code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase_ = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def snake_case( __magic_name__ , __magic_name__=False ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] = create_model( '''HTSAT-tiny''' , '''roberta''' , _a , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=_a , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : int = {} lowercase : Optional[Any] = r".*sequential.(\d+).*" lowercase : int = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase : Any = key.replace(_a , _a ) if re.match(_a , _a ): # replace sequential layers with list lowercase : Optional[int] = re.match(_a , _a ).group(1 ) lowercase : Optional[Any] = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(_a )//3}.linear.""" ) elif re.match(_a , _a ): lowercase : str = int(re.match(_a , _a ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowercase : List[str] = 1 if projecton_layer == 0 else 2 lowercase : Optional[Any] = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value lowercase : Optional[Any] = value lowercase : Dict = mixed_qkv.size(0 ) // 3 lowercase : Dict = mixed_qkv[:qkv_dim] lowercase : Union[str, Any] = mixed_qkv[qkv_dim : qkv_dim * 2] lowercase : str = mixed_qkv[qkv_dim * 2 :] lowercase : Dict = query_layer lowercase : str = key_layer lowercase : List[str] = value_layer else: lowercase : Any = value return model_state_dict def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False ) -> Optional[Any]: '''simple docstring''' lowercase : int = init_clap(_a , enable_fusion=_a ) clap_model.eval() lowercase : Optional[int] = clap_model.state_dict() lowercase : Tuple = rename_state_dict(_a ) lowercase : Any = ClapConfig() lowercase : Tuple = enable_fusion lowercase : str = ClapModel(_a ) # ignore the spectrogram embedding layer model.load_state_dict(_a , strict=_a ) model.save_pretrained(_a ) transformers_config.save_pretrained(_a ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowerCAmelCase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
217
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class a ( __A , __A ): _lowercase = "convnextv2" def __init__( self , A_=3 , A_=4 , A_=4 , A_=None , A_=None , A_="gelu" , A_=0.02 , A_=1e-12 , A_=0.0 , A_=224 , A_=None , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : List[Any] = num_stages _UpperCAmelCase : Tuple = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes _UpperCAmelCase : Any = [3, 3, 9, 3] if depths is None else depths _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : int = layer_norm_eps _UpperCAmelCase : Any = drop_path_rate _UpperCAmelCase : List[str] = image_size _UpperCAmelCase : List[str] = ["stem"] + [f'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] _UpperCAmelCase : Dict = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
300
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
0
'''simple docstring''' from __future__ import annotations def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] = None , _SCREAMING_SNAKE_CASE : List[str] = None ) -> Tuple: """simple docstring""" if start is None: lowerCAmelCase = 0 if end is None: lowerCAmelCase = len(_a ) - 1 if start >= end: return lowerCAmelCase = (start + end) // 2 slowsort(_a , _a , _a ) slowsort(_a , mid + 1 , _a ) if sequence[end] < sequence[mid]: lowerCAmelCase = sequence[mid], sequence[end] slowsort(_a , _a , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
433
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
0
"""simple docstring""" from __future__ import annotations def snake_case ( lowerCAmelCase_ ) -> List[Any]: _snake_case = 2 _snake_case = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a ) if n > 1: factors.append(_a ) return factors if __name__ == "__main__": import doctest doctest.testmod()
103
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
0
def UpperCAmelCase ( a_ , a_ , a_ ) -> Dict: """simple docstring""" def update_area_of_max_square(a_ , a_ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __A = update_area_of_max_square(_a , col + 1 ) __A = update_area_of_max_square(row + 1 , col + 1 ) __A = update_area_of_max_square(row + 1 , _a ) if mat[row][col]: __A = 1 + min([right, diagonal, down] ) __A = max(largest_square_area[0] , _a ) return sub_problem_sol else: return 0 __A = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" def update_area_of_max_square_using_dp_array( a_ , a_ , a_ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __A = update_area_of_max_square_using_dp_array(_a , col + 1 , _a ) __A = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _a ) __A = update_area_of_max_square_using_dp_array(row + 1 , _a , _a ) if mat[row][col]: __A = 1 + min([right, diagonal, down] ) __A = max(largest_square_area[0] , _a ) __A = sub_problem_sol return sub_problem_sol else: return 0 __A = [0] __A = [[-1] * cols for _ in range(_a )] update_area_of_max_square_using_dp_array(0 , 0 , _a ) return largest_square_area[0] def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" __A = [[0] * (cols + 1) for _ in range(rows + 1 )] __A = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __A = dp_array[row][col + 1] __A = dp_array[row + 1][col + 1] __A = dp_array[row + 1][col] if mat[row][col] == 1: __A = 1 + min(_a , _a , _a ) __A = max(dp_array[row][col] , _a ) else: __A = 0 return largest_square_area def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" __A = [0] * (cols + 1) __A = [0] * (cols + 1) __A = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __A = current_row[col + 1] __A = next_row[col + 1] __A = next_row[col] if mat[row][col] == 1: __A = 1 + min(_a , _a , _a ) __A = max(current_row[col] , _a ) else: __A = 0 __A = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
55
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase : Optional[int] = logging.get_logger(__name__) _UpperCamelCase : int = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class UpperCAmelCase_ ( __A): lowerCamelCase__ : List[Any] = "instructblip_vision_model" def __init__( self , a=1_4_0_8 , a=6_1_4_4 , a=3_9 , a=1_6 , a=2_2_4 , a=1_4 , a="gelu" , a=1e-6 , a=0.0 , a=1e-10 , a=True , **a , ) -> Union[str, Any]: super().__init__(**a ) lowercase__ : List[Any] = hidden_size lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Dict = patch_size lowercase__ : List[str] = image_size lowercase__ : Dict = initializer_range lowercase__ : str = attention_dropout lowercase__ : str = layer_norm_eps lowercase__ : str = hidden_act lowercase__ : Tuple = qkv_bias @classmethod def _UpperCAmelCase ( cls , a , **a ) -> "PretrainedConfig": cls._set_token_in_kwargs(a ) lowercase__ : Union[str, Any] = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": lowercase__ : List[str] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a , **a ) class UpperCAmelCase_ ( __A): lowerCamelCase__ : str = "instructblip_qformer" def __init__( self , a=3_0_5_2_2 , a=7_6_8 , a=1_2 , a=1_2 , a=3_0_7_2 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=0.02 , a=1e-12 , a=0 , a="absolute" , a=2 , a=1_4_0_8 , **a , ) -> str: super().__init__(pad_token_id=a , **a ) lowercase__ : Any = vocab_size lowercase__ : Any = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : str = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : Tuple = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : Tuple = initializer_range lowercase__ : List[Any] = layer_norm_eps lowercase__ : Optional[int] = position_embedding_type lowercase__ : Dict = cross_attention_frequency lowercase__ : int = encoder_hidden_size @classmethod def _UpperCAmelCase ( cls , a , **a ) -> "PretrainedConfig": cls._set_token_in_kwargs(a ) lowercase__ : Optional[Any] = cls.get_config_dict(a , **a ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": lowercase__ : int = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a , **a ) class UpperCAmelCase_ ( __A): lowerCamelCase__ : Any = "instructblip" lowerCamelCase__ : Dict = True def __init__( self , a=None , a=None , a=None , a=3_2 , **a ) -> List[str]: super().__init__(**a ) if vision_config is None: lowercase__ : Optional[int] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: lowercase__ : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: lowercase__ : Tuple = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) lowercase__ : int = InstructBlipVisionConfig(**a ) lowercase__ : Union[str, Any] = InstructBlipQFormerConfig(**a ) lowercase__ : Union[str, Any] = text_config["model_type"] if "model_type" in text_config else "opt" lowercase__ : Optional[Any] = CONFIG_MAPPING[text_model_type](**a ) lowercase__ : Union[str, Any] = self.text_config.tie_word_embeddings lowercase__ : Union[str, Any] = self.text_config.is_encoder_decoder lowercase__ : str = num_query_tokens lowercase__ : Optional[Any] = self.vision_config.hidden_size lowercase__ : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase__ : Optional[Any] = 1.0 lowercase__ : Tuple = 0.02 @classmethod def _UpperCAmelCase ( cls , a , a , a , **a , ) -> List[str]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **a , ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = self.vision_config.to_dict() lowercase__ : Union[str, Any] = self.qformer_config.to_dict() lowercase__ : Tuple = self.text_config.to_dict() lowercase__ : int = self.__class__.model_type return output
599
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( __A): @slow @require_torch def __lowercase ( self : Any ) -> Any: snake_case : Optional[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) snake_case : str = BertTokenizer.from_pretrained("bert-base-uncased" ) snake_case : int = bertabert.config.encoder.vocab_size snake_case : Dict = tokenizer.sep_token_id snake_case : Optional[Any] = tokenizer.cls_token_id snake_case : List[Any] = 128 snake_case : str = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) snake_case : str = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) snake_case : List[Any] = train_dataset.select(range(32 ) ) snake_case : List[str] = val_dataset.select(range(16 ) ) snake_case : List[Any] = 4 def _map_to_encoder_decoder_inputs(_lowercase : Tuple ): # Tokenizer will automatically set [BOS] <text> [EOS] snake_case : Any = tokenizer(batch["article"] , padding="max_length" , truncation=_lowercase , max_length=512 ) snake_case : Optional[int] = tokenizer(batch["highlights"] , padding="max_length" , truncation=_lowercase , max_length=128 ) snake_case : Tuple = inputs.input_ids snake_case : List[Any] = inputs.attention_mask snake_case : List[str] = outputs.input_ids snake_case : List[Any] = outputs.input_ids.copy() snake_case : List[str] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] snake_case : Optional[Any] = outputs.attention_mask assert all(len(_lowercase ) == 512 for x in inputs.input_ids ) assert all(len(_lowercase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_lowercase : int ): snake_case : Dict = pred.label_ids snake_case : Dict = pred.predictions # all unnecessary tokens are removed snake_case : Optional[int] = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) snake_case : str = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) snake_case : Optional[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_lowercase ) )] ) / len(_lowercase ) return {"accuracy": accuracy} # map train dataset snake_case : Dict = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowercase , batch_size=_lowercase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset snake_case : Union[str, Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowercase , batch_size=_lowercase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) snake_case : List[Any] = self.get_auto_remove_tmp_dir() snake_case : List[str] = SeqaSeqTrainingArguments( output_dir=_lowercase , per_device_train_batch_size=_lowercase , per_device_eval_batch_size=_lowercase , predict_with_generate=_lowercase , evaluation_strategy="steps" , do_train=_lowercase , do_eval=_lowercase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer snake_case : Optional[Any] = SeqaSeqTrainer( model=_lowercase , args=_lowercase , compute_metrics=_compute_metrics , train_dataset=_lowercase , eval_dataset=_lowercase , tokenizer=_lowercase , ) # start training trainer.train()
449
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
0
'''simple docstring''' import math import sys def UpperCAmelCase_ ( __lowercase : Tuple ) -> Union[str, Any]: '''simple docstring''' if number != int(_a ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 _UpperCAmelCase = [-1] * (number + 1) _UpperCAmelCase = 0 for i in range(1 , number + 1 ): _UpperCAmelCase = sys.maxsize _UpperCAmelCase = int(math.sqrt(_a ) ) for j in range(1 , root + 1 ): _UpperCAmelCase = 1 + answers[i - (j**2)] _UpperCAmelCase = min(_a , _a ) _UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
236
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
import math def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] = 0 , lowerCamelCase_ : int = 0 ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = end or len(_a ) for i in range(_a , _a ): SCREAMING_SNAKE_CASE_ : List[Any] = i SCREAMING_SNAKE_CASE_ : Any = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: SCREAMING_SNAKE_CASE_ : Tuple = array[temp_index - 1] temp_index -= 1 SCREAMING_SNAKE_CASE_ : Optional[int] = temp_index_value return array def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] ) -> Optional[int]: # Max Heap """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = index SCREAMING_SNAKE_CASE_ : str = 2 * index + 1 # Left Node SCREAMING_SNAKE_CASE_ : List[Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: SCREAMING_SNAKE_CASE_ : Tuple = left_index if right_index < heap_size and array[largest] < array[right_index]: SCREAMING_SNAKE_CASE_ : Optional[int] = right_index if largest != index: SCREAMING_SNAKE_CASE_ : Union[str, Any] = array[largest], array[index] heapify(_a , _a , _a ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(_a ) for i in range(n // 2 , -1 , -1 ): heapify(_a , _a , _a ) for i in range(n - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ : int = array[0], array[i] heapify(_a , 0 , _a ) return array def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Tuple ) -> Dict: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = low SCREAMING_SNAKE_CASE_ : List[Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i SCREAMING_SNAKE_CASE_ : List[Any] = array[j], array[i] i += 1 def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if len(_a ) == 0: return array SCREAMING_SNAKE_CASE_ : int = 2 * math.ceil(math.loga(len(_a ) ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = 16 return intro_sort(_a , 0 , len(_a ) , _a , _a ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(_a ) max_depth -= 1 SCREAMING_SNAKE_CASE_ : Optional[int] = median_of_a(_a , _a , start + ((end - start) // 2) + 1 , end - 1 ) SCREAMING_SNAKE_CASE_ : List[str] = partition(_a , _a , _a , _a ) intro_sort(_a , _a , _a , _a , _a ) SCREAMING_SNAKE_CASE_ : int = p return insertion_sort(_a , _a , _a ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : List[Any] = input('''Enter numbers separated by a comma : ''').strip() UpperCamelCase__ : Any = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
105
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : Any = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class lowerCamelCase_ ( __A ): _lowerCAmelCase : Any = 'align_text_model' def __init__( self : Tuple , lowerCAmelCase__ : int=3_05_22 , lowerCAmelCase__ : int=7_68 , lowerCAmelCase__ : Optional[int]=12 , lowerCAmelCase__ : Union[str, Any]=12 , lowerCAmelCase__ : List[str]=30_72 , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : str=5_12 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Optional[int]=1e-12 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : str="absolute" , lowerCAmelCase__ : Optional[int]=True , **lowerCAmelCase__ : Optional[int] , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : str = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Any = pad_token_id @classmethod def __lowercase ( cls : int , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : List[str] ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": SCREAMING_SNAKE_CASE : Dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowerCamelCase_ ( __A ): _lowerCAmelCase : Dict = 'align_vision_model' def __init__( self : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 6_00 , lowerCAmelCase__ : float = 2.0 , lowerCAmelCase__ : float = 3.1 , lowerCAmelCase__ : int = 8 , lowerCAmelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase__ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCAmelCase__ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCAmelCase__ : List[int] = [] , lowerCAmelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase__ : float = 0.25 , lowerCAmelCase__ : str = "swish" , lowerCAmelCase__ : int = 25_60 , lowerCAmelCase__ : str = "mean" , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : float = 0.001 , lowerCAmelCase__ : float = 0.99 , lowerCAmelCase__ : float = 0.2 , **lowerCAmelCase__ : List[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : Dict = width_coefficient SCREAMING_SNAKE_CASE : List[Any] = depth_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = depth_divisor SCREAMING_SNAKE_CASE : Tuple = kernel_sizes SCREAMING_SNAKE_CASE : List[str] = in_channels SCREAMING_SNAKE_CASE : Any = out_channels SCREAMING_SNAKE_CASE : str = depthwise_padding SCREAMING_SNAKE_CASE : Optional[int] = strides SCREAMING_SNAKE_CASE : str = num_block_repeats SCREAMING_SNAKE_CASE : int = expand_ratios SCREAMING_SNAKE_CASE : Optional[int] = squeeze_expansion_ratio SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dim SCREAMING_SNAKE_CASE : Union[str, Any] = pooling_type SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : List[str] = batch_norm_eps SCREAMING_SNAKE_CASE : Tuple = batch_norm_momentum SCREAMING_SNAKE_CASE : Tuple = drop_connect_rate SCREAMING_SNAKE_CASE : List[Any] = sum(lowerCAmelCase__ ) * 4 @classmethod def __lowercase ( cls : int , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Dict ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": SCREAMING_SNAKE_CASE : List[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowerCamelCase_ ( __A ): _lowerCAmelCase : Tuple = 'align' _lowerCAmelCase : List[Any] = True def __init__( self : Dict , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : List[str]=6_40 , lowerCAmelCase__ : Optional[Any]=1.0 , lowerCAmelCase__ : int=0.02 , **lowerCAmelCase__ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) if text_config is None: SCREAMING_SNAKE_CASE : int = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: SCREAMING_SNAKE_CASE : List[str] = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) SCREAMING_SNAKE_CASE : List[Any] = AlignTextConfig(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = AlignVisionConfig(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = projection_dim SCREAMING_SNAKE_CASE : Dict = temperature_init_value SCREAMING_SNAKE_CASE : str = initializer_range @classmethod def __lowercase ( cls : Union[str, Any] , lowerCAmelCase__ : AlignTextConfig , lowerCAmelCase__ : AlignVisionConfig , **lowerCAmelCase__ : Tuple ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Any = self.text_config.to_dict() SCREAMING_SNAKE_CASE : Optional[Any] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : str = self.__class__.model_type return output
527
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : int=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : str=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : List[Any]=4_00 , lowerCAmelCase : str=True , lowerCAmelCase : Any=None , lowerCAmelCase : str=True , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=True , ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = size if size is not None else {"shortest_edge": 20} __lowerCAmelCase : List[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} __lowerCAmelCase : Any = parent __lowerCAmelCase : List[str] = batch_size __lowerCAmelCase : Optional[int] = num_channels __lowerCAmelCase : Optional[Any] = image_size __lowerCAmelCase : str = min_resolution __lowerCAmelCase : List[Any] = max_resolution __lowerCAmelCase : int = do_resize __lowerCAmelCase : Optional[int] = size __lowerCAmelCase : Any = do_center_crop __lowerCAmelCase : int = crop_size __lowerCAmelCase : int = do_flip_channel_order def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( __A , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: """simple docstring""" __lowerCAmelCase : Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_flip_channel_order""" ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowerCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input __lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : str = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: """simple docstring""" __lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input __lowerCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : Any = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: """simple docstring""" __lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input __lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : List[Any] = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
651
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
217
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class a ( __A ): _lowercase = "deberta-v2" def __init__( self , A_=128100 , A_=1536 , A_=24 , A_=24 , A_=6144 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0 , A_=0.02 , A_=1e-7 , A_=False , A_=-1 , A_=0 , A_=True , A_=None , A_=0 , A_="gelu" , **A_ , ): '''simple docstring''' super().__init__(**A_ ) _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Dict = max_position_embeddings _UpperCAmelCase : int = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : str = relative_attention _UpperCAmelCase : Dict = max_relative_positions _UpperCAmelCase : Optional[Any] = pad_token_id _UpperCAmelCase : Tuple = position_biased_input # Backwards compatibility if type(A_ ) == str: _UpperCAmelCase : Any = [x.strip() for x in pos_att_type.lower().split("|" )] _UpperCAmelCase : Dict = pos_att_type _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : Any = kwargs.get("pooler_hidden_size" , A_ ) _UpperCAmelCase : int = pooler_dropout _UpperCAmelCase : List[str] = pooler_hidden_act class a ( __A ): @property def _UpperCAmelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Dict = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return 12 def _UpperCAmelCase ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , A_ = None , ): '''simple docstring''' _UpperCAmelCase : int = super().generate_dummy_inputs(preprocessor=A_ , framework=A_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
