_a , map_location="cpu") # load huggingface model if task_name.startswith("ade20k_") or task_name.startswith("voc_"): SCREAMING_SNAKE_CASE : List[str] = MobileViTVaForSemanticSegmentation(_a).eval() SCREAMING_SNAKE_CASE : Optional[Any] = False else: SCREAMING_SNAKE_CASE : List[Any] = MobileViTVaForImageClassification(_a).eval() SCREAMING_SNAKE_CASE : str = False # remove and rename some keys of load the original model SCREAMING_SNAKE_CASE : Dict = checkpoint remove_unused_keys(_a) SCREAMING_SNAKE_CASE : Dict = create_rename_keys(_a , base_model=_a) for rename_key_src, rename_key_dest in rename_keys: rename_key(_a , _a , _a) # load modified state_dict model.load_state_dict(_a) # Check outputs on an image, prepared by MobileViTImageProcessor SCREAMING_SNAKE_CASE : int = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32) SCREAMING_SNAKE_CASE : List[str] = image_processor(images=prepare_img() , return_tensors="pt") SCREAMING_SNAKE_CASE : List[Any] = model(**_a) # verify classification model if task_name.startswith("imagenet"): SCREAMING_SNAKE_CASE : Any = outputs.logits SCREAMING_SNAKE_CASE : Dict = logits.argmax(-1).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx]) if task_name.startswith("imagenet1k_256") and config.width_multiplier == 1.0: # expected_logits for base variant SCREAMING_SNAKE_CASE : Any = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01]) assert torch.allclose(logits[0, :3] , _a , atol=1E-4) Path(_a).mkdir(exist_ok=_a) print(f"Saving model {task_name} to {pytorch_dump_folder_path}") model.save_pretrained(_a) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(_a) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) a_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
25
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =42 # setable values lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None @classmethod def __UpperCamelCase ( cls : Tuple , a : CommonSchedulerState , a : jnp.ndarray , a : jnp.ndarray ) -> Dict: """simple docstring""" return cls(common=a , init_noise_sigma=a , timesteps=a ) @dataclass class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =42 class _UpperCamelCase ( __A , __A ): '''simple docstring''' lowerCamelCase__ =[e.name for e in FlaxKarrasDiffusionSchedulers] lowerCamelCase__ =42 @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return True @register_to_config def __init__( self : str , a : int = 1000 , a : float = 0.0001 , a : float = 0.02 , a : str = "linear" , a : Optional[jnp.ndarray] = None , a : str = "fixed_small" , a : bool = True , a : str = "epsilon" , a : jnp.dtype = jnp.floataa , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = dtype def __UpperCamelCase ( self : Any , a : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: SCREAMING_SNAKE_CASE : Optional[int] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE : Tuple = jnp.array(1.0 , dtype=self.dtype ) SCREAMING_SNAKE_CASE : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=a , init_noise_sigma=a , timesteps=a , ) def __UpperCamelCase ( self : List[Any] , a : DDPMSchedulerState , a : jnp.ndarray , a : Optional[int] = None ) -> jnp.ndarray: """simple docstring""" return sample def __UpperCamelCase ( self : Optional[int] , a : DDPMSchedulerState , a : int , a : Tuple = () ) -> DDPMSchedulerState: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE : Dict = (jnp.arange(0 , a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=a , timesteps=a , ) def __UpperCamelCase ( self : Optional[Any] , a : DDPMSchedulerState , a : List[str] , a : Any=None , a : Dict=None ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = state.common.alphas_cumprod[t] SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample SCREAMING_SNAKE_CASE : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: SCREAMING_SNAKE_CASE : int = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": SCREAMING_SNAKE_CASE : str = jnp.clip(a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": SCREAMING_SNAKE_CASE : Any = jnp.log(jnp.clip(a , a_min=1e-20 ) ) elif variance_type == "fixed_large": SCREAMING_SNAKE_CASE : int = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log SCREAMING_SNAKE_CASE : str = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": SCREAMING_SNAKE_CASE : Any = variance SCREAMING_SNAKE_CASE : int = state.common.betas[t] SCREAMING_SNAKE_CASE : Dict = (predicted_variance + 1) / 2 SCREAMING_SNAKE_CASE : List[Any] = frac * max_log + (1 - frac) * min_log return variance def __UpperCamelCase ( self : Any , a : DDPMSchedulerState , a : jnp.ndarray , a : int , a : jnp.ndarray , a : Optional[jax.random.KeyArray] = None , a : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = timestep if key is None: SCREAMING_SNAKE_CASE : str = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.split(a , sample.shape[1] , axis=1 ) else: SCREAMING_SNAKE_CASE : int = None # 1. compute alphas, betas SCREAMING_SNAKE_CASE : Tuple = state.common.alphas_cumprod[t] SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) SCREAMING_SNAKE_CASE : str = 1 - alpha_prod_t SCREAMING_SNAKE_CASE : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE : Tuple = jnp.clip(a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE : Optional[int] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t SCREAMING_SNAKE_CASE : int = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): SCREAMING_SNAKE_CASE : Optional[int] = jax.random.split(a , num=1 ) SCREAMING_SNAKE_CASE : Dict = jax.random.normal(a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(a , a , predicted_variance=a ) ** 0.5) * noise SCREAMING_SNAKE_CASE : str = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) SCREAMING_SNAKE_CASE : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=a , state=a ) def __UpperCamelCase ( self : Union[str, Any] , a : DDPMSchedulerState , a : jnp.ndarray , a : jnp.ndarray , a : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , a , a , a ) def __UpperCamelCase ( self : str , a : DDPMSchedulerState , a : jnp.ndarray , a : jnp.ndarray , a : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , a , a , a ) def __len__( self : int ) -> Any: """simple docstring""" return self.config.num_train_timesteps
25
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() a_ = logging.get_logger('transformers.models.speecht5') a_ = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } a_ = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } a_ = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } a_ = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } a_ = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } a_ = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } a_ = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } a_ = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } a_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } a_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a_ = [] a_ = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] a_ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] a_ = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] a_ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def lowerCamelCase__ ( _a , _a , _a , _a , _a): for attribute in key.split("."): SCREAMING_SNAKE_CASE : Any = getattr(_a , _a) if weight_type is not None: SCREAMING_SNAKE_CASE : str = getattr(_a , _a).shape else: SCREAMING_SNAKE_CASE : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}") if weight_type == "weight": SCREAMING_SNAKE_CASE : List[str] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : int = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : Tuple = value elif weight_type == "running_mean": SCREAMING_SNAKE_CASE : Dict = value elif weight_type == "running_var": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "num_batches_tracked": SCREAMING_SNAKE_CASE : Dict = value else: SCREAMING_SNAKE_CASE : int = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.") def lowerCamelCase__ ( _a , _a): for key in ignore_keys: if key.endswith(".*"): if name.startswith(key[:-1]): return True elif ".*." in key: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = key.split(".*.") if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : List[str] = [] if task == "s2t": SCREAMING_SNAKE_CASE : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder SCREAMING_SNAKE_CASE : Optional[int] = MAPPING_S2T SCREAMING_SNAKE_CASE : Any = IGNORE_KEYS_S2T elif task == "t2s": SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Optional[Any] = MAPPING_T2S SCREAMING_SNAKE_CASE : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": SCREAMING_SNAKE_CASE : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder SCREAMING_SNAKE_CASE : Union[str, Any] = MAPPING_S2S SCREAMING_SNAKE_CASE : str = IGNORE_KEYS_S2S else: raise ValueError(f"Unsupported task: {task}") for name, value in fairseq_dict.items(): if should_ignore(_a , _a): logger.info(f"{name} was ignored") continue SCREAMING_SNAKE_CASE : Tuple = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = key.split(".*.") if prefix in name and suffix in name: SCREAMING_SNAKE_CASE : str = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: SCREAMING_SNAKE_CASE : int = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(_a)[0].split(".")[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace("*" , _a) if "weight_g" in name: SCREAMING_SNAKE_CASE : str = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE : List[Any] = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE : Optional[int] = "bias" elif "weight" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = "weight" elif "running_mean" in name: SCREAMING_SNAKE_CASE : Any = "running_mean" elif "running_var" in name: SCREAMING_SNAKE_CASE : Tuple = "running_var" elif "num_batches_tracked" in name: SCREAMING_SNAKE_CASE : Dict = "num_batches_tracked" else: SCREAMING_SNAKE_CASE : Optional[int] = None set_recursively(_a , _a , _a , _a , _a) continue if not is_used: unused_weights.append(_a) logger.warning(f"Unused weights: {unused_weights}") def lowerCamelCase__ ( _a , _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split("conv_layers.")[-1] SCREAMING_SNAKE_CASE : Union[str, Any] = name.split(".") SCREAMING_SNAKE_CASE : Dict = int(items[0]) SCREAMING_SNAKE_CASE : Union[str, Any] = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.") SCREAMING_SNAKE_CASE : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.") SCREAMING_SNAKE_CASE : List[str] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.") SCREAMING_SNAKE_CASE : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.") SCREAMING_SNAKE_CASE : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(_a) @torch.no_grad() def lowerCamelCase__ ( _a , _a , _a , _a=None , _a=None , _a=None , ): if config_path is not None: SCREAMING_SNAKE_CASE : int = SpeechTaConfig.from_pretrained(_a) else: SCREAMING_SNAKE_CASE : Tuple = SpeechTaConfig() if task == "s2t": SCREAMING_SNAKE_CASE : int = config.max_text_positions SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaForSpeechToText(_a) elif task == "t2s": SCREAMING_SNAKE_CASE : Any = 1876 SCREAMING_SNAKE_CASE : Dict = 600 SCREAMING_SNAKE_CASE : Tuple = config.max_speech_positions SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaForTextToSpeech(_a) elif task == "s2s": SCREAMING_SNAKE_CASE : Union[str, Any] = 1876 SCREAMING_SNAKE_CASE : Tuple = config.max_speech_positions SCREAMING_SNAKE_CASE : int = SpeechTaForSpeechToSpeech(_a) else: raise ValueError(f"Unknown task name: {task}") if vocab_path: SCREAMING_SNAKE_CASE : List[str] = SpeechTaTokenizer(_a , model_max_length=config.max_text_positions) # Mask token behaves like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Optional[int] = AddedToken("<mask>" , lstrip=_a , rstrip=_a) SCREAMING_SNAKE_CASE : Tuple = mask_token tokenizer.add_special_tokens({"mask_token": mask_token}) tokenizer.add_tokens(["<ctc_blank>"]) SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE : int = SpeechTaProcessor(tokenizer=_a , feature_extractor=_a) processor.save_pretrained(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.load(_a) recursively_load_weights(fairseq_checkpoint["model"] , _a , _a) model.save_pretrained(_a) if repo_id: print("Pushing to the hub...") processor.push_to_hub(_a) model.push_to_hub(_a) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) a_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
25
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } a_ = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } a_ = { 'ctrl': 256, } a_ = { 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Any = set() SCREAMING_SNAKE_CASE : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char)) SCREAMING_SNAKE_CASE : Optional[int] = char SCREAMING_SNAKE_CASE : List[str] = set(_a) return pairs class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =CONTROL_CODES def __init__( self : List[Any] , a : int , a : str , a : Optional[Any]="<unk>" , **a : List[str] ) -> List[str]: """simple docstring""" super().__init__(unk_token=a , **a ) with open(a , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(a ) SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in self.encoder.items()} with open(a , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE : Dict = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE : str = [tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE : Union[str, Any] = dict(zip(a , range(len(a ) ) ) ) SCREAMING_SNAKE_CASE : List[str] = {} @property def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : List[str] , a : Union[str, Any] ) -> Any: """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE : Tuple = tuple(a ) SCREAMING_SNAKE_CASE : Dict = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) SCREAMING_SNAKE_CASE : Tuple = get_pairs(a ) if not pairs: return token while True: SCREAMING_SNAKE_CASE : Union[str, Any] = min(a , key=lambda a : self.bpe_ranks.get(a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = bigram SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Any = 0 while i < len(a ): try: SCREAMING_SNAKE_CASE : Tuple = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE : List[Any] = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE : Tuple = tuple(a ) SCREAMING_SNAKE_CASE : str = new_word if len(a ) == 1: break else: SCREAMING_SNAKE_CASE : Dict = get_pairs(a ) SCREAMING_SNAKE_CASE : Tuple = "@@ ".join(a ) SCREAMING_SNAKE_CASE : Tuple = word[:-4] SCREAMING_SNAKE_CASE : str = word return word def __UpperCamelCase ( self : Union[str, Any] , a : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Tuple = re.findall(R"\S+\n?" , a ) for token in words: split_tokens.extend(list(self.bpe(a ).split(" " ) ) ) return split_tokens def __UpperCamelCase ( self : Tuple , a : Optional[Any] ) -> Tuple: """simple docstring""" return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Any , a : int ) -> Tuple: """simple docstring""" return self.decoder.get(a , self.unk_token ) def __UpperCamelCase ( self : Dict , a : Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = " ".join(a ).replace("@@ " , "" ).strip() return out_string def __UpperCamelCase ( self : int , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE : Any = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + "\n" ) SCREAMING_SNAKE_CASE : List[str] = 0 with open(a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE : Dict = token_index writer.write(" ".join(a ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
25
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ = logging.get_logger(__name__) a_ = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _UpperCamelCase ( __A , __A ): '''simple docstring''' lowerCamelCase__ ='swin' lowerCamelCase__ ={ 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] , a : Tuple=224 , a : Optional[Any]=4 , a : Optional[Any]=3 , a : Optional[Any]=96 , a : Union[str, Any]=[2, 2, 6, 2] , a : Tuple=[3, 6, 12, 24] , a : Union[str, Any]=7 , a : List[str]=4.0 , a : Optional[Any]=True , a : Union[str, Any]=0.0 , a : Optional[int]=0.0 , a : Union[str, Any]=0.1 , a : List[Any]="gelu" , a : Union[str, Any]=False , a : Any=0.02 , a : str=1e-5 , a : Any=32 , a : Optional[int]=None , a : str=None , **a : Dict , ) -> Any: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Any = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Any = embed_dim SCREAMING_SNAKE_CASE : List[str] = depths SCREAMING_SNAKE_CASE : Union[str, Any] = len(a ) SCREAMING_SNAKE_CASE : Dict = num_heads SCREAMING_SNAKE_CASE : Optional[int] = window_size SCREAMING_SNAKE_CASE : List[Any] = mlp_ratio SCREAMING_SNAKE_CASE : int = qkv_bias SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = drop_path_rate SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : int = use_absolute_embeddings SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE : int = int(embed_dim * 2 ** (len(a ) - 1) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ["stem"] + [F"stage{idx}" for idx in range(1 , len(a ) + 1 )] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = get_aligned_output_features_output_indices( out_features=a , out_indices=a , stage_names=self.stage_names ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =version.parse('1.11' ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __UpperCamelCase ( self : Optional[int] ) -> float: """simple docstring""" return 1e-4
25
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a , _a=False): SCREAMING_SNAKE_CASE : Any = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token")) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings")) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias")) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight")) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight")) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias")) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ]) # fmt: on return rename_keys def lowerCamelCase__ ( _a , _a , _a=False): for i in range(config.num_hidden_layers): if base_model: SCREAMING_SNAKE_CASE : Any = "" else: SCREAMING_SNAKE_CASE : Optional[int] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight") SCREAMING_SNAKE_CASE : List[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : str = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : str = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_a , _a) def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Any = dct.pop(_a) SCREAMING_SNAKE_CASE : int = val def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(_a , stream=_a).raw) return im @torch.no_grad() def lowerCamelCase__ ( _a , _a , _a=False): SCREAMING_SNAKE_CASE : Any = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_a , ) SCREAMING_SNAKE_CASE : Tuple = ViTHybridConfig(backbone_config=_a , image_size=384 , num_labels=1000) SCREAMING_SNAKE_CASE : Any = False # load original model from timm SCREAMING_SNAKE_CASE : Any = timm.create_model(_a , pretrained=_a) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE : Any = timm_model.state_dict() if base_model: remove_classification_head_(_a) SCREAMING_SNAKE_CASE : Dict = create_rename_keys(_a , _a) for src, dest in rename_keys: rename_key(_a , _a , _a) read_in_q_k_v(_a , _a , _a) SCREAMING_SNAKE_CASE : List[str] = "huggingface/label-files" SCREAMING_SNAKE_CASE : List[Any] = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(_a , _a , repo_type="dataset") , "r")) SCREAMING_SNAKE_CASE : List[Any] = {int(_a): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : List[str] = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE : Dict = ViTHybridModel(_a).eval() else: SCREAMING_SNAKE_CASE : Dict = ViTHybridForImageClassification(_a).eval() model.load_state_dict(_a) # create image processor SCREAMING_SNAKE_CASE : int = create_transform(**resolve_data_config({} , model=_a)) SCREAMING_SNAKE_CASE : Tuple = transform.transforms SCREAMING_SNAKE_CASE : Optional[int] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE : List[str] = ViTHybridImageProcessor( do_resize=_a , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_a , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_a , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = transform(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : str = processor(_a , return_tensors="pt").pixel_values # verify pixel values assert torch.allclose(_a , _a) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(_a) SCREAMING_SNAKE_CASE : int = outputs.logits print("Predicted class:" , logits.argmax(-1).item()) if base_model: SCREAMING_SNAKE_CASE : List[Any] = timm_model.forward_features(_a) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_a , outputs.pooler_output , atol=1E-3) else: SCREAMING_SNAKE_CASE : Union[str, Any] = timm_model(_a) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_a , outputs.logits , atol=1E-3) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(_a).mkdir(exist_ok=_a) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(_a) print(f"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(_a) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}") model.push_to_hub(f"ybelkada/{vit_name}") processor.push_to_hub(f"ybelkada/{vit_name}") if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) a_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
25
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
1
import math def lowerCamelCase__ ( _a = 100): SCREAMING_SNAKE_CASE : Tuple = sum(i * i for i in range(1 , n + 1)) SCREAMING_SNAKE_CASE : Optional[int] = int(math.pow(sum(range(1 , n + 1)) , 2)) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
1
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
25
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
1