300
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
0
'''simple docstring''' import argparse import datetime def _snake_case ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_a ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month lowerCAmelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day lowerCAmelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation lowerCAmelCase = datetime.date(int(_a ) , int(_a ) , int(_a ) ) # Start math if m <= 2: lowerCAmelCase = y - 1 lowerCAmelCase = m + 12 # maths var lowerCAmelCase = int(str(_a )[:2] ) lowerCAmelCase = int(str(_a )[2:] ) lowerCAmelCase = int(2.6 * m - 5.39 ) lowerCAmelCase = int(c / 4 ) lowerCAmelCase = int(k / 4 ) lowerCAmelCase = int(d + k ) lowerCAmelCase = int(t + u + v + x ) lowerCAmelCase = int(z - (2 * c) ) lowerCAmelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response lowerCAmelCase = f'Your date {date_input}, is a {days[str(_a )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) UpperCAmelCase = parser.parse_args() zeller(args.date_input)
433
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def snake_case ( lowerCAmelCase_ ) -> Optional[int]: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_a ) def snake_case ( lowerCAmelCase_ ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_terminal_summary_main _snake_case = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_a , id=_a )
103
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
0
def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" __A = [0] * len(_a ) for i in range(1 , len(_a ) ): # use last results for better performance - dynamic programming __A = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __A = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __A = j return prefix_result def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" return max(prefix_function(_a ) ) if __name__ == "__main__": import doctest doctest.testmod()
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _UpperCamelCase : Union[str, Any] = TypeVar("KEY") _UpperCamelCase : str = TypeVar("VAL") @dataclass(frozen=__A , slots=__A) class UpperCAmelCase_ ( Generic[KEY, VAL]): lowerCamelCase__ : List[Any] = 4_2 lowerCamelCase__ : str = 4_2 class UpperCAmelCase_ ( _Item): def __init__( self ) -> None: super().__init__(a , a ) def __bool__( self ) -> bool: return False _UpperCamelCase : Optional[Any] = _DeletedItem() class UpperCAmelCase_ ( MutableMapping[KEY, VAL]): def __init__( self , a = 8 , a = 0.75 ) -> None: lowercase__ : int = initial_block_size lowercase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowercase__ : List[str] = capacity_factor lowercase__ : List[Any] = 0 def _UpperCAmelCase ( self , a ) -> int: return hash(a ) % len(self._buckets ) def _UpperCAmelCase ( self , a ) -> int: return (ind + 1) % len(self._buckets ) def _UpperCAmelCase ( self , a , a , a ) -> bool: lowercase__ : Tuple = self._buckets[ind] if not stored: lowercase__ : int = _Item(a , a ) self._len += 1 return True elif stored.key == key: lowercase__ : Dict = _Item(a , a ) return True else: return False def _UpperCAmelCase ( self ) -> bool: lowercase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(a ) def _UpperCAmelCase ( self ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False lowercase__ : Optional[int] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCAmelCase ( self , a ) -> None: lowercase__ : Tuple = self._buckets lowercase__ : Optional[int] = [None] * new_size lowercase__ : Dict = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _UpperCAmelCase ( self ) -> None: self._resize(len(self._buckets ) * 2 ) def _UpperCAmelCase ( self ) -> None: self._resize(len(self._buckets ) // 2 ) def _UpperCAmelCase ( self , a ) -> Iterator[int]: lowercase__ : Dict = self._get_bucket_index(a ) for _ in range(len(self._buckets ) ): yield ind lowercase__ : int = self._get_next_ind(a ) def _UpperCAmelCase ( self , a , a ) -> None: for ind in self._iterate_buckets(a ): if self._try_set(a , a , a ): break def __setitem__( self , a , a ) -> None: if self._is_full(): self._size_up() self._add_item(a , a ) def __delitem__( self , a ) -> None: for ind in self._iterate_buckets(a ): lowercase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(a ) if item is _deleted: continue if item.key == key: lowercase__ : int = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , a ) -> VAL: for ind in self._iterate_buckets(a ): lowercase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(a ) def __len__( self ) -> int: return self._len def __iter__( self ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: lowercase__ : int = " ,".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
599
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _a ( unittest.TestCase): @property def __lowercase ( self : List[str] ) -> str: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __lowercase ( self : Union[str, Any] ) -> Dict: snake_case : Dict = ort.SessionOptions() snake_case : Optional[Any] = False return options def __lowercase ( self : Tuple ) -> List[Any]: snake_case : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) snake_case : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) snake_case : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default snake_case : Dict = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case : Tuple = "A red cat sitting on a park bench" snake_case : Optional[Any] = np.random.RandomState(0 ) snake_case : Union[str, Any] = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_lowercase , output_type="np" , ) snake_case : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
449
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
0
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class A_ ( unittest.TestCase ): def lowercase ( self : Tuple ): _UpperCAmelCase = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _UpperCAmelCase = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = f'\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '.split() _UpperCAmelCase = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
236
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: UpperCamelCase__ : Any = None UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : Dict = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Any = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } UpperCamelCase__ : List[Any] = '''▁''' class lowerCAmelCase_ ( __A ): __a : Optional[Any] = VOCAB_FILES_NAMES __a : int = PRETRAINED_VOCAB_FILES_MAP __a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : str = BigBirdTokenizer __a : Any = ["input_ids", "attention_mask"] __a : int = [] def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__="<unk>" ,snake_case__="<s>" ,snake_case__="</s>" ,snake_case__="<pad>" ,snake_case__="[SEP]" ,snake_case__="[MASK]" ,snake_case__="[CLS]" ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : str = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else bos_token SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else eos_token SCREAMING_SNAKE_CASE_ : List[Any] = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else pad_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else cls_token SCREAMING_SNAKE_CASE_ : int = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else mask_token super().__init__( snake_case__ ,tokenizer_file=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,unk_token=snake_case__ ,sep_token=snake_case__ ,pad_token=snake_case__ ,cls_token=snake_case__ ,mask_token=snake_case__ ,**snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = vocab_file SCREAMING_SNAKE_CASE_ : Tuple = False if not self.vocab_file else True def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file ,snake_case__ ) return (out_vocab_file,)
105
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCAmelCase_ : List[str] = list[list[float | int]] def UpperCAmelCase ( A : List[Any] , A : List[str] ): SCREAMING_SNAKE_CASE : int = len(_a ) SCREAMING_SNAKE_CASE : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_a )] SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float for row in range(_a ): for col in range(_a ): SCREAMING_SNAKE_CASE : List[Any] = matrix[row][col] SCREAMING_SNAKE_CASE : int = vector[row][0] SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : List[str] = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE : List[str] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_a , _a ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE : int = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _a ): SCREAMING_SNAKE_CASE : Dict = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE : int = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _a ): for row in range(_a ): SCREAMING_SNAKE_CASE : List[Any] = augmented[row][col] / augmented[col][col] for cola in range(_a , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_a ) ] def UpperCAmelCase ( A : int ): SCREAMING_SNAKE_CASE : int = len(_a ) SCREAMING_SNAKE_CASE : Matrix = [[0 for _ in range(_a )] for _ in range(_a )] SCREAMING_SNAKE_CASE : Matrix = [[0] for _ in range(_a )] SCREAMING_SNAKE_CASE : Matrix SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int for x_val, y_val in enumerate(_a ): for col in range(_a ): SCREAMING_SNAKE_CASE : Any = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE : Tuple = y_val SCREAMING_SNAKE_CASE : Any = solve(_a , _a ) def interpolated_func(A : Tuple ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_a ) ) return interpolated_func def UpperCAmelCase ( A : List[str] ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase ( A : str = question_function , A : Optional[int] = 10 ): SCREAMING_SNAKE_CASE : list[int] = [func(_a ) for x_val in range(1 , order + 1 )] SCREAMING_SNAKE_CASE : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Callable[[int], int] SCREAMING_SNAKE_CASE : int for poly in polynomials: SCREAMING_SNAKE_CASE : Union[str, Any] = 1 while func(_a ) == poly(_a ): x_val += 1 ret += poly(_a ) return ret if __name__ == "__main__": print(f'{solution() = }')
527
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( __A ): """simple docstring""" def __init__( self : List[str] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Dict ) -> None: """simple docstring""" warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
651
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def snake_case( __magic_name__=None , __magic_name__=None ) -> List[Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=_a ) @dataclass class _A : _UpperCamelCase : str = field( metadata={'''help''': '''The csv file to plot.'''} , ) _UpperCamelCase : Optional[Any] = field( default=__A , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) _UpperCamelCase : str = field( default=__A , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) _UpperCamelCase : str = field( default=__A , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) _UpperCamelCase : Optional[Any] = field( default=__A , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) _UpperCamelCase : Any = field( default=__A , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) _UpperCamelCase : int = list_field( default=__A , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' try: int(_a ) return True except ValueError: return False def snake_case( __magic_name__ ) -> str: '''simple docstring''' try: float(_a ) return True except ValueError: return False class _A : def __init__( self : Tuple , _A : Optional[int] ) -> Tuple: """simple docstring""" lowercase : Tuple = args lowercase : int = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: lowercase : Optional[Any] = csv.DictReader(_A ) for row in reader: lowercase : Optional[Any] = row["model"] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None lowercase : Tuple = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None lowercase : str = float(row['''result'''] ) def __a ( self : Tuple ) -> List[str]: """simple docstring""" lowercase : List[str] = plt.subplots() lowercase : Tuple = "Time usage" if self.args.is_time else "Memory usage" lowercase : Union[str, Any] = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowercase : str = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) lowercase : Any = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) lowercase : Any = self.result_dict[model_name]["result"] (lowercase) : str = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowercase : Optional[Any] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowercase : List[str] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_A , ) else: lowercase : Tuple = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) (lowercase) : Union[str, Any] = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) lowercase : str = np.asarray(_A , _A )[: len(_A )] plt.scatter( _A , _A , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(_A , _A , '''--''' ) title_str += f""" {label_model_name} vs.""" lowercase : List[Any] = title_str[:-4] lowercase : Optional[int] = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(_A ) plt.xlabel(_A ) plt.ylabel(_A ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def snake_case( ) -> Optional[Any]: '''simple docstring''' lowercase : Any = HfArgumentParser(_a ) lowercase : List[Any] = parser.parse_args_into_dataclasses()[0] lowercase : Any = Plot(args=_a ) plot.plot() if __name__ == "__main__": main()
217
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , ): '''simple docstring''' _UpperCAmelCase : List[str] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : List[str] = image_size _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Tuple = is_training _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = type_sequence_label_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : List[str] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : int = (image_size // patch_size) ** 2 _UpperCAmelCase : Optional[Any] = num_patches + 1 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Optional[int] = None if self.use_labels: _UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Any = TFViTModel(config=A_ ) _UpperCAmelCase : Optional[Any] = model(A_ , training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _UpperCAmelCase : Tuple = self.image_size // 2 _UpperCAmelCase : List[Any] = pixel_values[:, :, :image_size, :image_size] _UpperCAmelCase : int = model(A_ , interpolate_pos_encoding=A_ , training=A_ ) _UpperCAmelCase : List[Any] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[int] = self.type_sequence_label_size _UpperCAmelCase : Tuple = TFViTForImageClassification(A_ ) _UpperCAmelCase : str = model(A_ , labels=A_ , training=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _UpperCAmelCase : Tuple = self.image_size // 2 _UpperCAmelCase : int = pixel_values[:, :, :image_size, :image_size] _UpperCAmelCase : Tuple = model(A_ , interpolate_pos_encoding=A_ , training=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : Dict = 1 _UpperCAmelCase : List[str] = TFViTForImageClassification(A_ ) _UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : List[str] = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a ( __A , __A , unittest.TestCase ): _lowercase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _lowercase = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = TFViTModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[str] = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _UpperCAmelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , tf.keras.layers.Layer ) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(A_ ) _UpperCAmelCase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : int = [*signature.parameters.keys()] _UpperCAmelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(A_ ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class a ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) _UpperCAmelCase : List[str] = self.default_image_processor _UpperCAmelCase : Optional[int] = prepare_img() _UpperCAmelCase : Union[str, Any] = image_processor(images=A_ , return_tensors="tf" ) # forward pass _UpperCAmelCase : Dict = model(**A_ ) # verify the logits _UpperCAmelCase : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) _UpperCAmelCase : Dict = tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , A_ , atol=1e-4 )
300
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
0
'''simple docstring''' from __future__ import annotations def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" if len(_a ) == 0: return False lowerCAmelCase = len(_a ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _a ) else: return binary_search(a_list[midpoint + 1 :] , _a ) if __name__ == "__main__": UpperCAmelCase = input('Enter numbers separated by comma:\n').strip() UpperCAmelCase = [int(item.strip()) for item in user_input.split(',')] UpperCAmelCase = int(input('Enter the number to be found in the list:\n').strip()) UpperCAmelCase = '' if binary_search(sequence, target) else 'not ' print(F'''{target} was {not_str}found in {sequence}''')
433
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
0
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def snake_case ( lowerCAmelCase_ ) -> Union[str, Any]: print('''Loading config file...''' ) def flatten_yaml_as_dict(lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_="." ): _snake_case = [] for k, v in d.items(): _snake_case = parent_key + sep + k if parent_key else k if isinstance(_a , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(_a , _a , sep=_a ).items() ) else: items.append((new_key, v) ) return dict(_a ) _snake_case = argparse.Namespace() with open(_a , '''r''' ) as yaml_file: try: _snake_case = yaml.load(_a , Loader=yaml.FullLoader ) _snake_case = flatten_yaml_as_dict(_a ) for k, v in flat_cfg.items(): setattr(_a , _a , _a ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(_a , str(_a ) ) ) return config def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _snake_case = MobileViTVaConfig() _snake_case = False # dataset if task_name.startswith('''imagenet1k_''' ): _snake_case = 1000 if int(task_name.strip().split('''_''' )[-1] ) == 384: _snake_case = 384 else: _snake_case = 256 _snake_case = "imagenet-1k-id2label.json" elif task_name.startswith('''imagenet21k_to_1k_''' ): _snake_case = 21000 if int(task_name.strip().split('''_''' )[-1] ) == 384: _snake_case = 384 else: _snake_case = 256 _snake_case = "imagenet-22k-id2label.json" elif task_name.startswith('''ade20k_''' ): _snake_case = 151 _snake_case = 512 _snake_case = "ade20k-id2label.json" _snake_case = True elif task_name.startswith('''voc_''' ): _snake_case = 21 _snake_case = 512 _snake_case = "pascal-voc-id2label.json" _snake_case = True # orig_config _snake_case = load_orig_config_file(_a ) assert getattr(_a , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" _snake_case = getattr(_a , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(_a , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case = getattr(_a , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case = getattr(_a , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: _snake_case = getattr(_a , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) _snake_case = getattr(_a , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) _snake_case = getattr(_a , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label _snake_case = "huggingface/label-files" _snake_case = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) _snake_case = {int(_a ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _snake_case = dct.pop(_a ) _snake_case = val def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: if base_model: _snake_case = "" else: _snake_case = "mobilevitv2." _snake_case = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case = k[8:] else: _snake_case = k if ".block." in k: _snake_case = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: _snake_case = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: _snake_case = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: _snake_case = k_new.replace('''conv_1.''' , f"""{model_prefix}conv_stem.""" ) for i in [1, 2]: if f"""layer_{i}.""" in k: _snake_case = k_new.replace(f"""layer_{i}.""" , f"""{model_prefix}encoder.layer.{i-1}.layer.""" ) if ".exp_1x1." in k: _snake_case = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: _snake_case = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"""layer_{i}.0.""" in k: _snake_case = k_new.replace(f"""layer_{i}.0.""" , f"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""" ) if f"""layer_{i}.1.local_rep.0.""" in k: _snake_case = k_new.replace(f"""layer_{i}.1.local_rep.0.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""" ) if f"""layer_{i}.1.local_rep.1.""" in k: _snake_case = k_new.replace(f"""layer_{i}.1.local_rep.1.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""" ) for i in [3, 4, 5]: if i == 3: _snake_case = [0, 1] elif i == 4: _snake_case = [0, 1, 2, 3] elif i == 5: _snake_case = [0, 1, 2] for j in j_in: if f"""layer_{i}.1.global_rep.{j}.""" in k: _snake_case = k_new.replace( f"""layer_{i}.1.global_rep.{j}.""" , f"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""" ) if f"""layer_{i}.1.global_rep.{j+1}.""" in k: _snake_case = k_new.replace( f"""layer_{i}.1.global_rep.{j+1}.""" , f"""{model_prefix}encoder.layer.{i-1}.layernorm.""" ) if f"""layer_{i}.1.conv_proj.""" in k: _snake_case = k_new.replace(f"""layer_{i}.1.conv_proj.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_projection.""" ) if "pre_norm_attn.0." in k: _snake_case = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: _snake_case = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: _snake_case = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: _snake_case = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: _snake_case = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: _snake_case = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: _snake_case = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: _snake_case = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: _snake_case = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def snake_case ( lowerCAmelCase_ ) -> str: _snake_case = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(_a ) for k in keys_to_ignore: state_dict.pop(_a , _a ) def snake_case ( ) -> Optional[int]: _snake_case = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = get_mobilevitva_config(_a , _a ) # load original state_dict _snake_case = torch.load(_a , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): _snake_case = MobileViTVaForSemanticSegmentation(_a ).eval() _snake_case = False else: _snake_case = MobileViTVaForImageClassification(_a ).eval() _snake_case = False # remove and rename some keys of load the original model _snake_case = checkpoint remove_unused_keys(_a ) _snake_case = create_rename_keys(_a , base_model=_a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_a , _a , _a ) # load modified state_dict model.load_state_dict(_a ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case = image_processor(images=prepare_img() , return_tensors='''pt''' ) _snake_case = model(**_a ) # verify classification model if task_name.startswith('''imagenet''' ): _snake_case = outputs.logits _snake_case = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , _a , atol=1E-4 ) Path(_a ).mkdir(exist_ok=_a ) print(f"""Saving model {task_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_a ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_a ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' '''\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) snake_case = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