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } a_ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } a_ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Dict = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) SCREAMING_SNAKE_CASE : Union[str, Any] = bs[:] SCREAMING_SNAKE_CASE : Dict = 0 for b in range(2**8): if b not in bs: bs.append(_a) cs.append(2**8 + n) n += 1 SCREAMING_SNAKE_CASE : int = [chr(_a) for n in cs] return dict(zip(_a , _a)) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[int] = set() SCREAMING_SNAKE_CASE : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) SCREAMING_SNAKE_CASE : Optional[int] = char return pairs class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , a : Any , a : List[str] , a : Union[str, Any]="replace" , a : Optional[Any]="<s>" , a : Tuple="</s>" , a : str="</s>" , a : Optional[int]="<s>" , a : Dict="<unk>" , a : Dict="<pad>" , a : List[Any]="<mask>" , a : int=False , **a : int , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token SCREAMING_SNAKE_CASE : str = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token SCREAMING_SNAKE_CASE : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token SCREAMING_SNAKE_CASE : List[str] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token SCREAMING_SNAKE_CASE : str = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Dict = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( errors=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , add_prefix_space=a , **a , ) with open(a , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE : Any = json.load(a ) SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE : List[str] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE : Union[str, Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in self.byte_encoder.items()} with open(a , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE : Dict = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE : Dict = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE : int = dict(zip(a , range(len(a ) ) ) ) SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : int , a : str ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE : int = tuple(a ) SCREAMING_SNAKE_CASE : Dict = get_pairs(a ) if not pairs: return token while True: SCREAMING_SNAKE_CASE : Tuple = min(a , key=lambda a : self.bpe_ranks.get(a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = bigram SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while i < len(a ): try: SCREAMING_SNAKE_CASE : Union[str, Any] = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE : Optional[int] = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE : Tuple = tuple(a ) SCREAMING_SNAKE_CASE : str = new_word if len(a ) == 1: break else: SCREAMING_SNAKE_CASE : Any = get_pairs(a ) SCREAMING_SNAKE_CASE : Dict = " ".join(a ) SCREAMING_SNAKE_CASE : str = word return word def __UpperCamelCase ( self : Optional[int] , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = [] for token in re.findall(self.pat , a ): SCREAMING_SNAKE_CASE : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Any , a : str ) -> Dict: """simple docstring""" return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Any , a : str ) -> Optional[int]: """simple docstring""" return self.decoder.get(a ) def __UpperCamelCase ( self : Any , a : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "".join(a ) SCREAMING_SNAKE_CASE : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __UpperCamelCase ( self : Tuple , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE : List[str] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + "\n" ) SCREAMING_SNAKE_CASE : Optional[int] = 0 with open(a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE : Union[str, Any] = token_index writer.write(" ".join(a ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : str , a : List[int] , a : Optional[List[int]] = None , a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def __UpperCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Union[str, Any] , a : List[Any] , a : List[str]=False , **a : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE : List[str] = " " + text return (text, kwargs) def __UpperCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Union[str, Any] , a : "Conversation" ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(a ) SCREAMING_SNAKE_CASE : Dict = " ".join(a ) SCREAMING_SNAKE_CASE : Dict = self.encode(a ) if len(a ) > self.model_max_length: SCREAMING_SNAKE_CASE : int = input_ids[-self.model_max_length :] logger.warning(F"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
25
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 10 def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [1, 2, 3, 4] SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(a , self.block_size , 0 ) , a ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(a , self.block_size , 0 ) , a ) def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] SCREAMING_SNAKE_CASE : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(a , self.block_size , 0 ) , a ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = process_story(a ) self.assertEqual(a , [] ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = process_story(a ) self.assertEqual(a , [] ) self.assertEqual(a , [] ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = process_story(a ) SCREAMING_SNAKE_CASE : Tuple = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(a , a ) SCREAMING_SNAKE_CASE : List[Any] = ["It was the best of times."] self.assertEqual(a , a ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = torch.tensor([1, 2, 3, 4] ) SCREAMING_SNAKE_CASE : Any = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(a , 0 ).numpy() , expected.numpy() ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(a , 23 ).numpy() , expected.numpy() ) def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(a , 1 ).numpy() , expected.numpy() ) def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = 101 SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) SCREAMING_SNAKE_CASE : Tuple = compute_token_type_ids(a , a ) np.testing.assert_array_equal(a , a )
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ = logging.get_logger(__name__) a_ = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='bart' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str , a : Optional[int]=5_0265 , a : Any=1024 , a : Tuple=12 , a : Optional[Any]=4096 , a : Any=16 , a : Optional[int]=12 , a : Any=4096 , a : List[Any]=16 , a : Union[str, Any]=0.0 , a : List[str]=0.0 , a : List[Any]="gelu" , a : Dict=1024 , a : Union[str, Any]=0.1 , a : Any=0.0 , a : Union[str, Any]=0.0 , a : Union[str, Any]=0.02 , a : Optional[int]=0.0 , a : Tuple=False , a : Dict=True , a : Optional[int]=3 , a : Union[str, Any]=1 , a : str=0 , a : Dict=2 , a : Any=True , a : str=2 , a : Optional[Any]=2 , **a : List[str] , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : List[str] = decoder_layers SCREAMING_SNAKE_CASE : Dict = decoder_attention_heads SCREAMING_SNAKE_CASE : Tuple = dropout SCREAMING_SNAKE_CASE : int = attention_dropout SCREAMING_SNAKE_CASE : Dict = activation_dropout SCREAMING_SNAKE_CASE : List[str] = activation_function SCREAMING_SNAKE_CASE : Optional[Any] = init_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Dict = decoder_layerdrop SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=a , pad_token_id=a , bos_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , forced_eos_token_id=a , **a , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , a ): SCREAMING_SNAKE_CASE : List[str] = self.bos_token_id warnings.warn( F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " "The config can simply be saved and uploaded again to be fixed." ) class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE : Any = {0: "batch"} SCREAMING_SNAKE_CASE : Any = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE : Tuple = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE : Tuple = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.num_layers for i in range(a ): SCREAMING_SNAKE_CASE : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE : int = {0: "batch", 2: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __UpperCamelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Union[str, Any] = super().outputs else: SCREAMING_SNAKE_CASE : str = super(a , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.num_layers for i in range(a ): SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE : Any = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCamelCase ( self : Optional[Any] , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , a , a , a , a ) # Generate decoder inputs SCREAMING_SNAKE_CASE : str = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , a , a , a , a ) SCREAMING_SNAKE_CASE : Dict = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE : Optional[Any] = dict(**a , **a ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = common_inputs["input_ids"].shape SCREAMING_SNAKE_CASE : Tuple = common_inputs["decoder_input_ids"].shape[1] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.num_attention_heads SCREAMING_SNAKE_CASE : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : List[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(a , a )] , dim=1 ) SCREAMING_SNAKE_CASE : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.num_layers SCREAMING_SNAKE_CASE : Any = min(a , a ) SCREAMING_SNAKE_CASE : Any = max(a , a ) - min_num_layers SCREAMING_SNAKE_CASE : int = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(a ): common_inputs["past_key_values"].append( ( torch.zeros(a ), torch.zeros(a ), torch.zeros(a ), torch.zeros(a ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE : Optional[Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(a , a ): common_inputs["past_key_values"].append((torch.zeros(a ), torch.zeros(a )) ) return common_inputs def __UpperCamelCase ( self : Any , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , a , a , a , a ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : Any = seqlen + 2 SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.num_layers SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Union[str, Any] = common_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE : Optional[int] = torch.cat( [common_inputs["attention_mask"], torch.ones(a , a , dtype=a )] , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = [ (torch.zeros(a ), torch.zeros(a )) for _ in range(a ) ] return common_inputs def __UpperCamelCase ( self : Tuple , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : int = tokenizer.num_special_tokens_to_add(a ) SCREAMING_SNAKE_CASE : List[str] = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : str = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE : Tuple = dict(tokenizer(a , return_tensors=a ) ) return common_inputs def __UpperCamelCase ( self : Optional[int] , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Optional[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE : Optional[int] = self._generate_dummy_inputs_for_causal_lm( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) else: SCREAMING_SNAKE_CASE : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) return common_inputs def __UpperCamelCase ( self : Optional[Any] , a : Tuple , a : Tuple , a : int , a : Tuple ) -> Tuple: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Optional[int] = super()._flatten_past_key_values_(a , a , a , a ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = super(a , self )._flatten_past_key_values_( a , a , a , a )
25
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
1
import gc import threading import time import psutil import torch class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = psutil.Process() SCREAMING_SNAKE_CASE : int = False def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = -1 while True: SCREAMING_SNAKE_CASE : Tuple = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = threading.Thread(target=self.peak_monitor ) SCREAMING_SNAKE_CASE : Union[str, Any] = True self.thread.start() def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = False self.thread.join() return self.cpu_memory_peak a_ = PeakCPUMemory() def lowerCamelCase__ ( ): # Time SCREAMING_SNAKE_CASE : Optional[int] = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE : List[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count()): SCREAMING_SNAKE_CASE : Dict = torch.cuda.memory_allocated(_a) torch.cuda.reset_peak_memory_stats() return measures def lowerCamelCase__ ( _a): # Time SCREAMING_SNAKE_CASE : Optional[int] = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE : Tuple = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 SCREAMING_SNAKE_CASE : Optional[Any] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count()): SCREAMING_SNAKE_CASE : Tuple = (torch.cuda.memory_allocated(_a) - start_measures[str(_a)]) / 2**20 SCREAMING_SNAKE_CASE : Optional[Any] = (torch.cuda.max_memory_allocated(_a) - start_measures[str(_a)]) / 2**20 return measures def lowerCamelCase__ ( _a , _a): print(f"{description}:") print(f"- Time: {measures['time']:.2f}s") for i in range(torch.cuda.device_count()): print(f"- GPU {i} allocated: {measures[str(_a)]:.2f}MiB") SCREAMING_SNAKE_CASE : Tuple = measures[f"{i}-peak"] print(f"- GPU {i} peak: {peak:.2f}MiB") print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB") print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB")
25
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
1
a_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Union[str, Any] = input("Enter message: ") SCREAMING_SNAKE_CASE : Dict = input("Enter key [alphanumeric]: ") SCREAMING_SNAKE_CASE : str = input("Encrypt/Decrypt [e/d]: ") if mode.lower().startswith("e"): SCREAMING_SNAKE_CASE : Union[str, Any] = "encrypt" SCREAMING_SNAKE_CASE : Dict = encrypt_message(_a , _a) elif mode.lower().startswith("d"): SCREAMING_SNAKE_CASE : Dict = "decrypt" SCREAMING_SNAKE_CASE : Dict = decrypt_message(_a , _a) print(f"\n{mode.title()}ed message:") print(_a) def lowerCamelCase__ ( _a , _a): return translate_message(_a , _a , "encrypt") def lowerCamelCase__ ( _a , _a): return translate_message(_a , _a , "decrypt") def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Tuple = key.upper() for symbol in message: SCREAMING_SNAKE_CASE : int = LETTERS.find(symbol.upper()) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index]) elif mode == "decrypt": num -= LETTERS.find(key[key_index]) num %= len(_a) if symbol.isupper(): translated.append(LETTERS[num]) elif symbol.islower(): translated.append(LETTERS[num].lower()) key_index += 1 if key_index == len(_a): SCREAMING_SNAKE_CASE : str = 0 else: translated.append(_a) return "".join(_a) if __name__ == "__main__": main()
25
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='beit' def __init__( self : str , a : List[Any]=8192 , a : int=768 , a : Optional[Any]=12 , a : Union[str, Any]=12 , a : Any=3072 , a : Union[str, Any]="gelu" , a : str=0.0 , a : Tuple=0.0 , a : Optional[Any]=0.02 , a : Optional[int]=1e-12 , a : List[str]=224 , a : Union[str, Any]=16 , a : Optional[Any]=3 , a : Union[str, Any]=False , a : int=False , a : List[Any]=False , a : Optional[Any]=False , a : List[Any]=0.1 , a : List[Any]=0.1 , a : Tuple=True , a : Tuple=[3, 5, 7, 11] , a : Optional[int]=[1, 2, 3, 6] , a : Optional[Any]=True , a : Dict=0.4 , a : Tuple=256 , a : int=1 , a : List[str]=False , a : Union[str, Any]=255 , **a : int , ) -> Optional[Any]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = image_size SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = use_mask_token SCREAMING_SNAKE_CASE : Optional[int] = use_absolute_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = use_relative_position_bias SCREAMING_SNAKE_CASE : Union[str, Any] = use_shared_relative_position_bias SCREAMING_SNAKE_CASE : str = layer_scale_init_value SCREAMING_SNAKE_CASE : str = drop_path_rate SCREAMING_SNAKE_CASE : List[str] = use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE : Optional[int] = out_indices SCREAMING_SNAKE_CASE : Dict = pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE : Optional[Any] = use_auxiliary_head SCREAMING_SNAKE_CASE : Any = auxiliary_loss_weight SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_channels SCREAMING_SNAKE_CASE : int = auxiliary_num_convs SCREAMING_SNAKE_CASE : List[str] = auxiliary_concat_input SCREAMING_SNAKE_CASE : Optional[Any] = semantic_loss_ignore_index class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =version.parse('1.11' ) @property def __UpperCamelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __UpperCamelCase ( self : str ) -> float: """simple docstring""" return 1e-4
25
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = F"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() SCREAMING_SNAKE_CASE : int = [sys.executable] + distributed_args execute_subprocess_async(a , env=os.environ.copy() )
25
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
1
import string def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Union[str, Any] = "" for i in sequence: SCREAMING_SNAKE_CASE : int = ord(_a) if 65 <= extract <= 90: output += chr(155 - extract) elif 97 <= extract <= 122: output += chr(219 - extract) else: output += i return output def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = string.ascii_letters SCREAMING_SNAKE_CASE : Any = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_a)] if c in letters else c for c in sequence) def lowerCamelCase__ ( ): from timeit import timeit print("Running performance benchmarks...") SCREAMING_SNAKE_CASE : Dict = "from string import printable ; from __main__ import atbash, atbash_slow" print(f"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_a)} seconds") print(f"> atbash(): {timeit('atbash(printable)' , setup=_a)} seconds") if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ = logging.get_logger(__name__) a_ = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='van' def __init__( self : Optional[Any] , a : Union[str, Any]=224 , a : List[str]=3 , a : Optional[Any]=[7, 3, 3, 3] , a : Tuple=[4, 2, 2, 2] , a : Any=[64, 128, 320, 512] , a : Tuple=[3, 3, 12, 3] , a : str=[8, 8, 4, 4] , a : Any="gelu" , a : List[str]=0.02 , a : Optional[int]=1e-6 , a : Optional[int]=1e-2 , a : Dict=0.0 , a : List[Any]=0.0 , **a : Union[str, Any] , ) -> str: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = patch_sizes SCREAMING_SNAKE_CASE : Tuple = strides SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : List[str] = depths SCREAMING_SNAKE_CASE : Optional[int] = mlp_ratios SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = layer_scale_init_value SCREAMING_SNAKE_CASE : Tuple = drop_path_rate SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate
25
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
1
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
25
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
1
import argparse import struct import unittest class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : bytes ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = data # Initialize hash values SCREAMING_SNAKE_CASE : Tuple = [ 0x6A_09E_667, 0xBB_67A_E85, 0x3C_6EF_372, 0xA5_4FF_53A, 0x51_0E5_27F, 0x9B_056_88C, 0x1F_83D_9AB, 0x5B_E0C_D19, ] # Initialize round constants SCREAMING_SNAKE_CASE : str = [ 0x42_8A2_F98, 0x71_374_491, 0xB5_C0F_BCF, 0xE9_B5D_BA5, 0x39_56C_25B, 0x59_F11_1F1, 0x92_3F8_2A4, 0xAB_1C5_ED5, 0xD8_07A_A98, 0x12_835_B01, 0x24_318_5BE, 0x55_0C7_DC3, 0x72_BE5_D74, 0x80_DEB_1FE, 0x9B_DC0_6A7, 0xC1_9BF_174, 0xE4_9B6_9C1, 0xEF_BE4_786, 0x0F_C19_DC6, 0x24_0CA_1CC, 0x2D_E92_C6F, 0x4A_748_4AA, 0x5C_B0A_9DC, 0x76_F98_8DA, 0x98_3E5_152, 0xA8_31C_66D, 0xB0_032_7C8, 0xBF_597_FC7, 0xC6_E00_BF3, 0xD5_A79_147, 0x06_CA6_351, 0x14_292_967, 0x27_B70_A85, 0x2E_1B2_138, 0x4D_2C6_DFC, 0x53_380_D13, 0x65_0A7_354, 0x76_6A0_ABB, 0x81_C2C_92E, 0x92_722_C85, 0xA2_BFE_8A1, 0xA8_1A6_64B, 0xC2_4B8_B70, 0xC7_6C5_1A3, 0xD1_92E_819, 0xD6_990_624, 0xF4_0E3_585, 0x10_6AA_070, 0x19_A4C_116, 0x1E_376_C08, 0x27_487_74C, 0x34_B0B_CB5, 0x39_1C0_CB3, 0x4E_D8A_A4A, 0x5B_9CC_A4F, 0x68_2E6_FF3, 0x74_8F8_2EE, 0x78_A56_36F, 0x84_C87_814, 0x8C_C70_208, 0x90_BEF_FFA, 0xA4_506_CEB, 0xBE_F9A_3F7, 0xC6_717_8F2, ] SCREAMING_SNAKE_CASE : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def __UpperCamelCase ( a : bytes ) -> bytes: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = B"\x80" + (B"\x00" * (63 - (len(a ) + 8) % 64)) SCREAMING_SNAKE_CASE : Optional[int] = struct.pack(">Q" , (len(a ) * 8) ) return data + padding + big_endian_integer def __UpperCamelCase ( self : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers SCREAMING_SNAKE_CASE : Any = list(struct.unpack(">16L" , a ) ) # add 48 0-ed integers words += [0] * 48 SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array SCREAMING_SNAKE_CASE : str = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression SCREAMING_SNAKE_CASE : List[str] = self.ror(a , 6 ) ^ self.ror(a , 11 ) ^ self.ror(a , 25 ) SCREAMING_SNAKE_CASE : Tuple = (e & f) ^ ((~e & 0xFF_FFF_FFF) & g) SCREAMING_SNAKE_CASE : Tuple = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 SCREAMING_SNAKE_CASE : Any = self.ror(a , 2 ) ^ self.ror(a , 13 ) ^ self.ror(a , 22 ) SCREAMING_SNAKE_CASE : List[str] = (a & b) ^ (a & c) ^ (b & c) SCREAMING_SNAKE_CASE : Any = (sa + maj) % 0x100_000_000 SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) SCREAMING_SNAKE_CASE : Optional[Any] = [a, b, c, d, e, f, g, h] # Modify final values SCREAMING_SNAKE_CASE : Tuple = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] SCREAMING_SNAKE_CASE : int = "".join([hex(a )[2:].zfill(8 ) for value in self.hashes] ) def __UpperCamelCase ( self : List[str] , a : int , a : int ) -> int: """simple docstring""" return 0xFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Optional[Any] ) -> None: """simple docstring""" import hashlib SCREAMING_SNAKE_CASE : Tuple = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(a ).hash , hashlib.shaaaa(a ).hexdigest() ) def lowerCamelCase__ ( ): import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file") SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE : int = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb") as f: SCREAMING_SNAKE_CASE : Optional[int] = f.read() else: SCREAMING_SNAKE_CASE : List[Any] = bytes(_a , "utf-8") print(SHAaaa(_a).hash) if __name__ == "__main__": main()
25