103
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
0
def UpperCAmelCase ( a_ = 1_0**1_2 ) -> List[str]: """simple docstring""" __A = 1 __A = 0 __A = 1 __A = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
55
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
0
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=4 , a="gelu" , a=0.0 , a=0.1 , a=True , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Tuple: lowercase__ : Tuple = parent lowercase__ : Any = batch_size lowercase__ : Dict = seq_length lowercase__ : str = is_training lowercase__ : Optional[int] = use_input_mask lowercase__ : Optional[Any] = use_token_type_ids lowercase__ : List[str] = use_labels lowercase__ : Optional[Any] = vocab_size lowercase__ : Tuple = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : List[str] = intermediate_multiple_size lowercase__ : List[Any] = hidden_act lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : str = weight_tying lowercase__ : Any = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : Any = type_sequence_label_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Any = num_labels lowercase__ : List[Any] = num_choices lowercase__ : List[str] = scope def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Optional[Any] = None if self.use_input_mask: lowercase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> List[Any]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[Any] = self.prepare_config_and_inputs() lowercase__ : Optional[int] = True return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self , a , a , a ) -> Optional[Any]: lowercase__ : List[str] = GPTNeoXJapaneseModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a , attention_mask=a ) lowercase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> List[Any]: lowercase__ : int = True lowercase__ : Dict = GPTNeoXJapaneseModel(a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : int = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() lowercase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Optional[Any] = True lowercase__ : str = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowercase__ : List[str] = model(a , attention_mask=a , use_cache=a ) lowercase__ : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase__ : List[Any] = model(a , attention_mask=a , output_hidden_states=a ) lowercase__ : Any = output_from_no_past["hidden_states"][0] lowercase__ : Dict = model( a , attention_mask=a , past_key_values=a , output_hidden_states=a , )["hidden_states"][0] # select random slice lowercase__ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-3 ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Any = self.prepare_config_and_inputs() lowercase__ : Optional[int] = config_and_inputs lowercase__ : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase): lowerCamelCase__ : Any = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase__ : Any = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Tuple = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Any = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = GPTNeoXJapaneseModelTester(self ) lowercase__ : List[str] = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> int: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase__ : Dict = None self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a ) @slow def _UpperCAmelCase ( self ) -> Dict: lowercase__ : List[Any] = "abeja/gpt-neox-japanese-2.7b" lowercase__ : Optional[int] = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] lowercase__ : List[Any] = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] lowercase__ : List[str] = GPTNeoXJapaneseTokenizer.from_pretrained(a ) lowercase__ : Tuple = GPTNeoXJapaneseForCausalLM.from_pretrained(a ) lowercase__ : Optional[Any] = [] for prompt in prompts: lowercase__ : str = tokenizer(a , return_tensors='pt' ).input_ids lowercase__ : Any = model.generate(a , max_length=5_0 ) lowercase__ : Tuple = tokenizer.batch_decode(a , skip_special_tokens=a ) predicted_outputs += generated_string self.assertListEqual(a , a )
599
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" from __future__ import annotations import requests A = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[int] , lowerCamelCase_: Optional[int] = 1 , lowerCamelCase_: Optional[int] = "new" , lowerCamelCase_: Optional[int] = None ): """simple docstring""" snake_case : Optional[int] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_a ) - valid_terms ) ): snake_case : Union[str, Any] = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(_a ) snake_case : Tuple = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={"User-agent": "A random string"} , ) if response.status_code == 4_2_9: raise requests.HTTPError snake_case : Any = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_a )} snake_case : Optional[int] = {} for id_ in range(_a ): snake_case : List[str] = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
449
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> int: '''simple docstring''' if len(_a ) == 0: return [] _UpperCAmelCase = min(_a ), max(_a ) _UpperCAmelCase = int(max_value - min_value ) + 1 _UpperCAmelCase = [[] for _ in range(_a )] for i in my_list: buckets[int(i - min_value )].append(_a ) return [v for bucket in buckets for v in sorted(_a )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
236
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCAmelCase_ ( __A ): def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Dict = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Optional[int] = seq_length SCREAMING_SNAKE_CASE_ : List[Any] = is_training SCREAMING_SNAKE_CASE_ : int = use_input_mask SCREAMING_SNAKE_CASE_ : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE_ : str = use_labels SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_size SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[str] = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : Tuple = num_choices SCREAMING_SNAKE_CASE_ : Optional[Any] = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = DistilBertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = DistilBertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = DistilBertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model( snake_case__ ,attention_mask=snake_case__ ,start_positions=snake_case__ ,end_positions=snake_case__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = DistilBertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = DistilBertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = self.num_choices SCREAMING_SNAKE_CASE_ : Any = DistilBertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Dict = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() (SCREAMING_SNAKE_CASE_) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __A , __A , unittest.TestCase ): __a : Optional[int] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __a : Optional[Any] = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) __a : Optional[int] = True __a : List[str] = True __a : Union[str, Any] = True __a : str = True def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,dim=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*snake_case__ ) @slow def snake_case ( self ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Optional[Any] = DistilBertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @slow @require_torch_gpu def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Any = model_class(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self._prepare_for_class(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.jit.trace( snake_case__ ,(inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case__ ,os.path.join(snake_case__ ,'traced_model.pt' ) ) SCREAMING_SNAKE_CASE_ : Tuple = torch.jit.load(os.path.join(snake_case__ ,'traced_model.pt' ) ,map_location=snake_case__ ) loaded(inputs_dict['input_ids'].to(snake_case__ ) ,inputs_dict['attention_mask'].to(snake_case__ ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = DistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(snake_case__ ,attention_mask=snake_case__ )[0] SCREAMING_SNAKE_CASE_ : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,snake_case__ ,atol=1E-4 ) )
105
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
'''simple docstring''' from math import ceil, sqrt def UpperCAmelCase ( A : Tuple = 1000000 ): SCREAMING_SNAKE_CASE : List[Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: SCREAMING_SNAKE_CASE : str = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: SCREAMING_SNAKE_CASE : str = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
527
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
651
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
0
def snake_case( __magic_name__ ) -> List[str]: '''simple docstring''' if len(_a ) <= 1: return lst lowercase : List[str] = 1 while i < len(_a ): if lst[i - 1] <= lst[i]: i += 1 else: lowercase : List[str] = lst[i], lst[i - 1] i -= 1 if i == 0: lowercase : Optional[Any] = 1 return lst if __name__ == "__main__": lowerCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase_ = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
217
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) _UpperCAmelCase : Dict = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(A_ ) , torch_builtin(A_ ) ) ) self.assertFalse(torch.allclose(gelu_python(A_ ) , gelu_new(A_ ) ) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) _UpperCAmelCase : int = get_activation("gelu" ) _UpperCAmelCase : str = get_activation("gelu_10" ) _UpperCAmelCase : Optional[Any] = torch_builtin(A_ ) _UpperCAmelCase : Union[str, Any] = geluaa(A_ ) _UpperCAmelCase : Optional[int] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(A_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _UpperCAmelCase ( self ): '''simple docstring''' get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(A_ ): get_activation("bogus" ) with self.assertRaises(A_ ): get_activation(A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = get_activation("gelu" ) _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Optional[Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(A_ ): _UpperCAmelCase : Union[str, Any] = acta.a
300
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __snake_case( __A ): '''simple docstring''' UpperCAmelCase : Dict = "beit" def __init__( self , A_=8192 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.0_2 , A_=1e-12 , A_=224 , A_=16 , A_=3 , A_=False , A_=False , A_=False , A_=False , A_=0.1 , A_=0.1 , A_=True , A_=[3, 5, 7, 11] , A_=[1, 2, 3, 6] , A_=True , A_=0.4 , A_=256 , A_=1 , A_=False , A_=255 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = use_mask_token lowerCAmelCase = use_absolute_position_embeddings lowerCAmelCase = use_relative_position_bias lowerCAmelCase = use_shared_relative_position_bias lowerCAmelCase = layer_scale_init_value lowerCAmelCase = drop_path_rate lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase = out_indices lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase = use_auxiliary_head lowerCAmelCase = auxiliary_loss_weight lowerCAmelCase = auxiliary_channels lowerCAmelCase = auxiliary_num_convs lowerCAmelCase = auxiliary_concat_input lowerCAmelCase = semantic_loss_ignore_index class __snake_case( __A ): '''simple docstring''' UpperCAmelCase : Tuple = version.parse("1.11" ) @property def __snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __snake_case ( self ) -> float: return 1e-4
433
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case = get_tests_dir('''fixtures/dummy-config.json''') class UpperCAmelCase ( unittest.TestCase ): def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = 0 def __UpperCAmelCase ( self : List[str] ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _snake_case = os.path.join(__lowerCamelCase , '''fake-roberta''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) _snake_case = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( self : int ): """simple docstring""" try: AutoConfig.register('''custom''' , __lowerCamelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCamelCase ): AutoConfig.register('''model''' , __lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoConfig.register('''bert''' , __lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _snake_case = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase ) _snake_case = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __UpperCAmelCase ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( __lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): _snake_case = AutoConfig.from_pretrained('''bert-base''' ) def __UpperCAmelCase ( self : int ): """simple docstring""" with self.assertRaisesRegex( __lowerCamelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _snake_case = AutoConfig.from_pretrained(__lowerCamelCase , revision='''aaaaaa''' ) def __UpperCAmelCase ( self : int ): """simple docstring""" with self.assertRaisesRegex( __lowerCamelCase , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def __UpperCAmelCase ( self : str ): """simple docstring""" with self.assertRaises(__lowerCamelCase ): _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase ) _snake_case = AutoConfig.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" class UpperCAmelCase ( __A ): A__ : List[str] = '''new-model''' try: AutoConfig.register('''new-model''' , __lowerCamelCase ) # If remote code is not set, the default is to use local _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
103
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[Any] = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) SCREAMING_SNAKE_CASE :List[Any] = parser.parse_args() SCREAMING_SNAKE_CASE :Dict = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) SCREAMING_SNAKE_CASE :Optional[int] = CLIPImageProcessor() SCREAMING_SNAKE_CASE :int = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') SCREAMING_SNAKE_CASE :str = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
"""simple docstring""" from __future__ import annotations class UpperCAmelCase_ : def __init__( self , a ) -> None: lowercase__ : Dict = order # a_{0} ... a_{k} lowercase__ : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} lowercase__ : List[str] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowercase__ : Dict = [0.0] * self.order # y[n-1] ... y[n-k] lowercase__ : Tuple = [0.0] * self.order def _UpperCAmelCase ( self , a , a ) -> None: if len(a ) < self.order: lowercase__ : int = [1.0, *a_coeffs] if len(a ) != self.order + 1: lowercase__ : List[Any] = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(a )}""" ) raise ValueError(a ) if len(a ) != self.order + 1: lowercase__ : str = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(a )}""" ) raise ValueError(a ) lowercase__ : Union[str, Any] = a_coeffs lowercase__ : List[Any] = b_coeffs def _UpperCAmelCase ( self , a ) -> float: lowercase__ : int = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowercase__ : int = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowercase__ : List[Any] = self.input_history[:-1] lowercase__ : List[str] = self.output_history[:-1] lowercase__ : Any = sample lowercase__ : List[str] = result return result
599
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
449
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _a ( ) -> tuple[list[int], int]: """simple docstring""" __snake_case : str = [randint(-1000 , 1000 ) for i in range(10 )] __snake_case : str = randint(-5000 , 5000 ) return (arr, r) __UpperCamelCase = make_dataset() def _a ( _lowerCamelCase , _lowerCamelCase ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(_lowerCamelCase , 3 ): if sum(_lowerCamelCase ) == target: return tuple(sorted(_lowerCamelCase ) ) return (0, 0, 0) def _a ( _lowerCamelCase , _lowerCamelCase ) -> tuple[int, int, int]: """simple docstring""" arr.sort() __snake_case : Any = len(_lowerCamelCase ) for i in range(n - 1 ): __snake_case , __snake_case : Optional[int] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _a ( ) -> tuple[float, float]: """simple docstring""" __snake_case : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ __snake_case : int = """ triplet_sum1(*dataset) """ __snake_case : List[Any] = """ triplet_sum2(*dataset) """ __snake_case : str = repeat(setup=_lowerCamelCase , stmt=_lowerCamelCase , repeat=5 , number=1_0000 ) __snake_case : int = repeat(setup=_lowerCamelCase , stmt=_lowerCamelCase , repeat=5 , number=1_0000 ) return (min(_lowerCamelCase ), min(_lowerCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() __UpperCamelCase = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
26
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
1
'''simple docstring''' import math import sys def _a ( _lowerCamelCase ) -> str: """simple docstring""" __snake_case : List[str] = """""" try: with open(_lowerCamelCase , """rb""" ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Union[str, Any] = F'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _a ( _lowerCamelCase ) -> str: """simple docstring""" __snake_case : int = {"""0""": """0""", """1""": """1"""} __snake_case , __snake_case : List[str] = """""", """""" __snake_case : Dict = len(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : str = lexicon[curr_string] result += last_match_id __snake_case : List[str] = last_match_id + """0""" if math.loga(_lowerCamelCase ).is_integer(): __snake_case : Optional[int] = {} for curr_key in list(_lowerCamelCase ): __snake_case : Optional[Any] = lexicon.pop(_lowerCamelCase ) __snake_case : Optional[int] = new_lex __snake_case : List[Any] = last_match_id + """1""" index += 1 __snake_case : List[Any] = """""" return result def _a ( _lowerCamelCase , _lowerCamelCase ) -> None: """simple docstring""" __snake_case : Optional[Any] = 8 try: with open(_lowerCamelCase , """wb""" ) as opened_file: __snake_case : Any = [ to_write[i : i + byte_length] for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowerCamelCase , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _a ( _lowerCamelCase ) -> str: """simple docstring""" __snake_case : List[Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 __snake_case : Optional[int] = data_bits[counter:] __snake_case : int = data_bits[counter + 1 :] return data_bits def _a ( _lowerCamelCase , _lowerCamelCase ) -> None: """simple docstring""" __snake_case : Union[str, Any] = read_file_binary(_lowerCamelCase ) __snake_case : Optional[int] = remove_prefix(_lowerCamelCase ) __snake_case : int = decompress_data(_lowerCamelCase ) write_file_binary(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
26
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
1
'''simple docstring''' import os import sys __UpperCamelCase = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __UpperCamelCase = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> Tuple: """simple docstring""" return AutoConfig.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return AutoModel.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> Dict: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> Dict: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*_lowerCamelCase , **_lowerCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> Optional[int]: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*_lowerCamelCase , **_lowerCamelCase )
26
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
1
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = to_pil_image(_lowerCamelCase ) __snake_case , __snake_case : Union[str, Any] = pil_image.size __snake_case : Tuple = pytesseract.image_to_data(_lowerCamelCase , lang=_lowerCamelCase , output_type="""dict""" , config=_lowerCamelCase ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates __snake_case : Dict = [idx for idx, word in enumerate(_lowerCamelCase ) if not word.strip()] __snake_case : int = [word for idx, word in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] __snake_case : Optional[int] = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] __snake_case : Dict = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] __snake_case : Optional[int] = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] __snake_case : List[str] = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __snake_case : str = [] for x, y, w, h in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [x, y, x + w, y + h] actual_boxes.append(_lowerCamelCase ) # finally, normalize the bounding boxes __snake_case : str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _A ( __lowercase ): lowercase__: Optional[int] = ['''pixel_values'''] def __init__( self : List[str] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : float = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : Union[float, Iterable[float]] = None , __magic_name__ : Union[float, Iterable[float]] = None , __magic_name__ : bool = True , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = "" , **__magic_name__ : str , ) -> None: """simple docstring""" super().__init__(**__magic_name__ ) __snake_case : int = size if size is not None else {"""height""": 2_24, """width""": 2_24} __snake_case : Optional[Any] = get_size_dict(__magic_name__ ) __snake_case : Tuple = do_resize __snake_case : List[Any] = size __snake_case : Dict = resample __snake_case : str = do_rescale __snake_case : List[str] = rescale_value __snake_case : Optional[int] = do_normalize __snake_case : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD __snake_case : Union[str, Any] = apply_ocr __snake_case : List[Any] = ocr_lang __snake_case : Optional[int] = tesseract_config def lowercase__ ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : List[Any] , ) -> np.ndarray: """simple docstring""" __snake_case : Tuple = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) __snake_case : Any = (size["""height"""], size["""width"""]) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ) -> np.ndarray: """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, Iterable[float]] , __magic_name__ : Union[float, Iterable[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[Any] , ) -> np.ndarray: """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : List[Any]=None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Union[float, Iterable[float]] = None , __magic_name__ : Union[float, Iterable[float]] = None , __magic_name__ : bool = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : int , ) -> PIL.Image.Image: """simple docstring""" __snake_case : Dict = do_resize if do_resize is not None else self.do_resize __snake_case : List[str] = size if size is not None else self.size __snake_case : Dict = get_size_dict(__magic_name__ ) __snake_case : List[Any] = resample if resample is not None else self.resample __snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : int = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : int = image_mean if image_mean is not None else self.image_mean __snake_case : Dict = image_std if image_std is not None else self.image_std __snake_case : Dict = apply_ocr if apply_ocr is not None else self.apply_ocr __snake_case : Optional[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang __snake_case : List[str] = tesseract_config if tesseract_config is not None else self.tesseract_config __snake_case : str = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. __snake_case : Optional[Any] = [to_numpy_array(__magic_name__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) __snake_case : str = [] __snake_case : Union[str, Any] = [] for image in images: __snake_case , __snake_case : List[Any] = apply_tesseract(__magic_name__ , __magic_name__ , __magic_name__ ) words_batch.append(__magic_name__ ) boxes_batch.append(__magic_name__ ) if do_resize: __snake_case : Union[str, Any] = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: __snake_case : str = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: __snake_case : Optional[int] = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] __snake_case : int = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] __snake_case : Union[str, Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=__magic_name__ ) if apply_ocr: __snake_case : str = words_batch __snake_case : List[Any] = boxes_batch return data
26
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : str = 0 __snake_case : Any = number while duplicate > 0: __snake_case , __snake_case : Optional[int] = divmod(_lowerCamelCase , 10 ) fact_sum += factorial(_lowerCamelCase ) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") __UpperCamelCase = int(input("Enter number: ").strip()) print( f"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
26
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __UpperCamelCase = logging.get_logger(__name__) class _A : lowercase__: str lowercase__: str = None @staticmethod def lowercase__ ( ) -> Dict: """simple docstring""" raise NotImplementedError def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str , **__magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" raise NotImplementedError def lowercase__ ( self : int , __magic_name__ : Optional[Any] ) -> Any: """simple docstring""" raise NotImplementedError def lowercase__ ( self : str ) -> List[str]: """simple docstring""" if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowercase__ ( cls : Optional[Any] ) -> int: """simple docstring""" return f'''`pip install {cls.pip_package or cls.name}`''' class _A ( __lowercase ): lowercase__: str = '''optuna''' @staticmethod def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" return is_optuna_available() def lowercase__ ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str , **__magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" return run_hp_search_optuna(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" return default_hp_space_optuna(__magic_name__ ) class _A ( __lowercase ): lowercase__: Dict = '''ray''' lowercase__: Optional[Any] = '''\'ray[tune]\'''' @staticmethod def lowercase__ ( ) -> str: """simple docstring""" return is_ray_available() def lowercase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : str , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return run_hp_search_ray(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" return default_hp_space_ray(__magic_name__ ) class _A ( __lowercase ): lowercase__: str = '''sigopt''' @staticmethod def lowercase__ ( ) -> List[Any]: """simple docstring""" return is_sigopt_available() def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : str , **__magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return run_hp_search_sigopt(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , __magic_name__ : Dict ) -> int: """simple docstring""" return default_hp_space_sigopt(__magic_name__ ) class _A ( __lowercase ): lowercase__: Optional[int] = '''wandb''' @staticmethod def lowercase__ ( ) -> List[str]: """simple docstring""" return is_wandb_available() def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , **__magic_name__ : Any ) -> int: """simple docstring""" return run_hp_search_wandb(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" return default_hp_space_wandb(__magic_name__ ) __UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _a ( ) -> str: """simple docstring""" __snake_case : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_lowerCamelCase ) > 0: __snake_case : Union[str, Any] = available_backends[0].name if len(_lowerCamelCase ) > 1: logger.info( F'''{len(_lowerCamelCase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
26
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
1
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
26
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
1
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str=13 , __magic_name__ : Tuple=10 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Optional[Any]=2 , __magic_name__ : str=2 , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[int]=32 , __magic_name__ : str=5 , __magic_name__ : Tuple=4 , __magic_name__ : Tuple=37 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Tuple=10 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : Optional[Any]=0.9 , __magic_name__ : str=None , ) -> Any: """simple docstring""" __snake_case : List[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = image_size __snake_case : Union[str, Any] = num_channels __snake_case : int = patch_size __snake_case : Dict = tubelet_size __snake_case : Union[str, Any] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : Dict = use_labels __snake_case : Tuple = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : str = intermediate_size __snake_case : List[str] = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : List[str] = type_sequence_label_size __snake_case : List[str] = initializer_range __snake_case : Optional[Any] = mask_ratio __snake_case : int = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __snake_case : Tuple = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __snake_case : Optional[Any] = int(mask_ratio * self.seq_length ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Tuple ) -> int: """simple docstring""" __snake_case : Tuple = VideoMAEModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Any ) -> int: """simple docstring""" __snake_case : Dict = VideoMAEForPreTraining(__magic_name__ ) model.to(__magic_name__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case : List[str] = torch.ones((self.num_masks,) ) __snake_case : Tuple = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __snake_case : Any = mask.expand(self.batch_size , -1 ).bool() __snake_case : Union[str, Any] = model(__magic_name__ , __magic_name__ ) # model only returns predictions for masked patches __snake_case : List[Any] = mask.sum().item() __snake_case : Any = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase__ ( self : int ) -> Any: """simple docstring""" __snake_case : List[str] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Union[str, Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase__: Any = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase__: int = False lowercase__: Optional[Any] = False lowercase__: int = False lowercase__: List[Any] = False def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __snake_case : str = VideoMAEModelTester(self ) __snake_case : str = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str=False ) -> List[str]: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case : str = torch.ones((self.model_tester.num_masks,) ) __snake_case : str = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __snake_case : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() __snake_case : str = bool_masked_pos.to(__magic_name__ ) if return_labels: if model_class in [ *get_values(__magic_name__ ), ]: __snake_case : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[Any] = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Any = model_class(__magic_name__ ) __snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) @slow def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = VideoMAEModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length - self.model_tester.num_masks __snake_case : Union[str, Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __snake_case : str = True __snake_case : int = False __snake_case : List[str] = True __snake_case : Dict = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : str = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Optional[Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Optional[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __snake_case : Tuple = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Dict = True __snake_case : Optional[int] = True __snake_case : Optional[int] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Any = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[str] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] ): __snake_case : Optional[int] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.hidden_states __snake_case : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : Any = self.model_tester.seq_length - self.model_tester.num_masks __snake_case : List[str] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[int] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Any ) -> str: """simple docstring""" pass def _a ( ) -> int: """simple docstring""" __snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : Union[str, Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : Dict = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( __magic_name__ ) __snake_case : Optional[Any] = self.default_image_processor __snake_case : List[Any] = prepare_video() __snake_case : Union[str, Any] = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) # verify the logits __snake_case : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : str = torch.tensor([0.3669, -0.0688, -0.2421] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(__magic_name__ ) __snake_case : List[Any] = self.default_image_processor __snake_case : List[str] = prepare_video() __snake_case : Union[str, Any] = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # add boolean mask, indicating which patches to mask __snake_case : str = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __snake_case : Tuple = torch.load(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : str = model(**__magic_name__ ) # verify the logits __snake_case : Tuple = torch.Size([1, 14_08, 15_36] ) __snake_case : Tuple = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=__magic_name__ ) self.assertEqual(outputs.logits.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __magic_name__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __snake_case : int = torch.tensor([0.5142] , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __snake_case : Union[str, Any] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=__magic_name__ ).to( __magic_name__ ) with torch.no_grad(): __snake_case : Optional[Any] = model(**__magic_name__ ) __snake_case : int = torch.tensor(torch.tensor([0.6469] ) , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1E-4 ) )
26
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
1
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" def run_func(_lowerCamelCase ): @wraps(_lowerCamelCase ) def run_in_eager_mode(*_lowerCamelCase , **_lowerCamelCase ): return func(*_lowerCamelCase , **_lowerCamelCase ) @wraps(_lowerCamelCase ) @tf.function(experimental_compile=_lowerCamelCase ) def run_in_graph_mode(*_lowerCamelCase , **_lowerCamelCase ): return func(*_lowerCamelCase , **_lowerCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> ["tf.Tensor"]: """simple docstring""" __snake_case : Dict = random.Random() __snake_case : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_lowerCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _A ( __lowercase ): lowercase__: TensorFlowBenchmarkArguments lowercase__: PretrainedConfig lowercase__: str = "TensorFlow" @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return tf.__version__ def lowercase__ ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" __snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __snake_case : Any = self._prepare_inference_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_speed(_inference ) def lowercase__ ( self : Tuple , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" __snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __snake_case : List[Any] = self._prepare_train_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_speed(_train ) def lowercase__ ( self : int , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __magic_name__ ) __snake_case : List[Any] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __snake_case : Optional[Any] = self._prepare_inference_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_memory(_inference ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __magic_name__ ) __snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __snake_case : List[str] = self._prepare_train_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_memory(_train ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> Callable[[], None]: """simple docstring""" __snake_case : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) __snake_case : str = ( hasattr(__magic_name__ , """architectures""" ) and isinstance(config.architectures , __magic_name__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case : List[Any] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case : Any = __import__("""transformers""" , fromlist=[model_class] ) __snake_case : Union[str, Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Dict = model_cls(__magic_name__ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: __snake_case : int = TF_MODEL_MAPPING[config.__class__](__magic_name__ ) # encoder-decoder has vocab size saved differently __snake_case : Optional[int] = config.vocab_size if hasattr(__magic_name__ , """vocab_size""" ) else config.encoder.vocab_size __snake_case : str = random_input_ids(__magic_name__ , __magic_name__ , __magic_name__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__magic_name__ , decoder_input_ids=__magic_name__ , training=__magic_name__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__magic_name__ , training=__magic_name__ ) __snake_case : Any = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> Callable[[], None]: """simple docstring""" __snake_case : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) __snake_case : Optional[int] = ( hasattr(__magic_name__ , """architectures""" ) and isinstance(config.architectures , __magic_name__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case : Optional[int] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case : Dict = __import__("""transformers""" , fromlist=[model_class] ) __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Tuple = model_cls(__magic_name__ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: __snake_case : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__magic_name__ ) # encoder-decoder has vocab size saved differently __snake_case : Optional[Any] = config.vocab_size if hasattr(__magic_name__ , """vocab_size""" ) else config.encoder.vocab_size __snake_case : List[str] = random_input_ids(__magic_name__ , __magic_name__ , __magic_name__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __snake_case : Tuple = model(__magic_name__ , decoder_input_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ )[0] __snake_case : Dict = tf.gradients(__magic_name__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __snake_case : Optional[Any] = model(__magic_name__ , labels=__magic_name__ , training=__magic_name__ )[0] __snake_case : Optional[int] = tf.gradients(__magic_name__ , model.trainable_variables ) return gradients __snake_case : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowercase__ ( self : str , __magic_name__ : Tuple ) -> float: """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(__magic_name__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __snake_case : Optional[int] = timeit.repeat( __magic_name__ , repeat=self.args.repeat , number=10 , ) return min(__magic_name__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def lowercase__ ( self : Tuple , __magic_name__ : Callable[[], None] ) -> [Memory, MemorySummary]: """simple docstring""" logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) __snake_case : Dict = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) __snake_case : int = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() __snake_case : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __snake_case : Union[str, Any] = nvml.nvmlDeviceGetMemoryInfo(__magic_name__ ) __snake_case : Union[str, Any] = meminfo.used __snake_case : List[Any] = Memory(__magic_name__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) __snake_case : int = None else: __snake_case : Dict = measure_peak_memory_cpu(__magic_name__ ) __snake_case : Union[str, Any] = Memory(__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else memory_bytes if self.args.trace_memory_line_by_line: __snake_case : Tuple = stop_memory_tracing(__magic_name__ ) if memory is None: __snake_case : Any = summary.total else: __snake_case : Any = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
26