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , a : Optional[int] , a : Dict=7 , a : Union[str, Any]=3 , a : List[Any]=30 , a : int=400 , a : Tuple=True , a : int=None , a : Optional[int]=True , a : int=[0.5, 0.5, 0.5] , a : Any=[0.5, 0.5, 0.5] , a : int=True , a : str=1 / 255 , a : str=True , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : List[Any] = min_resolution SCREAMING_SNAKE_CASE : Dict = max_resolution SCREAMING_SNAKE_CASE : List[Any] = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : Tuple = do_normalize SCREAMING_SNAKE_CASE : int = image_mean SCREAMING_SNAKE_CASE : List[Any] = image_std SCREAMING_SNAKE_CASE : List[str] = do_rescale SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_pad def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase ( self : List[str] , a : Optional[int] , a : Optional[Any]=False ) -> Any: """simple docstring""" if not batched: SCREAMING_SNAKE_CASE : Tuple = image_inputs[0] if isinstance(a , Image.Image ): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = image.size else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : Optional[int] = int(self.size["shortest_edge"] * h / w ) SCREAMING_SNAKE_CASE : Optional[int] = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE : List[str] = self.size["shortest_edge"] SCREAMING_SNAKE_CASE : Dict = int(self.size["shortest_edge"] * w / h ) else: SCREAMING_SNAKE_CASE : Any = self.size["shortest_edge"] SCREAMING_SNAKE_CASE : Optional[int] = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE : int = [] for image in image_inputs: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Optional[int] = max(a , key=lambda a : item[0] )[0] SCREAMING_SNAKE_CASE : Optional[int] = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =ConditionalDetrImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ConditionalDetrImageProcessingTester(self ) @property def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "image_mean" ) ) self.assertTrue(hasattr(a , "image_std" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , a ) SCREAMING_SNAKE_CASE : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=a ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.image_processor_tester.get_expected_values(a , batched=a ) SCREAMING_SNAKE_CASE : Any = image_processing(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : Any = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : Tuple = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE : Tuple = json.loads(f.read() ) SCREAMING_SNAKE_CASE : int = {"image_id": 3_9769, "annotations": target} # encode them SCREAMING_SNAKE_CASE : Union[str, Any] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(images=a , annotations=a , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE : Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , a ) SCREAMING_SNAKE_CASE : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE : List[str] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , a ) ) # verify boxes SCREAMING_SNAKE_CASE : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , a ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , a , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , a ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , a ) ) # verify class_labels SCREAMING_SNAKE_CASE : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , a ) ) # verify orig_size SCREAMING_SNAKE_CASE : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , a ) ) # verify size SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , a ) ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.loads(f.read() ) SCREAMING_SNAKE_CASE : str = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} SCREAMING_SNAKE_CASE : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them SCREAMING_SNAKE_CASE : List[str] = ConditionalDetrImageProcessor(format="coco_panoptic" ) SCREAMING_SNAKE_CASE : Optional[int] = image_processing(images=a , annotations=a , masks_path=a , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , a ) SCREAMING_SNAKE_CASE : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE : List[str] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , a ) ) # verify boxes SCREAMING_SNAKE_CASE : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , a ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , a , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , a ) ) # verify is_crowd SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , a ) ) # verify class_labels SCREAMING_SNAKE_CASE : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , a ) ) # verify masks SCREAMING_SNAKE_CASE : Dict = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , a ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , a ) ) # verify size SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , a ) )
25
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='funnel' lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self : Optional[int] , a : Optional[Any]=3_0522 , a : str=[4, 4, 4] , a : Optional[Any]=None , a : List[str]=2 , a : int=768 , a : Union[str, Any]=12 , a : List[Any]=64 , a : List[str]=3072 , a : Optional[Any]="gelu_new" , a : Optional[int]=0.1 , a : List[Any]=0.1 , a : str=0.0 , a : Tuple=0.1 , a : Tuple=None , a : Union[str, Any]=1e-9 , a : Optional[Any]="mean" , a : Dict="relative_shift" , a : Dict=True , a : str=True , a : Optional[int]=True , **a : Dict , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = block_sizes SCREAMING_SNAKE_CASE : Optional[int] = [1] * len(a ) if block_repeats is None else block_repeats assert len(a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE : int = num_decoder_layers SCREAMING_SNAKE_CASE : Dict = d_model SCREAMING_SNAKE_CASE : List[str] = n_head SCREAMING_SNAKE_CASE : Dict = d_head SCREAMING_SNAKE_CASE : int = d_inner SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = initializer_std SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE : Tuple = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE : List[str] = attention_type SCREAMING_SNAKE_CASE : Tuple = separate_cls SCREAMING_SNAKE_CASE : Union[str, Any] = truncate_seq SCREAMING_SNAKE_CASE : Optional[Any] = pool_q_only super().__init__(**a ) @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def __UpperCamelCase ( self : Union[str, Any] , a : List[Any] ) -> Optional[int]: """simple docstring""" raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def __UpperCamelCase ( self : Optional[Any] , a : Union[str, Any] ) -> Tuple: """simple docstring""" raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
25
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'spiece.model'} a_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } a_ = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } a_ = '▁' class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , a : List[str] , a : List[str]=True , a : str=True , a : int=False , a : List[Any]="[CLS]" , a : str="[SEP]" , a : Tuple="<unk>" , a : Any="[SEP]" , a : List[str]="<pad>" , a : str="[CLS]" , a : Optional[int]="[MASK]" , a : Optional[Dict[str, Any]] = None , **a : Optional[int] , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ( AddedToken(a , lstrip=a , rstrip=a , normalized=a ) if isinstance(a , a ) else mask_token ) SCREAMING_SNAKE_CASE : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) SCREAMING_SNAKE_CASE : Any = do_lower_case SCREAMING_SNAKE_CASE : Any = remove_space SCREAMING_SNAKE_CASE : List[Any] = keep_accents SCREAMING_SNAKE_CASE : Tuple = vocab_file SCREAMING_SNAKE_CASE : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return len(self.sp_model ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : List[Any] = None return state def __setstate__( self : Any , a : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self : Dict , a : List[Any] ) -> Tuple: """simple docstring""" if self.remove_space: SCREAMING_SNAKE_CASE : Any = " ".join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE : List[str] = inputs SCREAMING_SNAKE_CASE : Tuple = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: SCREAMING_SNAKE_CASE : Optional[int] = unicodedata.normalize("NFKD" , a ) SCREAMING_SNAKE_CASE : Tuple = "".join([c for c in outputs if not unicodedata.combining(a )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE : Optional[int] = outputs.lower() return outputs def __UpperCamelCase ( self : str , a : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.preprocess_text(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.encode(a , out_type=a ) SCREAMING_SNAKE_CASE : List[str] = [] for piece in pieces: if len(a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE : Tuple = cur_pieces[1:] else: SCREAMING_SNAKE_CASE : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a ) else: new_pieces.append(a ) return new_pieces def __UpperCamelCase ( self : str , a : List[str] ) -> Union[str, Any]: """simple docstring""" return self.sp_model.PieceToId(a ) def __UpperCamelCase ( self : Union[str, Any] , a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(a ) def __UpperCamelCase ( self : List[str] , a : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Any = "" SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Tuple = [] else: current_sub_tokens.append(a ) SCREAMING_SNAKE_CASE : Dict = False out_string += self.sp_model.decode(a ) return out_string.strip() def __UpperCamelCase ( self : List[Any] , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self : str , a : List[int] , a : Optional[List[int]] = None , a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is not None: return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1] def __UpperCamelCase ( self : Any , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : Optional[int] , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Any = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
25
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
1
a_ = range(2, 20 + 1) a_ = [10**k for k in range(ks[-1] + 1)] a_ = {} def lowerCamelCase__ ( _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Dict = sum(a_i[j] for j in range(_a , len(_a))) SCREAMING_SNAKE_CASE : str = sum(a_i[j] * base[j] for j in range(min(len(_a) , _a))) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = 0, 0 SCREAMING_SNAKE_CASE : List[Any] = n - i SCREAMING_SNAKE_CASE : List[Any] = memo.get(_a) if sub_memo is not None: SCREAMING_SNAKE_CASE : Dict = sub_memo.get(_a) if jumps is not None and len(_a) > 0: # find and make the largest jump without going over SCREAMING_SNAKE_CASE : Dict = -1 for _k in range(len(_a) - 1 , -1 , -1): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: SCREAMING_SNAKE_CASE : str = _k break if max_jump >= 0: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = jumps[max_jump] # since the difference between jumps is cached, add c SCREAMING_SNAKE_CASE : List[str] = diff + c for j in range(min(_a , len(_a))): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = divmod(_a , 10) if new_c > 0: add(_a , _a , _a) else: SCREAMING_SNAKE_CASE : Optional[Any] = [] else: SCREAMING_SNAKE_CASE : str = {c: []} SCREAMING_SNAKE_CASE : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = next_term(_a , k - 1 , i + dn , _a) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = compute(_a , _a , i + dn , _a) diff += _diff dn += terms_jumped SCREAMING_SNAKE_CASE : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped SCREAMING_SNAKE_CASE : int = 0 while j < len(_a): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_a , (diff, dn, k)) return (diff, dn) def lowerCamelCase__ ( _a , _a , _a , _a): if i >= n: return 0, i if k > len(_a): a_i.extend([0 for _ in range(k - len(_a))]) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) SCREAMING_SNAKE_CASE : Tuple = i SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = 0, 0, 0 for j in range(len(_a)): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 SCREAMING_SNAKE_CASE : str = ds_c + ds_b diff += addend SCREAMING_SNAKE_CASE : str = 0 for j in range(_a): SCREAMING_SNAKE_CASE : str = a_i[j] + addend SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = divmod(_a , 10) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_a , _a , _a) return diff, i - start_i def lowerCamelCase__ ( _a , _a , _a): for j in range(_a , len(_a)): SCREAMING_SNAKE_CASE : Tuple = digits[j] + addend if s >= 10: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = divmod(_a , 10) SCREAMING_SNAKE_CASE : int = addend // 10 + quotient else: SCREAMING_SNAKE_CASE : Union[str, Any] = s SCREAMING_SNAKE_CASE : List[Any] = addend // 10 if addend == 0: break while addend > 0: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = divmod(_a , 10) digits.append(_a) def lowerCamelCase__ ( _a = 10**15): SCREAMING_SNAKE_CASE : List[str] = [1] SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : List[Any] = 0 while True: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = next_term(_a , 20 , i + dn , _a) dn += terms_jumped if dn == n - i: break SCREAMING_SNAKE_CASE : int = 0 for j in range(len(_a)): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
25
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , a : List[str] , a : Optional[int]=7 , a : Tuple=3 , a : Optional[Any]=30 , a : Optional[Any]=400 , a : Optional[Any]=True , a : List[str]=None , a : Optional[Any]=True , a : Union[str, Any]=[0.5, 0.5, 0.5] , a : Optional[int]=[0.5, 0.5, 0.5] , a : Optional[Any]=True , a : Dict=1 / 255 , a : Dict=True , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Any = min_resolution SCREAMING_SNAKE_CASE : List[Any] = max_resolution SCREAMING_SNAKE_CASE : Optional[int] = do_resize SCREAMING_SNAKE_CASE : Any = size SCREAMING_SNAKE_CASE : int = do_normalize SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean SCREAMING_SNAKE_CASE : Dict = image_std SCREAMING_SNAKE_CASE : Optional[int] = do_rescale SCREAMING_SNAKE_CASE : str = rescale_factor SCREAMING_SNAKE_CASE : Any = do_pad def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase ( self : List[Any] , a : List[Any] , a : str=False ) -> Tuple: """simple docstring""" if not batched: SCREAMING_SNAKE_CASE : Any = image_inputs[0] if isinstance(a , Image.Image ): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = image.size else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : List[Any] = int(self.size["shortest_edge"] * h / w ) SCREAMING_SNAKE_CASE : List[Any] = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE : Optional[int] = self.size["shortest_edge"] SCREAMING_SNAKE_CASE : List[Any] = int(self.size["shortest_edge"] * w / h ) else: SCREAMING_SNAKE_CASE : Tuple = self.size["shortest_edge"] SCREAMING_SNAKE_CASE : Optional[int] = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE : Any = [] for image in image_inputs: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Optional[int] = max(a , key=lambda a : item[0] )[0] SCREAMING_SNAKE_CASE : str = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =DeformableDetrImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DeformableDetrImageProcessingTester(self ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "image_mean" ) ) self.assertTrue(hasattr(a , "image_std" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "do_rescale" ) ) self.assertTrue(hasattr(a , "do_pad" ) ) self.assertTrue(hasattr(a , "size" ) ) def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , a ) SCREAMING_SNAKE_CASE : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=a ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , a ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor_tester.get_expected_values(a , batched=a ) SCREAMING_SNAKE_CASE : int = image_processing(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : List[str] = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Optional[Any] = {"image_id": 3_9769, "annotations": target} # encode them SCREAMING_SNAKE_CASE : Optional[int] = DeformableDetrImageProcessor() SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(images=a , annotations=a , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , a ) SCREAMING_SNAKE_CASE : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE : str = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , a ) ) # verify boxes SCREAMING_SNAKE_CASE : int = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , a ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , a , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Dict = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , a ) ) # verify is_crowd SCREAMING_SNAKE_CASE : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , a ) ) # verify class_labels SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , a ) ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , a ) ) # verify size SCREAMING_SNAKE_CASE : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , a ) ) @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Tuple = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} SCREAMING_SNAKE_CASE : str = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them SCREAMING_SNAKE_CASE : Optional[Any] = DeformableDetrImageProcessor(format="coco_panoptic" ) SCREAMING_SNAKE_CASE : int = image_processing(images=a , annotations=a , masks_path=a , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE : Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , a ) SCREAMING_SNAKE_CASE : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , a , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE : str = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , a ) ) # verify boxes SCREAMING_SNAKE_CASE : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , a ) SCREAMING_SNAKE_CASE : int = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , a , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , a ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , a ) ) # verify class_labels SCREAMING_SNAKE_CASE : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , a ) ) # verify masks SCREAMING_SNAKE_CASE : Optional[Any] = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , a ) # verify orig_size SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , a ) ) # verify size SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , a ) )
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
1
from __future__ import annotations import requests a_ = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def lowerCamelCase__ ( _a , _a = 1 , _a = "new" , _a = None): SCREAMING_SNAKE_CASE : Optional[int] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_a) - valid_terms)): SCREAMING_SNAKE_CASE : Union[str, Any] = f"Invalid search term: {invalid_search_terms}" raise ValueError(_a) SCREAMING_SNAKE_CASE : Tuple = requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError SCREAMING_SNAKE_CASE : Any = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_a)} SCREAMING_SNAKE_CASE : Optional[int] = {} for id_ in range(_a): SCREAMING_SNAKE_CASE : List[str] = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
25
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset")}), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42)}), SplitDict({"train": SplitInfo()}), ] , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = split_dict._to_yaml_list() assert len(_a) == len(_a) SCREAMING_SNAKE_CASE : List[Any] = SplitDict._from_yaml_list(_a) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump SCREAMING_SNAKE_CASE : str = None # the split name of split_dict takes over the name of the split info object SCREAMING_SNAKE_CASE : Union[str, Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=_a), SplitInfo(dataset_name="my_dataset")]) def lowerCamelCase__ ( _a): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files SCREAMING_SNAKE_CASE : Union[str, Any] = asdict(SplitDict({"train": split_info})) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
25
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
def lowerCamelCase__ ( _a = 4000000): SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = b, a + b return sum(_a) if __name__ == "__main__": print(F'''{solution() = }''')
25
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
1
import logging import os from .state import PartialState class _UpperCamelCase ( logging.LoggerAdapter ): '''simple docstring''' @staticmethod def __UpperCamelCase ( a : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __UpperCamelCase ( self : Optional[int] , a : Optional[Any] , a : Optional[int] , *a : Dict , **a : Any ) -> Union[str, Any]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("main_process_only" , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("in_order" , a ) if self.isEnabledFor(a ): if self._should_log(a ): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.process(a , a ) self.logger.log(a , a , *a , **a ) elif in_order: SCREAMING_SNAKE_CASE : Any = PartialState() for i in range(state.num_processes ): if i == state.process_index: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.process(a , a ) self.logger.log(a , a , *a , **a ) state.wait_for_everyone() def lowerCamelCase__ ( _a , _a = None): if log_level is None: SCREAMING_SNAKE_CASE : Dict = os.environ.get("ACCELERATE_LOG_LEVEL" , _a) SCREAMING_SNAKE_CASE : int = logging.getLogger(_a) if log_level is not None: logger.setLevel(log_level.upper()) logger.root.setLevel(log_level.upper()) return MultiProcessAdapter(_a , {})
25
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
1
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = args.log_outputs SCREAMING_SNAKE_CASE : str = "_".join(args.dataset.split("/") + [args.config, args.split]) # load metric SCREAMING_SNAKE_CASE : List[Any] = load_metric("wer") SCREAMING_SNAKE_CASE : Union[str, Any] = load_metric("cer") # compute metrics SCREAMING_SNAKE_CASE : Dict = wer.compute(references=result["target"] , predictions=result["prediction"]) SCREAMING_SNAKE_CASE : Optional[Any] = cer.compute(references=result["target"] , predictions=result["prediction"]) # print & log results SCREAMING_SNAKE_CASE : Optional[Any] = f"WER: {wer_result}\nCER: {cer_result}" print(_a) with open(f"{dataset_id}_eval_results.txt" , "w") as f: f.write(_a) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: SCREAMING_SNAKE_CASE : str = f"log_{dataset_id}_predictions.txt" SCREAMING_SNAKE_CASE : str = f"log_{dataset_id}_targets.txt" with open(_a , "w") as p, open(_a , "w") as t: # mapping function to write output def write_to_file(_a , _a): p.write(f"{i}" + "\n") p.write(batch["prediction"] + "\n") t.write(f"{i}" + "\n") t.write(batch["target"] + "\n") result.map(_a , with_indices=_a) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Union[str, Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training SCREAMING_SNAKE_CASE : Tuple = re.sub(_a , "" , text.lower()) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! SCREAMING_SNAKE_CASE : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: SCREAMING_SNAKE_CASE : List[Any] = " ".join(text.split(_a)) return text def lowerCamelCase__ ( _a): # load dataset SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_a) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained(args.model_id) SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor.sampling_rate # resample audio SCREAMING_SNAKE_CASE : List[str] = dataset.cast_column("audio" , Audio(sampling_rate=_a)) # load eval pipeline if args.device is None: SCREAMING_SNAKE_CASE : Tuple = 0 if torch.cuda.is_available() else -1 SCREAMING_SNAKE_CASE : int = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device) # map function to decode audio def map_to_pred(_a): SCREAMING_SNAKE_CASE : Optional[int] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s) SCREAMING_SNAKE_CASE : Optional[Any] = prediction["text"] SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_text(batch["sentence"]) return batch # run inference on all examples SCREAMING_SNAKE_CASE : Optional[Any] = dataset.map(_a , remove_columns=dataset.column_names) # compute and log_results # do not change function below log_results(_a , _a) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) a_ = parser.parse_args() main(args)
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
def lowerCamelCase__ ( _a , _a): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
25
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
1
from collections.abc import Generator def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = 0, 1 while True: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = b, a + b yield b def lowerCamelCase__ ( _a = 1000): SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : int = fibonacci_generator() while len(str(next(_a))) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED a_ = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } a_ = { 'allenai/led-base-16384': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Union[str, Any] = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) SCREAMING_SNAKE_CASE : Optional[Any] = bs[:] SCREAMING_SNAKE_CASE : List[Any] = 0 for b in range(2**8): if b not in bs: bs.append(_a) cs.append(2**8 + n) n += 1 SCREAMING_SNAKE_CASE : Tuple = [chr(_a) for n in cs] return dict(zip(_a , _a)) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Tuple = set() SCREAMING_SNAKE_CASE : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char)) SCREAMING_SNAKE_CASE : Union[str, Any] = char return pairs class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =['input_ids', 'attention_mask'] def __init__( self : int , a : int , a : Any , a : List[Any]="replace" , a : Optional[Any]="<s>" , a : str="</s>" , a : Optional[Any]="</s>" , a : Optional[int]="<s>" , a : Optional[int]="<unk>" , a : Union[str, Any]="<pad>" , a : Tuple="<mask>" , a : Any=False , **a : Optional[int] , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token SCREAMING_SNAKE_CASE : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token SCREAMING_SNAKE_CASE : str = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token SCREAMING_SNAKE_CASE : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token SCREAMING_SNAKE_CASE : Tuple = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token SCREAMING_SNAKE_CASE : int = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( errors=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , add_prefix_space=a , **a , ) with open(a , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE : Dict = json.load(a ) SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE : List[str] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE : Dict = bytes_to_unicode() SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.byte_encoder.items()} with open(a , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE : str = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE : Tuple = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE : Dict = dict(zip(a , range(len(a ) ) ) ) SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE : Dict = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : Tuple , a : Tuple ) -> List[Any]: """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE : Any = tuple(a ) SCREAMING_SNAKE_CASE : str = get_pairs(a ) if not pairs: return token while True: SCREAMING_SNAKE_CASE : int = min(a , key=lambda a : self.bpe_ranks.get(a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = bigram SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while i < len(a ): try: SCREAMING_SNAKE_CASE : Optional[Any] = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE : int = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE : Optional[Any] = tuple(a ) SCREAMING_SNAKE_CASE : int = new_word if len(a ) == 1: break else: SCREAMING_SNAKE_CASE : Any = get_pairs(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = " ".join(a ) SCREAMING_SNAKE_CASE : List[Any] = word return word def __UpperCamelCase ( self : Tuple , a : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] for token in re.findall(self.pat , a ): SCREAMING_SNAKE_CASE : Optional[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : List[Any] , a : str ) -> str: """simple docstring""" return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Optional[int] , a : Any ) -> Any: """simple docstring""" return self.decoder.get(a ) def __UpperCamelCase ( self : List[str] , a : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = "".join(a ) SCREAMING_SNAKE_CASE : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __UpperCamelCase ( self : str , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : str = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE : int = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + "\n" ) SCREAMING_SNAKE_CASE : List[Any] = 0 with open(a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE : int = token_index writer.write(" ".join(a ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : Tuple , a : List[int] , a : Optional[List[int]] = None , a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def __UpperCamelCase ( self : List[str] , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : List[Any] , a : Union[str, Any] , a : Any=False , **a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Any = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE : Union[str, Any] = " " + text return (text, kwargs) def __UpperCamelCase ( self : Union[str, Any] , a : Union[Dict[str, EncodedInput], BatchEncoding] , a : Optional[int] = None , a : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , a : Optional[int] = None , a : Optional[bool] = None , ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = super()._pad( encoded_inputs=a , max_length=a , padding_strategy=a , pad_to_multiple_of=a , return_attention_mask=a , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : str = len(encoded_inputs["global_attention_mask"] ) != len(a ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : Tuple = len(a ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : Dict = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , a : List[Any] , a : int=7 , a : List[Any]=3 , a : str=18 , a : Dict=30 , a : List[Any]=400 , a : str=True , a : Any=None , a : str=True , a : List[Any]=None , a : List[str]=True , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {"shortest_edge": 20} SCREAMING_SNAKE_CASE : List[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = min_resolution SCREAMING_SNAKE_CASE : List[Any] = max_resolution SCREAMING_SNAKE_CASE : int = do_resize SCREAMING_SNAKE_CASE : Optional[int] = size SCREAMING_SNAKE_CASE : Any = do_center_crop SCREAMING_SNAKE_CASE : int = crop_size SCREAMING_SNAKE_CASE : int = do_flip_channel_order def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = MobileViTImageProcessingTester(self ) @property def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) self.assertTrue(hasattr(a , "do_center_crop" ) ) self.assertTrue(hasattr(a , "center_crop" ) ) self.assertTrue(hasattr(a , "do_flip_channel_order" ) ) def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" pass def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : str = image_processing(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Any = image_processing(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : List[Any] = image_processing(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
25
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : str = [] for rt in rc.restypes: SCREAMING_SNAKE_CASE : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names]) SCREAMING_SNAKE_CASE : Dict = {name: i for i, name in enumerate(_a)} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types]) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names]) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14) restype_atomaa_to_atomaa_list.append([0] * 37) restype_atomaa_mask_list.append([0.0] * 14) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( _a , dtype=torch.intaa , device=protein["aatype"].device , ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( _a , dtype=torch.intaa , device=protein["aatype"].device , ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( _a , dtype=torch.floataa , device=protein["aatype"].device , ) SCREAMING_SNAKE_CASE : Optional[Any] = protein["aatype"].to(torch.long) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE : Any = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE : int = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE : List[str] = residx_atomaa_mask SCREAMING_SNAKE_CASE : Tuple = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE : str = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE : str = residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE : List[Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device) for restype, restype_letter in enumerate(rc.restypes): SCREAMING_SNAKE_CASE : Union[str, Any] = rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE : Optional[int] = rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE : Union[str, Any] = rc.atom_order[atom_name] SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE : int = residx_atomaa_mask return protein def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = tree_map(lambda _a: torch.tensor(_a , device=batch["aatype"].device) , _a , np.ndarray) SCREAMING_SNAKE_CASE : int = tensor_tree_map(lambda _a: np.array(_a) , make_atomaa_masks(_a)) return out
25
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ = { # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.15}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names a_ = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ = 'facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ = 'allenai' def lowerCamelCase__ ( _a): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} SCREAMING_SNAKE_CASE : Union[str, Any] = dict((re.sub(r"@@$" , "" , _a), v) if k.endswith("@@") else (re.sub(r"$" , "</w>" , _a), v) for k, v in d.items()) SCREAMING_SNAKE_CASE : Optional[int] = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f"{k}</w>"] SCREAMING_SNAKE_CASE : Optional[int] = d[k] # restore return da def lowerCamelCase__ ( _a , _a): # prep assert os.path.exists(_a) os.makedirs(_a , exist_ok=_a) print(f"Writing results to {pytorch_dump_folder_path}") # handle various types of models SCREAMING_SNAKE_CASE : Dict = basename(_a) SCREAMING_SNAKE_CASE : Union[str, Any] = dirname(_a) SCREAMING_SNAKE_CASE : Optional[int] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE : int = cls.hub_models() SCREAMING_SNAKE_CASE : List[Any] = {"bpe": "fastbpe", "tokenizer": "moses"} SCREAMING_SNAKE_CASE : List[Any] = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"using checkpoint {checkpoint_file}") SCREAMING_SNAKE_CASE : Dict = hub_utils.from_pretrained( _a , _a , _a , archive_map=_a , **_a) SCREAMING_SNAKE_CASE : int = vars(chkpt["args"]["model"]) SCREAMING_SNAKE_CASE : Union[str, Any] = args["source_lang"] SCREAMING_SNAKE_CASE : List[Any] = args["target_lang"] SCREAMING_SNAKE_CASE : Any = dirname(_a) SCREAMING_SNAKE_CASE : Optional[Any] = basename(_a) # dicts SCREAMING_SNAKE_CASE : Tuple = os.path.join(_a , f"dict.{src_lang}.txt") SCREAMING_SNAKE_CASE : Dict = os.path.join(_a , f"dict.{tgt_lang}.txt") SCREAMING_SNAKE_CASE : Dict = Dictionary.load(_a) SCREAMING_SNAKE_CASE : str = rewrite_dict_keys(src_dict.indices) SCREAMING_SNAKE_CASE : int = len(_a) SCREAMING_SNAKE_CASE : Any = os.path.join(_a , "vocab-src.json") print(f"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records") with open(_a , "w" , encoding="utf-8") as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a)) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE : Tuple = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE : Dict = False break SCREAMING_SNAKE_CASE : List[Any] = Dictionary.load(_a) SCREAMING_SNAKE_CASE : Optional[int] = rewrite_dict_keys(tgt_dict.indices) SCREAMING_SNAKE_CASE : Union[str, Any] = len(_a) SCREAMING_SNAKE_CASE : int = os.path.join(_a , "vocab-tgt.json") print(f"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records") with open(_a , "w" , encoding="utf-8") as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a)) # merges_file (bpecodes) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(_a , VOCAB_FILES_NAMES["merges_file"]) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(_a , _a) if os.path.exists(_a): break with open(_a , encoding="utf-8") as fin: SCREAMING_SNAKE_CASE : Optional[Any] = fin.read() SCREAMING_SNAKE_CASE : Dict = re.sub(r" \d+$" , "" , _a , 0 , re.M) # remove frequency number print(f"Generating {merges_file}") with open(_a , "w" , encoding="utf-8") as fout: fout.write(_a) # model config SCREAMING_SNAKE_CASE : Dict = os.path.join(_a , "config.json") # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", f"need to extend tokenizer to support bpe={args['tokenizer']}" SCREAMING_SNAKE_CASE : int = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with SCREAMING_SNAKE_CASE : List[Any] = 5 SCREAMING_SNAKE_CASE : List[str] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE : Tuple = best_score_hparams[model_dir]["length_penalty"] else: SCREAMING_SNAKE_CASE : int = 1.0 print(f"Generating {fsmt_model_config_file}") with open(_a , "w" , encoding="utf-8") as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a)) # tokenizer config SCREAMING_SNAKE_CASE : int = os.path.join(_a , _a) SCREAMING_SNAKE_CASE : Dict = { "langs": [src_lang, tgt_lang], "model_max_length": 1024, "do_lower_case": do_lower_case, } print(f"Generating {fsmt_tokenizer_config_file}") with open(_a , "w" , encoding="utf-8") as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a)) # model SCREAMING_SNAKE_CASE : Tuple = chkpt["models"][0] SCREAMING_SNAKE_CASE : List[Any] = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE : Any = OrderedDict(("model." + k, v) for k, v in model_state_dict.items()) # remove unneeded keys SCREAMING_SNAKE_CASE : Optional[int] = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(_a , _a) SCREAMING_SNAKE_CASE : Any = FSMTConfig.from_pretrained(_a) SCREAMING_SNAKE_CASE : int = FSMTForConditionalGeneration(_a) # check that it loads ok model_new.load_state_dict(_a , strict=_a) # save SCREAMING_SNAKE_CASE : Tuple = os.path.join(_a , _a) print(f"Generating {pytorch_weights_dump_path}") torch.save(_a , _a) print("Conversion is done!") print("\nLast step is to upload the files to s3") print(f"cd {data_root}") print(f"transformers-cli upload {model_dir}") if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
25
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
def lowerCamelCase__ ( _a , _a = False): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : List[Any] = f"Expected string as input, found {type(_a)}" raise ValueError(_a) if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : List[Any] = f"Expected boolean as use_pascal parameter, found {type(_a)}" raise ValueError(_a) SCREAMING_SNAKE_CASE : Dict = input_str.split("_") SCREAMING_SNAKE_CASE : List[str] = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE : Dict = words[start_index:] SCREAMING_SNAKE_CASE : str = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE : Optional[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words]) if __name__ == "__main__": from doctest import testmod testmod()
25
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
1
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): raise ValueError("multiplicative_persistence() only accepts integral values") if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values") SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : List[Any] = str(_a) while len(_a) != 1: SCREAMING_SNAKE_CASE : Tuple = [int(_a) for i in num_string] SCREAMING_SNAKE_CASE : Optional[int] = 1 for i in range(0 , len(_a)): total *= numbers[i] SCREAMING_SNAKE_CASE : Dict = str(_a) steps += 1 return steps def lowerCamelCase__ ( _a): if not isinstance(_a , _a): raise ValueError("additive_persistence() only accepts integral values") if num < 0: raise ValueError("additive_persistence() does not accept negative values") SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = str(_a) while len(_a) != 1: SCREAMING_SNAKE_CASE : str = [int(_a) for i in num_string] SCREAMING_SNAKE_CASE : Tuple = 0 for i in range(0 , len(_a)): total += numbers[i] SCREAMING_SNAKE_CASE : Any = str(_a) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
25
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
1
from collections import Counter from timeit import timeit def lowerCamelCase__ ( _a = "" , ): return sum(c % 2 for c in Counter(input_str.replace(" " , "").lower()).values()) < 2 def lowerCamelCase__ ( _a = ""): if len(_a) == 0: return True SCREAMING_SNAKE_CASE : List[Any] = input_str.replace(" " , "").lower() # character_freq_dict: Stores the frequency of every character in the input string SCREAMING_SNAKE_CASE : dict[str, int] = {} for character in lower_case_input_str: SCREAMING_SNAKE_CASE : Optional[int] = character_freq_dict.get(_a , 0) + 1 SCREAMING_SNAKE_CASE : Optional[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCamelCase__ ( _a = ""): print("\nFor string = " , _a , ":") print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(_a) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(_a) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": a_ = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) a_ = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
25
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
import heapq def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_a , [-1 * len(_a), (key, value)]) # chosen_vertices = set of chosen vertices SCREAMING_SNAKE_CASE : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices SCREAMING_SNAKE_CASE : str = heapq.heappop(_a)[1][0] chosen_vertices.add(_a) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: SCREAMING_SNAKE_CASE : List[str] = elem[1][1].index(_a) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_a) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() a_ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
25
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[int] , a : Any , a : str=13 , a : Optional[int]=30 , a : int=2 , a : str=3 , a : Optional[Any]=True , a : List[Any]=True , a : Any=32 , a : Any=2 , a : Optional[int]=4 , a : Dict=37 , a : List[Any]="gelu" , a : int=0.1 , a : List[str]=0.1 , a : Dict=10 , a : Optional[int]=0.02 , a : Tuple=3 , a : Union[str, Any]=None , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Tuple = batch_size SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : List[str] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : int = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : Optional[Any] = num_patches + 1 def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : List[Any] , a : Any , a : Union[str, Any] , a : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Any = TFViTModel(config=a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a , training=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. SCREAMING_SNAKE_CASE : Tuple = self.image_size // 2 SCREAMING_SNAKE_CASE : List[Any] = pixel_values[:, :, :image_size, :image_size] SCREAMING_SNAKE_CASE : int = model(a , interpolate_pos_encoding=a , training=a ) SCREAMING_SNAKE_CASE : List[Any] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __UpperCamelCase ( self : List[str] , a : List[str] , a : Tuple , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.type_sequence_label_size SCREAMING_SNAKE_CASE : Tuple = TFViTForImageClassification(a ) SCREAMING_SNAKE_CASE : str = model(a , labels=a , training=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. SCREAMING_SNAKE_CASE : Tuple = self.image_size // 2 SCREAMING_SNAKE_CASE : int = pixel_values[:, :, :image_size, :image_size] SCREAMING_SNAKE_CASE : Tuple = model(a , interpolate_pos_encoding=a , training=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = TFViTForImageClassification(a ) SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[str] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCamelCase__ =( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = TFViTModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" pass def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , tf.keras.layers.Layer ) ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(a ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(a ) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=a , return_tensors="tf" ) # forward pass SCREAMING_SNAKE_CASE : Dict = model(**a ) # verify the logits SCREAMING_SNAKE_CASE : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , a ) SCREAMING_SNAKE_CASE : Dict = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , a , atol=1e-4 )
25
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
1
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 a_ = get_tests_dir('fixtures/dummy-config.json') class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 0 def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(a , a ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(a ) self.assertIsInstance(a , a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(a ) self.assertIsInstance(a , a ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = AutoConfig.for_model("roberta" ) self.assertIsInstance(a , a ) def __UpperCamelCase ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE : List[str] = os.path.join(a , "fake-roberta" ) os.makedirs(a , exist_ok=a ) with open(os.path.join(a , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(a ) self.assertEqual(type(a ) , a ) def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" try: AutoConfig.register("custom" , a ) # Wrong model type will raise an error with self.assertRaises(a ): AutoConfig.register("model" , a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a ): AutoConfig.register("bert" , a ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE : Union[str, Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(a ) self.assertIsInstance(a , a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" with self.assertRaisesRegex( a , "bert-base is not a local folder and is not a valid model identifier" ): SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained("bert-base" ) def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" with self.assertRaisesRegex( a , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(a , revision="aaaaaa" ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( a , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def __UpperCamelCase ( self : str ) -> int: """simple docstring""" with self.assertRaises(a ): SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a ): SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=a ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=a ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(a , trust_remote_code=a ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='new-model' try: AutoConfig.register("new-model" , a ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=a ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=a ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a : Optional[int] , a : List[str]=13 , a : Optional[int]=10 , a : str=3 , a : int=2 , a : Optional[Any]=2 , a : Any=True , a : Optional[int]=True , a : List[Any]=32 , a : Optional[Any]=5 , a : str=4 , a : Optional[int]=37 , a : int="gelu" , a : Dict=0.1 , a : Optional[Any]=0.1 , a : Dict=10 , a : List[Any]=0.02 , a : Dict="divided_space_time" , a : Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : Dict = patch_size SCREAMING_SNAKE_CASE : List[str] = num_frames SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = attention_type SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = scope SCREAMING_SNAKE_CASE : Dict = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token SCREAMING_SNAKE_CASE : List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : Dict = (num_frames) * self.num_patches_per_frame + 1 def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels return config def __UpperCamelCase ( self : int , a : Tuple , a : List[Any] , a : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TimesformerModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[Any] , a : Tuple , a : Dict , a : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = TimesformerForVideoClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a ) # verify the logits shape SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , a ) def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCamelCase__ =( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = TimesformerModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester( self , config_class=a , has_text_modality=a , hidden_size=37 ) def __UpperCamelCase ( self : Union[str, Any] , a : Union[str, Any] , a : Dict , a : Optional[Any]=False ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(a ) if return_labels: if model_class in get_values(a ): SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" pass def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(a ) SCREAMING_SNAKE_CASE : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*a ) @slow def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[str] = TimesformerModel.from_pretrained(a ) self.assertIsNotNone(a ) def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.seq_length SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_frames SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**self._prepare_for_class(a , a ) ) SCREAMING_SNAKE_CASE : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Any = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(a , a ) ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) SCREAMING_SNAKE_CASE : List[Any] = len(a ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" def check_hidden_states_output(a : Tuple , a : Dict , a : Tuple ): SCREAMING_SNAKE_CASE : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**self._prepare_for_class(a , a ) ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) SCREAMING_SNAKE_CASE : List[str] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Dict = True check_hidden_states_output(a , a , a ) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset") SCREAMING_SNAKE_CASE : Any = np.load(_a) return list(_a) @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : int ) -> int: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( a ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_video() SCREAMING_SNAKE_CASE : Dict = image_processor(video[:8] , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**a ) # verify the logits SCREAMING_SNAKE_CASE : str = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , a ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