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _A : def __init__( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str]=13 , __magic_name__ : List[Any]=7 , __magic_name__ : str=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Any=99 , __magic_name__ : List[Any]=[1, 1, 2] , __magic_name__ : Optional[Any]=1 , __magic_name__ : str=32 , __magic_name__ : Optional[Any]=4 , __magic_name__ : Tuple=8 , __magic_name__ : int=37 , __magic_name__ : str="gelu_new" , __magic_name__ : Any=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : List[Any]=5_12 , __magic_name__ : Any=3 , __magic_name__ : Any=0.02 , __magic_name__ : Tuple=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=None , __magic_name__ : int=False , ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = parent __snake_case : Optional[int] = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : List[str] = use_input_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Optional[int] = use_labels __snake_case : Any = vocab_size __snake_case : Union[str, Any] = block_sizes __snake_case : List[str] = num_decoder_layers __snake_case : List[str] = d_model __snake_case : List[Any] = n_head __snake_case : Tuple = d_head __snake_case : Union[str, Any] = d_inner __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[Any] = hidden_dropout __snake_case : Union[str, Any] = attention_dropout __snake_case : Any = activation_dropout __snake_case : List[str] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Tuple = 2 __snake_case : int = num_labels __snake_case : List[Any] = num_choices __snake_case : Any = scope __snake_case : str = initializer_std # Used in the tests to check the size of the first attention layer __snake_case : Any = n_head # Used in the tests to check the size of the first hidden state __snake_case : Tuple = self.d_model # Used in the tests to check the number of output hidden states/attentions __snake_case : int = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __snake_case : Dict = self.num_hidden_layers + 2 def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : str = None if self.use_input_mask: __snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[int] = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Union[str, Any] = None __snake_case : Optional[int] = None __snake_case : Tuple = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : int = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = TFFunnelModel(config=__magic_name__ ) __snake_case : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Optional[Any] = model(__magic_name__ ) __snake_case : Tuple = [input_ids, input_mask] __snake_case : Tuple = model(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __snake_case : str = False __snake_case : Dict = TFFunnelModel(config=__magic_name__ ) __snake_case : str = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __snake_case : List[Any] = False __snake_case : Any = TFFunnelModel(config=__magic_name__ ) __snake_case : List[str] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , ) -> List[Any]: """simple docstring""" __snake_case : str = TFFunnelBaseModel(config=__magic_name__ ) __snake_case : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Any = model(__magic_name__ ) __snake_case : List[Any] = [input_ids, input_mask] __snake_case : Dict = model(__magic_name__ ) __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __snake_case : str = False __snake_case : List[str] = TFFunnelBaseModel(config=__magic_name__ ) __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __snake_case : Tuple = False __snake_case : Optional[int] = TFFunnelBaseModel(config=__magic_name__ ) __snake_case : Dict = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowercase__ ( self : int , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" __snake_case : str = TFFunnelForPreTraining(config=__magic_name__ ) __snake_case : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = TFFunnelForMaskedLM(config=__magic_name__ ) __snake_case : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : str = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = self.num_labels __snake_case : str = TFFunnelForSequenceClassification(config=__magic_name__ ) __snake_case : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Union[str, Any] = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : int , ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self.num_choices __snake_case : List[str] = TFFunnelForMultipleChoice(config=__magic_name__ ) __snake_case : str = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) __snake_case : Tuple = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) __snake_case : int = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) __snake_case : Dict = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __snake_case : Dict = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : str , ) -> Any: """simple docstring""" __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = TFFunnelForTokenClassification(config=__magic_name__ ) __snake_case : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , ) -> Union[str, Any]: """simple docstring""" __snake_case : int = TFFunnelForQuestionAnswering(config=__magic_name__ ) __snake_case : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Any = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Optional[Any] = config_and_inputs __snake_case : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) lowercase__: List[Any] = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) lowercase__: List[Any] = False lowercase__: str = False def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Dict = TFFunnelModelTester(self ) __snake_case : Tuple = ConfigTester(self , config_class=__magic_name__ ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @require_tf class _A ( __lowercase , unittest.TestCase ): lowercase__: Dict = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) lowercase__: List[str] = False lowercase__: List[str] = False def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" __snake_case : Any = TFFunnelModelTester(self , base=__magic_name__ ) __snake_case : List[Any] = ConfigTester(self , config_class=__magic_name__ ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> Tuple: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
26
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
1
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __UpperCamelCase = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class _A ( __lowercase ): lowercase__: int = '''ernie_m''' lowercase__: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : Optional[int] , __magic_name__ : int = 25_00_02 , __magic_name__ : int = 7_68 , __magic_name__ : int = 12 , __magic_name__ : int = 12 , __magic_name__ : int = 30_72 , __magic_name__ : str = "gelu" , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : int = 5_14 , __magic_name__ : float = 0.02 , __magic_name__ : int = 1 , __magic_name__ : float = 1E-05 , __magic_name__ : Union[str, Any]=None , __magic_name__ : List[Any]=False , __magic_name__ : Union[str, Any]=0.0 , **__magic_name__ : Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) __snake_case : List[Any] = vocab_size __snake_case : Dict = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Optional[Any] = max_position_embeddings __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = classifier_dropout __snake_case : Any = is_decoder __snake_case : Tuple = act_dropout
26
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: List[Any] = StableDiffusionXLImgaImgPipeline lowercase__: Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} lowercase__: Optional[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} lowercase__: Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__: Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__: int = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __snake_case : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=__magic_name__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __snake_case : List[Any] = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) __snake_case : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __snake_case : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=32 , ) __snake_case : Tuple = CLIPTextModel(__magic_name__ ) __snake_case : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__magic_name__ ) __snake_case : Dict = CLIPTextModelWithProjection(__magic_name__ ) __snake_case : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__magic_name__ ) __snake_case : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowercase__ ( self : Dict , __magic_name__ : Any , __magic_name__ : Any=0 ) -> Any: """simple docstring""" __snake_case : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Dict = image / 2 + 0.5 if str(__magic_name__ ).startswith("""mps""" ): __snake_case : Tuple = torch.manual_seed(__magic_name__ ) else: __snake_case : List[str] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : Any = self.get_dummy_components() __snake_case : Tuple = StableDiffusionXLImgaImgPipeline(**__magic_name__ ) __snake_case : List[str] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Tuple = self.get_dummy_inputs(__magic_name__ ) __snake_case : Union[str, Any] = sd_pipe(**__magic_name__ ).images __snake_case : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : str = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" __snake_case : List[str] = self.get_dummy_components() __snake_case : Union[str, Any] = StableDiffusionXLImgaImgPipeline(**__magic_name__ ) __snake_case : Optional[Any] = sd_pipe.to(__magic_name__ ) __snake_case : int = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) # forward without prompt embeds __snake_case : Optional[int] = self.get_dummy_inputs(__magic_name__ ) __snake_case : int = 3 * ["""this is a negative prompt"""] __snake_case : Union[str, Any] = negative_prompt __snake_case : str = 3 * [inputs["""prompt"""]] __snake_case : List[str] = sd_pipe(**__magic_name__ ) __snake_case : int = output.images[0, -3:, -3:, -1] # forward with prompt embeds __snake_case : int = self.get_dummy_inputs(__magic_name__ ) __snake_case : List[Any] = 3 * ["""this is a negative prompt"""] __snake_case : Optional[Any] = 3 * [inputs.pop("""prompt""" )] ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = sd_pipe.encode_prompt(__magic_name__ , negative_prompt=__magic_name__ ) __snake_case : Any = sd_pipe( **__magic_name__ , prompt_embeds=__magic_name__ , negative_prompt_embeds=__magic_name__ , pooled_prompt_embeds=__magic_name__ , negative_pooled_prompt_embeds=__magic_name__ , ) __snake_case : str = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : int ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict , __magic_name__ : Optional[int] , __magic_name__ : str="cpu" , __magic_name__ : List[str]=torch.floataa , __magic_name__ : str=0 ) -> str: """simple docstring""" __snake_case : Dict = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Union[str, Any] = np.random.RandomState(__magic_name__ ).standard_normal((1, 4, 64, 64) ) __snake_case : Dict = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ) __snake_case : Tuple = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __snake_case : str = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Optional[Any] = self.get_inputs(__magic_name__ ) __snake_case : str = pipe(**__magic_name__ ).images __snake_case : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __snake_case : List[Any] = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
26
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): lowercase__: Any = ['''pixel_values'''] def __init__( self : Any , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , __magic_name__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **__magic_name__ : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**__magic_name__ ) __snake_case : Dict = size if size is not None else {"""shortest_edge""": 2_24} __snake_case : str = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) __snake_case : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __snake_case : Optional[Any] = get_size_dict(__magic_name__ , param_name="""crop_size""" ) __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : str = resample __snake_case : Any = do_center_crop __snake_case : Optional[Any] = crop_size __snake_case : Optional[Any] = do_rescale __snake_case : Optional[int] = rescale_factor __snake_case : Tuple = do_normalize __snake_case : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __snake_case : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase__ ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ) -> np.ndarray: """simple docstring""" __snake_case : Union[str, Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __snake_case : List[Any] = int((2_56 / 2_24) * size["""shortest_edge"""] ) __snake_case : int = get_resize_output_image_size(__magic_name__ , size=__magic_name__ , default_to_square=__magic_name__ ) __snake_case : List[str] = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( __magic_name__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ) -> np.ndarray: """simple docstring""" __snake_case : str = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(__magic_name__ , size=(size["""height"""], size["""width"""]) , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Tuple , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ) -> np.ndarray: """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ) -> np.ndarray: """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : ImageInput , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[float] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[float, Iterable[float]]] = None , __magic_name__ : Optional[Union[float, Iterable[float]]] = None , __magic_name__ : Optional[TensorType] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : str , ) -> BatchFeature: """simple docstring""" __snake_case : str = do_resize if do_resize is not None else self.do_resize __snake_case : List[str] = resample if resample is not None else self.resample __snake_case : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : List[str] = image_mean if image_mean is not None else self.image_mean __snake_case : Optional[Any] = image_std if image_std is not None else self.image_std __snake_case : Optional[int] = size if size is not None else self.size __snake_case : Optional[int] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) __snake_case : Tuple = crop_size if crop_size is not None else self.crop_size __snake_case : Tuple = get_size_dict(__magic_name__ , param_name="""crop_size""" ) __snake_case : int = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __snake_case : Optional[int] = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: __snake_case : Any = [self.resize(__magic_name__ , __magic_name__ , __magic_name__ ) for image in images] if do_center_crop: __snake_case : Any = [self.center_crop(__magic_name__ , __magic_name__ ) for image in images] if do_rescale: __snake_case : Any = [self.rescale(__magic_name__ , __magic_name__ ) for image in images] if do_normalize: __snake_case : List[Any] = [self.normalize(__magic_name__ , __magic_name__ , __magic_name__ ) for image in images] __snake_case : List[str] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] __snake_case : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
26
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
1
'''simple docstring''' import math __UpperCamelCase = 10 __UpperCamelCase = 7 __UpperCamelCase = BALLS_PER_COLOUR * NUM_COLOURS def _a ( _lowerCamelCase = 20 ) -> str: """simple docstring""" __snake_case : Optional[int] = math.comb(_lowerCamelCase , _lowerCamelCase ) __snake_case : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _lowerCamelCase ) __snake_case : Optional[int] = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
26
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] __UpperCamelCase = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] __UpperCamelCase = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): __UpperCamelCase = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __UpperCamelCase = datasets.utils.logging.get_logger(__name__) __UpperCamelCase = ["names", "prefix"] __UpperCamelCase = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] __UpperCamelCase = ["encoding_errors", "on_bad_lines"] __UpperCamelCase = ["date_format"] @dataclass class _A ( datasets.BuilderConfig ): lowercase__: str = "," lowercase__: Optional[str] = None lowercase__: Optional[Union[int, List[int], str]] = "infer" lowercase__: Optional[List[str]] = None lowercase__: Optional[List[str]] = None lowercase__: Optional[Union[int, str, List[int], List[str]]] = None lowercase__: Optional[Union[List[int], List[str]]] = None lowercase__: Optional[str] = None lowercase__: bool = True lowercase__: Optional[Literal["c", "python", "pyarrow"]] = None lowercase__: Dict[Union[int, str], Callable[[Any], Any]] = None lowercase__: Optional[list] = None lowercase__: Optional[list] = None lowercase__: bool = False lowercase__: Optional[Union[int, List[int]]] = None lowercase__: Optional[int] = None lowercase__: Optional[Union[str, List[str]]] = None lowercase__: bool = True lowercase__: bool = True lowercase__: bool = False lowercase__: bool = True lowercase__: Optional[str] = None lowercase__: str = "." lowercase__: Optional[str] = None lowercase__: str = '"' lowercase__: int = 0 lowercase__: Optional[str] = None lowercase__: Optional[str] = None lowercase__: Optional[str] = None lowercase__: Optional[str] = None lowercase__: bool = True lowercase__: bool = True lowercase__: int = 0 lowercase__: bool = True lowercase__: bool = False lowercase__: Optional[str] = None lowercase__: int = 10000 lowercase__: Optional[datasets.Features] = None lowercase__: Optional[str] = "strict" lowercase__: Literal["error", "warn", "skip"] = "error" lowercase__: Optional[str] = None def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.delimiter is not None: __snake_case : Any = self.delimiter if self.column_names is not None: __snake_case : Optional[Any] = self.column_names @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : str = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __magic_name__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _A ( datasets.ArrowBasedBuilder ): lowercase__: List[Any] = CsvConfig def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __snake_case : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): __snake_case : int = data_files if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = [files] __snake_case : Tuple = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __snake_case : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[Any] = [files] __snake_case : Optional[int] = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) ) return splits def lowercase__ ( self : Optional[Any] , __magic_name__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: __snake_case : Optional[Any] = self.config.features.arrow_schema if all(not require_storage_cast(__magic_name__ ) for feature in self.config.features.values() ): # cheaper cast __snake_case : Union[str, Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__magic_name__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __snake_case : Dict = table_cast(__magic_name__ , __magic_name__ ) return pa_table def lowercase__ ( self : str , __magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __snake_case : Union[str, Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__magic_name__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): __snake_case : Optional[int] = pd.read_csv(__magic_name__ , iterator=__magic_name__ , dtype=__magic_name__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__magic_name__ ): __snake_case : List[str] = pa.Table.from_pandas(__magic_name__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise
26
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
1
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __UpperCamelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} __UpperCamelCase = [ { "type": "header", "text": { "type": "plain_text", "text": f"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", "emoji": True, }, } ] __UpperCamelCase = 0 for log in Path().glob("*.log"): __UpperCamelCase = 0 with open(log, "r") as f: for line in f: __UpperCamelCase = json.loads(line) if line.get("nodeid", "") != "": __UpperCamelCase = line["nodeid"] if line.get("duration", None) is not None: __UpperCamelCase = f"""{line['duration']:.4f}""" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __UpperCamelCase = [] log.unlink() __UpperCamelCase = "" __UpperCamelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __UpperCamelCase = [] __UpperCamelCase = {} for test in failed_tests: __UpperCamelCase = test[0].split("::") __UpperCamelCase = data[0].split("/")[-1] if data[0] not in filesafailed: __UpperCamelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __UpperCamelCase = [test[0] for test in failed_table] __UpperCamelCase = list(set(files)) # Count number of instances in failed_tests __UpperCamelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __UpperCamelCase = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __UpperCamelCase = "Too many failed tests, please see the full report in the Action results." __UpperCamelCase = len(err) + 10 __UpperCamelCase = message[: 3000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: __UpperCamelCase = "No failed tests! 🤗" print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient __UpperCamelCase = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": __UpperCamelCase = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) __UpperCamelCase = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) __UpperCamelCase = { "type": "context", "elements": [ { "type": "plain_text", "text": f"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) __UpperCamelCase = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) __UpperCamelCase = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __UpperCamelCase = "" for i, row in enumerate(test_failures): if row[0] != test_class: __UpperCamelCase = row[0] else: __UpperCamelCase = "" __UpperCamelCase = { "type": "section", "text": { "type": "mrkdwn", "text": f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
26
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: Tuple = BioGptTokenizer lowercase__: List[str] = False def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __snake_case : Optional[int] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) __snake_case : int = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] __snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__magic_name__ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def lowercase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Any = """lower newer""" __snake_case : Optional[int] = """lower newer""" return input_text, output_text def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" __snake_case : List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) __snake_case : Any = """lower""" __snake_case : Tuple = ["""low""", """er</w>"""] __snake_case : Optional[int] = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Tuple = tokens + ["""<unk>"""] __snake_case : Tuple = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) @slow def lowercase__ ( self : int ) -> Tuple: """simple docstring""" __snake_case : List[str] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) __snake_case : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=__magic_name__ ) __snake_case : str = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) __snake_case : Tuple = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
26