25
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =['pixel_values'] def __init__( self : Tuple , a : bool = True , a : Optional[Dict[str, int]] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 255 , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : List[str] , ) -> None: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else {"shortest_edge": 256} SCREAMING_SNAKE_CASE : Tuple = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE : Any = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(a ) SCREAMING_SNAKE_CASE : str = do_resize SCREAMING_SNAKE_CASE : List[str] = size SCREAMING_SNAKE_CASE : List[str] = resample SCREAMING_SNAKE_CASE : Union[str, Any] = do_center_crop SCREAMING_SNAKE_CASE : int = crop_size SCREAMING_SNAKE_CASE : Tuple = do_rescale SCREAMING_SNAKE_CASE : str = rescale_factor SCREAMING_SNAKE_CASE : List[str] = do_normalize SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self : int , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : str , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(a , size=size["shortest_edge"] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def __UpperCamelCase ( self : Tuple , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : str , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : str = get_size_dict(a ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def __UpperCamelCase ( self : Optional[int] , a : np.ndarray , a : float , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] ) -> np.ndarray: """simple docstring""" return rescale(a , scale=a , data_format=a , **a ) def __UpperCamelCase ( self : Optional[int] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : int , ) -> np.ndarray: """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def __UpperCamelCase ( self : Any , a : ImageInput , a : Optional[bool] = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : Optional[bool] = None , a : Optional[float] = None , a : Optional[bool] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a : Any , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Any = size if size is not None else self.size SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(a ) SCREAMING_SNAKE_CASE : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : List[Any] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Optional[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : Union[str, Any] = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Dict = [to_numpy_array(a ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Dict = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : List[Any] = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : List[str] = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : str = [self.normalize(image=a , mean=a , std=a ) for image in images] SCREAMING_SNAKE_CASE : Union[str, Any] = [to_channel_dimension_format(a , a ) for image in images] SCREAMING_SNAKE_CASE : Tuple = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a )
25
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _UpperCamelCase ( __A ): '''simple docstring''' @slow @require_torch def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE : str = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE : int = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE : Dict = tokenizer.sep_token_id SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.cls_token_id SCREAMING_SNAKE_CASE : List[Any] = 128 SCREAMING_SNAKE_CASE : str = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE : str = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE : List[Any] = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE : List[str] = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE : List[Any] = 4 def _map_to_encoder_decoder_inputs(a : Tuple ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE : Any = tokenizer(batch["article"] , padding="max_length" , truncation=a , max_length=512 ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(batch["highlights"] , padding="max_length" , truncation=a , max_length=128 ) SCREAMING_SNAKE_CASE : Tuple = inputs.input_ids SCREAMING_SNAKE_CASE : List[Any] = inputs.attention_mask SCREAMING_SNAKE_CASE : List[str] = outputs.input_ids SCREAMING_SNAKE_CASE : List[Any] = outputs.input_ids.copy() SCREAMING_SNAKE_CASE : List[str] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE : Optional[Any] = outputs.attention_mask assert all(len(a ) == 512 for x in inputs.input_ids ) assert all(len(a ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a : int ): SCREAMING_SNAKE_CASE : Dict = pred.label_ids SCREAMING_SNAKE_CASE : Dict = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.batch_decode(a , skip_special_tokens=a ) SCREAMING_SNAKE_CASE : str = tokenizer.batch_decode(a , skip_special_tokens=a ) SCREAMING_SNAKE_CASE : Optional[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a ) )] ) / len(a ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE : Dict = train_dataset.map( _map_to_encoder_decoder_inputs , batched=a , batch_size=a , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE : Union[str, Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=a , batch_size=a , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE : List[Any] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : List[str] = SeqaSeqTrainingArguments( output_dir=a , per_device_train_batch_size=a , per_device_eval_batch_size=a , predict_with_generate=a , evaluation_strategy="steps" , do_train=a , do_eval=a , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE : Optional[Any] = SeqaSeqTrainer( model=a , args=a , compute_metrics=_compute_metrics , train_dataset=a , eval_dataset=a , tokenizer=a , ) # start training trainer.train()
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } a_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def lowerCamelCase__ ( _a , _a , _a , _a , _a): for attribute in key.split("."): SCREAMING_SNAKE_CASE : List[Any] = getattr(_a , _a) if weight_type is not None: SCREAMING_SNAKE_CASE : str = getattr(_a , _a).shape else: SCREAMING_SNAKE_CASE : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}") if weight_type == "weight": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : Any = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : int = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : Optional[int] = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE : Optional[int] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE : str = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if "layer_norm_for_extract" in name and (".".join(name.split(".")[:-1]) != key): # special case since naming is very similar continue SCREAMING_SNAKE_CASE : Optional[int] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Union[str, Any] = name.split(_a)[0].split(".")[-2] SCREAMING_SNAKE_CASE : Dict = mapped_key.replace("*" , _a) if "weight_g" in name: SCREAMING_SNAKE_CASE : Any = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE : List[str] = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE : str = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE : Any = "weight" else: SCREAMING_SNAKE_CASE : Optional[Any] = None set_recursively(_a , _a , _a , _a , _a) continue if not is_used: unused_weights.append(_a) logger.warning(f"Unused weights: {unused_weights}") def lowerCamelCase__ ( _a , _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split("conv_layers.")[-1] SCREAMING_SNAKE_CASE : Optional[Any] = name.split(".") SCREAMING_SNAKE_CASE : Any = int(items[0]) SCREAMING_SNAKE_CASE : Any = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.") SCREAMING_SNAKE_CASE : Tuple = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.") SCREAMING_SNAKE_CASE : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.") SCREAMING_SNAKE_CASE : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.") SCREAMING_SNAKE_CASE : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(_a) @torch.no_grad() def lowerCamelCase__ ( _a , _a , _a=None , _a=None , _a=True): if config_path is not None: SCREAMING_SNAKE_CASE : Tuple = UniSpeechSatConfig.from_pretrained(_a) else: SCREAMING_SNAKE_CASE : List[Any] = UniSpeechSatConfig() SCREAMING_SNAKE_CASE : List[str] = "" if is_finetuned: SCREAMING_SNAKE_CASE : Dict = UniSpeechSatForCTC(_a) else: SCREAMING_SNAKE_CASE : str = UniSpeechSatForPreTraining(_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}) SCREAMING_SNAKE_CASE : Union[str, Any] = model[0].eval() recursively_load_weights(_a , _a) hf_wavavec.save_pretrained(_a) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowerCamelCase__ ( _a=None , _a=None): return field(default_factory=lambda: default , metadata=_a) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =field( metadata={'help': 'The csv file to plot.'} , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Disable logarithmic scale when plotting'} , ) lowerCamelCase__ =field( default=__A , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) lowerCamelCase__ =list_field( default=__A , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def lowerCamelCase__ ( _a): try: int(_a) return True except ValueError: return False def lowerCamelCase__ ( _a): try: float(_a) return True except ValueError: return False class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , a : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = args SCREAMING_SNAKE_CASE : int = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: SCREAMING_SNAKE_CASE : Optional[Any] = csv.DictReader(a ) for row in reader: SCREAMING_SNAKE_CASE : Optional[Any] = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None SCREAMING_SNAKE_CASE : Tuple = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None SCREAMING_SNAKE_CASE : str = float(row["result"] ) def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = plt.subplots() SCREAMING_SNAKE_CASE : Tuple = "Time usage" if self.args.is_time else "Memory usage" SCREAMING_SNAKE_CASE : Union[str, Any] = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): SCREAMING_SNAKE_CASE : str = sorted(set(self.result_dict[model_name]["bsz"] ) ) SCREAMING_SNAKE_CASE : Any = sorted(set(self.result_dict[model_name]["seq_len"] ) ) SCREAMING_SNAKE_CASE : Any = self.result_dict[model_name]["result"] ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : str = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) SCREAMING_SNAKE_CASE : Optional[Any] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: SCREAMING_SNAKE_CASE : List[str] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a , ) else: SCREAMING_SNAKE_CASE : Tuple = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Union[str, Any] = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) SCREAMING_SNAKE_CASE : str = np.asarray(a , a )[: len(a )] plt.scatter( a , a , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(a , a , "--" ) title_str += F" {label_model_name} vs." SCREAMING_SNAKE_CASE : List[Any] = title_str[:-4] SCREAMING_SNAKE_CASE : Optional[int] = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(a ) plt.xlabel(a ) plt.ylabel(a ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Any = HfArgumentParser(_a) SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args_into_dataclasses()[0] SCREAMING_SNAKE_CASE : Any = Plot(args=_a) plot.plot() if __name__ == "__main__": main()
25
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
1
class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} def __UpperCamelCase ( self : Dict ) -> None: """simple docstring""" print(self.vertex ) for i in self.vertex: print(a , " -> " , " -> ".join([str(a ) for j in self.vertex[i]] ) ) def __UpperCamelCase ( self : List[str] , a : int , a : int ) -> None: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(a ) else: # else make a new vertex SCREAMING_SNAKE_CASE : int = [to_vertex] def __UpperCamelCase ( self : List[str] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(a , a ) def __UpperCamelCase ( self : Optional[int] , a : int , a : list ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = True print(a , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(a , a ) if __name__ == "__main__": a_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
25
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a : Tuple , a : List[str]=13 , a : List[str]=7 , a : Union[str, Any]=True , a : List[Any]=True , a : Any=False , a : List[str]=True , a : str=99 , a : Union[str, Any]=64 , a : Any=5 , a : Dict=4 , a : List[Any]=64 , a : Optional[Any]="gelu" , a : Tuple=0.1 , a : Union[str, Any]=0.1 , a : Dict=512 , a : List[str]=16 , a : Tuple=2 , a : Optional[int]=0.02 , a : Tuple=3 , a : List[Any]=4 , a : Any=None , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : List[Any] = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : str = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Optional[int] = num_choices SCREAMING_SNAKE_CASE : Optional[int] = scope def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[int] , a : Union[str, Any] , a : str , a : int , a : List[str] , a : Union[str, Any] , a : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = MPNetModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(a , a ) SCREAMING_SNAKE_CASE : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self : List[str] , a : Any , a : Union[str, Any] , a : Dict , a : int , a : List[Any] , a : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = MPNetForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model( a , attention_mask=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple , a : Union[str, Any] , a : int , a : Optional[int] , a : Dict , a : Any , a : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : Dict = MPNetForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : List[str] , a : Any , a : Optional[Any] , a : Dict , a : Optional[Any] , a : int , a : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[int] = MPNetForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[Any] , a : str , a : Tuple , a : Optional[int] , a : List[Any] , a : Tuple , a : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.num_labels SCREAMING_SNAKE_CASE : List[str] = MPNetForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =True def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = MPNetModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=a , hidden_size=37 ) def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*a ) def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*a ) def __UpperCamelCase ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*a ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = MPNetModel.from_pretrained("microsoft/mpnet-base" ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : List[str] = model(a )[0] SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4 ) )
25
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='deberta-v2' def __init__( self : List[str] , a : int=12_8100 , a : str=1536 , a : List[Any]=24 , a : Union[str, Any]=24 , a : Union[str, Any]=6144 , a : Dict="gelu" , a : Dict=0.1 , a : Dict=0.1 , a : Any=512 , a : Optional[int]=0 , a : Any=0.02 , a : int=1e-7 , a : Dict=False , a : Optional[int]=-1 , a : int=0 , a : Union[str, Any]=True , a : Dict=None , a : List[Any]=0 , a : Tuple="gelu" , **a : str , ) -> Union[str, Any]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : str = relative_attention SCREAMING_SNAKE_CASE : Dict = max_relative_positions SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id SCREAMING_SNAKE_CASE : Tuple = position_biased_input # Backwards compatibility if type(a ) == str: SCREAMING_SNAKE_CASE : Any = [x.strip() for x in pos_att_type.lower().split("|" )] SCREAMING_SNAKE_CASE : Dict = pos_att_type SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Any = kwargs.get("pooler_hidden_size" , a ) SCREAMING_SNAKE_CASE : int = pooler_dropout SCREAMING_SNAKE_CASE : List[str] = pooler_hidden_act class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : Dict = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return 12 def __UpperCamelCase ( self : Optional[Any] , a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a : int = -1 , a : int = -1 , a : int = -1 , a : bool = False , a : Optional["TensorType"] = None , a : int = 3 , a : int = 40 , a : int = 40 , a : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = super().generate_dummy_inputs(preprocessor=a , framework=a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
25
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
import pytest a_ = '__dummy_dataset1__' a_ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def lowerCamelCase__ ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCamelCase__ ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Dict = dataset_loading_script_name SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=_a) SCREAMING_SNAKE_CASE : Union[str, Any] = script_dir / f"{script_name}.py" with open(_a , "w") as f: f.write(_a) return str(_a)
25
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : int , a : Any=3_6000 , a : Optional[int]=1280 , a : Tuple=1024 , a : Optional[Any]=8192 , a : List[str]=4096 , a : Optional[Any]=128 , a : Optional[Any]=10 , a : List[Any]=0 , a : Union[str, Any]=16 , a : str=16 , a : Tuple=128 , a : List[str]=0.0 , a : Union[str, Any]=1e-5 , a : int=False , a : Optional[int]=0.0 , a : Union[str, Any]="float32" , a : str=False , a : Dict=False , a : Dict=False , a : Optional[Any]=0.002 , a : Tuple=False , a : List[str]=True , a : int=3_5998 , a : Union[str, Any]=3_5995 , a : int=3_5999 , **a : Optional[int] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = d_model SCREAMING_SNAKE_CASE : Union[str, Any] = d_ff SCREAMING_SNAKE_CASE : Optional[Any] = d_ext SCREAMING_SNAKE_CASE : List[str] = d_spout SCREAMING_SNAKE_CASE : Optional[Any] = num_switch_layers SCREAMING_SNAKE_CASE : str = num_ext_layers SCREAMING_SNAKE_CASE : int = num_switch_layers + num_ext_layers SCREAMING_SNAKE_CASE : str = num_heads SCREAMING_SNAKE_CASE : Optional[int] = num_experts SCREAMING_SNAKE_CASE : Optional[int] = expert_capacity SCREAMING_SNAKE_CASE : List[str] = dropout_rate SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE : List[str] = router_bias SCREAMING_SNAKE_CASE : Union[str, Any] = router_jitter_noise SCREAMING_SNAKE_CASE : Tuple = router_dtype SCREAMING_SNAKE_CASE : Dict = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : Tuple = output_hidden_states SCREAMING_SNAKE_CASE : Union[str, Any] = output_attentions SCREAMING_SNAKE_CASE : str = initializer_factor SCREAMING_SNAKE_CASE : Union[str, Any] = output_router_logits SCREAMING_SNAKE_CASE : Optional[int] = use_cache super().__init__( separator_token_id=a , pad_token_id=a , eos_token_id=a , **a , )
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCamelCase__ =field( default=__A , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase__ =field( default=__A , metadata={'help': 'The column name of the images in the files.'} ) lowerCamelCase__ =field(default=__A , metadata={'help': 'A folder containing the training data.'} ) lowerCamelCase__ =field(default=__A , metadata={'help': 'A folder containing the validation data.'} ) lowerCamelCase__ =field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE : Dict = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE : Tuple = self.validation_dir SCREAMING_SNAKE_CASE : Any = data_files if data_files else None @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCamelCase__ =field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ =field(default=__A , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ =field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =field( default=1e-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = torch.stack([example["pixel_values"] for example in examples]) return {"pixel_values": pixel_values} def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , _a , _a) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[Any] = training_args.get_process_log_level() logger.setLevel(_a) transformers.utils.logging.set_verbosity(_a) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}") logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Dict = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : List[str] = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch.") # Initialize our dataset. SCREAMING_SNAKE_CASE : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE : Dict = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE : str = ds["train"].train_test_split(data_args.train_val_split) SCREAMING_SNAKE_CASE : Tuple = split["train"] SCREAMING_SNAKE_CASE : Dict = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : str = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **_a) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_a) else: SCREAMING_SNAKE_CASE : List[Any] = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch.") if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}") config.update_from_string(model_args.config_overrides) logger.info(f"New config: {config}") # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, }) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_a) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_a) else: SCREAMING_SNAKE_CASE : Any = ViTImageProcessor() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE : Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch") SCREAMING_SNAKE_CASE : Optional[int] = ViTMAEForPreTraining(_a) if training_args.do_train: SCREAMING_SNAKE_CASE : Optional[Any] = ds["train"].column_names else: SCREAMING_SNAKE_CASE : List[Any] = ds["validation"].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE : Optional[int] = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE : Tuple = "image" elif "img" in column_names: SCREAMING_SNAKE_CASE : str = "img" else: SCREAMING_SNAKE_CASE : Union[str, Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE : List[Any] = image_processor.size["shortest_edge"] else: SCREAMING_SNAKE_CASE : Optional[Any] = (image_processor.size["height"], image_processor.size["width"]) SCREAMING_SNAKE_CASE : Any = Compose( [ Lambda(lambda _a: img.convert("RGB") if img.mode != "RGB" else img), RandomResizedCrop(_a , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std), ]) def preprocess_images(_a): SCREAMING_SNAKE_CASE : Any = [transforms(_a) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset") if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : int = ds["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) # Set the training transforms ds["train"].set_transform(_a) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset") if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : List[str] = ( ds["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) ) # Set the validation transforms ds["validation"].set_transform(_a) # Compute absolute learning rate SCREAMING_SNAKE_CASE : Optional[int] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: SCREAMING_SNAKE_CASE : List[Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer SCREAMING_SNAKE_CASE : Any = Trainer( model=_a , args=_a , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : int = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : Any = last_checkpoint SCREAMING_SNAKE_CASE : Optional[int] = trainer.train(resume_from_checkpoint=_a) trainer.save_model() trainer.log_metrics("train" , train_result.metrics) trainer.save_metrics("train" , train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE : Dict = trainer.evaluate() trainer.log_metrics("eval" , _a) trainer.save_metrics("eval" , _a) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE : List[str] = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**_a) else: trainer.create_model_card(**_a) def lowerCamelCase__ ( _a): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
25
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='ViTImageProcessor' lowerCamelCase__ =('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[int] , a : List[Any]=None , a : str=None , **a : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) SCREAMING_SNAKE_CASE : Dict = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a , a ) def __call__( self : Tuple , a : Tuple=None , a : Optional[int]=None , a : Tuple=None , a : List[Any]=None , **a : str ) -> Optional[int]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(a , return_tensors=a , **a ) if visual_prompt is not None: SCREAMING_SNAKE_CASE : List[str] = self.image_processor(a , return_tensors=a , **a ) if images is not None: SCREAMING_SNAKE_CASE : int = self.image_processor(a , return_tensors=a , **a ) if visual_prompt is not None and images is not None: SCREAMING_SNAKE_CASE : List[Any] = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: SCREAMING_SNAKE_CASE : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: SCREAMING_SNAKE_CASE : Any = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def __UpperCamelCase ( self : Optional[Any] , *a : int , **a : List[str] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def __UpperCamelCase ( self : Optional[int] , *a : Any , **a : List[str] ) -> int: """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def __UpperCamelCase ( self : str ) -> Optional[int]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a , ) return self.image_processor_class @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a , ) return self.image_processor
25
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =(PNDMScheduler,) lowerCamelCase__ =(('num_inference_steps', 50),) def __UpperCamelCase ( self : List[Any] , **a : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : int = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a ) return config def __UpperCamelCase ( self : Optional[int] , a : List[str]=0 , **a : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("num_inference_steps" , a ) SCREAMING_SNAKE_CASE : str = self.dummy_sample SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 * sample SCREAMING_SNAKE_CASE : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config(**a ) SCREAMING_SNAKE_CASE : Any = scheduler_class(**a ) scheduler.set_timesteps(a ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a ) SCREAMING_SNAKE_CASE : List[Any] = scheduler_class.from_pretrained(a ) new_scheduler.set_timesteps(a ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : Optional[Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : Dict = scheduler.step_prk(a , a , a , **a ).prev_sample SCREAMING_SNAKE_CASE : int = new_scheduler.step_prk(a , a , a , **a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE : List[Any] = scheduler.step_plms(a , a , a , **a ).prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = new_scheduler.step_plms(a , a , a , **a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" pass def __UpperCamelCase ( self : List[str] , a : Optional[int]=0 , **a : Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop("num_inference_steps" , a ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 * sample SCREAMING_SNAKE_CASE : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**a ) scheduler.set_timesteps(a ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a ) SCREAMING_SNAKE_CASE : Any = scheduler_class.from_pretrained(a ) # copy over dummy past residuals new_scheduler.set_timesteps(a ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE : int = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step_prk(a , a , a , **a ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = new_scheduler.step_prk(a , a , a , **a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE : str = scheduler.step_plms(a , a , a , **a ).prev_sample SCREAMING_SNAKE_CASE : List[str] = new_scheduler.step_plms(a , a , a , **a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : Optional[int] , **a : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config(**a ) SCREAMING_SNAKE_CASE : str = scheduler_class(**a ) SCREAMING_SNAKE_CASE : List[Any] = 10 SCREAMING_SNAKE_CASE : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(a ) for i, t in enumerate(scheduler.prk_timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = model(a , a ) SCREAMING_SNAKE_CASE : Any = scheduler.step_prk(a , a , a ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): SCREAMING_SNAKE_CASE : Dict = model(a , a ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step_plms(a , a , a ).prev_sample return sample def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : int = kwargs.pop("num_inference_steps" , a ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : str = scheduler_class(**a ) SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE : Any = 0.1 * sample if num_inference_steps is not None and hasattr(a , "set_timesteps" ): scheduler.set_timesteps(a ) elif num_inference_steps is not None and not hasattr(a , "set_timesteps" ): SCREAMING_SNAKE_CASE : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE : Dict = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : Any = scheduler.step_prk(a , 0 , a , **a ).prev_sample SCREAMING_SNAKE_CASE : str = scheduler.step_prk(a , 1 , a , **a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step_plms(a , 0 , a , **a ).prev_sample SCREAMING_SNAKE_CASE : int = scheduler.step_plms(a , 1 , a , **a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=a ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a ) SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[Any] = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**a ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=a , beta_end=a ) def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=a ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=a ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : str = self.dummy_sample SCREAMING_SNAKE_CASE : Tuple = 0.1 * sample SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class(**a ) scheduler.set_timesteps(a ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): SCREAMING_SNAKE_CASE : Dict = scheduler.step_prk(a , a , a ).prev_sample def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" with self.assertRaises(a ): SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**a ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.full_loop() SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(a ) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(a ) ) SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.full_loop(set_alpha_to_one=a , beta_start=0.01 ) SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(a ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.full_loop(set_alpha_to_one=a , beta_start=0.01 ) SCREAMING_SNAKE_CASE : Optional[int] = torch.sum(torch.abs(a ) ) SCREAMING_SNAKE_CASE : Dict = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
25
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
1
import math def lowerCamelCase__ ( _a , _a = 0 , _a = 0): SCREAMING_SNAKE_CASE : List[str] = end or len(_a) for i in range(_a , _a): SCREAMING_SNAKE_CASE : List[Any] = i SCREAMING_SNAKE_CASE : Any = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: SCREAMING_SNAKE_CASE : Tuple = array[temp_index - 1] temp_index -= 1 SCREAMING_SNAKE_CASE : Optional[int] = temp_index_value return array def lowerCamelCase__ ( _a , _a , _a): # Max Heap SCREAMING_SNAKE_CASE : Union[str, Any] = index SCREAMING_SNAKE_CASE : str = 2 * index + 1 # Left Node SCREAMING_SNAKE_CASE : List[Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: SCREAMING_SNAKE_CASE : Tuple = left_index if right_index < heap_size and array[largest] < array[right_index]: SCREAMING_SNAKE_CASE : Optional[int] = right_index if largest != index: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = array[largest], array[index] heapify(_a , _a , _a) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Union[str, Any] = len(_a) for i in range(n // 2 , -1 , -1): heapify(_a , _a , _a) for i in range(n - 1 , 0 , -1): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = array[0], array[i] heapify(_a , 0 , _a) return array def lowerCamelCase__ ( _a , _a , _a , _a): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCamelCase__ ( _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = low SCREAMING_SNAKE_CASE : List[Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = array[j], array[i] i += 1 def lowerCamelCase__ ( _a): if len(_a) == 0: return array SCREAMING_SNAKE_CASE : int = 2 * math.ceil(math.loga(len(_a))) SCREAMING_SNAKE_CASE : Optional[int] = 16 return intro_sort(_a , 0 , len(_a) , _a , _a) def lowerCamelCase__ ( _a , _a , _a , _a , _a): while end - start > size_threshold: if max_depth == 0: return heap_sort(_a) max_depth -= 1 SCREAMING_SNAKE_CASE : Optional[int] = median_of_a(_a , _a , start + ((end - start) // 2) + 1 , end - 1) SCREAMING_SNAKE_CASE : List[str] = partition(_a , _a , _a , _a) intro_sort(_a , _a , _a , _a , _a) SCREAMING_SNAKE_CASE : int = p return insertion_sort(_a , _a , _a) if __name__ == "__main__": import doctest doctest.testmod() a_ = input('Enter numbers separated by a comma : ').strip() a_ = [float(item) for item in user_input.split(',')] print(sort(unsorted))
25
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['GLPNFeatureExtractor'] a_ = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _a , _a , _a): # Initialise PyTorch model SCREAMING_SNAKE_CASE : Optional[int] = LxmertConfig.from_json_file(_a) print(f"Building PyTorch model from configuration: {config}") SCREAMING_SNAKE_CASE : List[Any] = LxmertForPreTraining(_a) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_a , _a , _a) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict() , _a) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
25
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
1
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = int(_a) if decimal in (0, 1): # Exit cases for the recursion return str(_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = divmod(_a , 2) return binary_recursive(_a) + str(_a) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[int] = str(_a).strip() if not number: raise ValueError("No input value was provided") SCREAMING_SNAKE_CASE : List[Any] = "-" if number.startswith("-") else "" SCREAMING_SNAKE_CASE : Any = number.lstrip("-") if not number.isnumeric(): raise ValueError("Input value is not an integer") return f"{negative}0b{binary_recursive(int(_a))}" if __name__ == "__main__": from doctest import testmod testmod()
25
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , a : Optional[Any] , a : List[str]=13 , a : Union[str, Any]=7 , a : List[str]=True , a : str=True , a : Union[str, Any]=True , a : Optional[Any]=True , a : str=99 , a : str=[1, 1, 2] , a : Any=1 , a : str=32 , a : List[Any]=4 , a : Tuple=8 , a : Tuple=37 , a : Dict="gelu_new" , a : List[Any]=0.1 , a : Tuple=0.1 , a : Any=0.0 , a : Dict=512 , a : Any=3 , a : Dict=0.02 , a : str=3 , a : Union[str, Any]=4 , a : Union[str, Any]=None , a : Any=False , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = seq_length SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : List[Any] = use_input_mask SCREAMING_SNAKE_CASE : Dict = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[str] = block_sizes SCREAMING_SNAKE_CASE : List[Any] = num_decoder_layers SCREAMING_SNAKE_CASE : Optional[Any] = d_model SCREAMING_SNAKE_CASE : Any = n_head SCREAMING_SNAKE_CASE : Tuple = d_head SCREAMING_SNAKE_CASE : Dict = d_inner SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : Optional[Any] = activation_dropout SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : List[Any] = num_labels SCREAMING_SNAKE_CASE : Optional[int] = num_choices SCREAMING_SNAKE_CASE : Dict = scope SCREAMING_SNAKE_CASE : Optional[int] = initializer_std # Used in the tests to check the size of the first attention layer SCREAMING_SNAKE_CASE : Tuple = n_head # Used in the tests to check the size of the first hidden state SCREAMING_SNAKE_CASE : Any = self.d_model # Used in the tests to check the number of output hidden states/attentions SCREAMING_SNAKE_CASE : int = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: SCREAMING_SNAKE_CASE : List[Any] = self.num_hidden_layers + 2 def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __UpperCamelCase ( self : List[Any] , a : Optional[Any] , a : str , a : Tuple , a : List[Any] , a : int , a : Any , a : str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = TFFunnelModel(config=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE : int = model(a ) SCREAMING_SNAKE_CASE : List[str] = [input_ids, input_mask] SCREAMING_SNAKE_CASE : Optional[int] = model(a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : int = TFFunnelModel(config=a ) SCREAMING_SNAKE_CASE : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : List[str] = TFFunnelModel(config=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __UpperCamelCase ( self : Union[str, Any] , a : str , a : Optional[Any] , a : List[str] , a : List[Any] , a : int , a : List[Any] , a : Optional[Any] , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = TFFunnelBaseModel(config=a ) SCREAMING_SNAKE_CASE : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE : List[Any] = model(a ) SCREAMING_SNAKE_CASE : int = [input_ids, input_mask] SCREAMING_SNAKE_CASE : str = model(a ) SCREAMING_SNAKE_CASE : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : List[Any] = TFFunnelBaseModel(config=a ) SCREAMING_SNAKE_CASE : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = TFFunnelBaseModel(config=a ) SCREAMING_SNAKE_CASE : List[str] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __UpperCamelCase ( self : str , a : int , a : str , a : List[Any] , a : Optional[Any] , a : Tuple , a : Any , a : List[str] , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = TFFunnelForPreTraining(config=a ) SCREAMING_SNAKE_CASE : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE : Dict = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : int , a : Tuple , a : str , a : List[Any] , a : str , a : Union[str, Any] , a : Any , a : Dict , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = TFFunnelForMaskedLM(config=a ) SCREAMING_SNAKE_CASE : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE : str = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[str] , a : Dict , a : Union[str, Any] , a : Any , a : Any , a : Tuple , a : Tuple , a : Optional[int] , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : Dict = TFFunnelForSequenceClassification(config=a ) SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE : Union[str, Any] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : Optional[Any] , a : Optional[int] , a : Dict , a : Union[str, Any] , a : Optional[Any] , a : Union[str, Any] , a : List[Any] , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE : List[str] = TFFunnelForMultipleChoice(config=a ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Any = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : int = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : List[str] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Tuple , a : Optional[Any] , a : Any , a : List[str] , a : str , a : Tuple , a : Dict , a : Optional[int] , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Optional[Any] = TFFunnelForTokenClassification(config=a ) SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Dict , a : Optional[Any] , a : Dict , a : Optional[int] , a : str , a : Any , a : Dict , a : List[Any] , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = TFFunnelForQuestionAnswering(config=a ) SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE : List[str] = model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ =( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = TFFunnelModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=a ) def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) @require_tf class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = TFFunnelModelTester(self , base=a ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=a ) def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*a ) def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a )
25
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
1
def lowerCamelCase__ ( _a): if n == 1 or not isinstance(_a , _a): return 0 elif n == 2: return 1 else: SCREAMING_SNAKE_CASE : Optional[int] = [0, 1] for i in range(2 , n + 1): sequence.append(sequence[i - 1] + sequence[i - 2]) return sequence[n] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : List[str] = 2 while digits < n: index += 1 SCREAMING_SNAKE_CASE : Dict = len(str(fibonacci(_a))) return index def lowerCamelCase__ ( _a = 1000): return fibonacci_digits_index(_a) if __name__ == "__main__": print(solution(int(str(input()).strip())))
25
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =42 class _UpperCamelCase ( __A , __A ): '''simple docstring''' @register_to_config def __init__( self : Any , a : int = 32 , a : int = 64 , a : int = 20 , a : int = 768 , a : int=77 , a : str=4 , a : float = 0.0 , a : str = "silu" , a : Optional[str] = None , a : Optional[str] = None , a : Optional[str] = "linear" , a : Optional[str] = "prd" , a : Optional[int] = None , a : Optional[int] = None , a : Optional[int] = None , ) -> int: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = attention_head_dim SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads * attention_head_dim SCREAMING_SNAKE_CASE : Any = additional_embeddings SCREAMING_SNAKE_CASE : int = time_embed_dim or inner_dim SCREAMING_SNAKE_CASE : List[Any] = embedding_proj_dim or embedding_dim SCREAMING_SNAKE_CASE : Any = clip_embed_dim or embedding_dim SCREAMING_SNAKE_CASE : Any = Timesteps(a , a , 0 ) SCREAMING_SNAKE_CASE : Dict = TimestepEmbedding(a , a , out_dim=a , act_fn=a ) SCREAMING_SNAKE_CASE : str = nn.Linear(a , a ) if embedding_proj_norm_type is None: SCREAMING_SNAKE_CASE : Dict = None elif embedding_proj_norm_type == "layer": SCREAMING_SNAKE_CASE : Tuple = nn.LayerNorm(a ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) SCREAMING_SNAKE_CASE : str = nn.Linear(a , a ) if encoder_hid_proj_type is None: SCREAMING_SNAKE_CASE : Tuple = None elif encoder_hid_proj_type == "linear": SCREAMING_SNAKE_CASE : Any = nn.Linear(a , a ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , a ) ) if added_emb_type == "prd": SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.zeros(1 , 1 , a ) ) elif added_emb_type is None: SCREAMING_SNAKE_CASE : Union[str, Any] = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) SCREAMING_SNAKE_CASE : Dict = nn.ModuleList( [ BasicTransformerBlock( a , a , a , dropout=a , activation_fn="gelu" , attention_bias=a , ) for d in range(a ) ] ) if norm_in_type == "layer": SCREAMING_SNAKE_CASE : Union[str, Any] = nn.LayerNorm(a ) elif norm_in_type is None: SCREAMING_SNAKE_CASE : Optional[int] = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.LayerNorm(a ) SCREAMING_SNAKE_CASE : Tuple = nn.Linear(a , a ) SCREAMING_SNAKE_CASE : Tuple = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) SCREAMING_SNAKE_CASE : Dict = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , a , persistent=a ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.zeros(1 , a ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.zeros(1 , a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, AttentionProcessor]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} def fn_recursive_add_processors(a : str , a : torch.nn.Module , a : Dict[str, AttentionProcessor] ): if hasattr(a , "set_processor" ): SCREAMING_SNAKE_CASE : int = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , a , a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(a , a , a ) return processors def __UpperCamelCase ( self : Tuple , a : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(a , a ) and len(a ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(a )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(a : str , a : torch.nn.Module , a : int ): if hasattr(a , "set_processor" ): if not isinstance(a , a ): module.set_processor(a ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , a , a ) for name, module in self.named_children(): fn_recursive_attn_processor(a , a , a ) def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" self.set_attn_processor(AttnProcessor() ) def __UpperCamelCase ( self : Optional[Any] , a : Union[str, Any] , a : Union[torch.Tensor, float, int] , a : torch.FloatTensor , a : Optional[torch.FloatTensor] = None , a : Optional[torch.BoolTensor] = None , a : bool = True , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = hidden_states.shape[0] SCREAMING_SNAKE_CASE : Any = timestep if not torch.is_tensor(a ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(a ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE : Optional[int] = timesteps * torch.ones(a , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE : Tuple = self.time_proj(a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. SCREAMING_SNAKE_CASE : List[Any] = timesteps_projected.to(dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.time_embedding(a ) if self.embedding_proj_norm is not None: SCREAMING_SNAKE_CASE : List[Any] = self.embedding_proj_norm(a ) SCREAMING_SNAKE_CASE : str = self.embedding_proj(a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.encoder_hidden_states_proj(a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) SCREAMING_SNAKE_CASE : List[Any] = self.proj_in(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.positional_embedding.to(hidden_states.