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , ) -> List[str]: """simple docstring""" __snake_case : str = {} if train_file is not None: __snake_case : Any = [train_file] if eval_file is not None: __snake_case : Optional[Any] = [eval_file] if test_file is not None: __snake_case : Optional[int] = [test_file] __snake_case : Union[str, Any] = datasets.load_dataset("""csv""" , data_files=_lowerCamelCase ) __snake_case : Tuple = list(ds[list(files.keys() )[0]].features.keys() ) __snake_case : List[Any] = features_name.pop(_lowerCamelCase ) __snake_case : str = list(set(ds[list(files.keys() )[0]][label_name] ) ) __snake_case : Optional[int] = {label: i for i, label in enumerate(_lowerCamelCase )} __snake_case : Tuple = tokenizer.model_input_names __snake_case : List[Any] = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): __snake_case : List[str] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): __snake_case : Optional[Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __snake_case : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} __snake_case : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __snake_case : Dict = {k: v for k, v in ex.items() if k in input_names} __snake_case : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __snake_case : List[str] = {k: v for k, v in ex.items() if k in input_names} __snake_case : Tuple = labelaid[ex[label_name]] yield (d, label) __snake_case : int = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __snake_case : List[str] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __snake_case : List[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __snake_case : List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __snake_case : Optional[int] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __snake_case : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __UpperCamelCase = logging.getLogger(__name__) @dataclass class _A : lowercase__: int = field(metadata={'''help''': '''Which column contains the label'''} ) lowercase__: str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) lowercase__: Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) lowercase__: Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) lowercase__: int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase__: bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _A : lowercase__: str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase__: Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase__: Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowercase__: bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase__: Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _a ( ) -> List[str]: """simple docstring""" __snake_case : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __snake_case , __snake_case , __snake_case : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' F'''16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case , __snake_case , __snake_case , __snake_case : List[str] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __snake_case : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __snake_case : int = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase ) -> Dict: __snake_case : List[str] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __snake_case : Tuple = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __snake_case : List[str] = trainer.evaluate() __snake_case : Tuple = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(_lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
26
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
1
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __UpperCamelCase = 4 __UpperCamelCase = 3 class _A ( __lowercase ): pass def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" for shard in shards: for i in range(_lowerCamelCase ): yield {"i": i, "shard": shard} def _a ( ) -> str: """simple docstring""" __snake_case : List[str] = int(os.environ["""RANK"""] ) __snake_case : str = int(os.environ["""WORLD_SIZE"""] ) __snake_case : Optional[int] = ArgumentParser() parser.add_argument("""--streaming""" , type=_lowerCamelCase ) parser.add_argument("""--local_rank""" , type=_lowerCamelCase ) parser.add_argument("""--num_workers""" , type=_lowerCamelCase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Any = args.streaming __snake_case : Dict = args.num_workers __snake_case : Optional[int] = {"""shards""": [F'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase )]} __snake_case : Optional[int] = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase ) if not streaming: __snake_case : int = Dataset.from_list(list(_lowerCamelCase ) ) __snake_case : str = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase ) __snake_case : List[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Tuple = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
26
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" __snake_case : str = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_lowerCamelCase )] ) __snake_case : Optional[Any] = np.array(_lowerCamelCase ) __snake_case : List[str] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _lowerCamelCase ) ) , x.transpose() ) , _lowerCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" __snake_case : Optional[int] = (1, 2, 1) __snake_case : Optional[int] = (1, 1, 0, 7) __snake_case : List[Any] = SARIMAX( _lowerCamelCase , exog=_lowerCamelCase , order=_lowerCamelCase , seasonal_order=_lowerCamelCase ) __snake_case : List[Any] = model.fit(disp=_lowerCamelCase , maxiter=600 , method="""nm""" ) __snake_case : List[Any] = model_fit.predict(1 , len(_lowerCamelCase ) , exog=[test_match] ) return result[0] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" __snake_case : Optional[Any] = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[Any] = regressor.predict(_lowerCamelCase ) return y_pred[0] def _a ( _lowerCamelCase ) -> float: """simple docstring""" train_user.sort() __snake_case : List[str] = np.percentile(_lowerCamelCase , 25 ) __snake_case : Optional[int] = np.percentile(_lowerCamelCase , 75 ) __snake_case : List[Any] = qa - qa __snake_case : List[str] = qa - (iqr * 0.1) return low_lim def _a ( _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Tuple = 0 __snake_case : str = 0 for i in list_vote: if i > actual_result: __snake_case : str = not_safe + 1 else: if abs(abs(_lowerCamelCase ) - abs(_lowerCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] __UpperCamelCase = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) __UpperCamelCase = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase = normalize_df[:, 2].tolist() __UpperCamelCase = normalize_df[:, 0].tolist() __UpperCamelCase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase = normalize_df[:, [1, 2]].tolist() __UpperCamelCase = x[: len(x) - 1] __UpperCamelCase = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase = total_date[: len(total_date) - 1] __UpperCamelCase = total_user[: len(total_user) - 1] __UpperCamelCase = total_match[: len(total_match) - 1] __UpperCamelCase = total_date[len(total_date) - 1 :] __UpperCamelCase = total_user[len(total_user) - 1 :] __UpperCamelCase = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
26
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[int]=13 , __magic_name__ : List[str]=7 , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=False , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=99 , __magic_name__ : Optional[Any]=32 , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[Any]=4 , __magic_name__ : str=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : str=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : List[str]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : Tuple=3 , __magic_name__ : List[str]=4 , __magic_name__ : Any=None , ) -> Dict: """simple docstring""" __snake_case : Tuple = parent __snake_case : Any = batch_size __snake_case : Optional[int] = seq_length __snake_case : int = is_training __snake_case : Union[str, Any] = use_input_mask __snake_case : Any = use_token_type_ids __snake_case : Optional[Any] = use_labels __snake_case : str = vocab_size __snake_case : Any = hidden_size __snake_case : int = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : str = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : Any = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Optional[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[Any] = num_labels __snake_case : str = num_choices __snake_case : List[Any] = scope def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[str] = None if self.use_input_mask: __snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = None __snake_case : str = None __snake_case : Optional[int] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : int = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = LlamaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : int = model(__magic_name__ , attention_mask=__magic_name__ ) __snake_case : int = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Tuple , ) -> str: """simple docstring""" __snake_case : Optional[int] = True __snake_case : Optional[int] = LlamaModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : str = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , ) __snake_case : List[Any] = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , ) __snake_case : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Any , ) -> str: """simple docstring""" __snake_case : Dict = LlamaForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : List[str] = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : str , ) -> Dict: """simple docstring""" __snake_case : int = True __snake_case : Optional[Any] = True __snake_case : Union[str, Any] = LlamaForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # first forward pass __snake_case : List[str] = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , use_cache=__magic_name__ , ) __snake_case : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : Any = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : int = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , output_hidden_states=__magic_name__ , )["""hidden_states"""][0] __snake_case : int = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , output_hidden_states=__magic_name__ , )["""hidden_states"""][0] # select random slice __snake_case : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : int = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[str] = config_and_inputs __snake_case : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowercase__: int = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase__: Tuple = (LlamaForCausalLM,) if is_torch_available() else () lowercase__: Any = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase__: Any = False lowercase__: List[Any] = False def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case : int = LlamaModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Union[str, Any] = type self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = 3 __snake_case : Dict = input_dict["""input_ids"""] __snake_case : List[Any] = input_ids.ne(1 ).to(__magic_name__ ) __snake_case : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : Union[str, Any] = LlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : List[str] = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[Any] = 3 __snake_case : Optional[int] = """single_label_classification""" __snake_case : int = input_dict["""input_ids"""] __snake_case : Tuple = input_ids.ne(1 ).to(__magic_name__ ) __snake_case : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : str = LlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = 3 __snake_case : int = """multi_label_classification""" __snake_case : str = input_dict["""input_ids"""] __snake_case : Any = input_ids.ne(1 ).to(__magic_name__ ) __snake_case : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case : List[Any] = LlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowercase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = ids_tensor([1, 10] , config.vocab_size ) __snake_case : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Dict = LlamaModel(__magic_name__ ) original_model.to(__magic_name__ ) original_model.eval() __snake_case : Optional[int] = original_model(__magic_name__ ).last_hidden_state __snake_case : Optional[Any] = original_model(__magic_name__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Any = {"""type""": scaling_type, """factor""": 10.0} __snake_case : Optional[Any] = LlamaModel(__magic_name__ ) scaled_model.to(__magic_name__ ) scaled_model.eval() __snake_case : Union[str, Any] = scaled_model(__magic_name__ ).last_hidden_state __snake_case : Union[str, Any] = scaled_model(__magic_name__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : List[str] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : Any = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __snake_case : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __snake_case : List[str] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __magic_name__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Union[str, Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __magic_name__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __snake_case : Tuple = model(torch.tensor(__magic_name__ ) ) # Expected mean on dim = -1 __snake_case : Union[str, Any] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __magic_name__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Dict = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __magic_name__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : List[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : Optional[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __snake_case : int = model(torch.tensor(__magic_name__ ) ) # Expected mean on dim = -1 __snake_case : List[Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __magic_name__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Optional[int] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __magic_name__ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __snake_case : Optional[int] = model(torch.tensor(__magic_name__ ) ) __snake_case : Any = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __magic_name__ , atol=1E-2 , rtol=1E-2 ) # fmt: off __snake_case : Dict = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __magic_name__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : Tuple = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __snake_case : Union[str, Any] = """Simply put, the theory of relativity states that """ __snake_case : str = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , return_tensors="""pt""" ) __snake_case : Union[str, Any] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__magic_name__ ) # greedy generation outputs __snake_case : List[str] = model.generate(__magic_name__ , max_new_tokens=64 , top_p=__magic_name__ , temperature=1 , do_sample=__magic_name__ ) __snake_case : List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ )
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _A ( __lowercase ): lowercase__: Any = (EulerDiscreteScheduler,) lowercase__: Optional[Any] = 10 def lowercase__ ( self : str , **__magic_name__ : str ) -> Any: """simple docstring""" __snake_case : List[Any] = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__magic_name__ ) return config def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : List[str] = self.scheduler_classes[0] __snake_case : List[str] = self.get_scheduler_config() __snake_case : int = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : List[Any] = torch.manual_seed(0 ) __snake_case : Union[str, Any] = self.dummy_model() __snake_case : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Dict = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case : Union[str, Any] = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) __snake_case : Union[str, Any] = output.prev_sample __snake_case : Union[str, Any] = torch.sum(torch.abs(__magic_name__ ) ) __snake_case : str = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : Any = self.scheduler_classes[0] __snake_case : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __snake_case : Optional[int] = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : List[str] = self.dummy_model() __snake_case : int = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Union[str, Any] = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case : Union[str, Any] = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) __snake_case : str = model(__magic_name__ , __magic_name__ ) __snake_case : Any = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) __snake_case : Optional[int] = output.prev_sample __snake_case : List[Any] = torch.sum(torch.abs(__magic_name__ ) ) __snake_case : int = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2_676E-06 ) < 1E-3 def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : int = self.scheduler_classes[0] __snake_case : Union[str, Any] = self.get_scheduler_config() __snake_case : int = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) __snake_case : Dict = torch.manual_seed(0 ) __snake_case : Union[str, Any] = self.dummy_model() __snake_case : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __snake_case : Any = sample.to(__magic_name__ ) for t in scheduler.timesteps: __snake_case : Union[str, Any] = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) __snake_case : Optional[int] = model(__magic_name__ , __magic_name__ ) __snake_case : Optional[int] = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) __snake_case : Optional[int] = output.prev_sample __snake_case : List[Any] = torch.sum(torch.abs(__magic_name__ ) ) __snake_case : List[Any] = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = self.scheduler_classes[0] __snake_case : Optional[int] = self.get_scheduler_config() __snake_case : int = scheduler_class(**__magic_name__ , use_karras_sigmas=__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) __snake_case : Dict = torch.manual_seed(0 ) __snake_case : int = self.dummy_model() __snake_case : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __snake_case : int = sample.to(__magic_name__ ) for t in scheduler.timesteps: __snake_case : Any = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , __magic_name__ ) __snake_case : int = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ) __snake_case : Tuple = output.prev_sample __snake_case : str = torch.sum(torch.abs(__magic_name__ ) ) __snake_case : Tuple = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1E-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1E-3
26
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
1
'''simple docstring''' __UpperCamelCase = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __UpperCamelCase = [{"type": "code", "content": INSTALL_CONTENT}] __UpperCamelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
26
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
1
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __UpperCamelCase = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) __UpperCamelCase = dataset.iloc[:, 1:2].values __UpperCamelCase = dataset.iloc[:, 2].values __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = train_test_split(X, y, test_size=0.2, random_state=0) __UpperCamelCase = PolynomialFeatures(degree=4) __UpperCamelCase = poly_reg.fit_transform(X) __UpperCamelCase = LinearRegression() pol_reg.fit(X_poly, y) def _a ( ) -> Tuple: """simple docstring""" plt.scatter(_lowerCamelCase , _lowerCamelCase , color="""red""" ) plt.plot(_lowerCamelCase , pol_reg.predict(poly_reg.fit_transform(_lowerCamelCase ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
26
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
1
'''simple docstring''' __UpperCamelCase = 0 # The first color of the flag. __UpperCamelCase = 1 # The second color of the flag. __UpperCamelCase = 2 # The third color of the flag. __UpperCamelCase = (red, white, blue) def _a ( _lowerCamelCase ) -> list: """simple docstring""" if not sequence: return [] if len(_lowerCamelCase ) == 1: return list(_lowerCamelCase ) __snake_case : Any = 0 __snake_case : Union[str, Any] = len(_lowerCamelCase ) - 1 __snake_case : List[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: __snake_case , __snake_case : List[Any] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __snake_case , __snake_case : Optional[Any] = sequence[high], sequence[mid] high -= 1 else: __snake_case : Tuple = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(_lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase = input("Enter numbers separated by commas:\n").strip() __UpperCamelCase = [int(item.strip()) for item in user_input.split(",")] print(f"""{dutch_national_flag_sort(unsorted)}""")
26
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class _A : def __init__( self : Optional[Any] , __magic_name__ : int ) -> None: """simple docstring""" __snake_case : List[Any] = value __snake_case : Node | None = None __snake_case : Node | None = None class _A : def __init__( self : Tuple , __magic_name__ : Node ) -> None: """simple docstring""" __snake_case : Tuple = tree def lowercase__ ( self : str , __magic_name__ : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Optional[int] ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { "configuration_table_transformer": [ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig", "TableTransformerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = F'''Input value of [number={number}] must be an integer''' raise TypeError(_lowerCamelCase ) if number < 0: return False __snake_case : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
1
'''simple docstring''' from __future__ import annotations class _A : def __init__( self : Optional[int] , __magic_name__ : list[list[int]] ) -> str: """simple docstring""" __snake_case : str = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(__magic_name__ ) != 0: __snake_case : List[str] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__magic_name__ ) != cols: raise error for value in row: if not isinstance(__magic_name__ , (int, float) ): raise error __snake_case : Any = rows else: __snake_case : List[Any] = [] def lowercase__ ( self : int ) -> list[list[int]]: """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return len(self.rows ) @property def lowercase__ ( self : Any ) -> int: """simple docstring""" return len(self.rows[0] ) @property def lowercase__ ( self : str ) -> tuple[int, int]: """simple docstring""" return (self.num_rows, self.num_columns) @property def lowercase__ ( self : Optional[int] ) -> bool: """simple docstring""" return self.order[0] == self.order[1] def lowercase__ ( self : List[str] ) -> Matrix: """simple docstring""" __snake_case : List[str] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__magic_name__ ) def lowercase__ ( self : str ) -> int: """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowercase__ ( self : Any ) -> bool: """simple docstring""" return bool(self.determinant() ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" __snake_case : Optional[int] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__magic_name__ ).determinant() def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(__magic_name__ , __magic_name__ ) return -1 * self.get_minor(__magic_name__ , __magic_name__ ) def lowercase__ ( self : int ) -> Matrix: """simple docstring""" return Matrix( [ [self.get_minor(__magic_name__ , __magic_name__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowercase__ ( self : List[str] ) -> Matrix: """simple docstring""" __snake_case : List[str] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__magic_name__ ) def lowercase__ ( self : Any ) -> Matrix: """simple docstring""" __snake_case : List[Any] = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self.rows ) def __str__( self : Optional[Any] ) -> str: """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(__magic_name__ ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : list[int] , __magic_name__ : int | None = None ) -> None: """simple docstring""" __snake_case : Tuple = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(__magic_name__ , __magic_name__ ): raise type_error for value in row: if not isinstance(__magic_name__ , (int, float) ): raise type_error if len(__magic_name__ ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(__magic_name__ ) else: __snake_case : Optional[Any] = self.rows[0:position] + [row] + self.rows[position:] def lowercase__ ( self : List[Any] , __magic_name__ : list[int] , __magic_name__ : int | None = None ) -> None: """simple docstring""" __snake_case : Tuple = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(__magic_name__ , __magic_name__ ): raise type_error for value in column: if not isinstance(__magic_name__ , (int, float) ): raise type_error if len(__magic_name__ ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: __snake_case : str = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __snake_case : List[Any] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __magic_name__ : object ) -> bool: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): return NotImplemented return self.rows == other.rows def __ne__( self : List[Any] , __magic_name__ : object ) -> bool: """simple docstring""" return not self == other def __neg__( self : Dict ) -> Matrix: """simple docstring""" return self * -1 def __add__( self : List[Any] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Optional[Any] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Union[str, Any] , __magic_name__ : Matrix | int | float ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__magic_name__ , __magic_name__ ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(__magic_name__ , __magic_name__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self : Tuple , __magic_name__ : int ) -> Matrix: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) __snake_case : int = self for _ in range(other - 1 ): result *= self return result @classmethod def lowercase__ ( cls : Dict , __magic_name__ : list[int] , __magic_name__ : list[int] ) -> int: """simple docstring""" return sum(row[i] * column[i] for i in range(len(__magic_name__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[Any] = [0] * len(_lowerCamelCase ) __snake_case : List[Any] = [] __snake_case : List[Any] = [1] * len(_lowerCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCamelCase ) ): if indegree[i] == 0: queue.append(_lowerCamelCase ) while queue: __snake_case : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __snake_case : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_lowerCamelCase ) print(max(_lowerCamelCase ) ) # Adjacency list of Graph __UpperCamelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
26
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = len(_lowerCamelCase ) __snake_case : Dict = len(matrix[0] ) __snake_case : Tuple = min(_lowerCamelCase , _lowerCamelCase ) for row in range(_lowerCamelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _lowerCamelCase ): __snake_case : Optional[int] = matrix[col][row] / matrix[row][row] for i in range(_lowerCamelCase , _lowerCamelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __snake_case : List[Any] = True for i in range(row + 1 , _lowerCamelCase ): if matrix[i][row] != 0: __snake_case , __snake_case : Optional[Any] = matrix[i], matrix[row] __snake_case : List[str] = False break if reduce: rank -= 1 for i in range(_lowerCamelCase ): __snake_case : Tuple = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _a ( _lowerCamelCase ) -> str: """simple docstring""" config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> int: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __snake_case : str = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" if exitstatus == 5: __snake_case : List[Any] = 0 # Doctest custom flag to ignore output. __UpperCamelCase = doctest.register_optionflag("IGNORE_RESULT") __UpperCamelCase = doctest.OutputChecker class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __magic_name__ , __magic_name__ , __magic_name__ ) __UpperCamelCase = CustomOutputChecker __UpperCamelCase = HfDoctestModule __UpperCamelCase = HfDocTestParser
26
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> list[int]: """simple docstring""" __snake_case : Tuple = int(_lowerCamelCase ) # Initialize Result __snake_case : Union[str, Any] = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase = [] __UpperCamelCase = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): __UpperCamelCase = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) __UpperCamelCase = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(f"""Following is minimal change for {value}: """) __UpperCamelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
26
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _A ( __lowercase ): lowercase__: Optional[int] = '''Salesforce/blip-image-captioning-base''' lowercase__: Optional[Any] = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) lowercase__: int = '''image_captioner''' lowercase__: Optional[Any] = AutoModelForVisionaSeq lowercase__: int = ['''image'''] lowercase__: List[str] = ['''text'''] def __init__( self : Tuple , *__magic_name__ : List[str] , **__magic_name__ : List[Any] ) -> List[str]: """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Optional[int] , __magic_name__ : "Image" ) -> Optional[Any]: """simple docstring""" return self.pre_processor(images=__magic_name__ , return_tensors="""pt""" ) def lowercase__ ( self : Optional[Any] , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" return self.model.generate(**__magic_name__ ) def lowercase__ ( self : Optional[int] , __magic_name__ : str ) -> str: """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
26
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
1
'''simple docstring''' import torch def _a ( ) -> Optional[int]: """simple docstring""" if torch.cuda.is_available(): __snake_case : Optional[int] = torch.cuda.device_count() else: __snake_case : Dict = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
26
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
1
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ) -> List[Any]: """simple docstring""" if "." in tensor_name: __snake_case : List[str] = tensor_name.split(""".""" ) for split in splits[:-1]: __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) __snake_case : str = new_module __snake_case : str = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) __snake_case : Union[str, Any] = tensor_name in module._buffers __snake_case : Union[str, Any] = getattr(_lowerCamelCase , _lowerCamelCase ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) __snake_case : Union[str, Any] = False __snake_case : int = False if is_buffer or not is_bitsandbytes_available(): __snake_case : int = False __snake_case : Dict = False else: __snake_case : int = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) __snake_case : Any = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: __snake_case : Union[str, Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: __snake_case : Dict = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): __snake_case : Tuple = value.to("""cpu""" ) if value.dtype == torch.inta: __snake_case : Tuple = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: __snake_case : Union[str, Any] = torch.tensor(_lowerCamelCase , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _lowerCamelCase ) and fpaa_statistics is None: __snake_case : Optional[int] = new_value.T __snake_case : str = old_value.__dict__ if is_abit: __snake_case : Tuple = bnb.nn.IntaParams(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) elif is_abit: __snake_case : int = bnb.nn.Paramsabit(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) __snake_case : Tuple = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(_lowerCamelCase ) ) else: if value is None: __snake_case : List[Any] = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): __snake_case : Dict = value.to(_lowerCamelCase ) else: __snake_case : List[Any] = torch.tensor(_lowerCamelCase , device=_lowerCamelCase ) if is_buffer: __snake_case : Optional[int] = new_value else: __snake_case : Tuple = nn.Parameter(_lowerCamelCase , requires_grad=old_value.requires_grad ) __snake_case : str = new_value def _a ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" for name, module in model.named_children(): if current_key_name is None: __snake_case : Tuple = [] current_key_name.append(_lowerCamelCase ) if (isinstance(_lowerCamelCase , nn.Linear ) or isinstance(_lowerCamelCase , _lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(_lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case , __snake_case : Union[str, Any] = module.weight.shape else: __snake_case : Dict = module.in_features __snake_case : Any = module.out_features if quantization_config.quantization_method() == "llm_int8": __snake_case : Union[str, Any] = bnb.nn.LinearabitLt( _lowerCamelCase , _lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) __snake_case : Any = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: __snake_case : Any = bnb.nn.Linearabit( _lowerCamelCase , _lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) __snake_case : Optional[int] = True # Store the module class in case we need to transpose the weight later __snake_case : List[Any] = type(_lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowerCamelCase ) if len(list(module.children() ) ) > 0: __snake_case , __snake_case : Optional[Any] = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_been_replaced=_lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _a ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None ) -> str: """simple docstring""" __snake_case : Dict = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert __snake_case , __snake_case : int = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , _lowerCamelCase , ) return replace_with_bnb_linear(*_lowerCamelCase , **_lowerCamelCase ) def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> str: """simple docstring""" warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , _lowerCamelCase , ) return set_module_quantized_tensor_to_device(*_lowerCamelCase , **_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Tuple = deepcopy(_lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() __snake_case : int = find_tied_parameters(_lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __snake_case : Dict = sum(_lowerCamelCase , [] ) __snake_case : int = len(_lowerCamelCase ) > 0 # Check if it is a base model __snake_case : Tuple = not hasattr(_lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __snake_case : Union[str, Any] = list(model.named_children() ) __snake_case : List[Any] = [list_modules[-1][0]] # add last module together with tied weights __snake_case : Tuple = set(_lowerCamelCase ) - set(_lowerCamelCase ) __snake_case : str = list(set(_lowerCamelCase ) ) + list(_lowerCamelCase ) # remove ".weight" from the keys __snake_case : List[Any] = [""".weight""", """.bias"""] __snake_case : Union[str, Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __snake_case : Optional[int] = name.replace(_lowerCamelCase , """""" ) filtered_module_names.append(_lowerCamelCase ) return filtered_module_names
26
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: int = '''xlm''' lowercase__: Dict = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self : str , __magic_name__ : str=3_01_45 , __magic_name__ : str=20_48 , __magic_name__ : Dict=12 , __magic_name__ : List[Any]=16 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[Any]=True , __magic_name__ : Tuple=False , __magic_name__ : List[Any]=False , __magic_name__ : List[str]=False , __magic_name__ : List[Any]=1 , __magic_name__ : int=True , __magic_name__ : List[Any]=5_12 , __magic_name__ : List[Any]=20_48**-0.5 , __magic_name__ : Tuple=1E-12 , __magic_name__ : List[str]=0.02 , __magic_name__ : List[str]=0 , __magic_name__ : str=1 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Union[str, Any]=5 , __magic_name__ : List[str]=True , __magic_name__ : Dict="first" , __magic_name__ : str=True , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=0.1 , __magic_name__ : List[str]=5 , __magic_name__ : List[Any]=5 , __magic_name__ : int=0 , __magic_name__ : int=0 , __magic_name__ : List[str]=2 , __magic_name__ : int=0 , **__magic_name__ : Any , ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = vocab_size __snake_case : List[Any] = emb_dim __snake_case : Tuple = n_layers __snake_case : Union[str, Any] = n_heads __snake_case : Optional[int] = dropout __snake_case : Dict = attention_dropout __snake_case : Tuple = gelu_activation __snake_case : Any = sinusoidal_embeddings __snake_case : List[Any] = causal __snake_case : Dict = asm __snake_case : Optional[Any] = n_langs __snake_case : Any = use_lang_emb __snake_case : int = layer_norm_eps __snake_case : List[Any] = bos_index __snake_case : Any = eos_index __snake_case : Union[str, Any] = pad_index __snake_case : Optional[Any] = unk_index __snake_case : List[Any] = mask_index __snake_case : Union[str, Any] = is_encoder __snake_case : Optional[int] = max_position_embeddings __snake_case : int = embed_init_std __snake_case : Dict = init_std __snake_case : Any = summary_type __snake_case : int = summary_use_proj __snake_case : Any = summary_activation __snake_case : Any = summary_proj_to_labels __snake_case : List[str] = summary_first_dropout __snake_case : List[Any] = start_n_top __snake_case : List[Any] = end_n_top __snake_case : str = mask_token_id __snake_case : List[Any] = lang_id if "n_words" in kwargs: __snake_case : int = kwargs["""n_words"""] super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
26
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
1
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int | float: """simple docstring""" if len(_lowerCamelCase ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(_lowerCamelCase ) or left < -len(_lowerCamelCase ) or right >= len(_lowerCamelCase ) or right < -len(_lowerCamelCase ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __snake_case : Optional[int] = (left + right) >> 1 # the middle __snake_case : str = find_max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # find max in range[left, mid] __snake_case : Union[str, Any] = find_max(_lowerCamelCase , mid + 1 , _lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
26
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : str , *__magic_name__ : Tuple , **__magic_name__ : Tuple ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
1
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
1
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _A : def __init__( self : List[Any] , __magic_name__ : Collection[float] | None = None ) -> None: """simple docstring""" if components is None: __snake_case : Tuple = [] __snake_case : List[str] = list(__magic_name__ ) def __len__( self : Optional[Any] ) -> int: """simple docstring""" return len(self.__components ) def __str__( self : str ) -> str: """simple docstring""" return "(" + ",".join(map(__magic_name__ , self.__components ) ) + ")" def __add__( self : int , __magic_name__ : Vector ) -> Vector: """simple docstring""" __snake_case : List[str] = len(self ) if size == len(__magic_name__ ): __snake_case : Any = [self.__components[i] + other.component(__magic_name__ ) for i in range(__magic_name__ )] return Vector(__magic_name__ ) else: raise Exception("""must have the same size""" ) def __sub__( self : List[Any] , __magic_name__ : Vector ) -> Vector: """simple docstring""" __snake_case : Union[str, Any] = len(self ) if size == len(__magic_name__ ): __snake_case : Dict = [self.__components[i] - other.component(__magic_name__ ) for i in range(__magic_name__ )] return Vector(__magic_name__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self : List[Any] , __magic_name__ : float ) -> Vector: """simple docstring""" ... @overload def __mul__( self : Any , __magic_name__ : Vector ) -> float: """simple docstring""" ... def __mul__( self : Dict , __magic_name__ : float | Vector ) -> float | Vector: """simple docstring""" if isinstance(__magic_name__ , (float, int) ): __snake_case : Optional[int] = [c * other for c in self.__components] return Vector(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ) and len(self ) == len(__magic_name__ ): __snake_case : Tuple = len(self ) __snake_case : int = [self.__components[i] * other.component(__magic_name__ ) for i in range(__magic_name__ )] return sum(__magic_name__ ) else: # error case raise Exception("""invalid operand!""" ) def lowercase__ ( self : Dict ) -> Vector: """simple docstring""" return Vector(self.__components ) def lowercase__ ( self : List[str] , __magic_name__ : int ) -> float: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : float ) -> None: """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) __snake_case : str = value def lowercase__ ( self : Any ) -> float: """simple docstring""" if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __snake_case : str = [c**2 for c in self.__components] return math.sqrt(sum(__magic_name__ ) ) def lowercase__ ( self : Tuple , __magic_name__ : Vector , __magic_name__ : bool = False ) -> float: """simple docstring""" __snake_case : Tuple = self * other __snake_case : Optional[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _a ( _lowerCamelCase ) -> Vector: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) return Vector([0] * dimension ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Vector: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (isinstance(_lowerCamelCase , _lowerCamelCase )) __snake_case : List[Any] = [0] * dimension __snake_case : Union[str, Any] = 1 return Vector(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Vector: """simple docstring""" assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and (isinstance(_lowerCamelCase , (int, float) )) ) return x * scalar + y def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Vector: """simple docstring""" random.seed(_lowerCamelCase ) __snake_case : List[Any] = [random.randint(_lowerCamelCase , _lowerCamelCase ) for _ in range(_lowerCamelCase )] return Vector(_lowerCamelCase ) class _A : def __init__( self : List[Any] , __magic_name__ : list[list[float]] , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" __snake_case : Tuple = matrix __snake_case : List[str] = w __snake_case : Union[str, Any] = h def __str__( self : str ) -> str: """simple docstring""" __snake_case : Optional[int] = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Tuple , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __snake_case : Tuple = [] for i in range(self.__height ): __snake_case : Optional[Any] = [ self.__matrix[i][j] + other.component(__magic_name__ , __magic_name__ ) for j in range(self.__width ) ] matrix.append(__magic_name__ ) return Matrix(__magic_name__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self : int , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __snake_case : Optional[Any] = [] for i in range(self.__height ): __snake_case : Union[str, Any] = [ self.__matrix[i][j] - other.component(__magic_name__ , __magic_name__ ) for j in range(self.__width ) ] matrix.append(__magic_name__ ) return Matrix(__magic_name__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self : int , __magic_name__ : float ) -> Matrix: """simple docstring""" ... @overload def __mul__( self : List[Any] , __magic_name__ : Vector ) -> Vector: """simple docstring""" ... def __mul__( self : Dict , __magic_name__ : float | Vector ) -> Vector | Matrix: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): # matrix-vector if len(__magic_name__ ) == self.__width: __snake_case : Optional[int] = zero_vector(self.__height ) for i in range(self.__height ): __snake_case : List[Any] = [ self.__matrix[i][j] * other.component(__magic_name__ ) for j in range(self.__width ) ] ans.change_component(__magic_name__ , sum(__magic_name__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(__magic_name__ , (int, float) ): # matrix-scalar __snake_case : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__magic_name__ , self.__width , self.__height ) return None def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self.__height def lowercase__ ( self : int ) -> int: """simple docstring""" return self.__width def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float ) -> None: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: __snake_case : Optional[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __snake_case : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__magic_name__ ) ): __snake_case : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(__magic_name__ , self.