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 if encoder_hidden_states is not None: additional_embeds.append(a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: SCREAMING_SNAKE_CASE : Optional[int] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: SCREAMING_SNAKE_CASE : List[Any] = hidden_states[:, None, :] SCREAMING_SNAKE_CASE : Optional[Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: SCREAMING_SNAKE_CASE : Any = self.prd_embedding.to(hidden_states.dtype ).expand(a , -1 , -1 ) additional_embeds.append(a ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat( a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens SCREAMING_SNAKE_CASE : str = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: SCREAMING_SNAKE_CASE : Any = F.pad( a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) SCREAMING_SNAKE_CASE : List[Any] = hidden_states + positional_embeddings if attention_mask is not None: SCREAMING_SNAKE_CASE : int = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 SCREAMING_SNAKE_CASE : Optional[int] = F.pad(a , (0, self.additional_embeddings) , value=0.0 ) SCREAMING_SNAKE_CASE : Optional[int] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) SCREAMING_SNAKE_CASE : Optional[int] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.norm_in(a ) for block in self.transformer_blocks: SCREAMING_SNAKE_CASE : str = block(a , attention_mask=a ) SCREAMING_SNAKE_CASE : List[str] = self.norm_out(a ) if self.prd_embedding is not None: SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states[:, -1] else: SCREAMING_SNAKE_CASE : Any = hidden_states[:, additional_embeddings_len:] SCREAMING_SNAKE_CASE : Union[str, Any] = self.proj_to_clip_embeddings(a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=a ) def __UpperCamelCase ( self : str , a : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( __A ): '''simple docstring''' def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(a , "num_attention_heads" ) ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a : List[str] , a : List[str]=13 , a : Union[str, Any]=64 , a : List[Any]=3 , a : Dict=3 , a : int=2 , a : str=1 , a : str=16 , a : Union[str, Any]=[128, 256, 384] , a : int=[4, 6, 8] , a : List[Any]=[2, 3, 4] , a : Dict=[16, 16, 16] , a : Union[str, Any]=0 , a : Any=[2, 2, 2] , a : Tuple=[2, 2, 2] , a : Optional[Any]=0.02 , a : Optional[int]=True , a : List[str]=True , a : Dict=2 , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = kernel_size SCREAMING_SNAKE_CASE : Optional[Any] = stride SCREAMING_SNAKE_CASE : Optional[Any] = padding SCREAMING_SNAKE_CASE : Optional[Any] = hidden_sizes SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : Dict = key_dim SCREAMING_SNAKE_CASE : Tuple = drop_path_rate SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : int = attention_ratio SCREAMING_SNAKE_CASE : int = mlp_ratio SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : List[Any] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = num_labels SCREAMING_SNAKE_CASE : Any = initializer_range def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __UpperCamelCase ( self : int , a : Any , a : Tuple , a : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = LevitModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a ) SCREAMING_SNAKE_CASE : List[str] = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : Optional[int] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __UpperCamelCase ( self : Any , a : List[Any] , a : Union[str, Any] , a : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = LevitForImageClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = LevitModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self : str ) -> str: """simple docstring""" return @unittest.skip(reason="Levit does not use inputs_embeds" ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" pass @unittest.skip(reason="Levit does not output attentions" ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(a : Dict , a : List[Any] , a : str ): SCREAMING_SNAKE_CASE : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(a , a ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.hidden_states SCREAMING_SNAKE_CASE : Tuple = len(self.model_tester.depths ) + 1 self.assertEqual(len(a ) , a ) SCREAMING_SNAKE_CASE : List[Any] = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : Optional[int] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE : Any = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(a , a , a ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : Tuple , a : int , a : str , a : List[str]=False ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE : str = model_class(a ) model.to(a ) model.train() SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(a , a , return_labels=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(**a ).loss loss.backward() def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : str = True for model_class in self.all_model_classes: if model_class in get_values(a ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE : Any = model_class(a ) model.gradient_checkpointing_enable() model.to(a ) model.train() SCREAMING_SNAKE_CASE : str = self._prepare_for_class(a , a , return_labels=a ) SCREAMING_SNAKE_CASE : Dict = model(**a ).loss loss.backward() def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[int] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE : str = problem_type["title"] SCREAMING_SNAKE_CASE : List[str] = problem_type["num_labels"] SCREAMING_SNAKE_CASE : str = model_class(a ) model.to(a ) model.train() SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(a , a , return_labels=a ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE : List[str] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a ) as warning_list: SCREAMING_SNAKE_CASE : List[Any] = model(**a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Dict = LevitModel.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( a ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE : Tuple = image_processor(images=a , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**a ) # verify the logits SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([1.0448, -0.3745, -1.8317] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
25
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a_ = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a_ = concatenate_datasets a_ = DownloadConfig a_ = DownloadManager a_ = DownloadMode a_ = DownloadConfig a_ = DownloadMode a_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
1
import math def lowerCamelCase__ ( _a): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_a) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ ( _a = 0.1): SCREAMING_SNAKE_CASE : int = 3 SCREAMING_SNAKE_CASE : List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(_a) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
25
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
from __future__ import annotations def lowerCamelCase__ ( _a , _a = None , _a = None): if start is None: SCREAMING_SNAKE_CASE : List[str] = 0 if end is None: SCREAMING_SNAKE_CASE : List[Any] = len(_a) - 1 if start >= end: return SCREAMING_SNAKE_CASE : Any = (start + end) // 2 slowsort(_a , _a , _a) slowsort(_a , mid + 1 , _a) if sequence[end] < sequence[mid]: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = sequence[mid], sequence[end] slowsort(_a , _a , end - 1) if __name__ == "__main__": from doctest import testmod testmod()
25
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
from __future__ import annotations def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Tuple = len(_a) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: SCREAMING_SNAKE_CASE : Optional[int] = i + 1 else: SCREAMING_SNAKE_CASE : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
25
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =StableDiffusionInstructPixaPixPipeline lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} lowerCamelCase__ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase__ =IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ =IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self : int ) -> str: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : Optional[Any] = PNDMScheduler(skip_prk_steps=a ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextModel(a ) SCREAMING_SNAKE_CASE : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE : str = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __UpperCamelCase ( self : Tuple , a : str , a : Dict=0 ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) SCREAMING_SNAKE_CASE : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = Image.fromarray(np.uinta(a ) ).convert("RGB" ) if str(a ).startswith("mps" ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(a ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=a ).manual_seed(a ) SCREAMING_SNAKE_CASE : Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**a ) SCREAMING_SNAKE_CASE : Any = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(a ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**a ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline(**a ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(a ) SCREAMING_SNAKE_CASE : Tuple = "french fries" SCREAMING_SNAKE_CASE : Dict = sd_pipe(**a , negative_prompt=a ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionInstructPixaPixPipeline(**a ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(a ) SCREAMING_SNAKE_CASE : int = [inputs["prompt"]] * 2 SCREAMING_SNAKE_CASE : List[str] = np.array(inputs["image"] ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE : str = torch.from_numpy(a ).unsqueeze(0 ).to(a ) SCREAMING_SNAKE_CASE : Optional[int] = image / 2 + 0.5 SCREAMING_SNAKE_CASE : str = image.permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE : int = image.repeat(2 , 1 , 1 , 1 ) SCREAMING_SNAKE_CASE : Dict = sd_pipe(**a ).images SCREAMING_SNAKE_CASE : str = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) SCREAMING_SNAKE_CASE : List[str] = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : int = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" ) SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**a ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe(**a ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = [round(a , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(a ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __UpperCamelCase ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**a ) SCREAMING_SNAKE_CASE : str = VaeImageProcessor(do_resize=a , do_normalize=a ) SCREAMING_SNAKE_CASE : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs_by_type(a , input_image_type="pt" ) )[0] SCREAMING_SNAKE_CASE : Optional[int] = components["vae"] SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs_by_type(a , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): SCREAMING_SNAKE_CASE : List[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() SCREAMING_SNAKE_CASE : List[Any] = pipe(**a )[0] SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(a , 1e-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any , a : Union[str, Any]=0 ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(a ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) SCREAMING_SNAKE_CASE : Tuple = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs() SCREAMING_SNAKE_CASE : List[Any] = pipe(**a ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=a ) SCREAMING_SNAKE_CASE : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : int = self.get_inputs() SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**a ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=a ) SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : int = self.get_inputs() SCREAMING_SNAKE_CASE : Any = pipe(**a ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def callback_fn(a : int , a : int , a : torch.FloatTensor ) -> None: SCREAMING_SNAKE_CASE : str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE : int = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[str] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: SCREAMING_SNAKE_CASE : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE : str = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[str] = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=a , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : int = self.get_inputs() pipe(**a , callback=a , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=a , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : List[str] = self.get_inputs() SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(**a ) SCREAMING_SNAKE_CASE : str = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE : List[str] = inputs["image"].resize((504, 504) ) SCREAMING_SNAKE_CASE : List[Any] = "timbrooks/instruct-pix2pix" SCREAMING_SNAKE_CASE : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( a , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : List[Any] = pipe(**a ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] SCREAMING_SNAKE_CASE : Tuple = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
25
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = { 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : str = 3 SCREAMING_SNAKE_CASE : int = (32, 32) SCREAMING_SNAKE_CASE : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a ) return image @property def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(a ) @property def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" def extract(*a : int , **a : Union[str, Any] ): class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones([0] ) def __UpperCamelCase ( self : str , a : List[Any] ) -> List[str]: """simple docstring""" self.pixel_values.to(a ) return self return Out() return extract def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : int = self.dummy_cond_unet SCREAMING_SNAKE_CASE : Dict = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a , set_alpha_to_one=a , ) SCREAMING_SNAKE_CASE : Tuple = self.dummy_vae SCREAMING_SNAKE_CASE : Dict = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : int = StableDiffusionPipeline( unet=a , scheduler=a , vae=a , text_encoder=a , tokenizer=a , safety_checker=a , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : List[str] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.Generator(device=a ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = sd_pipe([prompt] , generator=a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=a ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sd_pipe( [prompt] , generator=a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=a , )[0] SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : List[str] = self.dummy_cond_unet SCREAMING_SNAKE_CASE : Tuple = PNDMScheduler(skip_prk_steps=a ) SCREAMING_SNAKE_CASE : Dict = self.dummy_vae SCREAMING_SNAKE_CASE : Dict = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : List[str] = StableDiffusionPipeline( unet=a , scheduler=a , vae=a , text_encoder=a , tokenizer=a , safety_checker=a , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=a ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=a ).manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sd_pipe( [prompt] , generator=a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=a , )[0] SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=a ) assert isinstance(a , a ) assert isinstance(pipe.scheduler , a ) assert pipe.safety_checker is None SCREAMING_SNAKE_CASE : Tuple = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionPipeline.from_pretrained(a ) # sanity check that the pipeline still works assert pipe.safety_checker is None SCREAMING_SNAKE_CASE : Dict = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.dummy_cond_unet SCREAMING_SNAKE_CASE : Dict = PNDMScheduler(skip_prk_steps=a ) SCREAMING_SNAKE_CASE : Dict = self.dummy_vae SCREAMING_SNAKE_CASE : Dict = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 SCREAMING_SNAKE_CASE : Tuple = unet.half() SCREAMING_SNAKE_CASE : Tuple = vae.half() SCREAMING_SNAKE_CASE : Tuple = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline( unet=a , scheduler=a , vae=a , text_encoder=a , tokenizer=a , safety_checker=a , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Tuple = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=a ) SCREAMING_SNAKE_CASE : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[int] = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) SCREAMING_SNAKE_CASE : Union[str, Any] = 40_0366_0346 SCREAMING_SNAKE_CASE : Tuple = 7 # without safety guidance (sld_guidance_scale = 0) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(a ) SCREAMING_SNAKE_CASE : Dict = sd_pipe( [prompt] , generator=a , guidance_scale=a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(a ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE : Any = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = "padme amidala taking a bath artwork, safe for work, no nudity" SCREAMING_SNAKE_CASE : Optional[int] = 27_3497_1755 SCREAMING_SNAKE_CASE : Optional[Any] = 7 SCREAMING_SNAKE_CASE : str = torch.manual_seed(a ) SCREAMING_SNAKE_CASE : Dict = sd_pipe( [prompt] , generator=a , guidance_scale=a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 SCREAMING_SNAKE_CASE : int = torch.manual_seed(a ) SCREAMING_SNAKE_CASE : List[str] = sd_pipe( [prompt] , generator=a , guidance_scale=a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) SCREAMING_SNAKE_CASE : List[str] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) SCREAMING_SNAKE_CASE : str = 10_4435_5234 SCREAMING_SNAKE_CASE : List[str] = 12 SCREAMING_SNAKE_CASE : Any = torch.manual_seed(a ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe( [prompt] , generator=a , guidance_scale=a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(a ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( [prompt] , generator=a , guidance_scale=a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Tuple = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
1
from pathlib import Path import fire def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = Path(_a) SCREAMING_SNAKE_CASE : Dict = Path(_a) dest_dir.mkdir(exist_ok=_a) for path in src_dir.iterdir(): SCREAMING_SNAKE_CASE : List[Any] = [x.rstrip() for x in list(path.open().readlines())][:n] SCREAMING_SNAKE_CASE : str = dest_dir.joinpath(path.name) print(_a) dest_path.open("w").write("\n".join(_a)) if __name__ == "__main__": fire.Fire(minify)
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
from string import ascii_uppercase a_ = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase__ ( _a , _a): if isinstance(_a , _a): raise TypeError("int() can't convert non-string with explicit base") if num < 0: raise ValueError("parameter must be positive int") if isinstance(_a , _a): raise TypeError("'str' object cannot be interpreted as an integer") if isinstance(_a , _a): raise TypeError("'float' object cannot be interpreted as an integer") if base in (0, 1): raise ValueError("base must be >= 2") if base > 36: raise ValueError("base must be <= 36") SCREAMING_SNAKE_CASE : Union[str, Any] = "" SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 while div != 1: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = divmod(_a , _a) if base >= 11 and 9 < mod < 36: SCREAMING_SNAKE_CASE : Dict = ALPHABET_VALUES[str(_a)] else: SCREAMING_SNAKE_CASE : Dict = str(_a) new_value += actual_value SCREAMING_SNAKE_CASE : List[Any] = num // base SCREAMING_SNAKE_CASE : Tuple = div if div == 0: return str(new_value[::-1]) elif div == 1: new_value += str(_a) return str(new_value[::-1]) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
25
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[Any] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE : str = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } SCREAMING_SNAKE_CASE : str = f"{src_lang}-{tgt_lang}" SCREAMING_SNAKE_CASE : Tuple = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(_a , exist_ok=_a) SCREAMING_SNAKE_CASE : Any = os.path.join(_a , "README.md") print(f"Generating {path}") with open(_a , "w" , encoding="utf-8") as f: f.write(_a) # make sure we are under the root of the project a_ = Path(__file__).resolve().parent.parent.parent a_ = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ , a_ , a_ = model_name.split('-') a_ = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
from ...configuration_utils import PretrainedConfig a_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='tapas' def __init__( self : int , a : Optional[Any]=3_0522 , a : Optional[Any]=768 , a : Dict=12 , a : str=12 , a : str=3072 , a : Optional[int]="gelu" , a : Optional[Any]=0.1 , a : Any=0.1 , a : List[str]=1024 , a : str=[3, 256, 256, 2, 256, 256, 10] , a : Tuple=0.02 , a : List[Any]=1e-12 , a : Tuple=0 , a : int=10.0 , a : Optional[Any]=0 , a : Optional[int]=1.0 , a : Optional[int]=None , a : List[Any]=1.0 , a : Optional[int]=False , a : int=None , a : Optional[int]=1.0 , a : List[Any]=1.0 , a : List[str]=False , a : int=False , a : Any="ratio" , a : Tuple=None , a : Optional[int]=None , a : List[str]=64 , a : str=32 , a : Union[str, Any]=False , a : Optional[Any]=True , a : Union[str, Any]=False , a : List[Any]=False , a : Optional[int]=True , a : int=False , a : List[Any]=None , a : Optional[int]=None , **a : int , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=a , **a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_sizes SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE : Union[str, Any] = positive_label_weight SCREAMING_SNAKE_CASE : Union[str, Any] = num_aggregation_labels SCREAMING_SNAKE_CASE : int = aggregation_loss_weight SCREAMING_SNAKE_CASE : List[Any] = use_answer_as_supervision SCREAMING_SNAKE_CASE : List[str] = answer_loss_importance SCREAMING_SNAKE_CASE : Optional[int] = use_normalized_answer_loss SCREAMING_SNAKE_CASE : Dict = huber_loss_delta SCREAMING_SNAKE_CASE : List[str] = temperature SCREAMING_SNAKE_CASE : int = aggregation_temperature SCREAMING_SNAKE_CASE : Optional[int] = use_gumbel_for_cells SCREAMING_SNAKE_CASE : Optional[int] = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE : Tuple = average_approximation_function SCREAMING_SNAKE_CASE : Optional[int] = cell_selection_preference SCREAMING_SNAKE_CASE : Optional[Any] = answer_loss_cutoff SCREAMING_SNAKE_CASE : int = max_num_rows SCREAMING_SNAKE_CASE : Tuple = max_num_columns SCREAMING_SNAKE_CASE : Optional[Any] = average_logits_per_cell SCREAMING_SNAKE_CASE : str = select_one_column SCREAMING_SNAKE_CASE : Any = allow_empty_column_selection SCREAMING_SNAKE_CASE : Tuple = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE : Tuple = reset_position_index_per_cell SCREAMING_SNAKE_CASE : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE : str = aggregation_labels SCREAMING_SNAKE_CASE : Any = no_aggregation_label_index if isinstance(self.aggregation_labels , a ): SCREAMING_SNAKE_CASE : str = {int(a ): v for k, v in aggregation_labels.items()}