__width - 1 , self.__height - 1 ).determinant() def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__magic_name__ , __magic_name__ ) else: raise Exception("""Indices out of bounds""" ) def lowercase__ ( self : Optional[int] ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __snake_case : Tuple = [ self.__matrix[0][y] * self.cofactor(0 , __magic_name__ ) for y in range(self.__width ) ] return sum(__magic_name__ ) def _a ( _lowerCamelCase ) -> Matrix: """simple docstring""" __snake_case : list[list[float]] = [[0] * n for _ in range(_lowerCamelCase )] return Matrix(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Matrix: """simple docstring""" random.seed(_lowerCamelCase ) __snake_case : list[list[float]] = [ [random.randint(_lowerCamelCase , _lowerCamelCase ) for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase ) ] return Matrix(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): lowercase__: Optional[int] = ['''input_features''', '''attention_mask'''] def __init__( self : Union[str, Any] , __magic_name__ : str=80 , __magic_name__ : Any=1_60_00 , __magic_name__ : Dict=80 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[str]=True , __magic_name__ : List[Any]=True , __magic_name__ : Optional[int]=True , **__magic_name__ : int , ) -> Optional[Any]: """simple docstring""" super().__init__(feature_size=__magic_name__ , sampling_rate=__magic_name__ , padding_value=__magic_name__ , **__magic_name__ ) __snake_case : Optional[int] = num_mel_bins __snake_case : int = do_ceptral_normalize __snake_case : Union[str, Any] = normalize_means __snake_case : Dict = normalize_vars __snake_case : Union[str, Any] = True def lowercase__ ( self : Dict , __magic_name__ : np.ndarray , ) -> np.ndarray: """simple docstring""" __snake_case : Tuple = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __snake_case : Union[str, Any] = torch.from_numpy(__magic_name__ ).unsqueeze(0 ) __snake_case : Any = ta_kaldi.fbank(__magic_name__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowercase__ ( __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : Optional[bool] = True , __magic_name__ : Optional[bool] = True , __magic_name__ : float = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: __snake_case : Optional[Any] = x[:input_length].mean(axis=0 ) __snake_case : Tuple = np.subtract(__magic_name__ , __magic_name__ ) if normalize_vars: __snake_case : Optional[Any] = x[:input_length].std(axis=0 ) __snake_case : Tuple = np.divide(__magic_name__ , __magic_name__ ) if input_length < x.shape[0]: __snake_case : Optional[Any] = padding_value # make sure array is in float32 __snake_case : Union[str, Any] = x.astype(np.floataa ) return x def lowercase__ ( self : Dict , __magic_name__ : List[np.ndarray] , __magic_name__ : Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" __snake_case : Union[str, Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__magic_name__ , __magic_name__ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__magic_name__ , __magic_name__ ) ] def __call__( self : Optional[int] , __magic_name__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Optional[int] = None , __magic_name__ : bool = False , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , **__magic_name__ : Dict , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __snake_case : Any = isinstance(__magic_name__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __snake_case : Dict = is_batched_numpy or ( isinstance(__magic_name__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __snake_case : Optional[int] = [np.asarray(__magic_name__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__magic_name__ , np.ndarray ): __snake_case : str = np.asarray(__magic_name__ , dtype=np.floataa ) elif isinstance(__magic_name__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __snake_case : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __snake_case : int = [raw_speech] # extract fbank features __snake_case : Optional[int] = [self._extract_fbank_features(__magic_name__ ) for waveform in raw_speech] # convert into correct format for padding __snake_case : List[str] = BatchFeature({"""input_features""": features} ) __snake_case : Optional[Any] = self.pad( __magic_name__ , padding=__magic_name__ , max_length=__magic_name__ , truncation=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , **__magic_name__ , ) # make sure list is in array format __snake_case : List[Any] = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , __magic_name__ ): __snake_case : Dict = [np.asarray(__magic_name__ , dtype=np.floataa ) for feature in input_features] __snake_case : Optional[Any] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: __snake_case : Union[str, Any] = [np.asarray(__magic_name__ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __snake_case : List[Any] = ( np.array(__magic_name__ , dtype=np.intaa ) if self._get_padding_strategies(__magic_name__ , max_length=__magic_name__ ) is not PaddingStrategy.DO_NOT_PAD else None ) __snake_case : int = self.normalize( padded_inputs["""input_features"""] , attention_mask=__magic_name__ ) if return_tensors is not None: __snake_case : Union[str, Any] = padded_inputs.convert_to_tensors(__magic_name__ ) return padded_inputs
26
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
1
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
1
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase = 16 __UpperCamelCase = 32 def _a ( _lowerCamelCase , _lowerCamelCase = 16 ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __snake_case : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __snake_case : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case : Optional[Any] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case : int = 16 elif accelerator.mixed_precision != "no": __snake_case : Any = 8 else: __snake_case : List[Any] = None return tokenizer.pad( _lowerCamelCase , padding="""longest""" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __snake_case : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) __snake_case : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCamelCase = mocked_dataloaders # noqa: F811 def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _lowerCamelCase ) == "1": __snake_case : Optional[int] = 2 # Initialize accelerator __snake_case : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case : Union[str, Any] = config["""lr"""] __snake_case : Optional[int] = int(config["""num_epochs"""] ) __snake_case : Optional[int] = int(config["""seed"""] ) __snake_case : List[Any] = int(config["""batch_size"""] ) __snake_case : int = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_lowerCamelCase ) def inner_training_loop(_lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case : str = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer __snake_case : int = AdamW(params=model.parameters() , lr=_lowerCamelCase ) __snake_case , __snake_case : Optional[int] = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate scheduler __snake_case : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : int = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __snake_case : Optional[int] = model(**_lowerCamelCase ) __snake_case : Optional[Any] = outputs.loss accelerator.backward(_lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits.argmax(dim=-1 ) __snake_case , __snake_case : Optional[int] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) __snake_case : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __snake_case : Any = parser.parse_args() __snake_case : Any = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
26
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
1
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" __snake_case , __snake_case : Dict = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=__magic_name__ , dtype=jnp.bfloataa ) __snake_case , __snake_case : Tuple = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=__magic_name__ , from_pt=__magic_name__ , dtype=jnp.bfloataa ) __snake_case : Tuple = controlnet_params __snake_case : Tuple = """bird""" __snake_case : Dict = jax.device_count() __snake_case : Any = pipe.prepare_text_inputs([prompts] * num_samples ) __snake_case : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) __snake_case : int = pipe.prepare_image_inputs([canny_image] * num_samples ) __snake_case : int = jax.random.PRNGKey(0 ) __snake_case : Dict = jax.random.split(__magic_name__ , jax.device_count() ) __snake_case : Any = replicate(__magic_name__ ) __snake_case : str = shard(__magic_name__ ) __snake_case : Optional[Any] = shard(__magic_name__ ) __snake_case : List[str] = pipe( prompt_ids=__magic_name__ , image=__magic_name__ , params=__magic_name__ , prng_seed=__magic_name__ , num_inference_steps=50 , jit=__magic_name__ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) __snake_case : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case : Optional[Any] = images[0, 2_53:2_56, 2_53:2_56, -1] __snake_case : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case : Optional[int] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Any = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=__magic_name__ , dtype=jnp.bfloataa ) __snake_case , __snake_case : Tuple = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=__magic_name__ , from_pt=__magic_name__ , dtype=jnp.bfloataa ) __snake_case : List[Any] = controlnet_params __snake_case : Dict = """Chef in the kitchen""" __snake_case : Dict = jax.device_count() __snake_case : str = pipe.prepare_text_inputs([prompts] * num_samples ) __snake_case : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) __snake_case : Any = pipe.prepare_image_inputs([pose_image] * num_samples ) __snake_case : Any = jax.random.PRNGKey(0 ) __snake_case : Optional[Any] = jax.random.split(__magic_name__ , jax.device_count() ) __snake_case : List[Any] = replicate(__magic_name__ ) __snake_case : Optional[Any] = shard(__magic_name__ ) __snake_case : Optional[Any] = shard(__magic_name__ ) __snake_case : Optional[int] = pipe( prompt_ids=__magic_name__ , image=__magic_name__ , params=__magic_name__ , prng_seed=__magic_name__ , num_inference_steps=50 , jit=__magic_name__ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) __snake_case : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case : Union[str, Any] = images[0, 2_53:2_56, 2_53:2_56, -1] __snake_case : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case : Optional[int] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
26
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
1
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(_lowerCamelCase , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = _distribute_shards(**_lowerCamelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : str = _split_gen_kwargs(_lowerCamelCase , _lowerCamelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" if expected is RuntimeError: with pytest.raises(_lowerCamelCase ): _number_of_shards_in_gen_kwargs(_lowerCamelCase ) else: __snake_case : Tuple = _number_of_shards_in_gen_kwargs(_lowerCamelCase ) assert out == expected
26
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = AltDiffusionPipeline lowercase__: Tuple = TEXT_TO_IMAGE_PARAMS lowercase__: List[str] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__: List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__: List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) __snake_case : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __snake_case : Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) __snake_case : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __snake_case : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , ) __snake_case : Dict = CLIPTextModel(__magic_name__ ) __snake_case : Optional[int] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __snake_case : str = 77 __snake_case : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Any=0 ) -> Optional[int]: """simple docstring""" if str(__magic_name__ ).startswith("""mps""" ): __snake_case : int = torch.manual_seed(__magic_name__ ) else: __snake_case : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" __snake_case : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : Optional[Any] = self.get_dummy_components() torch.manual_seed(0 ) __snake_case : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder __snake_case : Optional[int] = RobertaSeriesModelWithTransformation(__magic_name__ ) __snake_case : Optional[Any] = text_encoder __snake_case : Any = AltDiffusionPipeline(**__magic_name__ ) __snake_case : Any = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : int = self.get_dummy_inputs(__magic_name__ ) __snake_case : Union[str, Any] = """A photo of an astronaut""" __snake_case : Any = alt_pipe(**__magic_name__ ) __snake_case : List[Any] = output.images __snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : Any = self.get_dummy_components() __snake_case : List[Any] = PNDMScheduler(skip_prk_steps=__magic_name__ ) torch.manual_seed(0 ) __snake_case : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder __snake_case : Dict = RobertaSeriesModelWithTransformation(__magic_name__ ) __snake_case : Tuple = text_encoder __snake_case : Optional[Any] = AltDiffusionPipeline(**__magic_name__ ) __snake_case : Optional[int] = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Dict = self.get_dummy_inputs(__magic_name__ ) __snake_case : List[Any] = alt_pipe(**__magic_name__ ) __snake_case : Dict = output.images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : str = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__magic_name__ ) __snake_case : List[str] = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : int = """A painting of a squirrel eating a burger""" __snake_case : Tuple = torch.manual_seed(0 ) __snake_case : Dict = alt_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) __snake_case : Optional[Any] = output.images __snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : str = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) __snake_case : Dict = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__magic_name__ , safety_checker=__magic_name__ ) __snake_case : List[str] = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Dict = """A painting of a squirrel eating a burger""" __snake_case : Dict = torch.manual_seed(0 ) __snake_case : Any = alt_pipe([prompt] , generator=__magic_name__ , num_inference_steps=2 , output_type="""numpy""" ) __snake_case : List[Any] = output.images __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : Union[str, Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
26
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
1
'''simple docstring''' from torch import nn def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __UpperCamelCase = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Optional[int]: """simple docstring""" require_version(deps[pkg] , _lowerCamelCase )
26
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger() @dataclass class _A : lowercase__: nn.Module lowercase__: List[nn.Module] = field(default_factory=__lowercase ) lowercase__: list = field(default_factory=__lowercase ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Tensor , __magic_name__ : Tensor ) -> List[Any]: """simple docstring""" __snake_case : Tuple = len(list(m.modules() ) ) == 1 or isinstance(__magic_name__ , nn.Convad ) or isinstance(__magic_name__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(__magic_name__ ) def __call__( self : Optional[int] , __magic_name__ : Tensor ) -> Any: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__magic_name__ ) [x.remove() for x in self.handles] return self @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" return list(filter(lambda __magic_name__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _A : lowercase__: nn.Module lowercase__: nn.Module lowercase__: int = 1 lowercase__: List = field(default_factory=__lowercase ) lowercase__: List = field(default_factory=__lowercase ) lowercase__: bool = True def __call__( self : Dict , __magic_name__ : Tensor ) -> List[str]: """simple docstring""" __snake_case : Any = Tracker(self.dest )(__magic_name__ ).parametrized __snake_case : Dict = Tracker(self.src )(__magic_name__ ).parametrized __snake_case : List[str] = list(filter(lambda __magic_name__ : type(__magic_name__ ) not in self.src_skip , __magic_name__ ) ) __snake_case : List[str] = list(filter(lambda __magic_name__ : type(__magic_name__ ) not in self.dest_skip , __magic_name__ ) ) if len(__magic_name__ ) != len(__magic_name__ ) and self.raise_if_mismatch: raise Exception( f'''Numbers of operations are different. Source module has {len(__magic_name__ )} operations while''' f''' destination module has {len(__magic_name__ )}.''' ) for dest_m, src_m in zip(__magic_name__ , __magic_name__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) class _A ( nn.Module ): def __init__( self : Dict , __magic_name__ : nn.Module ) -> Any: """simple docstring""" super().__init__() __snake_case : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), f'''Unexpected layer name {k}''' __snake_case : Optional[int] = len(__magic_name__ ) + 1 feature_blocks.append((f'''res{block_index}''', v) ) __snake_case : str = nn.ModuleDict(__magic_name__ ) def lowercase__ ( self : int , __magic_name__ : Tensor ) -> Tuple: """simple docstring""" return get_trunk_forward_outputs( __magic_name__ , out_feat_keys=__magic_name__ , feature_blocks=self._feature_blocks , ) class _A ( __lowercase ): def lowercase__ ( self : Any , __magic_name__ : str ) -> str: """simple docstring""" __snake_case : List[Any] = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : int , __magic_name__ : str ) -> Callable[[], Tuple[nn.Module, Dict]]: """simple docstring""" if x not in self: __snake_case : Tuple = self.convert_name_to_timm(__magic_name__ ) __snake_case : List[str] = partial(lambda: (timm.create_model(__magic_name__ , pretrained=__magic_name__ ).eval(), None) ) else: __snake_case : Tuple = super().__getitem__(__magic_name__ ) return val class _A ( __lowercase ): def __getitem__( self : Optional[Any] , __magic_name__ : str ) -> Callable[[], nn.Module]: """simple docstring""" if "seer" in x and "in1k" not in x: __snake_case : Any = RegNetModel else: __snake_case : Tuple = RegNetForImageClassification return val def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" for from_key, to_key in keys: __snake_case : int = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) -> Union[str, Any]: """simple docstring""" print(F'''Converting {name}...''' ) with torch.no_grad(): __snake_case , __snake_case : str = from_model_func() __snake_case : Optional[Any] = our_model_func(_lowerCamelCase ).eval() __snake_case : Dict = ModuleTransfer(src=_lowerCamelCase , dest=_lowerCamelCase , raise_if_mismatch=_lowerCamelCase ) __snake_case : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(_lowerCamelCase ) if from_state_dict is not None: __snake_case : Optional[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __snake_case : Any = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] __snake_case : List[str] = manually_copy_vissl_head(_lowerCamelCase , our_model.state_dict() , _lowerCamelCase ) our_model.load_state_dict(_lowerCamelCase ) __snake_case : str = our_model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) __snake_case : Any = ( our_outputs.logits if isinstance(_lowerCamelCase , _lowerCamelCase ) else our_outputs.last_hidden_state ) __snake_case : List[str] = from_model(_lowerCamelCase ) __snake_case : List[Any] = from_output[-1] if type(_lowerCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __snake_case : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(_lowerCamelCase , _lowerCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=_lowerCamelCase , ) __snake_case : Optional[int] = 224 if """seer""" not in name else 384 # we can use the convnext one __snake_case : List[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=_lowerCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=_lowerCamelCase , ) print(F'''Pushed {name}''' ) def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True ) -> List[str]: """simple docstring""" __snake_case : int = """imagenet-1k-id2label.json""" __snake_case : int = 1000 __snake_case : Any = (1, num_labels) __snake_case : Union[str, Any] = """huggingface/label-files""" __snake_case : List[str] = num_labels __snake_case : int = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __snake_case : Optional[int] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : Any = {v: k for k, v in idalabel.items()} __snake_case : int = partial(_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase ) __snake_case : Optional[Any] = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } __snake_case : List[str] = NameToOurModelFuncMap() __snake_case : List[str] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_lowerCamelCase , _lowerCamelCase ) -> Tuple[nn.Module, Dict]: __snake_case : List[str] = torch.hub.load_state_dict_from_url(_lowerCamelCase , model_dir=str(_lowerCamelCase ) , map_location="""cpu""" ) __snake_case : Optional[Any] = model_func() # check if we have a head, if yes add it __snake_case : str = files["""classy_state_dict"""]["""base_model"""]["""model"""] __snake_case : Any = model_state_dict["""trunk"""] model.load_state_dict(_lowerCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained __snake_case : List[str] = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : List[str] = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : Tuple = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : str = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __snake_case : Dict = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : List[Any] = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : Union[str, Any] = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : str = partial( _lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _lowerCamelCase , _lowerCamelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) return config, expected_shape if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
26
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
1