25
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
1
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = [True] * limit SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Any = True for i in range(3 , int(limit**0.5 + 1) , 2): SCREAMING_SNAKE_CASE : List[str] = i * 2 while index < limit: SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Dict = index + i SCREAMING_SNAKE_CASE : List[Any] = [2] for i in range(3 , _a , 2): if is_prime[i]: primes.append(_a) return primes def lowerCamelCase__ ( _a = 1000000): SCREAMING_SNAKE_CASE : List[Any] = prime_sieve(_a) SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = 0 for i in range(len(_a)): for j in range(i + length , len(_a)): SCREAMING_SNAKE_CASE : Tuple = sum(primes[i:j]) if sol >= ceiling: break if sol in primes: SCREAMING_SNAKE_CASE : Optional[Any] = j - i SCREAMING_SNAKE_CASE : int = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
25
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , a : Any , a : str=13 , a : Union[str, Any]=7 , a : int=True , a : Optional[Any]=True , a : Optional[int]=True , a : int=True , a : List[Any]=99 , a : List[Any]=16 , a : str=36 , a : Dict=6 , a : str=6 , a : List[str]=6 , a : Any=37 , a : Optional[Any]="gelu" , a : List[str]=0.1 , a : Tuple=0.1 , a : int=512 , a : Optional[Any]=16 , a : List[str]=2 , a : List[str]=0.02 , a : int=3 , a : int=4 , a : Union[str, Any]=None , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : int = seq_length SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask SCREAMING_SNAKE_CASE : str = use_token_type_ids SCREAMING_SNAKE_CASE : int = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = embedding_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_hidden_groups SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = num_labels SCREAMING_SNAKE_CASE : int = num_choices SCREAMING_SNAKE_CASE : str = scope def __UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __UpperCamelCase ( self : Union[str, Any] , a : Optional[int] , a : Optional[Any] , a : int , a : Dict , a : int , a : Union[str, Any] , a : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = AlbertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Any = model(a , attention_mask=a , token_type_ids=a ) SCREAMING_SNAKE_CASE : Optional[int] = model(a , token_type_ids=a ) SCREAMING_SNAKE_CASE : Dict = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self : str , a : int , a : Optional[int] , a : Optional[Any] , a : Dict , a : str , a : int , a : Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : int = AlbertForPreTraining(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model( a , attention_mask=a , token_type_ids=a , labels=a , sentence_order_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __UpperCamelCase ( self : Any , a : Any , a : Any , a : Optional[int] , a : str , a : int , a : str , a : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = AlbertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : str , a : Tuple , a : Optional[Any] , a : Union[str, Any] , a : Optional[int] , a : Optional[int] , a : List[Any] , a : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = AlbertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[Any] , a : Tuple , a : Tuple , a : int , a : List[Any] , a : List[Any] , a : Dict , a : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = AlbertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : int = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : List[str] , a : List[str] , a : str , a : Optional[int] , a : Optional[int] , a : str , a : List[Any] , a : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = AlbertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : str , a : Optional[int] , a : Tuple , a : Optional[int] , a : Union[str, Any] , a : Union[str, Any] , a : List[Any] , a : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_choices SCREAMING_SNAKE_CASE : Any = AlbertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : int = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True def __UpperCamelCase ( self : List[str] , a : int , a : List[str] , a : Optional[int]=False ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): SCREAMING_SNAKE_CASE : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = AlbertModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=a , hidden_size=37 ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : Any = type self.model_tester.create_and_check_model(*a ) @slow def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = AlbertModel.from_pretrained(a ) self.assertIsNotNone(a ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = AlbertModel.from_pretrained("albert-base-v2" ) SCREAMING_SNAKE_CASE : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(_a , _a) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = emb.weight.shape SCREAMING_SNAKE_CASE : int = nn.Linear(_a , _a , bias=_a) SCREAMING_SNAKE_CASE : str = emb.weight.data return lin_layer def lowerCamelCase__ ( _a , _a="facebook/mbart-large-en-ro" , _a=False , _a=False): SCREAMING_SNAKE_CASE : List[str] = torch.load(_a , map_location="cpu")["model"] remove_ignore_keys_(_a) SCREAMING_SNAKE_CASE : List[Any] = state_dict["encoder.embed_tokens.weight"].shape[0] SCREAMING_SNAKE_CASE : Optional[int] = MBartConfig.from_pretrained(_a , vocab_size=_a) if mbart_aa and finetuned: SCREAMING_SNAKE_CASE : int = "relu" SCREAMING_SNAKE_CASE : Optional[Any] = state_dict["decoder.embed_tokens.weight"] SCREAMING_SNAKE_CASE : Optional[Any] = MBartForConditionalGeneration(_a) model.model.load_state_dict(_a) if finetuned: SCREAMING_SNAKE_CASE : str = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') a_ = parser.parse_args() a_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
25
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a_ = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } a_ = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def lowerCamelCase__ ( _a , _a=False): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = create_model( "HTSAT-tiny" , "roberta" , _a , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_a , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : Optional[Any] = r".*sequential.(\d+).*" SCREAMING_SNAKE_CASE : int = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE : Any = key.replace(_a , _a) if re.match(_a , _a): # replace sequential layers with list SCREAMING_SNAKE_CASE : Optional[int] = re.match(_a , _a).group(1) SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_a)//3}.linear.") elif re.match(_a , _a): SCREAMING_SNAKE_CASE : str = int(re.match(_a , _a).group(1)) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE : List[str] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}.") if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE : Optional[Any] = value SCREAMING_SNAKE_CASE : Dict = mixed_qkv.size(0) // 3 SCREAMING_SNAKE_CASE : Dict = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE : Union[str, Any] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE : str = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE : Dict = query_layer SCREAMING_SNAKE_CASE : str = key_layer SCREAMING_SNAKE_CASE : List[str] = value_layer else: SCREAMING_SNAKE_CASE : Any = value return model_state_dict def lowerCamelCase__ ( _a , _a , _a , _a=False): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = init_clap(_a , enable_fusion=_a) clap_model.eval() SCREAMING_SNAKE_CASE : Optional[int] = clap_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = rename_state_dict(_a) SCREAMING_SNAKE_CASE : Any = ClapConfig() SCREAMING_SNAKE_CASE : Tuple = enable_fusion SCREAMING_SNAKE_CASE : str = ClapModel(_a) # ignore the spectrogram embedding layer model.load_state_dict(_a , strict=_a) model.save_pretrained(_a) transformers_config.save_pretrained(_a) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') a_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
25
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
1
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1): for perpendicular in range(_a , max_perimeter + 1): SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_a): SCREAMING_SNAKE_CASE : int = int(base + perpendicular + hypotenuse) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ ( _a = 1000): SCREAMING_SNAKE_CASE : List[str] = pythagorean_triple(_a) return triplets.most_common(1)[0][0] if __name__ == "__main__": print(F'''Perimeter {solution()} has maximum solutions''')
25
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a_ = 16 a_ = 32 def lowerCamelCase__ ( _a , _a = 16 , _a = "bert-base-cased"): SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(_a) SCREAMING_SNAKE_CASE : str = load_dataset("glue" , "mrpc") def tokenize_function(_a): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_a , max_length=_a) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE : Optional[int] = datasets.map( _a , batched=_a , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_a) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Union[str, Any] = tokenized_datasets.rename_column("label" , "labels") def collate_fn(_a): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_a , padding="max_length" , max_length=128 , return_tensors="pt") return tokenizer.pad(_a , padding="longest" , return_tensors="pt") # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Any = DataLoader( tokenized_datasets["train"] , shuffle=_a , collate_fn=_a , batch_size=_a) SCREAMING_SNAKE_CASE : Optional[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_a , collate_fn=_a , batch_size=_a) return train_dataloader, eval_dataloader def lowerCamelCase__ ( _a , _a): # Initialize accelerator SCREAMING_SNAKE_CASE : Dict = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : int = config["lr"] SCREAMING_SNAKE_CASE : Any = int(config["num_epochs"]) SCREAMING_SNAKE_CASE : Tuple = int(config["seed"]) SCREAMING_SNAKE_CASE : Tuple = int(config["batch_size"]) SCREAMING_SNAKE_CASE : Dict = args.model_name_or_path set_seed(_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = get_dataloaders(_a , _a , _a) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification.from_pretrained(_a , return_dict=_a) # Instantiate optimizer SCREAMING_SNAKE_CASE : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE : Dict = optimizer_cls(params=model.parameters() , lr=_a) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = (len(_a) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE : Optional[int] = get_linear_schedule_with_warmup( optimizer=_a , num_warmup_steps=0 , num_training_steps=_a , ) else: SCREAMING_SNAKE_CASE : Dict = DummyScheduler(_a , total_num_steps=_a , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = accelerator.prepare( _a , _a , _a , _a , _a) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE : Dict = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE : Any = 0 # Now we train the model SCREAMING_SNAKE_CASE : Optional[int] = evaluate.load("glue" , "mrpc") SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : str = {} for epoch in range(_a , _a): model.train() for step, batch in enumerate(_a): SCREAMING_SNAKE_CASE : Dict = model(**_a) SCREAMING_SNAKE_CASE : int = outputs.loss SCREAMING_SNAKE_CASE : Tuple = loss / gradient_accumulation_steps accelerator.backward(_a) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for step, batch in enumerate(_a): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**_a) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = accelerator.gather( (predictions, batch["labels"])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_a) - 1: SCREAMING_SNAKE_CASE : str = predictions[: len(eval_dataloader.dataset) - samples_seen] SCREAMING_SNAKE_CASE : Tuple = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_a , references=_a , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _a) SCREAMING_SNAKE_CASE : Tuple = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: SCREAMING_SNAKE_CASE : str = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json") , "w") as f: json.dump(_a , _a) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") parser.add_argument( "--model_name_or_path" , type=_a , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_a , ) parser.add_argument( "--output_dir" , type=_a , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=_a , default=_a , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=_a , default=3 , help="Number of train epochs." , ) SCREAMING_SNAKE_CASE : str = parser.parse_args() SCREAMING_SNAKE_CASE : List[Any] = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_a , _a) if __name__ == "__main__": main()
25
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
1
from __future__ import annotations from collections.abc import Callable a_ = list[list[float | int]] def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : int = len(_a) SCREAMING_SNAKE_CASE : Matrix = [[0 for _ in range(size + 1)] for _ in range(_a)] SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float for row in range(_a): for col in range(_a): SCREAMING_SNAKE_CASE : List[Any] = matrix[row][col] SCREAMING_SNAKE_CASE : int = vector[row][0] SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : List[str] = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE : List[str] = max((abs(augmented[rowa][col]), rowa) for rowa in range(_a , _a))[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _a): SCREAMING_SNAKE_CASE : Dict = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE : int = 0 for cola in range(col + 1 , size + 1): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _a): for row in range(_a): SCREAMING_SNAKE_CASE : List[Any] = augmented[row][col] / augmented[col][col] for cola in range(_a , size + 1): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10)] for row in range(_a) ] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = len(_a) SCREAMING_SNAKE_CASE : Matrix = [[0 for _ in range(_a)] for _ in range(_a)] SCREAMING_SNAKE_CASE : Matrix = [[0] for _ in range(_a)] SCREAMING_SNAKE_CASE : Matrix SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int for x_val, y_val in enumerate(_a): for col in range(_a): SCREAMING_SNAKE_CASE : Any = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE : Tuple = y_val SCREAMING_SNAKE_CASE : Any = solve(_a , _a) def interpolated_func(_a) -> int: return sum( round(coeffs[x_val][0]) * (var ** (size - x_val - 1)) for x_val in range(_a)) return interpolated_func def lowerCamelCase__ ( _a): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _a = question_function , _a = 10): SCREAMING_SNAKE_CASE : list[int] = [func(_a) for x_val in range(1 , order + 1)] SCREAMING_SNAKE_CASE : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff]) for max_coeff in range(1 , order + 1) ] SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Callable[[int], int] SCREAMING_SNAKE_CASE : int for poly in polynomials: SCREAMING_SNAKE_CASE : Union[str, Any] = 1 while func(_a) == poly(_a): x_val += 1 ret += poly(_a) return ret if __name__ == "__main__": print(F'''{solution() = }''')
25
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
25
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
1
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : list[list[str]] = [[] for _ in range(_a)] SCREAMING_SNAKE_CASE : Optional[Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative") if key == 1 or len(_a) <= key: return input_string for position, character in enumerate(_a): SCREAMING_SNAKE_CASE : Tuple = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : str = min(_a , lowest * 2 - num) # creates zigzag pattern temp_grid[num].append(_a) SCREAMING_SNAKE_CASE : Optional[int] = ["".join(_a) for row in temp_grid] SCREAMING_SNAKE_CASE : Union[str, Any] = "".join(_a) return output_string def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : int = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative") if key == 1: return input_string SCREAMING_SNAKE_CASE : list[list[str]] = [[] for _ in range(_a)] # generates template for position in range(len(_a)): SCREAMING_SNAKE_CASE : Dict = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : int = min(_a , lowest * 2 - num) # creates zigzag pattern temp_grid[num].append("*") SCREAMING_SNAKE_CASE : Any = 0 for row in temp_grid: # fills in the characters SCREAMING_SNAKE_CASE : Tuple = input_string[counter : counter + len(_a)] grid.append(list(_a)) counter += len(_a) SCREAMING_SNAKE_CASE : Optional[int] = "" # reads as zigzag for position in range(len(_a)): SCREAMING_SNAKE_CASE : int = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : Union[str, Any] = min(_a , lowest * 2 - num) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0) return output_string def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[str] = {} for key_guess in range(1 , len(_a)): # tries every key SCREAMING_SNAKE_CASE : Tuple = decrypt(_a , _a) return results if __name__ == "__main__": import doctest doctest.testmod()
25
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
1
from __future__ import annotations from cmath import sqrt def lowerCamelCase__ ( _a , _a , _a): if a == 0: raise ValueError("Coefficient 'a' must not be zero.") SCREAMING_SNAKE_CASE : Tuple = b * b - 4 * a * c SCREAMING_SNAKE_CASE : Dict = (-b + sqrt(_a)) / (2 * a) SCREAMING_SNAKE_CASE : List[Any] = (-b - sqrt(_a)) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = quadratic_roots(a=5 , b=6 , c=1) print(f"The solutions are: {solutiona} and {solutiona}") if __name__ == "__main__": main()
25
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
1
from collections.abc import Iterable from typing import Any class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , a : int | None = None ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = value SCREAMING_SNAKE_CASE : Node | None = None # Added in order to delete a node easier SCREAMING_SNAKE_CASE : Node | None = None SCREAMING_SNAKE_CASE : Node | None = None def __repr__( self : List[Any] ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"{self.value}": (self.left, self.right)} , indent=1 ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , a : Node | None = None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Any = root def __str__( self : Tuple ) -> str: """simple docstring""" return str(self.root ) def __UpperCamelCase ( self : Dict , a : Node , a : Node | None ) -> None: """simple docstring""" if new_children is not None: # reset its kids SCREAMING_SNAKE_CASE : List[str] = node.parent if node.parent is not None: # reset its parent if self.is_right(a ): # If it is the right children SCREAMING_SNAKE_CASE : Optional[Any] = new_children else: SCREAMING_SNAKE_CASE : int = new_children else: SCREAMING_SNAKE_CASE : Optional[Any] = new_children def __UpperCamelCase ( self : Optional[Any] , a : Node ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def __UpperCamelCase ( self : Any ) -> bool: """simple docstring""" return self.root is None def __UpperCamelCase ( self : str , a : Union[str, Any] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = Node(a ) # create a new Node if self.empty(): # if Tree is empty SCREAMING_SNAKE_CASE : Union[str, Any] = new_node # set its root else: # Tree is not empty SCREAMING_SNAKE_CASE : Any = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: SCREAMING_SNAKE_CASE : Optional[Any] = new_node # We insert the new node in a leaf break else: SCREAMING_SNAKE_CASE : str = parent_node.left else: if parent_node.right is None: SCREAMING_SNAKE_CASE : int = new_node break else: SCREAMING_SNAKE_CASE : Any = parent_node.right SCREAMING_SNAKE_CASE : Optional[Any] = parent_node def __UpperCamelCase ( self : int , *a : Optional[Any] ) -> None: """simple docstring""" for value in values: self.__insert(a ) def __UpperCamelCase ( self : Tuple , a : Union[str, Any] ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: SCREAMING_SNAKE_CASE : Optional[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: SCREAMING_SNAKE_CASE : List[Any] = node.left if value < node.value else node.right return node def __UpperCamelCase ( self : str , a : Node | None = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None SCREAMING_SNAKE_CASE : List[str] = self.root if not self.empty(): while node.right is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = node.right return node def __UpperCamelCase ( self : Any , a : Node | None = None ) -> Node | None: """simple docstring""" if node is None: SCREAMING_SNAKE_CASE : Any = self.root if self.root is None: return None if not self.empty(): SCREAMING_SNAKE_CASE : List[Any] = self.root while node.left is not None: SCREAMING_SNAKE_CASE : List[str] = node.left return node def __UpperCamelCase ( self : Union[str, Any] , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.search(a ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(a , a ) elif node.left is None: # Has only right children self.__reassign_nodes(a , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(a , node.left ) else: SCREAMING_SNAKE_CASE : Any = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore SCREAMING_SNAKE_CASE : Tuple = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __UpperCamelCase ( self : Union[str, Any] , a : Node | None ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __UpperCamelCase ( self : Tuple , a : int=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __UpperCamelCase ( self : Tuple , a : list , a : Node | None ) -> None: """simple docstring""" if node: self.inorder(a , node.left ) arr.append(node.value ) self.inorder(a , node.right ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Node ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : list[int] = [] self.inorder(a , a ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Union[str, Any] = [] if curr_node is not None: SCREAMING_SNAKE_CASE : List[Any] = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) SCREAMING_SNAKE_CASE : str = BinarySearchTree() for i in testlist: t.insert(_a) # Prints all the elements of the list in order traversal print(_a) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(_a) print(_a) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1